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a TECHNOLOGY FOR OPTIMIZING HYBRID 
PROCESSOR UTILIZATION 

TECHNICAL FIELD 
a [ 0001 ] The present disclosure pertains in general to data 

processing systems and in particular to technology for 
optimizing processor utilization . 

[ 0010 ] FIG . 4 is a block diagram of a processor that may 
have more than one core , may have an integrated memory 
controller , and may have integrated graphics according to 
embodiments of the invention . 
[ 0011 ] FIG . 5 is a block diagram of a system according to 
embodiments of the invention . 
[ 0012 ] FIGS . 6 and 7 are block diagrams of more specific 
exemplary systems according to embodiments of the inven 
tion . 
[ 0013 ] FIG . 8 is a block diagram of a system on a chip 
according to embodiments of the invention . 

DETAILED DESCRIPTION 

a 

BACKGROUND 
[ 0002 ] A processor in a conventional data processing 
system may include multiple thread processing units ( TPUs ) 
that enable the processor to execute multiple threads at once . 
For instance , a processor may include multiple single 
threaded processing cores , with each processing core being 
capable of executing a different thread . Alternatively , a 
processor may include a single processing core that includes 
multiple logical processors ( LPs ) which enable the processor 
to perform simultaneous multithreading ( SMT ) , with each 
LP being capable of executing a different thread . For pur 
poses of this disclosure , a processing core that supports SMT 
may be referred to as a “ multithreaded processing core . ” 
Alternatively , a processor may include multiple processing 
cores , each of which includes multiple LPs for performing 
SMT . For purposes of this disclosure , the terms “ thread 
processing unit ” and “ TPU ” refer to the features of a 
processor which enable the processor to execute a software 
thread . For instance , a single - threaded processing core may 
be referred to as a TPU , and each LP in a multithreaded 
processing core may be referred to as a TPU . 
[ 0003 ] A conventional processor may have a homogenous 
topology , in that all of the TPUs in the processor are the 
same kind of TPU . For instance , all of the TPUs may be the 
same kind of single - threaded processing core , or all of the 
TPUs may be the same kind of LP in the same kind of 
multithreaded processing core . 
[ 0004 ] A conventional operating system ( OS ) in a data 
processing system with multiple TPUs includes a thread 
manager to schedule threads on those TPUs . However , the 
algorithms that a conventional thread manager uses to make 
thread scheduling decisions may be designed for a processor 
with a homogenous topology . 
[ 0005 ] Manufacturers are now developing processors with 
heterogenous topologies . For purposes of this disclosure , a 
processor with a " heterogenous topology ” is a processor that 
includes at least two different types of processing cores . 
Accordingly , a heterogenous processor includes at least two 
different types of TPUs . A heterogenous processor may also 
be referred to as a “ hybrid processor . ” 

a 

[ 0014 ] As indicated above , a hybrid processor ( or heterog 
enous processor ) is a processor that includes at least two 
different types of processing cores . For instance , a hybrid 
processor may include one single - threaded processing core 
along with one multithreaded processing core . Alternatively , 
a hybrid processor may include a first single - threaded pro 
cessing core that supports a first range of power consump 
tion and a second single - threaded processing core that 
supports a different range of power consumption , with the 
upper bound for one core being higher than the upper bound 
for the other core . Also , as described in greater detail below , 
the core which can be configured to consume more power 
may be referred to as a “ big core , " and the other core may 
be referred to as a “ small core . ” Many other types of 
variations are also possible , including hybrid processors 
with multiple big cores that support SMT and multiple small 
cores that support STM , hybrid processors with at least one 
processing - core module that includes multiple processing 
cores , etc. For purposes of this disclosure , a hybrid processor 
which includes at least one processing core that supports 
SMT may be referred to as a “ hybrid SMT processor . ” Also , 
the terms “ logical processor ” and “ LP ” refer to the features 
within a multithreaded processing core that are dedicated to 
one thread , rather than being shared by multiple threads . For 
instance , each LP in a multithreaded processing core 
includes registers for storing the architectural state of the 
thread that is running on that LP , while the processing core 
also includes common execution resources ( e.g. , an arith 
metic logic unit ( ALU ) ) which are shared by the LPs . Also , 
terms like “ processing - core module , ” “ small - core module , " 
etc. refer to a collection of processing cores within a 
processor that share resources such as mid - level cache 
( MLC ) , while each processing core includes independent 
execution resources such as ALUS . 
[ 0015 ] For purposes of this disclosure , processing cores 
within a processor are considered to be of different kind or 
types if those processing cores differ with regard to charac 
teristics such as ( a ) the range of power consumption sup 
ported by each processing core , ( b ) support or lack of 
support for SMT , ( c ) which resources ( if any ) are shared 
with other processing cores , ( d ) the number of sibling 
processing cores within a processing - core module , etc. Simi 
larly , different LPs are considered to be of different kinds or 
types if those LPs differ with regard to characteristics such 
as residing in different types of processing cores . Accord 
ingly , TPUs are considered to be of different kinds or types 
based on the same kinds of distinctions ( e.g. , different 
supported ranges of power consumption , etc. ) . 
[ 0016 ] As described in greater detail below , the present 
disclosure involves an OS that is capable of detecting 
processor topology , and that is capable of optimizing thread 

a 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0006 ] Features and advantages of the present invention 
will become apparent from the appended claims , the fol 
lowing detailed description of one or more example embodi 
ments , and the corresponding figures , in which : 
[ 0007 ] FIG . 1 is a block diagram of a hypothetical embodi 
ment of a data processing system that features a hybrid 
processor and an OS with logic for optimizing thread 
management based on factors such as processor topology . 
[ 0008 ] FIG . 2 presents a flowchart of an example embodi 
ment of a process process for managing threads in a data 
processing system with a hybrid processor . 
[ 0009 ] FIGS . 3A - 3C present a flowchart with more details 
for parts of the example process illustrated in FIG . 2 . 
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management decisions , based at least in part on different 
characteristics associated with different TPUs within the 
processor topology . Such an OS may cause a data processing 
system with a hybrid processor to execute threads more 
effectively and / or more efficiently , relative to a conventional 
OS . 
[ 0017 ] For instance , in one scenario , a thread manager is 
preparing to schedule a thread which prefers high perfor 
mance or high quality of service ( POS ) on a processor that 
has ( a ) a first core with one busy LP and one idle LP and ( b ) 
a second core with two idle LPs . As described in greater 
detail below , by considering processor topology and hard 
ware feedback for each LP , the thread manager may deter 
mine that the idle LPs of the second core are not significantly 
more performant that the idle LP of the first core . Conse 
quently , the thread manager may schedule the thread on the 
idle LP of the first core , to allow the second core to remain 
idle and save power . By contrast , a conventional thread 
manager might schedule the thread on the second core in an 
attempt to optimize performance , without recognizing that 
doing so will not actually result in an increase in perfor 
mance . Consequently , the conventional thread manager may 
cause reduced efficiency without causing an increase in 
performance . 
[ 0018 ] In accordance with the present teachings , it is not 
necessary to develop different versions of an OS to handle 
different types of hybrid processors . Instead , a single version 
may include logic for detecting processor topology , for 
analyzing hardware feedback for TPUs , for considering 
thread preferences , and for managing threads according to 
all of those factors . 
[ 0019 ] FIG . 1 is a block diagram of a hypothetical embodi 
ment of a data processing system 10 with a hybrid processor 
12 and an OS 60 with logic for optimizing thread manage 
ment based on factors such as processor topology . In the 
embodiment of FIG . 1 , data processing system 10 also 
includes random access memory ( RAM ) 14 , non - volatile 
storage ( NVS ) 16 , and other components such as a network 
interface controller ( NIC ) 18 coupled to , or in communica 
tion with , hybrid processor 12. Hybrid processor 12 may be 
implemented as an integrated circuit or " chip ” that is 
mounted to a substrate to form a package . Alternatively , a 
hybrid processor may be implemented as a package that 
contains more than one chip . 
[ 0020 ] In the example of FIG . 1 , hybrid processor 12 
includes two different types of processing cores . As 
described in greater detail below , those two types are a “ big 
core ” type and a “ small core ” type . In particular , hybrid 
processor 12 includes a big core 20 , as well as a small - core 
module 30 that includes a first small core 40A , a second 
small core 40B , and an MLC 32 that is shared by small cores 
40A and 40B . In general , big cores are designed to provide 
for higher performance ( e.g. , more execution speed ) relative 
to a small core in the same processor , and small cores are 
designed to provide for more efficiency ( e.g. , less power 
consumption ) relative to a big core in the same processor . In 
the embodiment of FIG . 1 , big core 20 supports a first range 
of power and frequency settings , and each of small cores 
40A and 40B supports a second range of power and fre 
quency settings , with the range for big core 20 comprising 
an upper bound that causes more power consumption than 
the upper bound of the range for small cores 40A and 40B . 
[ 0021 ] For purposes of this disclosure , the upper bound of 
the power and frequency settings that are supported by a 

processing core may be referred to as the “ maximum per 
formance setting ” for that processing core . And if a pro 
cessing core only supports one power setting , that power 
setting constitutes the maximum performance setting . Also , 
for purposes of this disclosure , the term “ big core ” denotes 
a type of processing core that has a higher maximum 
performance setting than at least one other type of process 
ing core in that processor . Similarly , the term “ small core ” 
denotes a type of processing core that has a lower maximum 
performance setting than at least one other type of process 
ing core in that processor . Also , a maximum performance 
setting is referred to as “ lower ” or “ higher ” in relation to the 
amount of power consumption associated with that setting . 
Thus , a big core operating at its maximum performance 
setting consumes more power than a small core operating at 
its maximum performance setting . In the example of FIG . 1 , 
big core 20 has a higher maximum performance setting than 
small core 40A and small core 40B . 
[ 0022 ] Typically , a big core in a processor ( or an LP in the 
big core ) is capable of delivering higher performance ( e.g. , 
by running at a higher frequency and / or by delivering a 
higher number of instructions retired per cycle ( IPC ) ) than 
a small core in the processor ( or an LP in the small core ) . 
However , the small core ( or an LP in the small core ) is 
typically capable of delivering higher efficiency ( e.g. , by 
consuming less power ) . For purposes of this disclosure , an 
LP may be referred to as “ big ” or “ small ” based on whether 
that LP resides in a big core or a small core . Similarly , big 
single - threaded cores and big LPs may be referred to as “ big 
TPUs , " and small single - threaded cores and small LPs may 
be referred to as " small TPUs . " 
[ 0023 ] Referring again to FIG . 1 , each processing core in 
hybrid processor 12 supports SMT . Accordingly , big core 20 
includes a first logical processor ( LP ) 22A and a second LP 
22B ; small core 40A includes a first LP 42AA and a second 
LP 42AB ; and small core 40B includes a first LP 42BA and 
a second LP 42BB . However , in other embodiments , hybrid 
processors may have different topologies . For instance , a 
processor may include a single big core and a single small 
core . Alternatively , a processor may include multiple small 
core modules . Also , a small - core module may include more 
than two small cores . Also , one type of processing core may 
not support SMT . For instance , the big core may not support 
SMT , or the small core ( or cores ) may not support SMT . 
Also , a data processing system may include multiple pro 
cessor packages , and one or more of those processor pack 
ages may feature a hybrid processor . Many other types of 
topologies may be used in other embodiments . 
[ 0024 ] In the example of FIG . 1 , hybrid processor 12 also 
includes hardware feedback circuitry 50 in communication 
with big core 20 and small - core module 30. As described in 
greater detail below , hardware feedback circuitry 50 mea 
sures the performance and efficiency of each TPU and 
provides corresponding hardware feedback 58 to OS 60 , to 
enable thread manager 62 to determine and implement 
optimized thread scheduling configurations . As described in 
greater detail below , hardware feedback 58 may include 
performance ratings 52 , efficiency ratings 54 , performance 
ratios 56 , and efficiency ratios 58 . 
[ 0025 ] Data processing system 10 also includes software 
in NVS 16 that may be copied into RAM 14 and executed 
on hybrid processor 12. That software includes an OS 60 and 
a user application 70. In one scenario , user application 70 
runs in multiple threads TO - T6 . OS 60 includes a thread 
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manager 62 to handle operations such as thread scheduling 
and thread migration . The threads to be managed may 
include threads TO - T6 , as well as threads from other appli 
cations , and threads from OS 60 . 
[ 0026 ] OS 60 may generate and maintain operating pref 
erence ( OP ) settings 64 for the threads . The OP setting for 
a thread reflects an operating preference for that thread , with 
regard to performance or efficiency . As described in greater 
detail below , OS 60 may generate the OP setting for a thread 
based on factors such whether it is to be a foreground or a 
background thread , the runtime of the thread , and the 
priority assigned to the thread by the OS or by the applica 
tion to which the threads belong . Also , as described in 
greater detail below , thread manager 62 collects ( a ) proces 
sor topology data 26 from an uncore 24 in hybrid processor 
12 and ( b ) hardware feedback 58 from hardware feedback 
circuitry 50. Thread manager 62 then uses processor topol 
ogy data 26 , hardware feedback 58 , and OP settings 64 to 
manage the threads to be executed on hybrid processor 12 . 
In particular , thread manager 62 uses the collected data to 
determine and implement optimized thread configurations 
for scheduling different threads on different TPUs , so as to 
optimize or enhance the efficiency and / or performance of 
data processing system 10. The thread management process 
may include , for instance , making decisions concerning 
which processing TPUs are to be used by which threads , and 
whether threads should be migrated from one TPU to 
another . 
[ 0027 ] FIG . 2 is a flowchart of an example embodiment of 
a process for managing threads in a data processing system 
that may include a hybrid processor . That process is 
described with regard to a scenario involving data process 
ing system 10. In particular , OS 60 may perform the 
illustrated process to optimize thread scheduling for perfor 
mance and / or efficiency . 
[ 0028 ] In the illustrated scenario , the process for manag 
ing threads includes six main phases . In phase one , OS 60 
collects data concerning the topology of hybrid processor 
12 , and OS 60 uses that data to determine the topology of 
hybrid processor 12 , as shown at block 110. In phase two , 
OS 60 collects data from hybrid processor 12 concerning the 
types of hardware feedback that can be obtained from hybrid 
processor 12 , and OS 60 uses that data to determine which 
types of hardware feedback will be obtained from hybrid 
processor 12 , as shown at block 120. In phase three , thread 
manager 62 determines an OP setting for each thread , as 
shown at block 130. In phase four , thread manager 62 
collects hardware feedback 58 for the TPUs in hybrid 
processor 12 , as shown at block 140. In phase five , thread 
manager 62 uses one or more predetermined algorithms to 
determine an optimized thread configuration , based on the 
collected hardware feedback 58 and other factors such as the 
processor topology and the operating preferences for the 
threads , as shown at block 150. In phase six , thread manager 
62 implements the optimized thread configuration , as shown 
at block 160 . 
[ 0029 ] Referring again to block 110 , OS 60 may use 
architectural features of hybrid processor 12 to obtain the 
data conce ncerning the topology of hybrid processor 12 from 
hybrid processor 12. For instance , hybrid processor 12 may 
support a processor identifier ( ID ) instruction that OS 60 
may execute to obtain a processor ID for each TPU in 
processor 12 , and those processor IDs may be structured in 
a way that reflects the topology of processor 12. Accord 

ingly , OS 60 may analyze those processor IDs to determine 
the topology of hybrid processor 12 . 
[ 0030 ] For instance , the processor ID instruction may 
operate like the instruction referred to as a " CPUID instruc 
tion ” in Volume 3A ( System Programming Guide , Part 1 ) of 
the September 2016 version of the Intel® 64 and IA - 32 
Architectures Software Developer's Manual ( SDM ) . And 
when OS 60 uses that instruction , OS 60 may obtain 
processor IDs that are structured like the Advanced Pro 
grammable Interrupt Controller ( APIC ) ID described in the 
SDM . For instance , as indicated in Section 8.4.3 of the 
SDM , in one embodiment , “ [ e ] ach logical processor is 
assigned a unique APIC ID , based on system topology , " with 
that unique ID being “ a 32 - bit value if the processor supports 
CPUID leaf OBH . ” And as stated in Section 8.4.5 of the 
SDM , a " unique APIC ID is assigned to a logical processor 
during power up . This APIC ID is reported by CPUID.OBH : 
EDX [ 31 : 0 ] as a 32 - bit value . Use the 32 - bit APIC ID and 
CPUID leaf OBH to determine the topological relationship 
between logical processors if the processor supports CPUID 
leaf OBH . ” Section 8.4.5 also explains that “ [ b ] its in the 
32 - bit x2APIC ID can be extracted into sub - fields using 
CPUID leaf OBH parameters . ” For instance , a processor ID 
may include multiple fields to reflect the location of the 
associated TPU within the topology of the processor . 
[ 0031 ] For example , as indicated in Section 8.9.1 of the 
SDM , a processor ID may include fields such as a cluster 
field ( to identify a group of processor packages in a data 
processing system with multiple processor packages ) , a 
package field ( to identify a particular processor package ) , a 
core field ( to identify a particular processing core ) , and an 
SMT field ( to identify a particular LP ) , with the values in 
those fields reflecting the hierarchical mapping of the TPUs . 
Accordingly , OS 60 may use processor IDs ( and related 
data ) to determine aspects of processor topology such ( a ) as 
whether a processor is a hybrid processor , ( b ) whether a 
processor includes multiple processing - core modules and if 
so which processing cores reside in which modules , ( c ) 
which TPUs ( if any ) are LPs , ( d ) which LPs reside in the 
same processing core ( i.e. , which are “ siblings ” ) , etc. 
[ 0032 ] Referring again to block 120 , OS 60 may use 
architectural features of hybrid processor 12 to detect which 
hardware technologies are available to provide hardware 
feedback . For instance , hybrid processor 12 may report that 
it can provide a performance rating and an efficiency rating 
for each TPU . For example , in one embodiment , a processor 
may report that it supports features such as those provided 
by the “ Hardware Feedback Interface " that is described in 
Chapter 4 of the March 2020 version of the Intel® Archi 
tecture Instruction Set Extensions and Future Features Pro 
gramming Reference ( the “ Future Features Programming 
Reference " ) . Accordingly , the performance rating may be a 
numeric value to specify the relative performance level of a 
particular TPU , with higher values denoting higher perfor 
mance ( e.g. , like the “ performance capability ” field 
described in the Future Features Programming Reference ) . 
Similarly , the efficiency rating may be a numeric value to 
specify the relative efficiency level of a particular TPU , with 
higher values denoting higher efficiency ( e.g. , like the 
“ energy efficiency capability ” field described in the Future 
Features Programming Reference ) . For purposes of this 
disclosure , hardware feedback which includes a perfor 
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mance rating for each TPU and / or an efficiency rating for 
each TPU may be referred to as “ hardware guided sched 
uling ( HGS ) feedback . ” 
[ 0033 ] In addition , hybrid processor 12 may report that it 
can provide a set of performance ratios and a set of efficiency 
ratios for each TPU . The set of performance ratios for a TPU 
indicates how the performance rating for that TPU compares 
to the performance rating for each other TPU . Similarly , the 
set of efficiency ratios for a TPU indicates how the efficiency 
rating for that TPU compares to the efficiency rating for each 
other TPU . Hardware feedback circuitry 50 may generate 
each ratio in the set of performance ratios for a TPU by 
dividing the performance rating for that TPU by the perfor 
mance rating for one of the other TPUs . Similarly , hardware 
feedback circuitry 50 may generate each ratio in the set of 
efficiency ratios for a TPU by dividing the efficiency rating 
for that TPU by the efficiency rating for one of the other 
TPUs . For purposes of this disclosure , hardware feedback 
which includes a set of performance ratios for each TPU 
and / or a set of efficiency ratios for each TPU may be referred 
to as “ enhanced HGS feedback . ” By obtaining enhanced 
HGS feedback from hardware feedback circuitry 50 , thread 
manager 62 may easily determine which TPUs are more 
efficient than a given TPU , and how much more efficient , 
and which TPU are more performant than a given TPU , and 
how much more performant . 
[ 0034 ] Referring again to block 130 , the process for deter 
mining the OP settings for the threads may include detecting 
or determining the QOS needs or preferences of each thread . 
For instance , for each thread , OS 60 may determine whether 
the thread should be set with a preference for performance 
or a preference for energy efficiency . OS 60 may make such 
determinations based on one or more attributes of the thread , 
such as ( a ) whether the thread is to be executed as a 
foreground or a background thread , ( b ) the expected and / or 

cumulative runtime of the thread , ( c ) the priority assigned to 
the thread by the OS or by an application to which the thread 
belongs , etc. For purposes of this disclosure , a thread with 
a preference for performance or QOS may be referred to as 
an “ important thread , ” and a thread with a preference for 
efficiency may be referred to as an “ unimportant thread . ” 
[ 0035 ] Referring again to block 150 , example embodi 
ments of algorithms to be used by thread manager 62 to 
determine an optimized thread configuration are described 
below in connection with FIG . 3. Such algorithms are also 
described in the following tables . According to these algo 
rithms , thread manager 62 may consider factors such as 
processor topology , TPU hardware feedback , and thread 
policy . The thread policy for a thread may be based on 
factors such as the priority of the thread , whether the thread 
is to run in the foreground or the background , and the 
elapsed runtime of the thread . Also , the thread policy may 
indicate whether the thread has a preference for performance 
or a preference for efficiency . OS 60 may record the thread 
policy as the OP setting for the thread . Thread manager may 
apply these algorithms in response to a thread becoming 
ready to run , in response to a TPU going idle , or at quantum 
end , where quantum end refers to the end of a predetermined 
time period for execution of a thread . For instance , thread 
manager 62 may periodically consider whether a running 
thread should be moved from the current TPU to a different 
TPU . 

[ 0036 ] In particular , Table 1 describes thread scheduling 
algorithms that thread manager 62 may use when a thread 
becomes ready to run or at quantum end . As illustrated with 
the column heading , thread manager 62 may determine 
which algorithm to be used based on the processor topology 
of the data processing system and the OP setting for the 
thread to be scheduled . 

a 

TABLE 1 

Thread Scheduling Algorithms : 

Thread Operating Preference for 
Performance 

Thread Operating Preference 
for Efficiency Processor Topology 

A. One or more Big Cores 
with SMT , and one or 
more Small Cores with 
SMT . 

B. 

a 
One or more Big Cores 
with SMT ; and multiple 
Modules , each containing 
multiple Small Cores with 
or without SMT . 

If a core has all LPs idle and at least If an LP is idle , efficient , and 
one of those LPs is performant , then has unimportant threads on 
schedule the thread on that all sibling LPs , then schedule 
performant LP . the thread on that idle LP . 
Else , schedule the thread on the Else , schedule the thread on 
most performant idle LP . the most efficient idle LP . 
If a significantly more performant 
LP subsequently goes idle , then 
migrate the thread to that LP . 
If the thread is related to ( e.g. , If a TPU is idle in a module 
shares data with ) a thread on a that is only running 
module with a performant idle TPU , unimportant threads , then 
then schedule the thread on that schedule the thread on that 
performant idle TPU to reduce TPU to reduce impact on 
cache access misses and / or latency . important threads . 
Else , if a module has all TPUs idle 
and at least one of those TPUs is 
performant , then schedule the thread 
on a performant TPU in that 
module . 
Else , schedule the thread on a 
performant TPU on the module with 
the most TPUs idle . 

. 



US 2021/0406060 A1 Dec. 30 , 2021 
5 

TABLE 1 - continued 

Thread Scheduling Algorithms : 

Thread Operating Preference for 
Performance Processor Topology 

Thread Operating Preference 
for Efficiency 

C. One or more Big Cores 
with SMT ; multiple 
Modules , each containing 
multiple Small Cores ; and 
Enhanced HGS Feedback 

Select the most efficient idle 
TPU , based on the efficiency 
ratios . 

Determine the most performant TPU 
( that is not running a more 
important thread ) , based on the 
performance ratios . 
If the most performant TPU is idle , 
then schedule the thread on that 
TPU . 
Else , if that TPU is available for 
preemption , then preempt the 
existing thread on that TPU . 

[ 0037 ] Table 2 describes thread migration algorithms that 
thread manager 62 may use when a TPU goes idle , to 
determine whether a running thread should be moved to the 
idle TPU for higher performance and / or higher efficiency . 

[ 0038 ] Table 3 describes thread preemption algorithms 
that thread manager 62 may use when a thread becomes 
ready for scheduling , to determine whether the ready thread 
should be scheduled on an idle TPU , should preempt a 

TABLE 2 

Thread Migration Algorithms : 

Processor Topology Migrating for Performance Migrating for Efficiency 

A. One or more Big Cores 
without SMT , and one 
Module with multiple 
Small Cores with or 
without SMT . 

B. One or more Big Cores 
with SMT , and one 
Module with multiple 
Small Cores with or 
without SMT . 

If the newly idle TPU is If the newly idle TPU is 
significantly more performant than significantly more efficient 
any TPUs running important than any TPU running an 
threads , then either ( a ) migrate the unimportant thread , then 
thread from the least performant either ( a ) migrate the 
TPU to the idle TPU , or ( b ) migrate unimportant thread on the 
the most important thread on a less least efficient TPU to the idle 
performant TPU to the idle TPU . TPU , or ( b ) migrate the least 

important thread to the idle 
TPU . 

If the newly idle TPU has a sibling If ( a ) the newly idle TPU has 
running an unimportant thread , and a busy sibling running an 
if a different ( third ) TPU is ( a ) unimportant thread , ( b ) a 
running an important thread and is different ( third ) TPU is 
( b ) less performant than the idle running an unimportant 
TPU , then migrate the important thread , and ( c ) the third TPU 
thread to the sibling of the idle TPU , is significantly less efficient 
and migrate the unimportant thread than the newly idle TPU , then 
from that sibling TPU to the third migrate the unimportant 
TPU . thread from the third TPU to 
If ( a ) the newly idle TPU resides in the idle TPU . 
a module , ( b ) all other TPUs in that 
module are idle , ( c ) an important 
thread is running on a core with 
SMT , and ( d ) that core includes at 
least one TPU that is not idle , then 
migrate the important thread to a 
TPU in the module with all idle 
TPUS . 
As with row B above , if ( a ) the If ( a ) the newly idle TPU 
newly idle TPU resides in a module , resides in a module , ( b ) all 
( b ) all other TPUs in that module are other TPUs in that module are 
idle , ( c ) an important thread is idle , ( c ) there is no important 
running on a core with SMT , and ( d ) thread running in a module 
that core includes at least one TPU with unimportant threads , 
that is not idle , then migrate the then do not migrate any 
important thread to a TPU in the unimportant threads to the 
module with all idle TPUs . module with all TPUs idle . 
However , do not migrate a thread if 
( a ) the thread is related to another 
thread ( e.g. , to share data ) and ( b ) 
the related threads are running in the 
same module . 

C. One or more Big Cores 
with SMT ; and multiple 
Modules , each with 
multiple Small Cores with 
or without SMT . 
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running thread , or should be sent to a ready queue ( e.g. , the 
ready queue for the most performant core or TPU ) to be 
scheduled later . 

shown at block 210 , and collecting hardware feedback 58 
from hardware feedback circuitry 50 , as shown at block 212 . 
Those operations may also correspond to phases three and 

TABLE 3 

Thread Preemption Algorithms : 

Processor Topology Preempting for Performance Preempting for Efficiency 

B. 

One or more Big Cores If ( a ) no Big Core is idle and ( b ) a If ( a ) no Small TPU is idle 
without SMT , and one Big Core is running a less important and ( b ) any Small TPU is 
Module with multiple thread , then preempt the less running a less important 
Small Cores with or important thread by stopping the thread , then preempt the least 
without SMT . less important thread and scheduling important thread on a Small 

the ready thread in its place . TPU by stopping that thread 
If there are multiple preemption and scheduling the ready 
candidates , preempt the thread on thread in its place . 
the Big Core that is ( a ) most 
performant and ( b ) available for 
preemption . 

One or more Big Cores If a Big Core without SMT is Like for Row A above , if ( a ) 
with or without SMT , and running a less important thread , no Small TPU is idle and ( b ) 
one Module with multiple preempt that thread with the ready any Small TPU is running a 
Small Cores with or thread . less important thread , then 
without SMT . Else , if ( a ) a Big Core with SMT has preempt the least important 

only one LP busy and ( b ) the ready thread on a Small TPU . 
thread is more important that the 
thread on that LP , then preempt the 
less important thread with the ready 
thread . 
Else , if a Small Core without SMT 
is running a less important thread , 
then preempt that thread . 
Else , if ( a ) a Small Core with SMT 
has only one LP busy , and ( b ) the 
ready thread is more important than 
the thread on that LP , then preempt 
the less important thread with the 
ready thread . 

One or more Big Cores If the algorithm for row B above Like for Row A above , if ( a ) 
with SMT , and multiple results in multiple Small TPUs as no Small TPU is idle and ( b ) 
Modules with multiple potential choices for preemption , any Small TPU is running a 
Small Cores with or then select a Small TPU from the less important thread , then 
without SMT . module with the greatest number of preempt the least important 

Small TPUs idle as the preemption thread on a Small TPU . 
target . 

C. 

a 

[ 0039 ] Thread manager 62 may also use one or more 
algorithms to implement policies for preventing some 
threads from monopolizing resources to the detriment of 
other threads . Such policies may be referred to as “ fairshare 
policies . ” For instance , when the processor topology 
includes a most performant TPU , thread manager 62 may 
implement a fairshare policy to give all important threads a 
better chance of getting some time on the most performant 
TPU . To do so , thread manager 62 may track the amount of 
time that each important thread spends on less performant 
TPUs , and when that amount of time exceed a particular 
threshold for a particular thread , thread manager 62 sched 
ules that thread on the most performant TPU the next time 
that TPU is available . In addition , thread manager 62 may 
provide for different classes of important threads , with 
threads in the most important class having a shorter thresh 
old , and threads in less important classes having longer 
thresholds before getting the next share on the most perfor 
mant TPU . 

[ 0040 ] FIGS . 3A through 3C present a flowchart with 
more details for phases three through six of the example 
process illustrated in FIG . 2. The process of FIG . 3 may start 
with OS 60 adjusting OP settings for threads , if necessary , as 

four of FIG . 2. The remaining operations in FIGS . 3A 
through 3C may correspond to phases five and six of FIG . 
2 . 
[ 0041 ] In particular , thread manager 62 may determine 
whether a thread is ready to be scheduled , as shown at block 
220. If no thread is ready to be schedule , thread manager 62 
may determine whether a TPU has gone idle , as shown at 
block 230. If no TPU has gone idle , thread manager may 
determine whether a quantum has ended , as shown at block 
240. As indicated above , thread manager 62 may determine 
that a quantum has ended in response to expiration of a 
predetermined amount of time . If no quantum has ended , the 
process may return to block 210 , with OS 60 adjusting OP 
settings if necessary , collecting fresh hardware feedback 58 , 
etc. , as indicated above . 
[ 0042 ] However , referring again to block 220 , if a thread 
is ready to be scheduled , the process may pass through page 
connector B to FIG . 3B , and thread manager 62 may then 
determine whether the thread has a preference for perfor 
mance or a preference for efficiency , as shown at block 310 . 
As shown at block 312 , if the thread has a preference for 
performance , thread manager 62 may then identify a set of 
most performant TPUs , based on hardware feedback 58. In 
other words , from thread manager 62 may sort the TPUs into 

a 
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sets , with each set including TPUs with similar performance 
rating or ratios , and thread manager 62 may then select the 
set that contains the TPUs with the highest performance 
ratings or ratios . 
[ 0043 ] As shown at block 314 , thread manager 62 may 
then apply the predetermined thread scheduling algorithms 
to the TPUs in that set for the ready thread . As indicated 
above , those algorithms consider the processor topology , the 
OP settings for the ready thread , and the hardware feedback 
for the TPUs to determine an optimized thread configura 
tion . In one embodiment , thread manager 62 uses the thread 
scheduling algorithms described above with regard to Table 
1. As shown at block 320 , thread manager 62 then deter 
mines whether those algorithms have identified a suitable 
TPU for the ready thread . If so , thread manager 62 schedules 
the ready thread on that TPU , as shown at block 322 . 
[ 0044 ] Otherwise , thread manager 62 determines whether 
there are any other sets of processors left to consider , as 
shown at block 330. If so , the process returns to block 312 
with thread manager 62 selecting the next most performant 
set of processors . Thread manager 62 then applies the 
predetermined thread scheduling algorithms to the TPUs in 
that set , as indicated above . If thread manager 62 eventually 
finds a suitable TPU in one of the sets , thread manager 62 
schedules the ready thread on that TPU . However , as shown 
at block 332 , if thread manager 62 considers all sets of TPUs 
without finding a suitable TPU for the ready thread , then 
thread manager 62 adds the ready thread to the ready queue 
for the ideal ( e.g. , the most performant ) TPU . The process 
may then return to FIG . 3A via page connector A. 
[ 0045 ] However , referring again to block 310 of FIG . 3B , 
if the ready thread has a preference for efficiency , thread 
manager 62 may then identify a set of most efficient TPUs , 
based on hardware feedback 58 , as shown at block 316. In 
other words , from thread manager 62 may sort the TPUs into 
sets , with each set including TPUs with similar performance 
rating or ratios , and thread manager 62 may then select the 
set that contains the TPUs with the highest efficiency ratings 
or ratios . 
[ 0046 ] As shown at block 318 , thread manager 62 may 
then apply the predetermined thread scheduling algorithms 
to the TPUs in that set for the ready thread . As indicated 
above , those algorithms consider the processor topology , the 
OP settings for the ready thread , and the hardware feedback 
for the TPUs to determine an optimized thread configura 
tion . In one embodiment , thread manager 62 uses the thread 
scheduling algorithms described above with regard to Table 
1. As shown at block 340 , thread manager 62 then deter 
mines whether those algorithms have identified a suitable 
TPU for the ready thread . If so , thread manager 62 schedules 
the ready thread on that TPU , as shown at block 342 . 
[ 0047 ] Otherwise , thread manager 62 determines whether 
there are any other sets of processors left to consider , as 
shown at block 350. If so , the process returns to block 316 
with thread manager 62 selecting the next most efficient set 
of processors . Thread manager 62 then applies the prede 
termined thread scheduling algorithms to the TPUs in that 
set , as indicated above . If thread manager 62 eventually 
finds a suitable TPU in one of the sets , thread manager 62 
schedules the ready thread on that TPU . However , as shown 
at block 332 , if thread manager 62 considers all sets of TPUs 
without finding a suitable TPU for the ready thread , then 
thread manager 62 adds the ready thread to the ready queue 

for the ideal ( e.g. , the most efficient ) TPU . The process may 
then return to FIG . 3A via page connector A. 
[ 0048 ] In addition or alternatively , thread manager 62 may 
use preemption in connection with scheduling a ready 
thread . For instance , thread manager 62 may use one or more 
of the algorithms described in Table 3 to decide whether to 
schedule the ready thread on an idle processor or to preempt 
an active thread with the ready thread . 
[ 0049 ] Referring again to block 230 of FIG . 3A , when 
thread manager 62 detects that a TPU has gone idle , the 
process may pass through page connect C to FIG . 3C . As 
shown at block 310 , thread manager 62 may then determine 
whether any TPUs are running an important thread while 
having more performance than the idle TPU . For purposes of 
this disclosure , a TPU that is running an important thread 
may be referred to as an “ important TPU , ” while a TPU that 
is running an unimportant thread may be referred to as an 
“ unimportant TPU . ” If the idle TPU is more performant than 
any active and important TPUs , thread manager 62 identifies 
the set of important TPUs with less performance than the 
idle TPU , as shown at block 312. As shown at block 314 , 
thread manager 62 then migrates the important thread from 
the least performant of those TPUs to the idle TPU . The 
process for handling an idle TPU may then end , and the 
process for managing threads may return to FIG . 3A via 
page connector A. 
[ 0050 ] However , if the idle TPU is not more performant 
than any active and important TPUs , thread manager 62 
determines whether the idle TPU is more efficient than any 
active and unimportant TPUs , as shown at block 320. If the 
idle TPU is more efficient than any active and unimportant 
TPUs , thread manager 62 identifies the set of unimportant 
TPUs with less efficient than the idle TPU , as shown at block 
322. As shown at block 324 , thread manager 62 then 
migrates the unimportant thread from the least efficient of 
those TPUs to the idle TPU . The process for handling an idle 
TPU may then end , and the process for managing threads 
may return to FIG . 3A via page connector A. 
[ 0051 ] However , if the idle TPU is not more efficient than 
any active and unimportant TPUs , thread manager 62 may 
use an alternative algorithm to handle the idle TPU , as 
shown at block 326. For instance , thread manager 62 may 
use one or more of the algorithms described in Table 2 . 
[ 0052 ] The process for handling an idle TPU may then 
end , and the process may return to FIG . 3A via page 
connector A. 
[ 0053 ] Referring again to block 240 of FIG . 3A , if a 
quantum has ended , thread manager 62 may respond by 
analyzing the current thread configuration to determine 
whether that configuration is substantially optimal . If the 
current thread configuration is substantially optimal , the 
process may return to block 210. However , if the current 
thread configuration is not substantially optimal , thread 
manager 62 may adjust the thread configuration , as shown at 
block 252. For instance , thread manager 62 may consider 
whether any thread scheduling algorithms , thread migration 
algorithms , fairshare policies , etc. or other policies would 
result in a thread configuration that is , in aggregate , more 
performant for important threads and / or more efficient for 
unimportant threads . 
[ 0054 ] For instance , at quantum end , thread manager 62 
may determine whether there is an important thread on a 
TPU that is less performant than any idle TPUs . And if a 
more performant TPU is idle , thread manager 62 may 

9 
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migrate the thread to that more performant TPU . For 
instance , such an operation may result in migration of a 
thread from a TPU with siblings to a TPU without siblings . 
[ 0055 ] Thus , as has been described , an OS includes a 
thread manager that considers processor topology , TPU 
hardware feedback , and thread preferences when scheduling 
and managing threads on a data processing system , to 
optimize the thread configuration for performance and / or 
efficiency . 

ADDITIONAL EMBODIMENTS 

[ 0056 ] FIGS . 4-8 are block diagrams of exemplary com 
puter architectures . The same or similar elements in FIGS . 
4-8 bear like reference numerals . Other system designs and 
configurations known in the arts for laptops , desktops , 
handheld PCs , personal digital assistants , engineering work 
stations , servers , network devices , network hubs , switches , 
embedded processors , digital signal processors ( DSPs ) , 
graphics devices , video game devices , set - top boxes , micro 
controllers , cell phones , portable media players , hand held 
devices , and various other electronic devices , are also suit 
able . In general , a huge variety of systems or electronic 
devices capable of incorporating a processor and / or other 
execution logic as disclosed herein are generally suitable . 
[ 0057 ] FIG . 4 is a block diagram of a processor 1100 that 
may have more than one core , may have an integrated 
memory controller , and may have integrated graphics 
according to embodiments of the invention . The solid lined 
boxes in FIG . 4 illustrate a processor 1100 with a single core 
1102A , a system agent 1110 , a set of one or more bus 
controller units 1116 , while the optional addition of the 
dashed lined boxes illustrates an alternative processor 1100 
with multiple cores 1102A - N , a set of one or more integrated 
memory controller unit ( s ) in the system agent unit 1110 , and 
special purpose logic 1108 . 
[ 0058 ] Thus , different implementations of the processor 
1100 may include : 1 ) a central processing unit ( CPU ) with 
the special purpose logic 1108 being integrated graphics 
and / or scientific ( throughput ) logic ( which may include one 
or more cores ) , and the cores 1102A - N being one or more 
general purpose cores ( e.g. , general purpose in - order cores , 
general purpose out - of - order cores , a combination of the 
two ) ; 2 ) a coprocessor with the cores 1102A - N being a large 
number of special purpose cores intended primarily for 
graphics and / or scientific ( throughput ) ; and 3 ) a coprocessor 
with the cores 1102A - N being a large number of general 
purpose in - order cores . Thus , the processor 1100 may be a 
general - purpose processor , coprocessor or special - purpose 
processor , such as , for example , a network or communica 
tion processor , a compression engine , a graphics processing 
unit ( GPU ) , a general purpose GPU ( GPGPU ) , a high 
throughput many integrated core ( MIC ) coprocessor ( in 
cluding 30 or more cores ) , an embedded processor , or the 
like . The processor may be implemented on one or more 
chips . The processor 1100 may be a part of and / or may be 
implemented on one or more substrates using any of a 
number of process technologies , such as , for example , 
BiCMOS , CMOS , or NMOS . 
[ 0059 ] The memory hierarchy includes one or more levels 
of cache units 1104A - N within the cores , a set or one or 
more shared cache units 1106 , and external memory ( not 
shown ) coupled to the set of integrated memory controller 
units 1114. The set of shared cache units 1106 may include 
one or more mid - level caches , such as L2 , level 3 ( L3 ) , level 

4 ( L4 ) , or other levels of cache , a last level cache ( LLC ) , 
and / or combinations thereof . While in one embodiment a 
ring based interconnect unit 1112 interconnects the special 
purpose logic 1108 , the set of shared cache units 1106 , and 
the system agent unit 1110 / integrated memory controller 
unit ( s ) 1114 , alternative embodiments may use any number 
of well - known techniques for interconnecting such units . In 
one embodiment , coherency is maintained between one or 
more cache units 1106 and cores 1102 A - N . 
[ 0060 ] The system agent unit 1110 includes those compo 
nents coordinating and operating cores 1102A - N . The sys 
tem agent unit 1110 may include for example a power 
control unit ( PCU ) and a display unit . The PCU may be or 
include logic and components needed for regulating the 
power state of the cores 1102A - N and the integrated graph 
ics logic 1108. The display unit is for driving one or more 
externally connected displays . 
[ 0061 ] The cores 1102A - N may be homogenous or het 
erogeneous in terms of architecture instruction set ; that is , 
two or more of the cores 1102A - N may be capable of 
execution the same instruction set , while others may be 
capable of executing only a subset of that instruction set or 
a different instruction set . Such cores 1102A - N may convert 
certain memory access instructions into subline memory 
access instructions as described herein . 
[ 0062 ] FIG . 5 is a block diagram of a system 1200 
according to embodiments of the invention . The system 
1200 may include one or more processors 1210 , 1215 , which 
are coupled to a controller hub 1220. In one embodiment , the 
controller hub 1220 includes a graphics memory controller 
hub ( GMCH ) 1290 and an Input / Output Hub ( IOH ) 1250 
( which may be on separate chips ) ; the GMCH 1290 includes 
a memory controller to control operations within a coupled 
memory and a graphics controller to which are coupled 
memory 1240 and a coprocessor 1245 ; the IOH 1250 
couples input / output ( I / O ) devices 1260 to the GMCH 1290 . 
Alternatively , one or both of the memory and graphics 
controllers are integrated within the processor , the memory 
1240 and the coprocessor 1245 are coupled directly to the 
processor 1210 , and the controller hub 1220 is in a single 
chip with the IOH 1250 . 
[ 0063 ] The optional nature of additional processors 1215 
is denoted in FIG . 5 with broken lines . Each processor 1210 , 
1215 may include one or more of the processing cores 
described herein and may be some version of the processor 
1100 . 
[ 0064 ] The memory 1240 may be , for example , dynamic 
random access memory ( DRAM ) , phase change memory 
( PCM ) , or a combination of the two . For at least one 
embodiment , the controller hub 1220 communicates with 
the processor ( s ) 1210 , 1215 via a multi - drop bus , such as a 
frontside bus ( FSB ) , point - to - point interface such as Quick 
Path Interconnect ( QPI ) , or similar connection 1295 . 
[ 0065 ] In one embodiment , the coprocessor 1245 is a 
special - purpose processor , such as , for example , a high 
throughput MIC processor , a network or communication 
processor , compression engine , graphics processor , GPGPU , 
embedded processor , or the like . In one embodiment , con 
troller hub 1220 may include an integrated graphics accel 
erator . 

[ 0066 ] There can be a variety of differences between the 
physical resources 1210 , 1215 in terms of a spectrum of 
metrics of merit including architectural , microarchitectural , 
thermal , power consumption characteristics , and the like . 

a 



US 2021/0406060 A1 Dec. 30 , 2021 
9 

a 

[ 0067 ] In one embodiment , the processor 1210 executes 
instructions that control data processing operations of a 
general type . Embedded within the instructions may be 
coprocessor instructions . The processor 1210 recognizes 
these coprocessor instructions as being of a type that should 
be executed by the attached coprocessor 1245. Accordingly , 
the processor 1210 issues these coprocessor instructions ( or 
control signals representing coprocessor instructions ) on a 
coprocessor bus or other interconnect , to coprocessor 1245 . 
Coprocessor ( s ) 1245 accept and execute the received copro 
cessor instructions . 
[ 0068 ] FIGS . 6 and 7 are block diagrams of more specific 
exemplary systems 1300 and 1400 according to embodi 
ments of the invention . As shown in FIG . 6 , multiprocessor 
system 1300 is a point - to - point interconnect system , and 
includes a first processor 1370 and a second processor 1380 
coupled via a point - to - point interconnect 1350. Each of 
processors 1370 and 1380 may be some version of the 
processor 1100. In one embodiment of the invention , pro 
cessors 1370 and 1380 are respectively processors 1210 and 
1215 , while coprocessor 1338 is coprocessor 1245. In 
another embodiment , processors 1370 and 1380 are respec 
tively processor 1210 and coprocessor 1245 . 
[ 0069 ] Processors 1370 and 1380 are shown including 
integrated memory controller ( IMC ) units 1372 and 1382 , 
respectively . Processor 1370 also includes as part of its bus 
controller units point - to - point ( P - P ) interfaces 1376 and 
1378 ; similarly , second processor 1380 includes P - P inter 
faces 1386 and 1388. Processors 1370 , 1380 may exchange 
information via a P - P interface 1350 using P - P interface 
circuits 1378 , 1388. As shown in FIG . 6 , IMCs 1372 and 
1382 couple the processors to respective memories , namely 
a memory 1332 and a memory 1334 , which may be portions 
of main memory locally attached to the respective proces 

gate arrays , or any other processor , are coupled to first bus 
1316. In one embodiment , second bus 1320 may be a low 
pin count ( LPC ) bus . Various devices may be coupled to a 
second bus 1320 including , for example , a keyboard and / or 
mouse 1322 , communication devices 1327 and a storage 
unit 1328 such as a disk drive or other mass storage device 
which may include instructions / code and data 1330 , in one 
embodiment . Further , an audio I / O 1324 may be coupled to 
the second bus 1320. Note that other architectures are 
possible . For example , instead of the point - to - point archi 
tecture of FIG . 6 , a system may implement a multi - drop bus 
or other such architecture . 
[ 0074 ] FIG . 7 presents a block diagram of a second more 
specific exemplary system 1400 in accordance with an 
embodiment of the present invention . Certain aspects of 
FIG . 6 have been omitted from FIG . 7 in order to avoid 
obscuring other aspects of FIG . 7 . 
[ 0075 ] FIG . 7 illustrates that the processors 1370 , 1380 
may include integrated memory and I / O control logic 
( " CL " ) 1372 and 1382 , respectively . Thus , the CL 1372 , 
1382 include integrated memory controller units and include 
I / O control logic . FIG . 7 illustrates that not only are the 
memories 1332 , 1334 coupled to the CL 1372 , 1382 , but also 
that I / O devices 1414 are also coupled to the control logic 
1372 , 1382. Legacy I / O devices 1415 are coupled to the 
chipset 1390 . 
[ 0076 ] FIG . 8 is a block diagram of a system on a chip 
( SOC ) 1500 according to embodiments of the invention . 
Dashed lined boxes are optional features on more advanced 
SoCs . In FIG . 8 , an interconnect unit ( s ) 1502 is coupled to : 
an application processor 1510 which includes a set of one or 
more cores 1102A - N ( including constituent cache units 
1104A - N ) and shared cache unit ( s ) 1106 ; a system agent unit 
1110 ; a bus controller unit ( s ) 1116 ; an integrated memory 
controller unit ( s ) 1114 ; a set or one or more coprocessors 
1520 which may include integrated graphics logic , an image 
processor , an audio processor , and a video processor ; an 
static random access memory ( SRAM ) unit 1530 ; a direct 
memory access ( DMA ) unit 1532 ; and a display unit 1540 
for coupling to one or more external displays . In one 
embodiment , the coprocessor ( s ) 1520 include a special 
purpose processor , such as , for example , a network or 
communication processor , compression engine , GPGPU , a 
high - throughput MIC processor , embedded processor , or the 
like . 

sors . 
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[ 0070 ] Processors 1370 , 1380 may each exchange infor 
mation with a chipset 1390 via individual P - P interfaces 
1352 , 1354 using point to point interface circuits 1376 , 
1394 , 1386 , 1398. Chipset 1390 may optionally exchange 
information with the coprocessor 1338 via a high - perfor 
mance interface 1339. In one embodiment , the coprocessor 
1338 is a special - purpose processor , such as , for example , a 
high - throughput MIC processor , a network or communica 
tion processor , compression engine , graphics processor , 
GPGPU , embedded processor , or the like . 
[ 0071 ] A shared cache ( not shown ) may be included in 
either processor or outside of both processors , yet connected 
with the processors via P - P interconnect , such that either or 
both processors ' local cache information may be stored in 
the shared cache if a processor is placed into a low power 
mode . 
[ 0072 ] Chipset 1390 may be coupled to a first bus 1316 via 
an interface 1396. In one embodiment , first bus 1316 may be 
a Peripheral Component Interconnect ( PCI ) bus , or a bus 
such as a PCI Express bus or another third generation I / O 
interconnect bus , although the scope of the present invention 
is not so limited . 
[ 0073 ] As shown in FIG . 6 , various I / O devices 1314 may 
be coupled to first bus 1316 , along with a bus bridge 1318 
which couples first bus 1316 to a second bus 1320. In one 
embodiment , one or more additional processors 1315 , such 
as coprocessors , high - throughput MIC processors , GPG 
PUs , accelerators ( such as , e.g. , graphics accelerators or 
digital signal processing ( DSP ) units ) , field programmable 

[ 0077 ] In the present disclosure , expressions such as “ an 
embodiment , " " one embodiment , " and " another embodi 
ment ” are meant to generally reference embodiment possi 
bilities . Those expressions are not intended to limit the 
invention to particular embodiment configurations . As used 
herein , those expressions may reference the same embodi 
ment or different embodiments , and those embodiments are 
combinable into other embodiments . In light of the prin 
ciples and example embodiments described and illustrated 
herein , it will be recognized that the illustrated embodiments 
can be modified in arrangement and detail without departing 
from the principles described and / or illustrated herein . 
[ 0078 ] Also , according to the present disclosure , a device 
may include instructions and other data which , when 
accessed by a processor , cause the device to perform par 
ticular operations . For purposes of this disclosure , instruc 
tions which cause a device to perform operations may be 
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referred to in general as software . Software and the like may 
also be referred to as control logic . Software that is used 
during a boot process may be referred to as firmware . 
Software that is stored in nonvolatile memory may also be 
referred to as firmware . Software may be organized using 
any suitable structure or combination of structures . Accord 
ingly , terms like program and module may be used in 
general to cover a broad range of software constructs , 
including without limitation application programs , subpro 
grams , routines , functions , procedures , drivers , libraries , 
data structures , processes , microcode , and other types of 
software components . Also , it should be understood that a 
software module may include more than one component , 
and those components may cooperate to complete the opera 
tions of the module . Also , the operations which the software 
causes a device to perform may include creating an operat 
ing context , instantiating a particular data structure , etc. 
Embodiments may be implemented as software to execute 
on a programmable system comprising at least one proces 
sor , a storage system ( e.g. , volatile memory and / or one or 
more non - volatile storage elements ) , at least one input 
device , and at least one output device . 
[ 0079 ] Any suitable operating environment and program 
ming language ( or combination of operating environments 
and programming languages ) may be used to implement 
software components described herein . For example , pro 
gram code may be implemented in a high - level procedural 
or object - oriented programming language , or in assembly or 
machine language . The mechanisms described herein are not 
limited to any particular programming language . In any 
case , the language may be a compiled or interpreted lan 
guage . 
[ 0080 ] A medium which contains data and which allows 
another component to obtain that data may be referred to as 
a machine - accessible medium or a machine - readable 
medium . Accordingly , embodiments may include machine 
readable media containing instructions for performing some 
or all of the operations described herein . Such media may be 
referred to in general as apparatus and in particular as 
program products . In one embodiment , software for multiple 
components is stored in one machine - readable medium . In 
other embodiments , two or more machine - readable media 
may be used to store the software for one or more compo 
nents . For instance , instructions for one component may be 
stored in one medium , and instructions another component 
may be stored in another medium . Or a portion of the 
instructions for one component may be stored in one 
medium , and the rest of the instructions for that component 
( as well instructions for other components ) , may be stored in 
one or more other media . Similarly , software that is 
described above as residing on a particular device in one 
embodiment may , in other embodiments , reside on one or 
more other devices . For instance , in a distributed environ 
ment , some software may be stored locally , and some may 
be stored remotely . Similarly , operations that are described 
above as being performed on one particular device in one 
embodiment may , in other embodiments , be performed by 
one or more other devices . 
[ 0081 ] Other embodiments may be implemented in data 
and may be stored on a non - transitory storage medium , 
which if used by at least one machine , causes the at least one 
machine to fabricate at least one integrated circuit to per 
form one or more operations according to the present 
disclosure . Still further embodiments may be implemented 

in a computer readable storage medium including informa 
tion that , when manufactured into an SoC or other processor , 
is to configure the SoC or other processor to perform one or 
more operations according to the present disclosure . One or 
more aspects of at least one embodiment may be imple 
mented by representative instructions , stored on a machine 
readable medium , which represent various logic units within 
the processor , and which , when read by a machine , cause the 
machine to fabricate logic units to perform the techniques 
described herein . The instructions representing various logic 
units may be referred to as “ IP cores , ” and they may be 
stored on a tangible , machine - readable medium and supplied 
to various customers or manufacturing facilities to load into 
the fabrication machines that actually make the logic units or 
the processor . One or more aspects of at least one embodi 
ment may include machine - readable media containing 
instructions or design data which defines structures , circuits , 
apparatuses , processors and / or system features described 
herein . For instance , design data may be formatted in a 
hardware description language ( HDL ) . 
[ 0082 ] The machine - readable media for some embodi 
ments may include , without limitation , tangible non - transi 
tory storage components such as magnetic disks , optical 
disks , magneto - optical disks , dynamic random access 
memory ( RAM ) , static RAM , read - only memory ( ROM ) , 
solid state drives ( SSDs ) , phase change memory ( PCM ) , 
etc. , as well as processors , controllers , and other components 
that include data storage facilities . For purposes of this 
disclosure , the term “ ROM ” may be used in general to refer 
to nonvolatile memory devices such as erasable program 
mable ROM ( EPROM ) , electrically erasable programmable 
ROM ( EEPROM ) , flash ROM , flash memory , etc. 
[ 0083 ] It should also be understood that the hardware and 
software components depicted herein represent functional 
elements that are reasonably self - contained so that each can 
be designed , constructed , or updated substantially indepen 
dently of the others . In alternative embodiments , compo 
nents may be implemented as hardware , software , or com 
binations of hardware and software for providing the 
functionality described and illustrated herein . In some 
embodiments , some or all of the control logic for imple 
menting the described operations may be implemented in 
hardware logic ( e.g. , as microcode in an integrated circuit 
chip , as a programmable gate array ( PGA ) , as an applica 
tion - specific integrated circuit ( ASIC ) , etc. ) . Also , terms 
such as " circuit ” and “ circuitry ” may be used interchange 
ably herein . Those terms and terms like “ logic ” may be used 
to refer to analog circuitry , digital circuitry , hard - wired 
circuitry , programmable circuitry , processor circuitry , 
microcontroller circuitry , hardware logic circuitry , state 
machine circuitry , any other type of hardware component , or 
any suitable combination of hardware components . 
[ 0084 ] Additionally , the present teachings may be used to 
advantage in many different kinds of data processing sys 
tems . Such data processing systems may include , without 
limitation , accelerators , systems on a chip ( SoCs ) , wearable 
devices , handheld devices , smartphones , telephones , enter 
tainment devices such as audio devices , video devices , 
audio / video devices ( e.g. , televisions and set - top boxes ) , 
vehicular processing systems , personal digital assistants 
( PDAs ) , tablet computers , laptop computers , portable com 
puters , personal computers ( PCs ) , workstations , servers , 
client - server systems , distributed computing systems , super 
computers , high - performance computing systems , comput 
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ing clusters , mainframe computers , mini - computers , and 
other devices for processing or transmitting information . 
Accordingly , unless explicitly specified otherwise or 
required by the context , references to any particular type of 
data processing system ( e.g. , a PC ) should be understood as 
encompassing other types of data processing systems , as 
well . A data processing system may also be referred to as an 
apparatus . The components of a data processing system may 
also be referred to as apparatus . 
[ 0085 ] Also , unless expressly specified otherwise , com 
ponents that are described as being coupled to each other , in 
communication with each other , responsive to each other , or 
the like need not be in continuous communication with each 
other and need not be directly coupled to each other . 
Likewise , when one component is described as receiving 
data from or sending data to another component , that data 
may be sent or received through one or more intermediate 
components , unless expressly specified otherwise . In addi 
tion , some components of the data processing system may be 
implemented as adapter cards with interfaces ( e.g. , a con 
nector ) for communicating with a bus . Alternatively , devices 
or components may be implemented as embedded control 
lers , using components such as programmable or non 
programmable logic devices or arrays , ASICs , embedded 
computers , smart cards , and the like . For purposes of this 
disclosure , the term “ bus ” includes pathways that may be 
shared by more than two devices , as well as point - to - point 
pathways . Similarly , terms such as “ line , " " pin , ” etc. should 
be understood as referring to a wire , a set of wires , or any 
other suitable conductor or set of conductors . For instance , 
a bus may include one or more serial links , a serial link may 
include one or more lanes , a lane may be composed of one 
or more differential signaling pairs , and the changing char 
acteristics of the electricity that those conductors are carry 
ing may be referred to as signals on a line . Also , for purpose 
of this disclosure , the term “ processor ” denotes a hardware 
component that is capable of executing software . For 
instance , a processor may be implemented as a central 
processing unit ( CPU ) , a processing core , or as any other 
suitable type of processing element . A CPU may include one 
or more processing cores , and a device may include one or 
more CPUs . 
[ 0086 ] Also , although one or more example processes 
have been described with regard to particular operations 
performed in a particular sequence , numerous modifications 
could be applied to those processes to derive numerous 
alternative embodiments of the present invention . For 
example , alternative embodiments may include processes 
that use fewer than all of the disclosed operations , process 
that use additional operations , and processes in which the 
individual operations disclosed herein are combined , subdi 
vided , rearranged , or otherwise altered . 
[ 0087 ] Embodiments include the following examples : 
[ 0088 ] Example A1 is an apparatus comprising a machine 
readable medium and instructions in the machine - readable 
medium which , when executed by a hybrid processor in a 
data processing system , enable an OS in the data processing 
system to collect processor topology data from the hybrid 
processor , wherein the hybrid processor comprises ( a ) a big 
TPU that supports a first range of power settings and ( b ) a 
small TPU that supports a second range of power settings , 
wherein the range for the big TPU comprises an upper bound 
that causes more power consumption than an upper bound of 
the range for the small TPU . Also , at least one of the TPUS 

comprises an LP of a processing core that supports SMT . 
The instructions also enable the OS to collect hardware 
feedback for at least one of the TPUs from hardware 
feedback circuitry in the hybrid processor . The instructions 
also enable the OS to respond to a determination that a 
thread is ready to be scheduled by utilizing ( a ) an OP setting 
for the ready thread , ( b ) the processor topology data , and ( c ) 
the hardware feedback to make a scheduling determination 
for the ready thread . 
[ 0089 ] Example A2 is an apparatus according to Example 
A1 , wherein the instructions , when executed , further enable 
the OS to , in response to one of the TPUs going idle , using 
( a ) an OP setting for a running thread , ( b ) the processor 
topology data , and ( c ) the hardware feedback to determine 
whether or not a running thread should be migrated from an 
active core to the idle core . 
[ 0090 ] Example A3 is an apparatus according to Example 
Al , wherein the operation of making a scheduling determi 
nation for the ready thread comprises ( i ) determining 
whether the ready thread is more important than a thread that 
is running on one of the TPUs ; ( ii ) in response to determin 
ing that the ready thread is more important , determining 
whether the TPU with the running thread is more performant 
than another TPU , based on ( a ) hardware feedback for the 
TPU with the running thread and ( b ) hardware feedback for 
the other TPU ; and ( iii ) in response to determining that the 
TPU with the running thread is more performant than the 
other TPU , preempting the running thread with the ready 
thread by moving the running thread to the less performant 
TPU and scheduling the ready thread on the more perfor 
mant TPU . Example A3 may also include the features of 
Example A2 . 
[ 0091 ] Example A4 is an apparatus according to Example 
A1 , wherein the operation of making a scheduling determi 
nation for the ready thread comprises ( i ) based on the OP 
setting for the ready thread , determining whether the ready 
thread has an operating preference for efficiency ; ( ii ) in 
response to determining that the ready thread has an oper 
ating preference for efficiency , using the hardware feedback 
and the processor topology data to determine whether the 
hybrid processor comprises an idle TPU that has ( a ) a 
relatively high efficiency rating relative to efficiency ratings 
of other TPUs in the processor and ( b ) a busy sibling TPU ; 
and ( iii ) in response to determining that the hybrid processor 
comprises an idle TPU that has ( a ) a relatively high effi 
ciency rating and ( b ) a busy sibling TPU , selecting that idle 
TPU to receive the ready thread . Example A4 may also 
include the features of any one or more of Examples A2 - A3 . 
[ 0092 ] Example A5 is an apparatus according o Example 
A1 , wherein the instructions , when kecuted , further enable 
the OS to ( i ) track running time for important threads 
running on TPUs other than the big TPU ; and ( ii ) in response 
to determining that one of the important threads has run on 
TPUs other than the big TPU for at least a threshold amount 
of time , schedule that thread on the big TPU . Example A5 
may also include the features of any one or more of 
Examples A2 - A4 . 
[ 0093 ] Example A6 is an apparatus according to Example 
A1 , wherein the hybrid processor comprises ( a ) a big core 
that supports SMT with first and second LPs and ( b ) a 
small - core module comprising multiple small cores . Also , 
the hardware feedback comprises ( a ) feedback for the first 
and second LPs in the big core and ( b ) feedback for the small 
cores in the small - core module . Also , the big TPU comprises 
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one of the LPs in the big core , and the small TPU comprises 
one of the small cores in the small - core module . Example A6 
may also include the features of any one or more of 
Examples A2 - A5 . 
[ 0094 ] Example A7 is an apparatus according to Example 
A1 , wherein the operation of making a scheduling determi 
nation for the ready thread comprises ( i ) based on the OP 
setting for the ready thread , determining whether the ready 
thread has an operating preference for QOS ; ( ii ) in response 
to determining that the ready thread has an operating pref 
erence for QOS , using the hardware feedback and the 
processor topology data to determine whether the hybrid 
processor comprises an idle TPU that has ( a ) a relatively 
high performance rating relative to performance ratings of 
other TPUs in the processor and ( b ) no busy sibling TPUs ; 
and ( iii ) in response to determining that the hybrid processor 
comprises an idle TPU that has ( a ) a relatively high perfor 
mance rating and ( b ) no busy sibling TPUs , selecting that 
idle TPU to receive the ready thread . Example A7 may also 
include the features of any one or more of Examples A2 - A6 . 
[ 0095 ] Example A8 is an apparatus according to Example 
A7 , wherein , when the small TPU has the relatively high 
performance rating and no busy sibling TPUs , the instruc 
tions cause the OS to select the small TPU to receive the 
ready thread . 
[ 0096 ] Example A9 is an apparatus according to Example 
A7 , wherein the operation of making a scheduling determi 
nation for the ready thread further comprises , in response to 
determining that the hybrid processor does not comprise an 
idle TPU that has ( a ) a relatively high performance rating 
and ( b ) no busy sibling TPUs , selecting an idle TPU that has 
( a ) a relatively high performance rating and ( b ) a busy 
sibling TPU to receive the ready thread . Example A9 may 
also include the features of Example A8 . 
[ 0097 ] Example B1 is a data processing system with 
technology for managing threads . The data processing sys 
tem comprises a hybrid processor comprising ( a ) a big TPU 
that supports a first range of power settings , and ( b ) a small 
TPU that supports a second range of power settings , wherein 
the range for the big TPU comprises an upper bound that 
causes more power consumption than an upper bound of the 
range for the small TPU , and wherein at least one of the 
TPUs comprises an LP of a processing core that supports 
SMT . The hybrid processor further comprises hardware 
feedback circuitry . The data processing system further com 
prises a machine - readable medium in communication with 
the hybrid processor , and instructions in the machine - read 
able medium which , when executed by the hybrid processor , 
enable an OS in the data processing system to collect 
processor topology data from the hybrid processor . The 
instruction also enable the OS to ( i ) collect hardware feed 
back for at least one of the TPUS from the hardware 
feedback circuitry ; and ( ii ) in response to determining that a 
thread is ready to be scheduled , utilize ( a ) an operating 
preference ( OP ) setting for the ready thread , ( b ) the proces 
sor topology data , and ( c ) the hardware feedback to make a 
scheduling determination for the ready thread . 
[ 0098 ] Example B2 is a data processing system according 
to Example B1 , wherein the instructions , when executed , 
further enable the OS to , in response to one of the TPUs 
going idle , using ( a ) an OP setting for a running thread , ( b ) 
the processor topology data , and ( c ) the hardware feedback 
to determine whether or not a running thread should be 
migrated from an active core to the idle core . 

[ 0099 ] Example B3 is a data processing system according 
to Example B1 , wherein the operation of making a sched 
uling determination for the ready thread comprises ( i ) deter 
mining whether the ready thread is more important than a 
thread that is running on one of the TPUs ; ( ii ) in response to 
determining that the ready thread is more important , deter 
mining whether the TPU with the running thread is more 
performant than another TPU , based on ( a ) hardware feed 
back for the TPU with the running thread and ( b ) hardware 
feedback for the other TPU ; and ( iii ) in response to deter 
mining that the TPU with the running thread is more 
performant than the other TPU , preempting the running 
thread with the ready thread by moving the running thread 
to the less performant TPU and scheduling the ready thread 
on the more performant TPU . Example B3 may also include 
the features of Example B2 . 
[ 0100 ] Example B4 is a data processing system according 
to Example B1 , wherein the operation of making a sched 
uling determination for the ready thread comprises ( i ) based 
on the OP setting for the ready thread , determining whether 
the ready thread has an operating preference for efficiency ; 
( ii ) in response to determining that the ready thread has an 
operating preference for efficiency , using the hardware feed 
back and the processor topology data to determine whether 
the hybrid processor comprises an idle TPU that has ( a ) a 
relatively high efficiency rating relative to efficiency ratings 
of other TPUs in the processor and ( b ) a busy sibling TPU ; 
and ( iii ) in response to determining that the hybrid processor 
comprises an idle TPU that has ( a ) a relatively high effi 
ciency rating and ( b ) a busy sibling TPU , selecting that idle 
TPU to receive the ready thread . Example B4 may also 
include the features of any one or more of Examples B2 - B3 . 
[ 0101 ] Example B5 is a data processing system according 
to Example B1 , wherein the instructions , when executed , 
further enable the OS to ( i ) track running time for important 
threads running on TPUs other than the big TPU ; and ( ii ) in 
response to determining that one of the important threads 
has run on TPUs other than the big TPU for at least a 
threshold amount of time , schedule that thread on the big 
TPU . Example B5 may also include the features of any one 
or more of Examples B2 - B4 . 
[ 0102 ] Example B6 is a data processing system according 
to Example B1 , wherein the hybrid processor comprises ( a ) 
a big core that supports SMT with first and second LPs and 
( b ) a single - threaded small core . Also , the hardware feed 
back comprises ( a ) feedback for the first and second LPs in 
the big core and ( b ) feedback for the small core . Also , the big 
TPU comprises one of the LPs in the big core , and the small 
TPU comprises the small core . Example B6 may also 
include the features of any one or more of Examples B2 - B5 . 
[ 0103 ] Example B7 is a data processing system according 
to Example B1 , wherein the hybrid processor comprises ( a ) 
a big core that supports SMT with first and second LPs and 
( b ) a small - core module . The small - core module comprises 
multiple small cores . The hardware feedback comprises ( a ) 
feedback for the first and second LPs in the big core and ( b ) 
feedback for the small cores in the small - core module . Also , 
the big TPU comprises one of the LPs in the big core . 
Example B7 may also include the features of any one or 
more of Examples B2 - B6 . 
[ 0104 ] Example B8 is a data processing system according 
to Example B7 , wherein each of the small cores in the 
small - core module supports SMT with first and second LPs . 
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Also , the small TPU comprises one of the LPs in one of the 
small cores in the small - core module . 
[ 0105 ] Example B9 is a data processing system according 
to Example B1 , wherein the operation of making a sched 
uling determination for the ready thread comprises ( i ) based 
on the OP setting for the ready thread , determining whether 
the ready thread has an operating preference for QOS ; ( ii ) in 
response to determining that the ready thread has an oper 
ating preference for QOS , using the hardware feedback and 
the processor topology data to determine whether the hybrid 
processor comprises an idle TPU that has ( a ) a relatively 
high performance rating relative to performance ratings of 
other TPUs in the processor and ( b ) no busy sibling TPUs ; 
and ( iii ) in response to determining that the hybrid processor 
comprises an idle TPU that has ( a ) a relatively high perfor 
mance rating and ( b ) no busy sibling TPUs , selecting that 
idle TPU to receive the ready thread . Example B7 may also 
include the features of any one or more of Examples B2 - B8 . 
[ 0106 ] Example B10 is a data processing system accord 
ing to Example B9 , wherein , when the small TPU has the 
relatively high performance rating and no busy sibling 
TPUs , the instructions cause the OS to select the small TPU 
to receive the ready thread . 
[ 0107 ] Example B11 is a data processing system accord 
ing to Example B9 , wherein the operation of making a 
scheduling determination for the ready thread further com 
prises , in response to determining that the hybrid processor 
does not comprise an idle TPU that has ( a ) a relatively high 
performance rating and ( b ) no busy sibling TPUs , selecting 
an idle TPU that has ( a ) a relatively high performance rating 
and ( b ) a busy sibling TPU to receive the ready thread . 
Example B9 may also include the features of Example B10 . 
[ 0108 ] Example C1 is a method to optimize scheduling of 
threads in a data processing system with a hybrid processor 
that comprises ( a ) a big TPU that supports a first range of 
power settings , and ( b ) a small TPU that supports a second 
range of power settings , wherein the range for the big TPU 
comprises an upper bound that causes more power consump 
tion than an upper bound of the range for the small TPU , and 
wherein at least one of the TPUs comprises a logical 
processor ( LP ) of a processing core that supports SMT . The 
method comprises ( i ) in an OS in the data processing system , 
collecting processor topology data from the hybrid processor 
and collecting hardware feedback from hardware feedback 
circuitry in the hybrid processor ; and ( ii ) in response to 
determining that a thread is ready to be scheduled , using ( a ) 
an OP setting for the ready thread , ( b ) the processor topology 
data , and ( c ) the hardware feedback to make a scheduling 
determination for the ready thread . Also , the operation of 
making a scheduling determination for the ready thread 
comprises ( i ) based on the OP setting for the ready thread , 
determining whether the ready thread has an operating 
preference for QOS ; ( ii ) in response to determining that the 
ready thread has an operating preference for QOS , using the 
hardware feedback and the processor topology data to 
determine whether the hybrid processor comprises an idle 
TPU that has ( a ) a relatively high performance rating 
relative to performance ratings of other TPUs in the proces 
sor and ( b ) no busy sibling TPUs ; and ( iii ) in response to 
determining that the hybrid processor comprises an idle TPU 
that has ( a ) a relatively high performance rating and ( b ) no 
busy sibling TPUs , selecting that idle TPU to receive the 
ready thread . 

[ 0109 ] Example C2 is a method according to Example C1 , 
further comprising , in response to one of the TPUs going 
idle , using ( a ) an OP setting for a running thread , ( b ) the 
processor topology data , and ( c ) the hardware feedback to 
determine whether or not a running thread should be 
migrated from an active core to the idle core . 
[ 0110 ] Example C3 is a method according to Example C1 , 
wherein the operation of making a scheduling determination 
for the ready thread comprises ( i ) determining whether the 
ready thread is more important than a thread that is running 
on one of the TPUs ; ( ii ) in response to determining that the 
ready thread is more important , determining whether the 
TPU with the running thread is more performant than 
another TPU , based on ( a ) hardware feedback for the TPU 
with the running thread and ( b ) hardware feedback for the 
other TPU ; and ( iii ) in response to determining that the TPU with the running thread is more performant than the other 
TPU , preempting the running thread with the ready thread 
by moving the running thread to the less performant TPU 
and scheduling the ready thread on the more performant 
TPU . Example C3 may also include the features of Example 
C2 . 
[ 0111 ] Example C4 is a method according to Example Ci , 
further comprising ( i ) tracking running time for important 
threads running on TPUs other than the big TPU ; and ( ii ) in 
response to determining that one of the important threads 
has run on TPUs other than the big TPU for at least a 
threshold amount of time , scheduling that thread on the big 
TPU . Example C4 may also include the features of any one 
or more of Examples C2 - C3 . 
[ 0112 ] Example C5 is a method according to Example A1 , 
wherein the operation of making a scheduling determination 
for the ready thread comprises ( i ) based on the OP setting for 
the ready thread , determining whether the ready thread has 
an operating preference for efficiency ; ( ii ) in response to 
determining that the ready thread has an operating prefer 
ence for efficiency , using the hardware feedback and the 
processor topology data to determine whether the hybrid 
processor comprises an idle TPU that has ( a ) a relatively 
high efficiency rating relative to efficiency ratings of other 
TPUs in the processor and ( b ) a busy sibling TPU ; and ( iii ) 
in response to determining that the hybrid processor com 
prises an idle TPU that has ( a ) a relatively high efficiency 
rating and ( b ) a busy sibling TPU , selecting that idle TPU to 
receive the ready thread . 
[ 0113 ] In view of the wide variety of useful permutations 
that may be readily derived from the example embodiments 
described herein , this detailed description is intended to be 
illustrative only , and should not be construed as limiting the 
scope of coverage . 

1. An apparatus comprising : 
a machine - readable medium ; and 
instructions in the machine - readable medium which , 
when executed by a hybrid processor in a data process 
ing system , enable an operating system ( OS ) in the data 
processing system to : 
collect processor topology data from the hybrid pro 

cessor , wherein the hybrid processor comprises ( a ) a 
big thread processing unit ( TPU ) that supports a first 
range of power settings , and ( b ) a small TPU that 
supports a second range of power settings , wherein 
the range for the big TPU comprises an upper bound 
that causes more power consumption than an upper 
bound of the range for the small TPU , and wherein 

a 

a 

a 
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at least one of the TPUs comprises a logical proces 
sor ( LP ) of a processing core that supports simulta 
neous multi - threading ( SMT ) ; 

collect hardware feedback for at least one of the TPUS 
from hardware feedback circuitry in the hybrid pro 
cessor ; and 

in response to determining that a thread is ready to be 
scheduled , utilize ( a ) an operating - preference ( OP ) 
setting for the ready thread , ( b ) the processor topol 
ogy data , and ( c ) the hardware feedback to make a 
scheduling determination for the ready thread . 

2. An apparatus according to claim 1 , wherein the instruc 
tions , when executed , further enable the OS to : 

in response to one of the TPUs going idle , using ( a ) an OP 
setting for a running thread , ( b ) the processor topology 
data , and ( c ) the hardware feedback to determine 
whether or not a running thread should be migrated 
from an active TPU to the idle TPU . 

3. An apparatus according to claim 1 , wherein the opera 
tion of making a scheduling determination for the ready 
thread comprises : 

determining whether the ready thread is more important 
than a thread that is running on one of the TPUs ; 

in response to determining that the ready thread is more 
important , determining whether the TPU with the run 
ning thread is more performant than another TPU , 
based on ( a ) hardware feedback for the TPU with the 
running thread and ( b ) hardware feedback for the other 
TPU ; and 

in response to determining that the TPU with the running 
thread is more performant than the other TPU , pre 
empting the running thread with the ready thread by 
moving the running thread to the less performant TPU 
and scheduling the ready thread on the more perfor 
mant TPU . 

4. An apparatus according to claim 1 , wherein the opera 
tion of making a scheduling determination for the ready 
thread comprises : 

based on the OP setting for the ready thread , determining 
whether the ready thread has an operating preference 
for efficiency : 

in response to determining that the ready thread has an 
operating preference for efficiency , using the hardware 
feedback and the processor topology data to determine 
whether the hybrid processor comprises an idle TPU 
that has ( a ) a relatively high efficiency rating relative to 
efficiency ratings of other TPUs in the processor and ( b ) 
a busy sibling TPU ; and 

in response to determining that the hybrid processor 
comprises an idle TPU that has ( a ) a relatively high 
efficiency rating and ( b ) a busy sibling TPU , selecting 
that idle TPU to receive the ready thread . 

5. An apparatus according to claim 1 , wherein the instruc 
tions , when executed , further enable the OS to : 

track running time for important threads running on TPUs 
other than the big TPU ; and 

in response to determining that one of the important 
threads has run on TPUs other than the big TPU for at 
least a threshold amount of time , schedule that thread 
on the big TPU . 

6. An apparatus according to claim 1 , wherein : 
the hybrid processor comprises ( a ) a big core that supports 
SMT with first and second LPs and ( b ) a small - core 
module comprising multiple small cores ; 

the hardware feedback comprises ( a ) feedback for the first 
and second LPs in the big core and ( b ) feedback for the 
small cores in the small - core module ; 

the big TPU comprises one of the LPs in the big core ; and 
the small TPU comprises one of the small cores in the 

small - core module . 
7. An apparatus according to claim 1 , wherein the opera 

tion of making a scheduling determination for the ready 
thread comprises : 

based on the OP setting for the ready thread , determining 
whether the ready thread has an operating preference 
for quality of service ( QOS ) ; 

in response to determining that the ready thread has an 
operating preference for QOS , using the hardware 
feedback and the processor topology data to determine 
whether the hybrid processor comprises an idle TPU 
that has ( a ) a relatively high performance rating relative 
to performance ratings of other TPUs in the processor 
and ( b ) no busy sibling TPUs ; and 

in response to determining that the hybrid processor 
comprises an idle TPU that has ( a ) a relatively high 
performance rating and ( b ) no busy sibling TPUs , 
selecting that idle TPU to receive the ready thread . 

8. An apparatus according to claim 7 , wherein , when the 
small TPU has the relatively high performance rating and no 
busy sibling TPUs , the instructions cause the OS to select the 
small TPU to receive the ready thread . 

9. An apparatus according to claim 7 , wherein the opera 
tion of making a scheduling determination for the ready 
thread further comprises : 

in response to determining that the hybrid processor does 
not comprise an idle TPU that has ( a ) a relatively high 
performance rating and ( b ) no busy sibling TPUs , 
selecting an idle TPU that has ( a ) a relatively high 
performance rating and ( b ) a busy sibling TPU to 
receive the ready thread . 

10. A data processing system with technology for man 
aging threads , the data processing system comprising : 

a hybrid processor comprising ( a ) a big thread processing 
unit ( TPU ) that supports a first range of power settings , 
and ( b ) a small TPU that supports a second range of 
power settings , wherein the range for the big TPU 
comprises an upper bound that causes more power 
consumption than an upper bound of the range for the 
small TPU , and wherein at least one of the TPUS 
comprises a logical processor ( LP ) of a processing core 
that supports simultaneous multi - threading ( SMT ) ; 

hardware feedback circuitry in the hybrid processor ; 
a machine - readable medium in communication with the 

hybrid processor , and 
instructions in the machine - readable medium which , 
when executed by the hybrid processor , enable an 
operating system ( OS ) in the data processing system to : 
collect processor topology data from the hybrid pro 

cessor ; 
collect hardware feedback for at least one of the TPUS 

from the hardware feedback circuitry ; and 
in response to determining that a thread is ready to be 

scheduled , utilize ( a ) an operating - preference ( OP ) 
setting for the ready thread , ( b ) the processor topol 
ogy data , and ( c ) the hardware feedback to make a 
scheduling determination for the ready thread . 
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11. A data processing system according to claim 10 , 
wherein the instructions , when executed , further enable the 
OS to : 

in response to one of the TPUs going idle , using ( a ) an OP 
setting for a running thread , ( b ) the processor topology a 
data , and ( c ) the hardware feedback to determine 
whether or not a running thread should be migrated 
from an active TPU to the idle TPU . 

12. A data processing system according to claim 10 , 
wherein the operation of making a scheduling determination 
for the ready thread comprises : 

determining whether the ready thread is more important 
than a thread that is running on one of the TPUS ; 

in response to determining that the ready thread is more 
important , determining whether the TPU with the run 
ning thread is more performant than another TPU , 
based on ( a ) hardware feedback for the TPU with the 
running thread and ( b ) hardware feedback for the other 
TPU ; and 

in response to determining that the TPU with the running 
thread is more performant than the other TPU , pre 
empting the running thread with the ready thread by 
moving the running thread to the less performant TPU 
and scheduling the ready thread on the more perfor 
mant TPU . 

13. A data processing system according to claim 10 , 
wherein the operation of making a scheduling determination 
for the ready thread comprises : 

based on the OP setting for the ready thread , determining 
whether the ready thread has an operating preference 
for efficiency ; 

in response to determining that the ready thread has an 
operating preference for efficiency , using the hardware 
feedback and the processor topology data to determine 
whether the hybrid processor comprises an idle TPU 
that has ( a ) a relatively high efficiency rating relative to 
efficiency ratings of other TPUs in the processor and ( b ) 
a busy sibling TPU ; and 

in response to determining that the hybrid processor 
comprises an idle TPU that has ( a ) a relatively high 
efficiency rating and ( b ) a busy sibling TPU , selecting 
that idle TPU to receive the ready thread . 

14. A data processing system according to claim 10 , 
wherein the instructions , when executed , further enable the 
OS to : 

track running time for important threads running on TPUS 
other than the big TPU ; and 

in response to determining that one of the important 
threads has run on TPUs other than the big TPU for at 
least a threshold amount of time , schedule that thread 
on the big TPU . 

15. A data processing system according to claim 10 , 
wherein : 

the hybrid processor comprises ( a ) a big core that supports 
SMT with first and second LPs and ( b ) a single 
threaded small core ; 

the hardware feedback comprises ( a ) feedback for the first 
and second LPs in the big core and ( b ) feedback for the 

the hybrid processor comprises ( a ) a big core that supports 
SMT with first and second LPs and ( b ) a small - core 
module ; 

the small - core module comprises multiple small cores ; 
the hardware feedback comprises ( a ) feedback for the first 

and second LPs in the big core and ( b ) feedback for the 
small cores in the small - core module ; and 

the big TPU comprises one of the LPs in the big core . 
17. A data processing system according to claim 16 , 

wherein : 
each of the small cores in the small - core module supports 
SMT with first and second LPs ; and 

the small TPU comprises one of the LPs in one of the 
small cores in the small - core module . 

18. A data processing system according to claim 10 , 
wherein the operation of making a scheduling determination 
for the ready thread comprises : 

based on the OP setting for the ready thread , determining 
whether the ready thread has an operating preference 
for quality of service ( QOS ) ; 

in response to determining that the ready thread has an 
operating preference for QOS , using the hardware 
feedback and the processor topology data to determine 
whether the hybrid processor comprises an idle TPU 
that has ( a ) a relatively high performance rating relative 
to performance ratings of other TPUs in the processor 
and ( b ) no busy sibling TPUs ; and 

in response to determining that the hybrid processor 
comprises an idle TPU that has ( a ) a relatively high 
performance rating and ( b ) no busy sibling TPUs , 
selecting that idle TPU to receive the ready thread . 

19. A data processing system according to claim 18 , 
wherein , when the small TPU has the relatively high per 
formance rating and no busy sibling TPUs , the instructions 
cause the OS to select the small TPU to receive the ready 
thread . 

20. A data processing system according to claim 18 , 
wherein the operation of making a scheduling determination 
for the ready thread further comprises : 

in response to determining that the hybrid processor does 
not comprise an idle TPU that has ( a ) a relatively high 
performance rating and ( b ) no busy sibling TPUs , 
selecting an idle TPU that has ( a ) a relatively high 
performance rating and ( b ) a busy sibling TPU to 
receive the ready thread . 

21. A method to optimize scheduling of threads in a 
hybrid processor , the method comprising : 

in an operating system ( OS ) in a data processing system , 
collecting processor topology data from a hybrid pro 
cessor in the data processing system , wherein the 
hybrid processor comprises ( a ) a big thread processing 
unit ( TPU ) that supports a first range of power settings , 
and ( b ) a small TPU that supports a second range of 
power settings , wherein the range for the big TPU 
comprises an upper bound that causes more power 
consumption than an upper bound of the range for the 
small TPU , and wherein at least one of the TPUS 
comprises a logical processor ( LP ) of a processing core 
that supports simultaneous multi - threading ( SMT ) ; 

collecting hardware feedback for at least one of the TPUS 
from hardware feedback circuitry in the hybrid proces 

a 

small core ; 
the big TPU comprises one of the LPs in the big core ; and 
the small TPU comprises the small core . 
16. A data processing system according to claim 10 , 

wherein : 

sor ; and 
in response to determining that a thread is ready to be 

scheduled , using ( a ) an operating - preference ( OP ) set 
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ting for the ready thread , ( b ) the processor topology 
data , and ( c ) the hardware feedback to make a sched 
uling determination for the ready thread , wherein the 
operation of making a scheduling determination for the 
ready thread comprises : 
based on the OP setting for the ready thread , determin 

ing whether the ready thread has an operating pref 
erence for quality of service ( POS ) ; 

in response to determining that the ready thread has an 
operating preference for QOS , using the hardware 
feedback and the processor topology data to deter 
mine whether the hybrid processor comprises an idle 
TPU that has ( a ) a relatively high performance rating 
relative to performance ratings of other TPUs in the 
processor and ( b ) no busy sibling TPUs ; and 

in response to determining that the hybrid processor 
comprises an idle TPU that has ( a ) a relatively high 
performance rating and ( b ) no busy sibling TPUs , 
selecting that idle TPU to receive the ready thread . 

22. A method according to claim 21 , further comprising : 
in response to one of the TPUs going idle , using ( a ) an OP 

setting for a running thread , ( b ) the processor topology 
data , and ( c ) the hardware feedback to determine 
whether or not a running thread should be migrated 
from an active TPU to the idle TPU . 

23. A method according to claim 21 , wherein the opera 
tion of making a scheduling determination for the ready 
thread comprises : 

determining whether the ready thread is more important 
than a thread that is running on one of the TPUs ; 

in response to determining that the ready thread is more 
important , determining whether the TPU with the run 
ning thread is more performant than another TPU , 

based on ( a ) hardware feedback for the TPU with the 
running thread and ( b ) hardware feedback for the other 
TPU ; and 

in response to determining that the TPU with the running 
thread is more performant than the other TPU , pre 
empting the running thread with the ready thread by 
moving the running thread to the less performant TPU 
and scheduling the ready thread on the more perfor 
mant TPU . 

24. A method according to claim 21 , further comprising : 
tracking running time for important threads running on 
TPUs other than the big TPU ; and 

in response to determining that one of the important 
threads has run on TPUs other than the big TPU for at 
least a threshold amount of time , scheduling that thread 
on the big TPU . 

25. A method according to claim 21 , wherein the opera 
tion of making a scheduling determination for the ready 
thread comprises : 

based on the OP setting for the ready thread , determining 
whether the ready thread has an operating preference 
for efficiency ; 

in response to determining that the ready thread has an 
operating preference for efficiency , using the hardware 
feedback and the processor topology data to determine 
whether the hybrid processor comprises an idle TPU 
that has ( a ) a relatively high efficiency rating relative to 
efficiency ratings of other TPUs in the processor and ( b ) 
a busy sibling TPU ; and 

in response to determining that the hybrid processor 
comprises an idle TPU that has ( a ) a relatively high 
efficiency rating and ( b ) a busy sibling TPU , selecting 
that idle TPU to receive the ready thread . 

* * 


