
US 20210406060A1
MO IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2021/0406060 A1

Gupta et al . (43) Pub . Date : Dec. 30 , 2021

Publication Classification (54) TECHNOLOGY FOR OPTIMIZING HYBRID
PROCESSOR UTILIZATION

(71) Applicant : Intel Corporation , Santa Clara , CA
(US)

(72) Inventors : Monica Gupta , Hillsboro , OR (US) ;
Eliezer Weissmann , Haifa (IL) ;
Hisham Abu Salah , Majdal Shams
(IL) ; Rajshree Arun Chabukswar ,
Sunnyvale , CA (US) ; Russell Jerome
Fenger , Beaverton , OR (US) ; Eugene
Gorbatov , Hillsboro , OR (US) ;
Guruprasad Settuvalli , Hillsboro , OR
(US) ; Balaji Masanamuthu
Chinnathurai , Hillsboro , OR (US) ;
Sumant Tapas , Hillsboro , OR (US) ;
Meghana Gudaram , Hillsboro , OR
(US) ; Raj Kumar Subramaniam ,
Hillsboro , OR (US)

(51) Int . Ci .
G06F 9/48 (2006.01)
GOOF 1/28 (2006.01)
G06F 9/4401 (2006.01)

(52) U.S. CI .
CPC G06F 9/485 (2013.01) ; G06F 9/4406

(2013.01) ; G06F 1/28 (2013.01)
(57) ABSTRACT
A data processing system comprises a hybrid processor
comprising a big TPU and a small TPU . At least one of the
TPUs comprises an LP of a processing core that supports
SMT . The hybrid processor further comprises hardware
feedback circuitry . A machine - readable medium in the data
processing system comprises instructions which , when
executed , enable an OS in the data processing system to
collect (a) processor topology data from the hybrid proces
sor and (b) hardware feedback for at least one of the TPUs
from the hardware feedback circuitry . The instructions also
enable the OS to respond to a determination that a thread is
ready to be scheduled by utilizing (a) an OP setting for the
ready thread , (b) the processor topology data , and (c) the
hardware feedback to make a scheduling determination for
the ready thread . Other embodiments are described and
claimed .

(21) Appl . No .: 16 / 912,770

(22) Filed : Jun . 26 , 2020

Data Processing System 10

Hybrid Processor 12

Small - Core Module 30 Hardware
Feedback
Circuitry

58
Small Core

40A
Small Core

40B

LP 42AA LP 42BA Performance
Ratings 52

MLC
32

LP 42AB LP 42BB
Efficiency
Ratings 54

Big Core 20 Uncore 24 Performance
Ratios 56

LP 22A Processor
Topology Data

26
Efficiency
Ratios 58 LP 22B

RAM 14

Operating System
60

Thread Manager 62 Settings

TO 11 T2 13 T4 T5 TO

User Application 70

NVS 16

User Application 70 Operating System 60
NIC 18

Patent Application Publication Dec. 30 , 2021 Sheet 1 of 10 US 2021/0406060 A1

Data Processing System 10

Hybrid Processor 12

Small - Core Module 30 Hardware
Feedback
Circuitry

50
58

Small Core
40A

Small Core
40B

LP 42AA LP 42BA Performance
Ratings 52

MLC
32

LP 42AB LP 42BB
Efficiency
Ratings 54

Big Core 20 Uncore 24 Performance
Ratios 56

LP 22A
Processor

Topology Data
26

Efficiency
Ratios 58 LP 22B

RAM 14

Operating System

Thread Manager 62
OP

Settings
64

11 T2 T3 T4 T5 T6

User Application 70

NVS 16

User Application 70 Operating System 60
NIC 18

FIG . 1

Patent Application Publication Dec. 30 , 2021 Sheet 2 of 10 US 2021/0406060 A1

Start

110

Phase One :
Collect Data Concerning Processor Topology

And Determine Processor Topology

120

Phase Two :
Collect Data Concerning Hardware - Feedback Capabilities Of Processor

And Determine Hardware - Feedback Capabilities Of Processor

130 -
Phase Three :

Determine Operating - Preference Settings For Threads

140

Phase Four :
Collect Hardware Feedback For Thread Processing Units

150

Phase Five :
Determine Optimized Thread Configuration , Based On Processor Topology ,

Operating - Preference Settings , And Hardware Feedback

160

Phase Six :
Implement Optimized Thread Configuration

FIG . 2

Patent Application Publication Dec. 30 , 2021 Sheet 3 of 10 US 2021/0406060 A1

Start

210
Adjust OP Settings

For Threads

212
Collect Hardware

Feedback For TPUS

220

No Is A Thread Ready To
Be Scheduled ? Yes

B

No

230

Has A TPU Gone Idle ? Yes

No

240

Has A Quantum Ended ? Yes , ?
250

Yes Is Current Thread
Configuration Optimal ?

No

252 ?
Adjust Thread
Configuration

FIG . 3A

Patent Application Publication Dec. 30 , 2021 Sheet 4 of 10 US 2021/0406060 A1

B
Yes

310
312
Identify A Set Of Most

Performant TPUS
Does Ready Thread
Prefer Performance ? 314

Apply Thread Scheduling
Algorithms To That Set

No

320

Identify Suitable TPU
To Receive Thread ?

No
-Yes . 322

Schedule Thread On
Identified TPU

316
Identify A Set Of Most

Efficient TPUS
A

No

330
318
Apply Thread Scheduling
Algorithms To That Set

Have All Performant
TPUS Been Considered ?

340

Identify Suitable TPU
TO Receive Thread ?

Yes
332

-Yes Add Thread To Ready
Queue Of Ideal TPU

342
Schedule Thread On

Identified TPU

350

Have All Efficient TPUS
Been Considered ? Yes

352
Add Thread To Ready
Queue Of Ideal TPU

FIG . 3B

Patent Application Publication Dec. 30 , 2021 Sheet 5 of 10 US 2021/0406060 A1

310
Is The

Idle TPU More
Performant Than Any
Active And Important

TPUS ?

Yes

312
Identify The Set of Important TPUS

With Less Performance
Than The Idle TPU

314
Migrate important Thread From

Least Performant TPU to Idle TPU

320
Is The

Idle TPU More
Efficient Than Any Active

And Unimportant
TPUS ?

Yes

322
Identify The Set of Unimportant
TPUS With Less Efficiency

Than The Idle TPU

No 324
Migrate Unimportant Thread From
Least Efficient TPU to Idle TPU

326 -
Use An Alternative Algorithm
TO Handle The Idle TPU

A

FIG . 3C

Patent Application Publication

PROCESSOR 1100

CORE 1102A

CORE 1102N

SYSTEM AGENT UNIT 1110

SPECIAL PURPOSE LOGIC 1108

CACHE UNIT (S)
1104A

CACHE UNIT (S)
1104N

1

BUS CONTROLLER UNIT (S) 1116

INTEGRATED MEMORY
CONTROLLER UNIT (S)

1114

Dec. 30 , 2021 Sheet 6 of 10

SHARED CACHE UNIT (S) 1106

1

RING 1112

FIG . 4

US 2021/0406060 A1

1200

1215

fonam

???

1210

Patent Application Publication

www IT

XXXXXXXXX

PROCESSOR

1
1295

1245

1240

WENKE

La

CONTROLLER HUB 1220

MEMORY

PROCESSOR

GMCH 1290

Dec. 30 , 2021 Sheet 7 of 10

1260

IOH 1250

10

wwwwww

wuuuun
toon

w

wy

US 2021/0406060 A1

FIG . 5

1300

PROCESSOR 1370

PROCESSOR COPROCESSOR 1380

MEMORY 1332

MEMORY 1334

IMC

IMC

Patent Application Publication

1382

1372

1350

1376

1388

1386

1378
?

P - P

P - P

P - P

P - P

1354

1352 1394

1339

P - P

CHIPSET 1390

P - P

1398

| COPROCESSOR 1338

V / E

1392

VF

1396

1316

Dec. 30 , 2021 Sheet 8 of 10

BUS BRIDGE 1318

VO DEVICES 1314

AUDIO VO 1324

PROCESSOR 1315

1320

DATA STORAGE

KEYBOARD MOUSE

1322

COMM DEVICES

1327

1330

CODE AND DATA

1328

US 2021/0406060 A1

FIG . 6

1400

VO DEVICES 1414

Patent Application Publication

PROCESSOR 1370

PROCESSOR 1380

MEMORY 1332

MEMORY 1334

CL

CL

Z

1382

1372

1350

1378

1376

1388

1386

P - P

? - ?

P - P

P - P

1352

1354

Dec. 30 , 2021 Sheet 9 of 10

? - ?

1394

P - P

1398

CHIPSET 1390 1396

LEGACY IO 1415

US 2021/0406060 A1

FIG.7

SYSTEM ON A CHIP 1500

APPLICATION PROCESSOR 1510

Patent Application Publication

CORE 1102A

CORE 1102N

SYSTEM AGENT UNIT 1110

CACHE UNIT (S)
1104A

CACHE UNIT (S)
1104N

SHARED CACHE UNIT (S) 1106

1 I

COPROCESSOR (S) 1520

INTERCONNECT UNIT (S) 1502

BUS CONTROLLER UNIT (S) 1116

Dec. 30 , 2021 Sheet 10 of 10

INTEGRATED MEMORY CONTROLLER UNIT (S) 1114

SRAM UNIT 1530

DMA UNIT 1532

DISPLAY UNIT 1540

FIG . 8

US 2021/0406060 A1

US 2021/0406060 A1 Dec. 30 , 2021
1

a TECHNOLOGY FOR OPTIMIZING HYBRID
PROCESSOR UTILIZATION

TECHNICAL FIELD
a [0001] The present disclosure pertains in general to data

processing systems and in particular to technology for
optimizing processor utilization .

[0010] FIG . 4 is a block diagram of a processor that may
have more than one core , may have an integrated memory
controller , and may have integrated graphics according to
embodiments of the invention .
[0011] FIG . 5 is a block diagram of a system according to
embodiments of the invention .
[0012] FIGS . 6 and 7 are block diagrams of more specific
exemplary systems according to embodiments of the inven
tion .
[0013] FIG . 8 is a block diagram of a system on a chip
according to embodiments of the invention .

DETAILED DESCRIPTION

a

BACKGROUND
[0002] A processor in a conventional data processing
system may include multiple thread processing units (TPUs)
that enable the processor to execute multiple threads at once .
For instance , a processor may include multiple single
threaded processing cores , with each processing core being
capable of executing a different thread . Alternatively , a
processor may include a single processing core that includes
multiple logical processors (LPs) which enable the processor
to perform simultaneous multithreading (SMT) , with each
LP being capable of executing a different thread . For pur
poses of this disclosure , a processing core that supports SMT
may be referred to as a “ multithreaded processing core . ”
Alternatively , a processor may include multiple processing
cores , each of which includes multiple LPs for performing
SMT . For purposes of this disclosure , the terms “ thread
processing unit ” and “ TPU ” refer to the features of a
processor which enable the processor to execute a software
thread . For instance , a single - threaded processing core may
be referred to as a TPU , and each LP in a multithreaded
processing core may be referred to as a TPU .
[0003] A conventional processor may have a homogenous
topology , in that all of the TPUs in the processor are the
same kind of TPU . For instance , all of the TPUs may be the
same kind of single - threaded processing core , or all of the
TPUs may be the same kind of LP in the same kind of
multithreaded processing core .
[0004] A conventional operating system (OS) in a data
processing system with multiple TPUs includes a thread
manager to schedule threads on those TPUs . However , the
algorithms that a conventional thread manager uses to make
thread scheduling decisions may be designed for a processor
with a homogenous topology .
[0005] Manufacturers are now developing processors with
heterogenous topologies . For purposes of this disclosure , a
processor with a " heterogenous topology ” is a processor that
includes at least two different types of processing cores .
Accordingly , a heterogenous processor includes at least two
different types of TPUs . A heterogenous processor may also
be referred to as a “ hybrid processor . ”

a

[0014] As indicated above , a hybrid processor (or heterog
enous processor) is a processor that includes at least two
different types of processing cores . For instance , a hybrid
processor may include one single - threaded processing core
along with one multithreaded processing core . Alternatively ,
a hybrid processor may include a first single - threaded pro
cessing core that supports a first range of power consump
tion and a second single - threaded processing core that
supports a different range of power consumption , with the
upper bound for one core being higher than the upper bound
for the other core . Also , as described in greater detail below ,
the core which can be configured to consume more power
may be referred to as a “ big core , " and the other core may
be referred to as a “ small core . ” Many other types of
variations are also possible , including hybrid processors
with multiple big cores that support SMT and multiple small
cores that support STM , hybrid processors with at least one
processing - core module that includes multiple processing
cores , etc. For purposes of this disclosure , a hybrid processor
which includes at least one processing core that supports
SMT may be referred to as a “ hybrid SMT processor . ” Also ,
the terms “ logical processor ” and “ LP ” refer to the features
within a multithreaded processing core that are dedicated to
one thread , rather than being shared by multiple threads . For
instance , each LP in a multithreaded processing core
includes registers for storing the architectural state of the
thread that is running on that LP , while the processing core
also includes common execution resources (e.g. , an arith
metic logic unit (ALU)) which are shared by the LPs . Also ,
terms like “ processing - core module , ” “ small - core module , "
etc. refer to a collection of processing cores within a
processor that share resources such as mid - level cache
(MLC) , while each processing core includes independent
execution resources such as ALUS .
[0015] For purposes of this disclosure , processing cores
within a processor are considered to be of different kind or
types if those processing cores differ with regard to charac
teristics such as (a) the range of power consumption sup
ported by each processing core , (b) support or lack of
support for SMT , (c) which resources (if any) are shared
with other processing cores , (d) the number of sibling
processing cores within a processing - core module , etc. Simi
larly , different LPs are considered to be of different kinds or
types if those LPs differ with regard to characteristics such
as residing in different types of processing cores . Accord
ingly , TPUs are considered to be of different kinds or types
based on the same kinds of distinctions (e.g. , different
supported ranges of power consumption , etc.) .
[0016] As described in greater detail below , the present
disclosure involves an OS that is capable of detecting
processor topology , and that is capable of optimizing thread

a

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] Features and advantages of the present invention
will become apparent from the appended claims , the fol
lowing detailed description of one or more example embodi
ments , and the corresponding figures , in which :
[0007] FIG . 1 is a block diagram of a hypothetical embodi
ment of a data processing system that features a hybrid
processor and an OS with logic for optimizing thread
management based on factors such as processor topology .
[0008] FIG . 2 presents a flowchart of an example embodi
ment of a process process for managing threads in a data
processing system with a hybrid processor .
[0009] FIGS . 3A - 3C present a flowchart with more details
for parts of the example process illustrated in FIG . 2 .

US 2021/0406060 A1 Dec. 30 , 2021
2

a

2

management decisions , based at least in part on different
characteristics associated with different TPUs within the
processor topology . Such an OS may cause a data processing
system with a hybrid processor to execute threads more
effectively and / or more efficiently , relative to a conventional
OS .
[0017] For instance , in one scenario , a thread manager is
preparing to schedule a thread which prefers high perfor
mance or high quality of service (POS) on a processor that
has (a) a first core with one busy LP and one idle LP and (b)
a second core with two idle LPs . As described in greater
detail below , by considering processor topology and hard
ware feedback for each LP , the thread manager may deter
mine that the idle LPs of the second core are not significantly
more performant that the idle LP of the first core . Conse
quently , the thread manager may schedule the thread on the
idle LP of the first core , to allow the second core to remain
idle and save power . By contrast , a conventional thread
manager might schedule the thread on the second core in an
attempt to optimize performance , without recognizing that
doing so will not actually result in an increase in perfor
mance . Consequently , the conventional thread manager may
cause reduced efficiency without causing an increase in
performance .
[0018] In accordance with the present teachings , it is not
necessary to develop different versions of an OS to handle
different types of hybrid processors . Instead , a single version
may include logic for detecting processor topology , for
analyzing hardware feedback for TPUs , for considering
thread preferences , and for managing threads according to
all of those factors .
[0019] FIG . 1 is a block diagram of a hypothetical embodi
ment of a data processing system 10 with a hybrid processor
12 and an OS 60 with logic for optimizing thread manage
ment based on factors such as processor topology . In the
embodiment of FIG . 1 , data processing system 10 also
includes random access memory (RAM) 14 , non - volatile
storage (NVS) 16 , and other components such as a network
interface controller (NIC) 18 coupled to , or in communica
tion with , hybrid processor 12. Hybrid processor 12 may be
implemented as an integrated circuit or " chip ” that is
mounted to a substrate to form a package . Alternatively , a
hybrid processor may be implemented as a package that
contains more than one chip .
[0020] In the example of FIG . 1 , hybrid processor 12
includes two different types of processing cores . As
described in greater detail below , those two types are a “ big
core ” type and a “ small core ” type . In particular , hybrid
processor 12 includes a big core 20 , as well as a small - core
module 30 that includes a first small core 40A , a second
small core 40B , and an MLC 32 that is shared by small cores
40A and 40B . In general , big cores are designed to provide
for higher performance (e.g. , more execution speed) relative
to a small core in the same processor , and small cores are
designed to provide for more efficiency (e.g. , less power
consumption) relative to a big core in the same processor . In
the embodiment of FIG . 1 , big core 20 supports a first range
of power and frequency settings , and each of small cores
40A and 40B supports a second range of power and fre
quency settings , with the range for big core 20 comprising
an upper bound that causes more power consumption than
the upper bound of the range for small cores 40A and 40B .
[0021] For purposes of this disclosure , the upper bound of
the power and frequency settings that are supported by a

processing core may be referred to as the “ maximum per
formance setting ” for that processing core . And if a pro
cessing core only supports one power setting , that power
setting constitutes the maximum performance setting . Also ,
for purposes of this disclosure , the term “ big core ” denotes
a type of processing core that has a higher maximum
performance setting than at least one other type of process
ing core in that processor . Similarly , the term “ small core ”
denotes a type of processing core that has a lower maximum
performance setting than at least one other type of process
ing core in that processor . Also , a maximum performance
setting is referred to as “ lower ” or “ higher ” in relation to the
amount of power consumption associated with that setting .
Thus , a big core operating at its maximum performance
setting consumes more power than a small core operating at
its maximum performance setting . In the example of FIG . 1 ,
big core 20 has a higher maximum performance setting than
small core 40A and small core 40B .
[0022] Typically , a big core in a processor (or an LP in the
big core) is capable of delivering higher performance (e.g. ,
by running at a higher frequency and / or by delivering a
higher number of instructions retired per cycle (IPC)) than
a small core in the processor (or an LP in the small core) .
However , the small core (or an LP in the small core) is
typically capable of delivering higher efficiency (e.g. , by
consuming less power) . For purposes of this disclosure , an
LP may be referred to as “ big ” or “ small ” based on whether
that LP resides in a big core or a small core . Similarly , big
single - threaded cores and big LPs may be referred to as “ big
TPUs , " and small single - threaded cores and small LPs may
be referred to as " small TPUs . "
[0023] Referring again to FIG . 1 , each processing core in
hybrid processor 12 supports SMT . Accordingly , big core 20
includes a first logical processor (LP) 22A and a second LP
22B ; small core 40A includes a first LP 42AA and a second
LP 42AB ; and small core 40B includes a first LP 42BA and
a second LP 42BB . However , in other embodiments , hybrid
processors may have different topologies . For instance , a
processor may include a single big core and a single small
core . Alternatively , a processor may include multiple small
core modules . Also , a small - core module may include more
than two small cores . Also , one type of processing core may
not support SMT . For instance , the big core may not support
SMT , or the small core (or cores) may not support SMT .
Also , a data processing system may include multiple pro
cessor packages , and one or more of those processor pack
ages may feature a hybrid processor . Many other types of
topologies may be used in other embodiments .
[0024] In the example of FIG . 1 , hybrid processor 12 also
includes hardware feedback circuitry 50 in communication
with big core 20 and small - core module 30. As described in
greater detail below , hardware feedback circuitry 50 mea
sures the performance and efficiency of each TPU and
provides corresponding hardware feedback 58 to OS 60 , to
enable thread manager 62 to determine and implement
optimized thread scheduling configurations . As described in
greater detail below , hardware feedback 58 may include
performance ratings 52 , efficiency ratings 54 , performance
ratios 56 , and efficiency ratios 58 .
[0025] Data processing system 10 also includes software
in NVS 16 that may be copied into RAM 14 and executed
on hybrid processor 12. That software includes an OS 60 and
a user application 70. In one scenario , user application 70
runs in multiple threads TO - T6 . OS 60 includes a thread

a a

a
?

9

US 2021/0406060 A1 Dec. 30 , 2021
3

>

manager 62 to handle operations such as thread scheduling
and thread migration . The threads to be managed may
include threads TO - T6 , as well as threads from other appli
cations , and threads from OS 60 .
[0026] OS 60 may generate and maintain operating pref
erence (OP) settings 64 for the threads . The OP setting for
a thread reflects an operating preference for that thread , with
regard to performance or efficiency . As described in greater
detail below , OS 60 may generate the OP setting for a thread
based on factors such whether it is to be a foreground or a
background thread , the runtime of the thread , and the
priority assigned to the thread by the OS or by the applica
tion to which the threads belong . Also , as described in
greater detail below , thread manager 62 collects (a) proces
sor topology data 26 from an uncore 24 in hybrid processor
12 and (b) hardware feedback 58 from hardware feedback
circuitry 50. Thread manager 62 then uses processor topol
ogy data 26 , hardware feedback 58 , and OP settings 64 to
manage the threads to be executed on hybrid processor 12 .
In particular , thread manager 62 uses the collected data to
determine and implement optimized thread configurations
for scheduling different threads on different TPUs , so as to
optimize or enhance the efficiency and / or performance of
data processing system 10. The thread management process
may include , for instance , making decisions concerning
which processing TPUs are to be used by which threads , and
whether threads should be migrated from one TPU to
another .
[0027] FIG . 2 is a flowchart of an example embodiment of
a process for managing threads in a data processing system
that may include a hybrid processor . That process is
described with regard to a scenario involving data process
ing system 10. In particular , OS 60 may perform the
illustrated process to optimize thread scheduling for perfor
mance and / or efficiency .
[0028] In the illustrated scenario , the process for manag
ing threads includes six main phases . In phase one , OS 60
collects data concerning the topology of hybrid processor
12 , and OS 60 uses that data to determine the topology of
hybrid processor 12 , as shown at block 110. In phase two ,
OS 60 collects data from hybrid processor 12 concerning the
types of hardware feedback that can be obtained from hybrid
processor 12 , and OS 60 uses that data to determine which
types of hardware feedback will be obtained from hybrid
processor 12 , as shown at block 120. In phase three , thread
manager 62 determines an OP setting for each thread , as
shown at block 130. In phase four , thread manager 62
collects hardware feedback 58 for the TPUs in hybrid
processor 12 , as shown at block 140. In phase five , thread
manager 62 uses one or more predetermined algorithms to
determine an optimized thread configuration , based on the
collected hardware feedback 58 and other factors such as the
processor topology and the operating preferences for the
threads , as shown at block 150. In phase six , thread manager
62 implements the optimized thread configuration , as shown
at block 160 .
[0029] Referring again to block 110 , OS 60 may use
architectural features of hybrid processor 12 to obtain the
data conce ncerning the topology of hybrid processor 12 from
hybrid processor 12. For instance , hybrid processor 12 may
support a processor identifier (ID) instruction that OS 60
may execute to obtain a processor ID for each TPU in
processor 12 , and those processor IDs may be structured in
a way that reflects the topology of processor 12. Accord

ingly , OS 60 may analyze those processor IDs to determine
the topology of hybrid processor 12 .
[0030] For instance , the processor ID instruction may
operate like the instruction referred to as a " CPUID instruc
tion ” in Volume 3A (System Programming Guide , Part 1) of
the September 2016 version of the Intel® 64 and IA - 32
Architectures Software Developer's Manual (SDM) . And
when OS 60 uses that instruction , OS 60 may obtain
processor IDs that are structured like the Advanced Pro
grammable Interrupt Controller (APIC) ID described in the
SDM . For instance , as indicated in Section 8.4.3 of the
SDM , in one embodiment , “ [e] ach logical processor is
assigned a unique APIC ID , based on system topology , " with
that unique ID being “ a 32 - bit value if the processor supports
CPUID leaf OBH . ” And as stated in Section 8.4.5 of the
SDM , a " unique APIC ID is assigned to a logical processor
during power up . This APIC ID is reported by CPUID.OBH :
EDX [31 : 0] as a 32 - bit value . Use the 32 - bit APIC ID and
CPUID leaf OBH to determine the topological relationship
between logical processors if the processor supports CPUID
leaf OBH . ” Section 8.4.5 also explains that “ [b] its in the
32 - bit x2APIC ID can be extracted into sub - fields using
CPUID leaf OBH parameters . ” For instance , a processor ID
may include multiple fields to reflect the location of the
associated TPU within the topology of the processor .
[0031] For example , as indicated in Section 8.9.1 of the
SDM , a processor ID may include fields such as a cluster
field (to identify a group of processor packages in a data
processing system with multiple processor packages) , a
package field (to identify a particular processor package) , a
core field (to identify a particular processing core) , and an
SMT field (to identify a particular LP) , with the values in
those fields reflecting the hierarchical mapping of the TPUs .
Accordingly , OS 60 may use processor IDs (and related
data) to determine aspects of processor topology such (a) as
whether a processor is a hybrid processor , (b) whether a
processor includes multiple processing - core modules and if
so which processing cores reside in which modules , (c)
which TPUs (if any) are LPs , (d) which LPs reside in the
same processing core (i.e. , which are “ siblings ”) , etc.
[0032] Referring again to block 120 , OS 60 may use
architectural features of hybrid processor 12 to detect which
hardware technologies are available to provide hardware
feedback . For instance , hybrid processor 12 may report that
it can provide a performance rating and an efficiency rating
for each TPU . For example , in one embodiment , a processor
may report that it supports features such as those provided
by the “ Hardware Feedback Interface " that is described in
Chapter 4 of the March 2020 version of the Intel® Archi
tecture Instruction Set Extensions and Future Features Pro
gramming Reference (the “ Future Features Programming
Reference ") . Accordingly , the performance rating may be a
numeric value to specify the relative performance level of a
particular TPU , with higher values denoting higher perfor
mance (e.g. , like the “ performance capability ” field
described in the Future Features Programming Reference) .
Similarly , the efficiency rating may be a numeric value to
specify the relative efficiency level of a particular TPU , with
higher values denoting higher efficiency (e.g. , like the
“ energy efficiency capability ” field described in the Future
Features Programming Reference) . For purposes of this
disclosure , hardware feedback which includes a perfor

US 2021/0406060 A1 Dec. 30 , 2021
4

>

a

a

mance rating for each TPU and / or an efficiency rating for
each TPU may be referred to as “ hardware guided sched
uling (HGS) feedback . ”
[0033] In addition , hybrid processor 12 may report that it
can provide a set of performance ratios and a set of efficiency
ratios for each TPU . The set of performance ratios for a TPU
indicates how the performance rating for that TPU compares
to the performance rating for each other TPU . Similarly , the
set of efficiency ratios for a TPU indicates how the efficiency
rating for that TPU compares to the efficiency rating for each
other TPU . Hardware feedback circuitry 50 may generate
each ratio in the set of performance ratios for a TPU by
dividing the performance rating for that TPU by the perfor
mance rating for one of the other TPUs . Similarly , hardware
feedback circuitry 50 may generate each ratio in the set of
efficiency ratios for a TPU by dividing the efficiency rating
for that TPU by the efficiency rating for one of the other
TPUs . For purposes of this disclosure , hardware feedback
which includes a set of performance ratios for each TPU
and / or a set of efficiency ratios for each TPU may be referred
to as “ enhanced HGS feedback . ” By obtaining enhanced
HGS feedback from hardware feedback circuitry 50 , thread
manager 62 may easily determine which TPUs are more
efficient than a given TPU , and how much more efficient ,
and which TPU are more performant than a given TPU , and
how much more performant .
[0034] Referring again to block 130 , the process for deter
mining the OP settings for the threads may include detecting
or determining the QOS needs or preferences of each thread .
For instance , for each thread , OS 60 may determine whether
the thread should be set with a preference for performance
or a preference for energy efficiency . OS 60 may make such
determinations based on one or more attributes of the thread ,
such as (a) whether the thread is to be executed as a
foreground or a background thread , (b) the expected and / or

cumulative runtime of the thread , (c) the priority assigned to
the thread by the OS or by an application to which the thread
belongs , etc. For purposes of this disclosure , a thread with
a preference for performance or QOS may be referred to as
an “ important thread , ” and a thread with a preference for
efficiency may be referred to as an “ unimportant thread . ”
[0035] Referring again to block 150 , example embodi
ments of algorithms to be used by thread manager 62 to
determine an optimized thread configuration are described
below in connection with FIG . 3. Such algorithms are also
described in the following tables . According to these algo
rithms , thread manager 62 may consider factors such as
processor topology , TPU hardware feedback , and thread
policy . The thread policy for a thread may be based on
factors such as the priority of the thread , whether the thread
is to run in the foreground or the background , and the
elapsed runtime of the thread . Also , the thread policy may
indicate whether the thread has a preference for performance
or a preference for efficiency . OS 60 may record the thread
policy as the OP setting for the thread . Thread manager may
apply these algorithms in response to a thread becoming
ready to run , in response to a TPU going idle , or at quantum
end , where quantum end refers to the end of a predetermined
time period for execution of a thread . For instance , thread
manager 62 may periodically consider whether a running
thread should be moved from the current TPU to a different
TPU .

[0036] In particular , Table 1 describes thread scheduling
algorithms that thread manager 62 may use when a thread
becomes ready to run or at quantum end . As illustrated with
the column heading , thread manager 62 may determine
which algorithm to be used based on the processor topology
of the data processing system and the OP setting for the
thread to be scheduled .

a

TABLE 1

Thread Scheduling Algorithms :

Thread Operating Preference for
Performance

Thread Operating Preference
for Efficiency Processor Topology

A. One or more Big Cores
with SMT , and one or
more Small Cores with
SMT .

B.

a
One or more Big Cores
with SMT ; and multiple
Modules , each containing
multiple Small Cores with
or without SMT .

If a core has all LPs idle and at least If an LP is idle , efficient , and
one of those LPs is performant , then has unimportant threads on
schedule the thread on that all sibling LPs , then schedule
performant LP . the thread on that idle LP .
Else , schedule the thread on the Else , schedule the thread on
most performant idle LP . the most efficient idle LP .
If a significantly more performant
LP subsequently goes idle , then
migrate the thread to that LP .
If the thread is related to (e.g. , If a TPU is idle in a module
shares data with) a thread on a that is only running
module with a performant idle TPU , unimportant threads , then
then schedule the thread on that schedule the thread on that
performant idle TPU to reduce TPU to reduce impact on
cache access misses and / or latency . important threads .
Else , if a module has all TPUs idle
and at least one of those TPUs is
performant , then schedule the thread
on a performant TPU in that
module .
Else , schedule the thread on a
performant TPU on the module with
the most TPUs idle .

.

US 2021/0406060 A1 Dec. 30 , 2021
5

TABLE 1 - continued

Thread Scheduling Algorithms :

Thread Operating Preference for
Performance Processor Topology

Thread Operating Preference
for Efficiency

C. One or more Big Cores
with SMT ; multiple
Modules , each containing
multiple Small Cores ; and
Enhanced HGS Feedback

Select the most efficient idle
TPU , based on the efficiency
ratios .

Determine the most performant TPU
(that is not running a more
important thread) , based on the
performance ratios .
If the most performant TPU is idle ,
then schedule the thread on that
TPU .
Else , if that TPU is available for
preemption , then preempt the
existing thread on that TPU .

[0037] Table 2 describes thread migration algorithms that
thread manager 62 may use when a TPU goes idle , to
determine whether a running thread should be moved to the
idle TPU for higher performance and / or higher efficiency .

[0038] Table 3 describes thread preemption algorithms
that thread manager 62 may use when a thread becomes
ready for scheduling , to determine whether the ready thread
should be scheduled on an idle TPU , should preempt a

TABLE 2

Thread Migration Algorithms :

Processor Topology Migrating for Performance Migrating for Efficiency

A. One or more Big Cores
without SMT , and one
Module with multiple
Small Cores with or
without SMT .

B. One or more Big Cores
with SMT , and one
Module with multiple
Small Cores with or
without SMT .

If the newly idle TPU is If the newly idle TPU is
significantly more performant than significantly more efficient
any TPUs running important than any TPU running an
threads , then either (a) migrate the unimportant thread , then
thread from the least performant either (a) migrate the
TPU to the idle TPU , or (b) migrate unimportant thread on the
the most important thread on a less least efficient TPU to the idle
performant TPU to the idle TPU . TPU , or (b) migrate the least

important thread to the idle
TPU .

If the newly idle TPU has a sibling If (a) the newly idle TPU has
running an unimportant thread , and a busy sibling running an
if a different (third) TPU is (a) unimportant thread , (b) a
running an important thread and is different (third) TPU is
(b) less performant than the idle running an unimportant
TPU , then migrate the important thread , and (c) the third TPU
thread to the sibling of the idle TPU , is significantly less efficient
and migrate the unimportant thread than the newly idle TPU , then
from that sibling TPU to the third migrate the unimportant
TPU . thread from the third TPU to
If (a) the newly idle TPU resides in the idle TPU .
a module , (b) all other TPUs in that
module are idle , (c) an important
thread is running on a core with
SMT , and (d) that core includes at
least one TPU that is not idle , then
migrate the important thread to a
TPU in the module with all idle
TPUS .
As with row B above , if (a) the If (a) the newly idle TPU
newly idle TPU resides in a module , resides in a module , (b) all
(b) all other TPUs in that module are other TPUs in that module are
idle , (c) an important thread is idle , (c) there is no important
running on a core with SMT , and (d) thread running in a module
that core includes at least one TPU with unimportant threads ,
that is not idle , then migrate the then do not migrate any
important thread to a TPU in the unimportant threads to the
module with all idle TPUs . module with all TPUs idle .
However , do not migrate a thread if
(a) the thread is related to another
thread (e.g. , to share data) and (b)
the related threads are running in the
same module .

C. One or more Big Cores
with SMT ; and multiple
Modules , each with
multiple Small Cores with
or without SMT .

US 2021/0406060 A1 Dec. 30 , 2021
6

running thread , or should be sent to a ready queue (e.g. , the
ready queue for the most performant core or TPU) to be
scheduled later .

shown at block 210 , and collecting hardware feedback 58
from hardware feedback circuitry 50 , as shown at block 212 .
Those operations may also correspond to phases three and

TABLE 3

Thread Preemption Algorithms :

Processor Topology Preempting for Performance Preempting for Efficiency

B.

One or more Big Cores If (a) no Big Core is idle and (b) a If (a) no Small TPU is idle
without SMT , and one Big Core is running a less important and (b) any Small TPU is
Module with multiple thread , then preempt the less running a less important
Small Cores with or important thread by stopping the thread , then preempt the least
without SMT . less important thread and scheduling important thread on a Small

the ready thread in its place . TPU by stopping that thread
If there are multiple preemption and scheduling the ready
candidates , preempt the thread on thread in its place .
the Big Core that is (a) most
performant and (b) available for
preemption .

One or more Big Cores If a Big Core without SMT is Like for Row A above , if (a)
with or without SMT , and running a less important thread , no Small TPU is idle and (b)
one Module with multiple preempt that thread with the ready any Small TPU is running a
Small Cores with or thread . less important thread , then
without SMT . Else , if (a) a Big Core with SMT has preempt the least important

only one LP busy and (b) the ready thread on a Small TPU .
thread is more important that the
thread on that LP , then preempt the
less important thread with the ready
thread .
Else , if a Small Core without SMT
is running a less important thread ,
then preempt that thread .
Else , if (a) a Small Core with SMT
has only one LP busy , and (b) the
ready thread is more important than
the thread on that LP , then preempt
the less important thread with the
ready thread .

One or more Big Cores If the algorithm for row B above Like for Row A above , if (a)
with SMT , and multiple results in multiple Small TPUs as no Small TPU is idle and (b)
Modules with multiple potential choices for preemption , any Small TPU is running a
Small Cores with or then select a Small TPU from the less important thread , then
without SMT . module with the greatest number of preempt the least important

Small TPUs idle as the preemption thread on a Small TPU .
target .

C.

a

[0039] Thread manager 62 may also use one or more
algorithms to implement policies for preventing some
threads from monopolizing resources to the detriment of
other threads . Such policies may be referred to as “ fairshare
policies . ” For instance , when the processor topology
includes a most performant TPU , thread manager 62 may
implement a fairshare policy to give all important threads a
better chance of getting some time on the most performant
TPU . To do so , thread manager 62 may track the amount of
time that each important thread spends on less performant
TPUs , and when that amount of time exceed a particular
threshold for a particular thread , thread manager 62 sched
ules that thread on the most performant TPU the next time
that TPU is available . In addition , thread manager 62 may
provide for different classes of important threads , with
threads in the most important class having a shorter thresh
old , and threads in less important classes having longer
thresholds before getting the next share on the most perfor
mant TPU .

[0040] FIGS . 3A through 3C present a flowchart with
more details for phases three through six of the example
process illustrated in FIG . 2. The process of FIG . 3 may start
with OS 60 adjusting OP settings for threads , if necessary , as

four of FIG . 2. The remaining operations in FIGS . 3A
through 3C may correspond to phases five and six of FIG .
2 .
[0041] In particular , thread manager 62 may determine
whether a thread is ready to be scheduled , as shown at block
220. If no thread is ready to be schedule , thread manager 62
may determine whether a TPU has gone idle , as shown at
block 230. If no TPU has gone idle , thread manager may
determine whether a quantum has ended , as shown at block
240. As indicated above , thread manager 62 may determine
that a quantum has ended in response to expiration of a
predetermined amount of time . If no quantum has ended , the
process may return to block 210 , with OS 60 adjusting OP
settings if necessary , collecting fresh hardware feedback 58 ,
etc. , as indicated above .
[0042] However , referring again to block 220 , if a thread
is ready to be scheduled , the process may pass through page
connector B to FIG . 3B , and thread manager 62 may then
determine whether the thread has a preference for perfor
mance or a preference for efficiency , as shown at block 310 .
As shown at block 312 , if the thread has a preference for
performance , thread manager 62 may then identify a set of
most performant TPUs , based on hardware feedback 58. In
other words , from thread manager 62 may sort the TPUs into

a

US 2021/0406060 A1 Dec. 30 , 2021
7

a

sets , with each set including TPUs with similar performance
rating or ratios , and thread manager 62 may then select the
set that contains the TPUs with the highest performance
ratings or ratios .
[0043] As shown at block 314 , thread manager 62 may
then apply the predetermined thread scheduling algorithms
to the TPUs in that set for the ready thread . As indicated
above , those algorithms consider the processor topology , the
OP settings for the ready thread , and the hardware feedback
for the TPUs to determine an optimized thread configura
tion . In one embodiment , thread manager 62 uses the thread
scheduling algorithms described above with regard to Table
1. As shown at block 320 , thread manager 62 then deter
mines whether those algorithms have identified a suitable
TPU for the ready thread . If so , thread manager 62 schedules
the ready thread on that TPU , as shown at block 322 .
[0044] Otherwise , thread manager 62 determines whether
there are any other sets of processors left to consider , as
shown at block 330. If so , the process returns to block 312
with thread manager 62 selecting the next most performant
set of processors . Thread manager 62 then applies the
predetermined thread scheduling algorithms to the TPUs in
that set , as indicated above . If thread manager 62 eventually
finds a suitable TPU in one of the sets , thread manager 62
schedules the ready thread on that TPU . However , as shown
at block 332 , if thread manager 62 considers all sets of TPUs
without finding a suitable TPU for the ready thread , then
thread manager 62 adds the ready thread to the ready queue
for the ideal (e.g. , the most performant) TPU . The process
may then return to FIG . 3A via page connector A.
[0045] However , referring again to block 310 of FIG . 3B ,
if the ready thread has a preference for efficiency , thread
manager 62 may then identify a set of most efficient TPUs ,
based on hardware feedback 58 , as shown at block 316. In
other words , from thread manager 62 may sort the TPUs into
sets , with each set including TPUs with similar performance
rating or ratios , and thread manager 62 may then select the
set that contains the TPUs with the highest efficiency ratings
or ratios .
[0046] As shown at block 318 , thread manager 62 may
then apply the predetermined thread scheduling algorithms
to the TPUs in that set for the ready thread . As indicated
above , those algorithms consider the processor topology , the
OP settings for the ready thread , and the hardware feedback
for the TPUs to determine an optimized thread configura
tion . In one embodiment , thread manager 62 uses the thread
scheduling algorithms described above with regard to Table
1. As shown at block 340 , thread manager 62 then deter
mines whether those algorithms have identified a suitable
TPU for the ready thread . If so , thread manager 62 schedules
the ready thread on that TPU , as shown at block 342 .
[0047] Otherwise , thread manager 62 determines whether
there are any other sets of processors left to consider , as
shown at block 350. If so , the process returns to block 316
with thread manager 62 selecting the next most efficient set
of processors . Thread manager 62 then applies the prede
termined thread scheduling algorithms to the TPUs in that
set , as indicated above . If thread manager 62 eventually
finds a suitable TPU in one of the sets , thread manager 62
schedules the ready thread on that TPU . However , as shown
at block 332 , if thread manager 62 considers all sets of TPUs
without finding a suitable TPU for the ready thread , then
thread manager 62 adds the ready thread to the ready queue

for the ideal (e.g. , the most efficient) TPU . The process may
then return to FIG . 3A via page connector A.
[0048] In addition or alternatively , thread manager 62 may
use preemption in connection with scheduling a ready
thread . For instance , thread manager 62 may use one or more
of the algorithms described in Table 3 to decide whether to
schedule the ready thread on an idle processor or to preempt
an active thread with the ready thread .
[0049] Referring again to block 230 of FIG . 3A , when
thread manager 62 detects that a TPU has gone idle , the
process may pass through page connect C to FIG . 3C . As
shown at block 310 , thread manager 62 may then determine
whether any TPUs are running an important thread while
having more performance than the idle TPU . For purposes of
this disclosure , a TPU that is running an important thread
may be referred to as an “ important TPU , ” while a TPU that
is running an unimportant thread may be referred to as an
“ unimportant TPU . ” If the idle TPU is more performant than
any active and important TPUs , thread manager 62 identifies
the set of important TPUs with less performance than the
idle TPU , as shown at block 312. As shown at block 314 ,
thread manager 62 then migrates the important thread from
the least performant of those TPUs to the idle TPU . The
process for handling an idle TPU may then end , and the
process for managing threads may return to FIG . 3A via
page connector A.
[0050] However , if the idle TPU is not more performant
than any active and important TPUs , thread manager 62
determines whether the idle TPU is more efficient than any
active and unimportant TPUs , as shown at block 320. If the
idle TPU is more efficient than any active and unimportant
TPUs , thread manager 62 identifies the set of unimportant
TPUs with less efficient than the idle TPU , as shown at block
322. As shown at block 324 , thread manager 62 then
migrates the unimportant thread from the least efficient of
those TPUs to the idle TPU . The process for handling an idle
TPU may then end , and the process for managing threads
may return to FIG . 3A via page connector A.
[0051] However , if the idle TPU is not more efficient than
any active and unimportant TPUs , thread manager 62 may
use an alternative algorithm to handle the idle TPU , as
shown at block 326. For instance , thread manager 62 may
use one or more of the algorithms described in Table 2 .
[0052] The process for handling an idle TPU may then
end , and the process may return to FIG . 3A via page
connector A.
[0053] Referring again to block 240 of FIG . 3A , if a
quantum has ended , thread manager 62 may respond by
analyzing the current thread configuration to determine
whether that configuration is substantially optimal . If the
current thread configuration is substantially optimal , the
process may return to block 210. However , if the current
thread configuration is not substantially optimal , thread
manager 62 may adjust the thread configuration , as shown at
block 252. For instance , thread manager 62 may consider
whether any thread scheduling algorithms , thread migration
algorithms , fairshare policies , etc. or other policies would
result in a thread configuration that is , in aggregate , more
performant for important threads and / or more efficient for
unimportant threads .
[0054] For instance , at quantum end , thread manager 62
may determine whether there is an important thread on a
TPU that is less performant than any idle TPUs . And if a
more performant TPU is idle , thread manager 62 may

9

US 2021/0406060 A1 Dec. 30 , 2021
8

a

migrate the thread to that more performant TPU . For
instance , such an operation may result in migration of a
thread from a TPU with siblings to a TPU without siblings .
[0055] Thus , as has been described , an OS includes a
thread manager that considers processor topology , TPU
hardware feedback , and thread preferences when scheduling
and managing threads on a data processing system , to
optimize the thread configuration for performance and / or
efficiency .

ADDITIONAL EMBODIMENTS

[0056] FIGS . 4-8 are block diagrams of exemplary com
puter architectures . The same or similar elements in FIGS .
4-8 bear like reference numerals . Other system designs and
configurations known in the arts for laptops , desktops ,
handheld PCs , personal digital assistants , engineering work
stations , servers , network devices , network hubs , switches ,
embedded processors , digital signal processors (DSPs) ,
graphics devices , video game devices , set - top boxes , micro
controllers , cell phones , portable media players , hand held
devices , and various other electronic devices , are also suit
able . In general , a huge variety of systems or electronic
devices capable of incorporating a processor and / or other
execution logic as disclosed herein are generally suitable .
[0057] FIG . 4 is a block diagram of a processor 1100 that
may have more than one core , may have an integrated
memory controller , and may have integrated graphics
according to embodiments of the invention . The solid lined
boxes in FIG . 4 illustrate a processor 1100 with a single core
1102A , a system agent 1110 , a set of one or more bus
controller units 1116 , while the optional addition of the
dashed lined boxes illustrates an alternative processor 1100
with multiple cores 1102A - N , a set of one or more integrated
memory controller unit (s) in the system agent unit 1110 , and
special purpose logic 1108 .
[0058] Thus , different implementations of the processor
1100 may include : 1) a central processing unit (CPU) with
the special purpose logic 1108 being integrated graphics
and / or scientific (throughput) logic (which may include one
or more cores) , and the cores 1102A - N being one or more
general purpose cores (e.g. , general purpose in - order cores ,
general purpose out - of - order cores , a combination of the
two) ; 2) a coprocessor with the cores 1102A - N being a large
number of special purpose cores intended primarily for
graphics and / or scientific (throughput) ; and 3) a coprocessor
with the cores 1102A - N being a large number of general
purpose in - order cores . Thus , the processor 1100 may be a
general - purpose processor , coprocessor or special - purpose
processor , such as , for example , a network or communica
tion processor , a compression engine , a graphics processing
unit (GPU) , a general purpose GPU (GPGPU) , a high
throughput many integrated core (MIC) coprocessor (in
cluding 30 or more cores) , an embedded processor , or the
like . The processor may be implemented on one or more
chips . The processor 1100 may be a part of and / or may be
implemented on one or more substrates using any of a
number of process technologies , such as , for example ,
BiCMOS , CMOS , or NMOS .
[0059] The memory hierarchy includes one or more levels
of cache units 1104A - N within the cores , a set or one or
more shared cache units 1106 , and external memory (not
shown) coupled to the set of integrated memory controller
units 1114. The set of shared cache units 1106 may include
one or more mid - level caches , such as L2 , level 3 (L3) , level

4 (L4) , or other levels of cache , a last level cache (LLC) ,
and / or combinations thereof . While in one embodiment a
ring based interconnect unit 1112 interconnects the special
purpose logic 1108 , the set of shared cache units 1106 , and
the system agent unit 1110 / integrated memory controller
unit (s) 1114 , alternative embodiments may use any number
of well - known techniques for interconnecting such units . In
one embodiment , coherency is maintained between one or
more cache units 1106 and cores 1102 A - N .
[0060] The system agent unit 1110 includes those compo
nents coordinating and operating cores 1102A - N . The sys
tem agent unit 1110 may include for example a power
control unit (PCU) and a display unit . The PCU may be or
include logic and components needed for regulating the
power state of the cores 1102A - N and the integrated graph
ics logic 1108. The display unit is for driving one or more
externally connected displays .
[0061] The cores 1102A - N may be homogenous or het
erogeneous in terms of architecture instruction set ; that is ,
two or more of the cores 1102A - N may be capable of
execution the same instruction set , while others may be
capable of executing only a subset of that instruction set or
a different instruction set . Such cores 1102A - N may convert
certain memory access instructions into subline memory
access instructions as described herein .
[0062] FIG . 5 is a block diagram of a system 1200
according to embodiments of the invention . The system
1200 may include one or more processors 1210 , 1215 , which
are coupled to a controller hub 1220. In one embodiment , the
controller hub 1220 includes a graphics memory controller
hub (GMCH) 1290 and an Input / Output Hub (IOH) 1250
(which may be on separate chips) ; the GMCH 1290 includes
a memory controller to control operations within a coupled
memory and a graphics controller to which are coupled
memory 1240 and a coprocessor 1245 ; the IOH 1250
couples input / output (I / O) devices 1260 to the GMCH 1290 .
Alternatively , one or both of the memory and graphics
controllers are integrated within the processor , the memory
1240 and the coprocessor 1245 are coupled directly to the
processor 1210 , and the controller hub 1220 is in a single
chip with the IOH 1250 .
[0063] The optional nature of additional processors 1215
is denoted in FIG . 5 with broken lines . Each processor 1210 ,
1215 may include one or more of the processing cores
described herein and may be some version of the processor
1100 .
[0064] The memory 1240 may be , for example , dynamic
random access memory (DRAM) , phase change memory
(PCM) , or a combination of the two . For at least one
embodiment , the controller hub 1220 communicates with
the processor (s) 1210 , 1215 via a multi - drop bus , such as a
frontside bus (FSB) , point - to - point interface such as Quick
Path Interconnect (QPI) , or similar connection 1295 .
[0065] In one embodiment , the coprocessor 1245 is a
special - purpose processor , such as , for example , a high
throughput MIC processor , a network or communication
processor , compression engine , graphics processor , GPGPU ,
embedded processor , or the like . In one embodiment , con
troller hub 1220 may include an integrated graphics accel
erator .

[0066] There can be a variety of differences between the
physical resources 1210 , 1215 in terms of a spectrum of
metrics of merit including architectural , microarchitectural ,
thermal , power consumption characteristics , and the like .

a

US 2021/0406060 A1 Dec. 30 , 2021
9

a

[0067] In one embodiment , the processor 1210 executes
instructions that control data processing operations of a
general type . Embedded within the instructions may be
coprocessor instructions . The processor 1210 recognizes
these coprocessor instructions as being of a type that should
be executed by the attached coprocessor 1245. Accordingly ,
the processor 1210 issues these coprocessor instructions (or
control signals representing coprocessor instructions) on a
coprocessor bus or other interconnect , to coprocessor 1245 .
Coprocessor (s) 1245 accept and execute the received copro
cessor instructions .
[0068] FIGS . 6 and 7 are block diagrams of more specific
exemplary systems 1300 and 1400 according to embodi
ments of the invention . As shown in FIG . 6 , multiprocessor
system 1300 is a point - to - point interconnect system , and
includes a first processor 1370 and a second processor 1380
coupled via a point - to - point interconnect 1350. Each of
processors 1370 and 1380 may be some version of the
processor 1100. In one embodiment of the invention , pro
cessors 1370 and 1380 are respectively processors 1210 and
1215 , while coprocessor 1338 is coprocessor 1245. In
another embodiment , processors 1370 and 1380 are respec
tively processor 1210 and coprocessor 1245 .
[0069] Processors 1370 and 1380 are shown including
integrated memory controller (IMC) units 1372 and 1382 ,
respectively . Processor 1370 also includes as part of its bus
controller units point - to - point (P - P) interfaces 1376 and
1378 ; similarly , second processor 1380 includes P - P inter
faces 1386 and 1388. Processors 1370 , 1380 may exchange
information via a P - P interface 1350 using P - P interface
circuits 1378 , 1388. As shown in FIG . 6 , IMCs 1372 and
1382 couple the processors to respective memories , namely
a memory 1332 and a memory 1334 , which may be portions
of main memory locally attached to the respective proces

gate arrays , or any other processor , are coupled to first bus
1316. In one embodiment , second bus 1320 may be a low
pin count (LPC) bus . Various devices may be coupled to a
second bus 1320 including , for example , a keyboard and / or
mouse 1322 , communication devices 1327 and a storage
unit 1328 such as a disk drive or other mass storage device
which may include instructions / code and data 1330 , in one
embodiment . Further , an audio I / O 1324 may be coupled to
the second bus 1320. Note that other architectures are
possible . For example , instead of the point - to - point archi
tecture of FIG . 6 , a system may implement a multi - drop bus
or other such architecture .
[0074] FIG . 7 presents a block diagram of a second more
specific exemplary system 1400 in accordance with an
embodiment of the present invention . Certain aspects of
FIG . 6 have been omitted from FIG . 7 in order to avoid
obscuring other aspects of FIG . 7 .
[0075] FIG . 7 illustrates that the processors 1370 , 1380
may include integrated memory and I / O control logic
(" CL ") 1372 and 1382 , respectively . Thus , the CL 1372 ,
1382 include integrated memory controller units and include
I / O control logic . FIG . 7 illustrates that not only are the
memories 1332 , 1334 coupled to the CL 1372 , 1382 , but also
that I / O devices 1414 are also coupled to the control logic
1372 , 1382. Legacy I / O devices 1415 are coupled to the
chipset 1390 .
[0076] FIG . 8 is a block diagram of a system on a chip
(SOC) 1500 according to embodiments of the invention .
Dashed lined boxes are optional features on more advanced
SoCs . In FIG . 8 , an interconnect unit (s) 1502 is coupled to :
an application processor 1510 which includes a set of one or
more cores 1102A - N (including constituent cache units
1104A - N) and shared cache unit (s) 1106 ; a system agent unit
1110 ; a bus controller unit (s) 1116 ; an integrated memory
controller unit (s) 1114 ; a set or one or more coprocessors
1520 which may include integrated graphics logic , an image
processor , an audio processor , and a video processor ; an
static random access memory (SRAM) unit 1530 ; a direct
memory access (DMA) unit 1532 ; and a display unit 1540
for coupling to one or more external displays . In one
embodiment , the coprocessor (s) 1520 include a special
purpose processor , such as , for example , a network or
communication processor , compression engine , GPGPU , a
high - throughput MIC processor , embedded processor , or the
like .

sors .

CONCLUSION

[0070] Processors 1370 , 1380 may each exchange infor
mation with a chipset 1390 via individual P - P interfaces
1352 , 1354 using point to point interface circuits 1376 ,
1394 , 1386 , 1398. Chipset 1390 may optionally exchange
information with the coprocessor 1338 via a high - perfor
mance interface 1339. In one embodiment , the coprocessor
1338 is a special - purpose processor , such as , for example , a
high - throughput MIC processor , a network or communica
tion processor , compression engine , graphics processor ,
GPGPU , embedded processor , or the like .
[0071] A shared cache (not shown) may be included in
either processor or outside of both processors , yet connected
with the processors via P - P interconnect , such that either or
both processors ' local cache information may be stored in
the shared cache if a processor is placed into a low power
mode .
[0072] Chipset 1390 may be coupled to a first bus 1316 via
an interface 1396. In one embodiment , first bus 1316 may be
a Peripheral Component Interconnect (PCI) bus , or a bus
such as a PCI Express bus or another third generation I / O
interconnect bus , although the scope of the present invention
is not so limited .
[0073] As shown in FIG . 6 , various I / O devices 1314 may
be coupled to first bus 1316 , along with a bus bridge 1318
which couples first bus 1316 to a second bus 1320. In one
embodiment , one or more additional processors 1315 , such
as coprocessors , high - throughput MIC processors , GPG
PUs , accelerators (such as , e.g. , graphics accelerators or
digital signal processing (DSP) units) , field programmable

[0077] In the present disclosure , expressions such as “ an
embodiment , " " one embodiment , " and " another embodi
ment ” are meant to generally reference embodiment possi
bilities . Those expressions are not intended to limit the
invention to particular embodiment configurations . As used
herein , those expressions may reference the same embodi
ment or different embodiments , and those embodiments are
combinable into other embodiments . In light of the prin
ciples and example embodiments described and illustrated
herein , it will be recognized that the illustrated embodiments
can be modified in arrangement and detail without departing
from the principles described and / or illustrated herein .
[0078] Also , according to the present disclosure , a device
may include instructions and other data which , when
accessed by a processor , cause the device to perform par
ticular operations . For purposes of this disclosure , instruc
tions which cause a device to perform operations may be

a

US 2021/0406060 A1 Dec. 30 , 2021
10

referred to in general as software . Software and the like may
also be referred to as control logic . Software that is used
during a boot process may be referred to as firmware .
Software that is stored in nonvolatile memory may also be
referred to as firmware . Software may be organized using
any suitable structure or combination of structures . Accord
ingly , terms like program and module may be used in
general to cover a broad range of software constructs ,
including without limitation application programs , subpro
grams , routines , functions , procedures , drivers , libraries ,
data structures , processes , microcode , and other types of
software components . Also , it should be understood that a
software module may include more than one component ,
and those components may cooperate to complete the opera
tions of the module . Also , the operations which the software
causes a device to perform may include creating an operat
ing context , instantiating a particular data structure , etc.
Embodiments may be implemented as software to execute
on a programmable system comprising at least one proces
sor , a storage system (e.g. , volatile memory and / or one or
more non - volatile storage elements) , at least one input
device , and at least one output device .
[0079] Any suitable operating environment and program
ming language (or combination of operating environments
and programming languages) may be used to implement
software components described herein . For example , pro
gram code may be implemented in a high - level procedural
or object - oriented programming language , or in assembly or
machine language . The mechanisms described herein are not
limited to any particular programming language . In any
case , the language may be a compiled or interpreted lan
guage .
[0080] A medium which contains data and which allows
another component to obtain that data may be referred to as
a machine - accessible medium or a machine - readable
medium . Accordingly , embodiments may include machine
readable media containing instructions for performing some
or all of the operations described herein . Such media may be
referred to in general as apparatus and in particular as
program products . In one embodiment , software for multiple
components is stored in one machine - readable medium . In
other embodiments , two or more machine - readable media
may be used to store the software for one or more compo
nents . For instance , instructions for one component may be
stored in one medium , and instructions another component
may be stored in another medium . Or a portion of the
instructions for one component may be stored in one
medium , and the rest of the instructions for that component
(as well instructions for other components) , may be stored in
one or more other media . Similarly , software that is
described above as residing on a particular device in one
embodiment may , in other embodiments , reside on one or
more other devices . For instance , in a distributed environ
ment , some software may be stored locally , and some may
be stored remotely . Similarly , operations that are described
above as being performed on one particular device in one
embodiment may , in other embodiments , be performed by
one or more other devices .
[0081] Other embodiments may be implemented in data
and may be stored on a non - transitory storage medium ,
which if used by at least one machine , causes the at least one
machine to fabricate at least one integrated circuit to per
form one or more operations according to the present
disclosure . Still further embodiments may be implemented

in a computer readable storage medium including informa
tion that , when manufactured into an SoC or other processor ,
is to configure the SoC or other processor to perform one or
more operations according to the present disclosure . One or
more aspects of at least one embodiment may be imple
mented by representative instructions , stored on a machine
readable medium , which represent various logic units within
the processor , and which , when read by a machine , cause the
machine to fabricate logic units to perform the techniques
described herein . The instructions representing various logic
units may be referred to as “ IP cores , ” and they may be
stored on a tangible , machine - readable medium and supplied
to various customers or manufacturing facilities to load into
the fabrication machines that actually make the logic units or
the processor . One or more aspects of at least one embodi
ment may include machine - readable media containing
instructions or design data which defines structures , circuits ,
apparatuses , processors and / or system features described
herein . For instance , design data may be formatted in a
hardware description language (HDL) .
[0082] The machine - readable media for some embodi
ments may include , without limitation , tangible non - transi
tory storage components such as magnetic disks , optical
disks , magneto - optical disks , dynamic random access
memory (RAM) , static RAM , read - only memory (ROM) ,
solid state drives (SSDs) , phase change memory (PCM) ,
etc. , as well as processors , controllers , and other components
that include data storage facilities . For purposes of this
disclosure , the term “ ROM ” may be used in general to refer
to nonvolatile memory devices such as erasable program
mable ROM (EPROM) , electrically erasable programmable
ROM (EEPROM) , flash ROM , flash memory , etc.
[0083] It should also be understood that the hardware and
software components depicted herein represent functional
elements that are reasonably self - contained so that each can
be designed , constructed , or updated substantially indepen
dently of the others . In alternative embodiments , compo
nents may be implemented as hardware , software , or com
binations of hardware and software for providing the
functionality described and illustrated herein . In some
embodiments , some or all of the control logic for imple
menting the described operations may be implemented in
hardware logic (e.g. , as microcode in an integrated circuit
chip , as a programmable gate array (PGA) , as an applica
tion - specific integrated circuit (ASIC) , etc.) . Also , terms
such as " circuit ” and “ circuitry ” may be used interchange
ably herein . Those terms and terms like “ logic ” may be used
to refer to analog circuitry , digital circuitry , hard - wired
circuitry , programmable circuitry , processor circuitry ,
microcontroller circuitry , hardware logic circuitry , state
machine circuitry , any other type of hardware component , or
any suitable combination of hardware components .
[0084] Additionally , the present teachings may be used to
advantage in many different kinds of data processing sys
tems . Such data processing systems may include , without
limitation , accelerators , systems on a chip (SoCs) , wearable
devices , handheld devices , smartphones , telephones , enter
tainment devices such as audio devices , video devices ,
audio / video devices (e.g. , televisions and set - top boxes) ,
vehicular processing systems , personal digital assistants
(PDAs) , tablet computers , laptop computers , portable com
puters , personal computers (PCs) , workstations , servers ,
client - server systems , distributed computing systems , super
computers , high - performance computing systems , comput

US 2021/0406060 A1 Dec. 30 , 2021
11

a

a

ing clusters , mainframe computers , mini - computers , and
other devices for processing or transmitting information .
Accordingly , unless explicitly specified otherwise or
required by the context , references to any particular type of
data processing system (e.g. , a PC) should be understood as
encompassing other types of data processing systems , as
well . A data processing system may also be referred to as an
apparatus . The components of a data processing system may
also be referred to as apparatus .
[0085] Also , unless expressly specified otherwise , com
ponents that are described as being coupled to each other , in
communication with each other , responsive to each other , or
the like need not be in continuous communication with each
other and need not be directly coupled to each other .
Likewise , when one component is described as receiving
data from or sending data to another component , that data
may be sent or received through one or more intermediate
components , unless expressly specified otherwise . In addi
tion , some components of the data processing system may be
implemented as adapter cards with interfaces (e.g. , a con
nector) for communicating with a bus . Alternatively , devices
or components may be implemented as embedded control
lers , using components such as programmable or non
programmable logic devices or arrays , ASICs , embedded
computers , smart cards , and the like . For purposes of this
disclosure , the term “ bus ” includes pathways that may be
shared by more than two devices , as well as point - to - point
pathways . Similarly , terms such as “ line , " " pin , ” etc. should
be understood as referring to a wire , a set of wires , or any
other suitable conductor or set of conductors . For instance ,
a bus may include one or more serial links , a serial link may
include one or more lanes , a lane may be composed of one
or more differential signaling pairs , and the changing char
acteristics of the electricity that those conductors are carry
ing may be referred to as signals on a line . Also , for purpose
of this disclosure , the term “ processor ” denotes a hardware
component that is capable of executing software . For
instance , a processor may be implemented as a central
processing unit (CPU) , a processing core , or as any other
suitable type of processing element . A CPU may include one
or more processing cores , and a device may include one or
more CPUs .
[0086] Also , although one or more example processes
have been described with regard to particular operations
performed in a particular sequence , numerous modifications
could be applied to those processes to derive numerous
alternative embodiments of the present invention . For
example , alternative embodiments may include processes
that use fewer than all of the disclosed operations , process
that use additional operations , and processes in which the
individual operations disclosed herein are combined , subdi
vided , rearranged , or otherwise altered .
[0087] Embodiments include the following examples :
[0088] Example A1 is an apparatus comprising a machine
readable medium and instructions in the machine - readable
medium which , when executed by a hybrid processor in a
data processing system , enable an OS in the data processing
system to collect processor topology data from the hybrid
processor , wherein the hybrid processor comprises (a) a big
TPU that supports a first range of power settings and (b) a
small TPU that supports a second range of power settings ,
wherein the range for the big TPU comprises an upper bound
that causes more power consumption than an upper bound of
the range for the small TPU . Also , at least one of the TPUS

comprises an LP of a processing core that supports SMT .
The instructions also enable the OS to collect hardware
feedback for at least one of the TPUs from hardware
feedback circuitry in the hybrid processor . The instructions
also enable the OS to respond to a determination that a
thread is ready to be scheduled by utilizing (a) an OP setting
for the ready thread , (b) the processor topology data , and (c)
the hardware feedback to make a scheduling determination
for the ready thread .
[0089] Example A2 is an apparatus according to Example
A1 , wherein the instructions , when executed , further enable
the OS to , in response to one of the TPUs going idle , using
(a) an OP setting for a running thread , (b) the processor
topology data , and (c) the hardware feedback to determine
whether or not a running thread should be migrated from an
active core to the idle core .
[0090] Example A3 is an apparatus according to Example
Al , wherein the operation of making a scheduling determi
nation for the ready thread comprises (i) determining
whether the ready thread is more important than a thread that
is running on one of the TPUs ; (ii) in response to determin
ing that the ready thread is more important , determining
whether the TPU with the running thread is more performant
than another TPU , based on (a) hardware feedback for the
TPU with the running thread and (b) hardware feedback for
the other TPU ; and (iii) in response to determining that the
TPU with the running thread is more performant than the
other TPU , preempting the running thread with the ready
thread by moving the running thread to the less performant
TPU and scheduling the ready thread on the more perfor
mant TPU . Example A3 may also include the features of
Example A2 .
[0091] Example A4 is an apparatus according to Example
A1 , wherein the operation of making a scheduling determi
nation for the ready thread comprises (i) based on the OP
setting for the ready thread , determining whether the ready
thread has an operating preference for efficiency ; (ii) in
response to determining that the ready thread has an oper
ating preference for efficiency , using the hardware feedback
and the processor topology data to determine whether the
hybrid processor comprises an idle TPU that has (a) a
relatively high efficiency rating relative to efficiency ratings
of other TPUs in the processor and (b) a busy sibling TPU ;
and (iii) in response to determining that the hybrid processor
comprises an idle TPU that has (a) a relatively high effi
ciency rating and (b) a busy sibling TPU , selecting that idle
TPU to receive the ready thread . Example A4 may also
include the features of any one or more of Examples A2 - A3 .
[0092] Example A5 is an apparatus according o Example
A1 , wherein the instructions , when kecuted , further enable
the OS to (i) track running time for important threads
running on TPUs other than the big TPU ; and (ii) in response
to determining that one of the important threads has run on
TPUs other than the big TPU for at least a threshold amount
of time , schedule that thread on the big TPU . Example A5
may also include the features of any one or more of
Examples A2 - A4 .
[0093] Example A6 is an apparatus according to Example
A1 , wherein the hybrid processor comprises (a) a big core
that supports SMT with first and second LPs and (b) a
small - core module comprising multiple small cores . Also ,
the hardware feedback comprises (a) feedback for the first
and second LPs in the big core and (b) feedback for the small
cores in the small - core module . Also , the big TPU comprises

a

a

US 2021/0406060 A1 Dec. 30 , 2021
12

2

one of the LPs in the big core , and the small TPU comprises
one of the small cores in the small - core module . Example A6
may also include the features of any one or more of
Examples A2 - A5 .
[0094] Example A7 is an apparatus according to Example
A1 , wherein the operation of making a scheduling determi
nation for the ready thread comprises (i) based on the OP
setting for the ready thread , determining whether the ready
thread has an operating preference for QOS ; (ii) in response
to determining that the ready thread has an operating pref
erence for QOS , using the hardware feedback and the
processor topology data to determine whether the hybrid
processor comprises an idle TPU that has (a) a relatively
high performance rating relative to performance ratings of
other TPUs in the processor and (b) no busy sibling TPUs ;
and (iii) in response to determining that the hybrid processor
comprises an idle TPU that has (a) a relatively high perfor
mance rating and (b) no busy sibling TPUs , selecting that
idle TPU to receive the ready thread . Example A7 may also
include the features of any one or more of Examples A2 - A6 .
[0095] Example A8 is an apparatus according to Example
A7 , wherein , when the small TPU has the relatively high
performance rating and no busy sibling TPUs , the instruc
tions cause the OS to select the small TPU to receive the
ready thread .
[0096] Example A9 is an apparatus according to Example
A7 , wherein the operation of making a scheduling determi
nation for the ready thread further comprises , in response to
determining that the hybrid processor does not comprise an
idle TPU that has (a) a relatively high performance rating
and (b) no busy sibling TPUs , selecting an idle TPU that has
(a) a relatively high performance rating and (b) a busy
sibling TPU to receive the ready thread . Example A9 may
also include the features of Example A8 .
[0097] Example B1 is a data processing system with
technology for managing threads . The data processing sys
tem comprises a hybrid processor comprising (a) a big TPU
that supports a first range of power settings , and (b) a small
TPU that supports a second range of power settings , wherein
the range for the big TPU comprises an upper bound that
causes more power consumption than an upper bound of the
range for the small TPU , and wherein at least one of the
TPUs comprises an LP of a processing core that supports
SMT . The hybrid processor further comprises hardware
feedback circuitry . The data processing system further com
prises a machine - readable medium in communication with
the hybrid processor , and instructions in the machine - read
able medium which , when executed by the hybrid processor ,
enable an OS in the data processing system to collect
processor topology data from the hybrid processor . The
instruction also enable the OS to (i) collect hardware feed
back for at least one of the TPUS from the hardware
feedback circuitry ; and (ii) in response to determining that a
thread is ready to be scheduled , utilize (a) an operating
preference (OP) setting for the ready thread , (b) the proces
sor topology data , and (c) the hardware feedback to make a
scheduling determination for the ready thread .
[0098] Example B2 is a data processing system according
to Example B1 , wherein the instructions , when executed ,
further enable the OS to , in response to one of the TPUs
going idle , using (a) an OP setting for a running thread , (b)
the processor topology data , and (c) the hardware feedback
to determine whether or not a running thread should be
migrated from an active core to the idle core .

[0099] Example B3 is a data processing system according
to Example B1 , wherein the operation of making a sched
uling determination for the ready thread comprises (i) deter
mining whether the ready thread is more important than a
thread that is running on one of the TPUs ; (ii) in response to
determining that the ready thread is more important , deter
mining whether the TPU with the running thread is more
performant than another TPU , based on (a) hardware feed
back for the TPU with the running thread and (b) hardware
feedback for the other TPU ; and (iii) in response to deter
mining that the TPU with the running thread is more
performant than the other TPU , preempting the running
thread with the ready thread by moving the running thread
to the less performant TPU and scheduling the ready thread
on the more performant TPU . Example B3 may also include
the features of Example B2 .
[0100] Example B4 is a data processing system according
to Example B1 , wherein the operation of making a sched
uling determination for the ready thread comprises (i) based
on the OP setting for the ready thread , determining whether
the ready thread has an operating preference for efficiency ;
(ii) in response to determining that the ready thread has an
operating preference for efficiency , using the hardware feed
back and the processor topology data to determine whether
the hybrid processor comprises an idle TPU that has (a) a
relatively high efficiency rating relative to efficiency ratings
of other TPUs in the processor and (b) a busy sibling TPU ;
and (iii) in response to determining that the hybrid processor
comprises an idle TPU that has (a) a relatively high effi
ciency rating and (b) a busy sibling TPU , selecting that idle
TPU to receive the ready thread . Example B4 may also
include the features of any one or more of Examples B2 - B3 .
[0101] Example B5 is a data processing system according
to Example B1 , wherein the instructions , when executed ,
further enable the OS to (i) track running time for important
threads running on TPUs other than the big TPU ; and (ii) in
response to determining that one of the important threads
has run on TPUs other than the big TPU for at least a
threshold amount of time , schedule that thread on the big
TPU . Example B5 may also include the features of any one
or more of Examples B2 - B4 .
[0102] Example B6 is a data processing system according
to Example B1 , wherein the hybrid processor comprises (a)
a big core that supports SMT with first and second LPs and
(b) a single - threaded small core . Also , the hardware feed
back comprises (a) feedback for the first and second LPs in
the big core and (b) feedback for the small core . Also , the big
TPU comprises one of the LPs in the big core , and the small
TPU comprises the small core . Example B6 may also
include the features of any one or more of Examples B2 - B5 .
[0103] Example B7 is a data processing system according
to Example B1 , wherein the hybrid processor comprises (a)
a big core that supports SMT with first and second LPs and
(b) a small - core module . The small - core module comprises
multiple small cores . The hardware feedback comprises (a)
feedback for the first and second LPs in the big core and (b)
feedback for the small cores in the small - core module . Also ,
the big TPU comprises one of the LPs in the big core .
Example B7 may also include the features of any one or
more of Examples B2 - B6 .
[0104] Example B8 is a data processing system according
to Example B7 , wherein each of the small cores in the
small - core module supports SMT with first and second LPs .

a

a

US 2021/0406060 A1 Dec. 30 , 2021
13

a

a

a

Also , the small TPU comprises one of the LPs in one of the
small cores in the small - core module .
[0105] Example B9 is a data processing system according
to Example B1 , wherein the operation of making a sched
uling determination for the ready thread comprises (i) based
on the OP setting for the ready thread , determining whether
the ready thread has an operating preference for QOS ; (ii) in
response to determining that the ready thread has an oper
ating preference for QOS , using the hardware feedback and
the processor topology data to determine whether the hybrid
processor comprises an idle TPU that has (a) a relatively
high performance rating relative to performance ratings of
other TPUs in the processor and (b) no busy sibling TPUs ;
and (iii) in response to determining that the hybrid processor
comprises an idle TPU that has (a) a relatively high perfor
mance rating and (b) no busy sibling TPUs , selecting that
idle TPU to receive the ready thread . Example B7 may also
include the features of any one or more of Examples B2 - B8 .
[0106] Example B10 is a data processing system accord
ing to Example B9 , wherein , when the small TPU has the
relatively high performance rating and no busy sibling
TPUs , the instructions cause the OS to select the small TPU
to receive the ready thread .
[0107] Example B11 is a data processing system accord
ing to Example B9 , wherein the operation of making a
scheduling determination for the ready thread further com
prises , in response to determining that the hybrid processor
does not comprise an idle TPU that has (a) a relatively high
performance rating and (b) no busy sibling TPUs , selecting
an idle TPU that has (a) a relatively high performance rating
and (b) a busy sibling TPU to receive the ready thread .
Example B9 may also include the features of Example B10 .
[0108] Example C1 is a method to optimize scheduling of
threads in a data processing system with a hybrid processor
that comprises (a) a big TPU that supports a first range of
power settings , and (b) a small TPU that supports a second
range of power settings , wherein the range for the big TPU
comprises an upper bound that causes more power consump
tion than an upper bound of the range for the small TPU , and
wherein at least one of the TPUs comprises a logical
processor (LP) of a processing core that supports SMT . The
method comprises (i) in an OS in the data processing system ,
collecting processor topology data from the hybrid processor
and collecting hardware feedback from hardware feedback
circuitry in the hybrid processor ; and (ii) in response to
determining that a thread is ready to be scheduled , using (a)
an OP setting for the ready thread , (b) the processor topology
data , and (c) the hardware feedback to make a scheduling
determination for the ready thread . Also , the operation of
making a scheduling determination for the ready thread
comprises (i) based on the OP setting for the ready thread ,
determining whether the ready thread has an operating
preference for QOS ; (ii) in response to determining that the
ready thread has an operating preference for QOS , using the
hardware feedback and the processor topology data to
determine whether the hybrid processor comprises an idle
TPU that has (a) a relatively high performance rating
relative to performance ratings of other TPUs in the proces
sor and (b) no busy sibling TPUs ; and (iii) in response to
determining that the hybrid processor comprises an idle TPU
that has (a) a relatively high performance rating and (b) no
busy sibling TPUs , selecting that idle TPU to receive the
ready thread .

[0109] Example C2 is a method according to Example C1 ,
further comprising , in response to one of the TPUs going
idle , using (a) an OP setting for a running thread , (b) the
processor topology data , and (c) the hardware feedback to
determine whether or not a running thread should be
migrated from an active core to the idle core .
[0110] Example C3 is a method according to Example C1 ,
wherein the operation of making a scheduling determination
for the ready thread comprises (i) determining whether the
ready thread is more important than a thread that is running
on one of the TPUs ; (ii) in response to determining that the
ready thread is more important , determining whether the
TPU with the running thread is more performant than
another TPU , based on (a) hardware feedback for the TPU
with the running thread and (b) hardware feedback for the
other TPU ; and (iii) in response to determining that the TPU with the running thread is more performant than the other
TPU , preempting the running thread with the ready thread
by moving the running thread to the less performant TPU
and scheduling the ready thread on the more performant
TPU . Example C3 may also include the features of Example
C2 .
[0111] Example C4 is a method according to Example Ci ,
further comprising (i) tracking running time for important
threads running on TPUs other than the big TPU ; and (ii) in
response to determining that one of the important threads
has run on TPUs other than the big TPU for at least a
threshold amount of time , scheduling that thread on the big
TPU . Example C4 may also include the features of any one
or more of Examples C2 - C3 .
[0112] Example C5 is a method according to Example A1 ,
wherein the operation of making a scheduling determination
for the ready thread comprises (i) based on the OP setting for
the ready thread , determining whether the ready thread has
an operating preference for efficiency ; (ii) in response to
determining that the ready thread has an operating prefer
ence for efficiency , using the hardware feedback and the
processor topology data to determine whether the hybrid
processor comprises an idle TPU that has (a) a relatively
high efficiency rating relative to efficiency ratings of other
TPUs in the processor and (b) a busy sibling TPU ; and (iii)
in response to determining that the hybrid processor com
prises an idle TPU that has (a) a relatively high efficiency
rating and (b) a busy sibling TPU , selecting that idle TPU to
receive the ready thread .
[0113] In view of the wide variety of useful permutations
that may be readily derived from the example embodiments
described herein , this detailed description is intended to be
illustrative only , and should not be construed as limiting the
scope of coverage .

1. An apparatus comprising :
a machine - readable medium ; and
instructions in the machine - readable medium which ,
when executed by a hybrid processor in a data process
ing system , enable an operating system (OS) in the data
processing system to :
collect processor topology data from the hybrid pro

cessor , wherein the hybrid processor comprises (a) a
big thread processing unit (TPU) that supports a first
range of power settings , and (b) a small TPU that
supports a second range of power settings , wherein
the range for the big TPU comprises an upper bound
that causes more power consumption than an upper
bound of the range for the small TPU , and wherein

a

a

a

US 2021/0406060 A1 Dec. 30 , 2021
14

at least one of the TPUs comprises a logical proces
sor (LP) of a processing core that supports simulta
neous multi - threading (SMT) ;

collect hardware feedback for at least one of the TPUS
from hardware feedback circuitry in the hybrid pro
cessor ; and

in response to determining that a thread is ready to be
scheduled , utilize (a) an operating - preference (OP)
setting for the ready thread , (b) the processor topol
ogy data , and (c) the hardware feedback to make a
scheduling determination for the ready thread .

2. An apparatus according to claim 1 , wherein the instruc
tions , when executed , further enable the OS to :

in response to one of the TPUs going idle , using (a) an OP
setting for a running thread , (b) the processor topology
data , and (c) the hardware feedback to determine
whether or not a running thread should be migrated
from an active TPU to the idle TPU .

3. An apparatus according to claim 1 , wherein the opera
tion of making a scheduling determination for the ready
thread comprises :

determining whether the ready thread is more important
than a thread that is running on one of the TPUs ;

in response to determining that the ready thread is more
important , determining whether the TPU with the run
ning thread is more performant than another TPU ,
based on (a) hardware feedback for the TPU with the
running thread and (b) hardware feedback for the other
TPU ; and

in response to determining that the TPU with the running
thread is more performant than the other TPU , pre
empting the running thread with the ready thread by
moving the running thread to the less performant TPU
and scheduling the ready thread on the more perfor
mant TPU .

4. An apparatus according to claim 1 , wherein the opera
tion of making a scheduling determination for the ready
thread comprises :

based on the OP setting for the ready thread , determining
whether the ready thread has an operating preference
for efficiency :

in response to determining that the ready thread has an
operating preference for efficiency , using the hardware
feedback and the processor topology data to determine
whether the hybrid processor comprises an idle TPU
that has (a) a relatively high efficiency rating relative to
efficiency ratings of other TPUs in the processor and (b)
a busy sibling TPU ; and

in response to determining that the hybrid processor
comprises an idle TPU that has (a) a relatively high
efficiency rating and (b) a busy sibling TPU , selecting
that idle TPU to receive the ready thread .

5. An apparatus according to claim 1 , wherein the instruc
tions , when executed , further enable the OS to :

track running time for important threads running on TPUs
other than the big TPU ; and

in response to determining that one of the important
threads has run on TPUs other than the big TPU for at
least a threshold amount of time , schedule that thread
on the big TPU .

6. An apparatus according to claim 1 , wherein :
the hybrid processor comprises (a) a big core that supports
SMT with first and second LPs and (b) a small - core
module comprising multiple small cores ;

the hardware feedback comprises (a) feedback for the first
and second LPs in the big core and (b) feedback for the
small cores in the small - core module ;

the big TPU comprises one of the LPs in the big core ; and
the small TPU comprises one of the small cores in the

small - core module .
7. An apparatus according to claim 1 , wherein the opera

tion of making a scheduling determination for the ready
thread comprises :

based on the OP setting for the ready thread , determining
whether the ready thread has an operating preference
for quality of service (QOS) ;

in response to determining that the ready thread has an
operating preference for QOS , using the hardware
feedback and the processor topology data to determine
whether the hybrid processor comprises an idle TPU
that has (a) a relatively high performance rating relative
to performance ratings of other TPUs in the processor
and (b) no busy sibling TPUs ; and

in response to determining that the hybrid processor
comprises an idle TPU that has (a) a relatively high
performance rating and (b) no busy sibling TPUs ,
selecting that idle TPU to receive the ready thread .

8. An apparatus according to claim 7 , wherein , when the
small TPU has the relatively high performance rating and no
busy sibling TPUs , the instructions cause the OS to select the
small TPU to receive the ready thread .

9. An apparatus according to claim 7 , wherein the opera
tion of making a scheduling determination for the ready
thread further comprises :

in response to determining that the hybrid processor does
not comprise an idle TPU that has (a) a relatively high
performance rating and (b) no busy sibling TPUs ,
selecting an idle TPU that has (a) a relatively high
performance rating and (b) a busy sibling TPU to
receive the ready thread .

10. A data processing system with technology for man
aging threads , the data processing system comprising :

a hybrid processor comprising (a) a big thread processing
unit (TPU) that supports a first range of power settings ,
and (b) a small TPU that supports a second range of
power settings , wherein the range for the big TPU
comprises an upper bound that causes more power
consumption than an upper bound of the range for the
small TPU , and wherein at least one of the TPUS
comprises a logical processor (LP) of a processing core
that supports simultaneous multi - threading (SMT) ;

hardware feedback circuitry in the hybrid processor ;
a machine - readable medium in communication with the

hybrid processor , and
instructions in the machine - readable medium which ,
when executed by the hybrid processor , enable an
operating system (OS) in the data processing system to :
collect processor topology data from the hybrid pro

cessor ;
collect hardware feedback for at least one of the TPUS

from the hardware feedback circuitry ; and
in response to determining that a thread is ready to be

scheduled , utilize (a) an operating - preference (OP)
setting for the ready thread , (b) the processor topol
ogy data , and (c) the hardware feedback to make a
scheduling determination for the ready thread .

US 2021/0406060 A1 Dec. 30 , 2021
15

11. A data processing system according to claim 10 ,
wherein the instructions , when executed , further enable the
OS to :

in response to one of the TPUs going idle , using (a) an OP
setting for a running thread , (b) the processor topology a
data , and (c) the hardware feedback to determine
whether or not a running thread should be migrated
from an active TPU to the idle TPU .

12. A data processing system according to claim 10 ,
wherein the operation of making a scheduling determination
for the ready thread comprises :

determining whether the ready thread is more important
than a thread that is running on one of the TPUS ;

in response to determining that the ready thread is more
important , determining whether the TPU with the run
ning thread is more performant than another TPU ,
based on (a) hardware feedback for the TPU with the
running thread and (b) hardware feedback for the other
TPU ; and

in response to determining that the TPU with the running
thread is more performant than the other TPU , pre
empting the running thread with the ready thread by
moving the running thread to the less performant TPU
and scheduling the ready thread on the more perfor
mant TPU .

13. A data processing system according to claim 10 ,
wherein the operation of making a scheduling determination
for the ready thread comprises :

based on the OP setting for the ready thread , determining
whether the ready thread has an operating preference
for efficiency ;

in response to determining that the ready thread has an
operating preference for efficiency , using the hardware
feedback and the processor topology data to determine
whether the hybrid processor comprises an idle TPU
that has (a) a relatively high efficiency rating relative to
efficiency ratings of other TPUs in the processor and (b)
a busy sibling TPU ; and

in response to determining that the hybrid processor
comprises an idle TPU that has (a) a relatively high
efficiency rating and (b) a busy sibling TPU , selecting
that idle TPU to receive the ready thread .

14. A data processing system according to claim 10 ,
wherein the instructions , when executed , further enable the
OS to :

track running time for important threads running on TPUS
other than the big TPU ; and

in response to determining that one of the important
threads has run on TPUs other than the big TPU for at
least a threshold amount of time , schedule that thread
on the big TPU .

15. A data processing system according to claim 10 ,
wherein :

the hybrid processor comprises (a) a big core that supports
SMT with first and second LPs and (b) a single
threaded small core ;

the hardware feedback comprises (a) feedback for the first
and second LPs in the big core and (b) feedback for the

the hybrid processor comprises (a) a big core that supports
SMT with first and second LPs and (b) a small - core
module ;

the small - core module comprises multiple small cores ;
the hardware feedback comprises (a) feedback for the first

and second LPs in the big core and (b) feedback for the
small cores in the small - core module ; and

the big TPU comprises one of the LPs in the big core .
17. A data processing system according to claim 16 ,

wherein :
each of the small cores in the small - core module supports
SMT with first and second LPs ; and

the small TPU comprises one of the LPs in one of the
small cores in the small - core module .

18. A data processing system according to claim 10 ,
wherein the operation of making a scheduling determination
for the ready thread comprises :

based on the OP setting for the ready thread , determining
whether the ready thread has an operating preference
for quality of service (QOS) ;

in response to determining that the ready thread has an
operating preference for QOS , using the hardware
feedback and the processor topology data to determine
whether the hybrid processor comprises an idle TPU
that has (a) a relatively high performance rating relative
to performance ratings of other TPUs in the processor
and (b) no busy sibling TPUs ; and

in response to determining that the hybrid processor
comprises an idle TPU that has (a) a relatively high
performance rating and (b) no busy sibling TPUs ,
selecting that idle TPU to receive the ready thread .

19. A data processing system according to claim 18 ,
wherein , when the small TPU has the relatively high per
formance rating and no busy sibling TPUs , the instructions
cause the OS to select the small TPU to receive the ready
thread .

20. A data processing system according to claim 18 ,
wherein the operation of making a scheduling determination
for the ready thread further comprises :

in response to determining that the hybrid processor does
not comprise an idle TPU that has (a) a relatively high
performance rating and (b) no busy sibling TPUs ,
selecting an idle TPU that has (a) a relatively high
performance rating and (b) a busy sibling TPU to
receive the ready thread .

21. A method to optimize scheduling of threads in a
hybrid processor , the method comprising :

in an operating system (OS) in a data processing system ,
collecting processor topology data from a hybrid pro
cessor in the data processing system , wherein the
hybrid processor comprises (a) a big thread processing
unit (TPU) that supports a first range of power settings ,
and (b) a small TPU that supports a second range of
power settings , wherein the range for the big TPU
comprises an upper bound that causes more power
consumption than an upper bound of the range for the
small TPU , and wherein at least one of the TPUS
comprises a logical processor (LP) of a processing core
that supports simultaneous multi - threading (SMT) ;

collecting hardware feedback for at least one of the TPUS
from hardware feedback circuitry in the hybrid proces

a

small core ;
the big TPU comprises one of the LPs in the big core ; and
the small TPU comprises the small core .
16. A data processing system according to claim 10 ,

wherein :

sor ; and
in response to determining that a thread is ready to be

scheduled , using (a) an operating - preference (OP) set

US 2021/0406060 A1 Dec. 30 , 2021
16

ting for the ready thread , (b) the processor topology
data , and (c) the hardware feedback to make a sched
uling determination for the ready thread , wherein the
operation of making a scheduling determination for the
ready thread comprises :
based on the OP setting for the ready thread , determin

ing whether the ready thread has an operating pref
erence for quality of service (POS) ;

in response to determining that the ready thread has an
operating preference for QOS , using the hardware
feedback and the processor topology data to deter
mine whether the hybrid processor comprises an idle
TPU that has (a) a relatively high performance rating
relative to performance ratings of other TPUs in the
processor and (b) no busy sibling TPUs ; and

in response to determining that the hybrid processor
comprises an idle TPU that has (a) a relatively high
performance rating and (b) no busy sibling TPUs ,
selecting that idle TPU to receive the ready thread .

22. A method according to claim 21 , further comprising :
in response to one of the TPUs going idle , using (a) an OP

setting for a running thread , (b) the processor topology
data , and (c) the hardware feedback to determine
whether or not a running thread should be migrated
from an active TPU to the idle TPU .

23. A method according to claim 21 , wherein the opera
tion of making a scheduling determination for the ready
thread comprises :

determining whether the ready thread is more important
than a thread that is running on one of the TPUs ;

in response to determining that the ready thread is more
important , determining whether the TPU with the run
ning thread is more performant than another TPU ,

based on (a) hardware feedback for the TPU with the
running thread and (b) hardware feedback for the other
TPU ; and

in response to determining that the TPU with the running
thread is more performant than the other TPU , pre
empting the running thread with the ready thread by
moving the running thread to the less performant TPU
and scheduling the ready thread on the more perfor
mant TPU .

24. A method according to claim 21 , further comprising :
tracking running time for important threads running on
TPUs other than the big TPU ; and

in response to determining that one of the important
threads has run on TPUs other than the big TPU for at
least a threshold amount of time , scheduling that thread
on the big TPU .

25. A method according to claim 21 , wherein the opera
tion of making a scheduling determination for the ready
thread comprises :

based on the OP setting for the ready thread , determining
whether the ready thread has an operating preference
for efficiency ;

in response to determining that the ready thread has an
operating preference for efficiency , using the hardware
feedback and the processor topology data to determine
whether the hybrid processor comprises an idle TPU
that has (a) a relatively high efficiency rating relative to
efficiency ratings of other TPUs in the processor and (b)
a busy sibling TPU ; and

in response to determining that the hybrid processor
comprises an idle TPU that has (a) a relatively high
efficiency rating and (b) a busy sibling TPU , selecting
that idle TPU to receive the ready thread .

* *

