
US 20220121365A1
IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2022/0121365 A1
WANG et al . (43) Pub . Date : Apr. 21 , 2022

(54) DISTRIBUTED OBJECT STORAGE
SUPPORTING DIFFERENCE - LEVEL
SNAPSHOTS

(52) U.S. CI .
CPC G06F 3/065 (2013.01) ; G06F 37067

(2013.01) ; G06F 2009/45583 (2013.01) ; G06F
3/0604 (2013.01) ; G06F 9/45558 (2013.01)

(71) Applicant : VMware , Inc. , Palo Alto , CA (US)

(57) ABSTRACT (72) Inventors : Wenguang WANG , Santa Clara , CA
(US) ; Vamsidhar GUNTURU ,
Cupertino , CA (US) ; Junlong GAO ,
Palo Alto , CA (US) ; Ilya LANGUEV ,
Palo Alto , CA (US) ; Petr
VANDROVEC , Cupertino , CA (US) ;
Maxime AUSTRUY , Pully (CH) ; Ilia
SOKOLINSKI , Brighton , MA (US) ;
Satish PUDI , Saratoga , CA (US)

(73) Assignee : VMware , Inc. , Palo Alto , CA (US)

Techniques for the increased efficiency of storing data
objects storage in the object storage of a software designed
data center (SDDC) are provided . The techniques include
the efficient storage of data , while enabling snapshots of
each updating of the data . The snapshots of the data may be
efficiently recovered via the techniques . Difference - level
mappings for each snapshot are encoded in compact self
balancing data trees included in the object's metadata . The
metadata mappings include mappings between various
address spaces employed by the SDDC , as well as the
address spaces employed by data stores that store the data on
physical medium . Because the metadata is efficiently struc
tured , the metadata for an object may be cached for quick
lookups during data access and / or snapshot recovery . The
techniques also provide low - latency recovery and / or system
rollback in the event of any failure in the SDDC .

(21) Appl . No .: 17 / 072,904
(22) Filed : Oct. 16 , 2020

Publication Classification

(51) Int . Cl .
GO6F 3/06
G06F 9/455

(2006.01)
(2018.01)

Host Computing Device
100

VM 102 VM 102 VM 102 n 1 2

APP 104 1 APP 1042 ... APP 104 2

OS 106 1 OS 106 2 OS 106 n

Virtualization Layer
110

Hardware Platform
120

Memory
122

Processor (s)
124

Network
126

1/0
128

Host Computing Device 100

Patent Application Publication

VM 102 1

VM 1022

VM 102

APP 104 1

APP 1042

...

APP 104n

VM 102 1

OS 106 1

OS 1062

OS 106

VM

Container 132

Container 134

Virtualization Layer 110

APP 104
1

APP 1042

Apr. 21 , 2022 Sheet 1 of 9

Container Engine 136

Hardware Platform 120

OS 106

Memory 122

Processor (s)
124

Network 126

1/0 128

FIG . 1B

US 2022/0121365 A1

FIG . 1A

Patent Application Publication

VMs 214A - N

VMs 224A - N

VMS 234A - N

Virtualization Layer 216

Virtualization Layer 226

Virtualization Layer 236
Disks

Disks 218

Data 212

Disks 228

238

Apr. 21 , 2022 Sheet 2 of 9

Host Computing Device 212

Host Computing Device 222

Host Computing Device 232

Storage Node 210A

Storage Node 210B

Storage Node 210N

Virtual Storage Area Network (V?AN)
200

US 2022/0121365 A1

FIG . 2

300

Data Object 360 Data 362

Primary SDOC 310

Seg 1

Seg_2
Seg_3

Seg_N

VSAN 302

VDFS 304

VM 306

Block Diff

DO 360

Patent Application Publication

Metadata 364

Uploader Agent 352

File Diff

Object Storage & Recovery System (OSRS) 340

Management Server 348

Uploader Server 342

Metadata Database 346

Apr. 21 , 2022 Sheet 3 of 9

Recovery Server 344

Data Store 322

Secondary SDDC 330

VSAN 332
VM 336

User Interface 312

Metadata Store 320

VDFS 334

Recovery Agent 354

DO 360

US 2022/0121365 A1

FIG . 3

Client 314

Object Data Structure 400

Data 480

Metadata Layer 410

Segy 1

Seg2

Logical Layer 412

Chunk 10

Chunk 11

Chunk 12

Chunk 13

VMDK 1

VMDK 2

FIG . 4B

Patent Application Publication

430

Content Addressable Storage (CAS)
Layer 414

Logical Address Space 450
L_1

L_2

L_3

L_4

Data Layer 420

ChunkiAddress Space 490

Seg 1

Seg . N

C 11

Seg2

C10

C 13

C 12

Segment Address ' Space 470

FIG . 4A

Seg_1

Seg 2

Apr. 21 , 2022 Sheet 4 of 9

422

Logical Address Space 450

FIG . 4D

440

L2

L3

14

Hash Value Space 460 ,

Hash Value Space 460

2479

78E5

BA36

BA36

24F9

78E5

FDO2

FDO2

Segment Address Spare 470

Chunk Address Space 490
C_13

C_11

C_10

......... C_12

Seg . 1

Seg 2

US 2022/0121365 A1

FIG . 4C

FIG . 4E

510

L1

L 2

L3

L4

L 5

< L_X , Snapshot_ID > < Chunk_ID , N_chunks >

VVV

NA

VVV

500

C 4
C 4

C 5

C6

C 7

C 8

512

< ,

< L_1 , S_5 > + < C_4 , N_5 >

Patent Application Publication

< L_1 , S_5 > -- < C_4 , N_3 >

L 4

L 5

502

514

>

< L_4 , S_5 > < C_7 , N_2 > >

C 9

C 10

< L_4 , S_6 > - < C_9 , N_2 >

Apr. 21 , 2022 Sheet 5 of 9

FIG , 5A

FIG . 5B

520

< Snapshot_ID , L_X >

> < Chunk_ID , N_chunks >

522

< S_5 , L_1 > < C_4 , N_5 >

US 2022/0121365 A1

<

<

524 – < S_6 , L_4 > * < C_9 , N_2 >
FIG . 5C

540

L

h_2 2

L_3

L4

L_5

L6

L7

18

h9

L 10

Complete ?

Snapshot_ID = 1

detet

Snapshot_ID = 2

?

Patent Application Publication

Snapshot_ID = 3

SYSTEM FAILURE

Snapshot_1D = 4 Snapshot ID = 5

?

Block Upload NOT Acknowledged Block Upload Acknowledged

FIG . 5D

560

Apr. 21 , 2022 Sheet 6 of 9

L_1

L2

L_3

L_4

L 5

L 6

L_7

L 8

L9

L_10

Complete ?

Snapshot 1D = 1 Snapshot_ID = 2

dette

1

Snapshot_ID = 3

D

Santa

D

SED

D

Snapshot_ID = 5

?

US 2022/0121365 A1

= Delete Snapshot D = Delete Block

FIG . 5E

Patent Application Publication Apr. 21 , 2022 Sheet 7 of 9 US 2022/0121365 A1

600
602 Receive Data for New Object

604 Subdivide Data into Set of Chunks

606 Generate Signature for each Chunk Based on Data included in the Chunk

608 Initialize Block Counter , Chunk Counter , and Loop Counter

610 Begin Loop Over Set of Chunks

612 Select Chunk Based on Loop Counter & Ordering of Set of Chunks

614 Generate Key For Selected Chunk Based on Block Counter

616 NO is Chunk a Duplicate of
Previously Selected Chunk ?

618
YES

Generate Value for Key Based on Value of Previously Selected Chunk

620 Allocate New Chunk ID Based on Chunk Counter

622 Generate Value for Key Based on Allocated Chunk ID and Chunk Size

624 Store Signature in Content Aware Store (CAS)
V

626 Update Chunk Counter

Update Metadata to indicate Logical Mapping for Chunk

628
630 NO Terminate

Loop ? L. YES

632 Store Data and Metadata

FIG . 6A

Patent Application Publication Apr. 21 , 2022 Sheet 8 of 9 US 2022/0121365 A1

640

642 Receive Updated Data for Existing Object

644 Re - Chunk the Updated Data

646 Generate Signatures For Chunks

648 Compare Signatures of Re - Chunked Chunks to Signatures of Previous version of Object

650 NO Signatures
Differ ?

YES

652 Delete All Key - Value Pairs For Previous version of Object

654 Store Updated Data
(See FIG . 6A , Blocks 608-632)

656 End Storing Process for Updated Data

FIG . 6B 660

662 Receive Object Identifier for Object to Delete

664 Identify Each N - Tuple of Logical Mapping of Object via B - Tree Traversal

666 Identify Each Chunk Associated with Object from Identified N - Tuples

668 Update Reference Counter for Each Identified Chunk

670 Delete Metadata for Object

FIG . 6C

Patent Application Publication Apr. 21 , 2022 Sheet 9 of 9 US 2022/0121365 A1

700 702 Receive Updated Data and Snapshot identifier
704 Update Snapshot Identifier

706
Label Snapshot identifier as incomplete

708
identify Set of Unacknowledged Difference Blocks

YES 710 Is Set of Unacknowledged Difference Blocks the Null Set ?

712 NO

Upload Set of Unacknowledged Difference Blocks
714 ,

Label Each Uploaded Difference Block as an Outstanding Block 718

716 Continue NO
Number of Outstanding Blocks Greater than Threshold ? Uploading

Blocks
720 YES

Suspend Uploading of Unacknowledged Difference Blocks
722

YES
System Failure

NO
724 NO Receive Acknowledgment Signal ?:

726 YES
in Response to Receiving Acknowledgment Signal for Portion of Outstanding Blocks , Transition

Label of Portion of Outstanding Blocks from Outstanding to Acknowledged Block
728 YES

System Failure
NO

NO Receive Acknowledgment Signal ? :
732

In Response to Receiving Acknowledgment Signal for Portion of Outstanding Blocks , Transition
Label of Portion of Outstanding Blocks from Outstanding to Acknowledged Block

730

YES Y

Write Snapshot Metadata for Snapshot Identifier Based on Set of Acknowledged Blocks
734 YES System Online ?

NO
736

Label Snapshot Identifier as Complete 738

740 Write Snapshot Metadata for Snapshot identifier Based on Set of Acknowledged Blocks

742 Return Snapshot Identifier

FIG . 7

US 2022/0121365 A1 Apr. 21 , 2022
1

DISTRIBUTED OBJECT STORAGE
SUPPORTING DIFFERENCE - LEVEL

SNAPSHOTS

FIELD

[0001] The present disclosure relates generally to distrib
uted - computing systems and , more specifically , to methods
and systems that enable storing data objects in an object
store in a distributed software designed data center (SDDC) ,
where the SDDC supports difference - level snapshots of the
stored data objects .

?

BACKGROUND

[0002] Modern computing systems provide distributed
data center services . Such services may be provided by a
software designed data center (SDDC) that may implement
one or more virtual storage area networks (e.g. , a VSAN) and
a virtual disk file system (e.g. , a VDFS) . Many of these
distributed systems struggle to meet the ever - increasing
needs of their users , such as high storage efficiency for vast
quantities of data , high demands for system bandwidth ,
recoverability for lost data , and low - latency in the event of
system failures . Attempts at optimizing conventional sys
tems for enhanced performance in any one of these system
requirements may compromise the performance in one or
more of the other system requirements . Thus , there is a need
for enhanced efficiencies for such distributed systems .

OVERVIEW

at least one of the order of the set of chunks or a previous
chunk identifier for a previously selected chunk of the set of
chunks . A key for the next chunk may be generated based on
an indication of an initial block of the next chunk . A value
for the key may be generated . The value may be based on a
number of blocks included in the next chunk . The value may
be further based on at least one of a next chunk identifier for
the next chunk or another chunk identifier for a duplicated
chunk . Metadata for the data object may be updated to
indicate an association between the key for the next chunk
and the value for the key .
[0005] In one embodiment , a distributed computing sys
tem for storing data may include one or more processors and
memory . The memory may store one or more programs
configured to be executed by the one or more processors .
The one or more programs include instructions for perform
ing operations comprising receiving data of a data object .
The data may be structured as an ordered set of data blocks .
The data may be subdivided into an ordered set of data
chunks . Each chunk in the set of data chunks may include an
ordered subset of the set of data blocks . A next chunk of the
set of data chunks may be selected . The selection of the next
chunk may be based on at least one of the order of the set
of chunks or a previous chunk identifier for a previously
selected chunk of the set of chunks . A key for the next chunk
may be generated based on an indication of an initial block
of the next chunk . A value for the key may be generated . The
value may be based on a number of blocks included in the
next chunk . The value may be further based on at least one
of a next chunk identifier for the next chunk or another
chunk identifier for a duplicated chunk . Metadata for the
data object may be updated to indicate an association
between the key for the next chunk and the value for the key .
[0006] In another embodiment , a method for uploading a
first snapshot of a data object to an accessible data store is
provided . The method may include identifying , within data
of the data object , a first set of data blocks of the first
snapshot . The first set of data blocks may include at least a
first block and a second block . Each block of the first set of
data blocks may include data that is different from data of a
corresponding block of a previous snapshot . The previous
snapshot may be a snapshot of the object that was taken
previous to the first snapshot . An indication of a first
snapshot identifier for the first snapshot and an indication of
the first block may be encoded within first metadata of the
first snapshot . The method may include uploading the first
snapshot . While uploading the first snapshot , the first block
may be uploaded to the data store . While uploading the first
snapshot , and subsequent to uploading the first block , it may
be determined that the data store has become inaccessible . In
such an event , an indication that the first snapshot is an
incomplete snapshot may be encoded within the first meta
data for the first snapshot . In response to determining that
the data store has become inaccessible , the uploading of the
first snapshot may be terminated . Subsequent to terminating
the uploading of the first snapshot , it may be determined that
the data store has again become accessible subsequent to the
data store becoming inaccessible while uploading the first
complete snapshot In response to determining that the data
store is again accessible , uploading a second snapshot of the
data object may be initiated . A second snapshot identifier for
the second snapshot of the data object may be generated .
While uploading the second snapshot , the second block may
be uploaded to the data store . An indication of the second

[0003] Described herein are techniques for the efficient
storage and recovery of difference - level snapshots for data
objects . In one embodiment , a method for storing data on a
distributed computing system is performed . The method
may include receiving data of a data object . The data may be
structured as an ordered set of data blocks . The data may be
subdivide into an ordered set of data chunks . Each chunk in
the set of data chunks may include an ordered subset of the
set of data blocks . A next chunk of the set of data chunks
may be selected . The selection of the next chunk may be
based on at least one of the order of the set of chunks or a
previous chunk identifier for a previously selected chunk of
the set of chunks . A key for the next chunk may be generated
based on an indication of an initial block of the next chunk .
A value for the key may be generated . The value may be
based on a number of blocks included in the next chunk . The
value may be further based on at least one of a next chunk
identifier for the next chunk or another chunk identifier for
a duplicated chunk . Metadata for the data object may be
updated to indicate an association between the key for the
next chunk and the value for the key .
[0004] In one embodiment , a non - transitory computer
readable storage medium storing one or more programs
configured to be executed by one or more processors is
provided . The one or more programs stored by the non
transitory computer - readable storage medium include
instructions for performing operations that are executable by
a distributed computing system . The operations may include
receiving data of a data object . The data may be structured
as an ordered set of data blocks . The data may be subdivided
into an ordered set of data chunks . Each chunk in the set of
data chunks may include an ordered subset of the set of data
blocks . A next chunk of the set of data chunks may be
selected . The selection of the next chunk may be based on

a

US 2022/0121365 A1 Apr. 21 , 2022
2

block may be uploaded to the data store . While uploading
the first snapshot , and subsequent to uploading the first
block , it may be determined that the data store has become
inaccessible . In such an event , an indication that the first
snapshot is an incomplete snapshot may be encoded within
the first metadata for the first snapshot . In response to
determining that the data store has become inaccessible , the
uploading of the first snapshot may be terminated . Subse
quent to terminating the uploading of the first snapshot , it
may be determined that the data store has again become
accessible subsequent to the data store becoming inacces
sible while uploading the first complete snapshot In response
to determining that the data store is again accessible , upload
ing a second snapshot of the data object may be initiated . A
second snapshot identifier for the second snapshot of the
data object may be generated . While uploading the second
snapshot , the second block may be uploaded to the data
store . An indication of the second snapshot identifier , an
indication of the second block , and an indication that the
second snapshot is a complete snapshot may be encoded
within second metadata for the second snapshot . a

snapshot identifier , an indication of the second block , and an
indication that the second snapshot is a complete snapshot
may be encoded within second metadata for the second
snapshot .
[0007] In one embodiment , a non - transitory computer
readable storage medium storing one or more programs
configured to be executed by one or more processors is
provided . The one or more programs stored by the non
transitory computer - readable storage medium include
instructions for performing operations that are executable by
a distributed computing system that includes an accessible
data store . The operations may be for uploading a first
snapshot of a data object to the accessible data store . The
operations may include identifying , within data of the data
object , a first set of data blocks of the first snapshot . The first
set of data blocks may include at least a first block and a
second block . Each block of the first set of data blocks may
include data that is different from data of a corresponding
block of a previous snapshot . The previous snapshot may be
a snapshot of the object that was taken previous to the first
snapshot . An indication of a first snapshot identifier for the
first snapshot and an indication of the first block may be
encoded within first metadata of the first snapshot . The
operations may include uploading the first snapshot . While
uploading the first snapshot , the first block may be uploaded
to the data store . While uploading the first snapshot , and
subsequent to uploading the first block , it may be determined
that the data store has become inaccessible . In such an event ,
an indication that the first snapshot is an incomplete snap
shot may be encoded within the first metadata for the first
snapshot . In response to determining that the data store has
become inaccessible , the uploading of the first snapshot may
be terminated . Subsequent to terminating the uploading of
the first snapshot , it may be determined that the data store
has again become accessible subsequent to the data store
becoming inaccessible while uploading the first complete
snapshot In response to determining that the data store is
again accessible , uploading a second snapshot of the data
object may be initiated . A second snapshot identifier for the
second snapshot of the data object may be generated . While
uploading the second snapshot , the second block may be
uploaded to the data store . An indication of the second
snapshot identifier , an indication of the second block , and an
indication that the second snapshot is a complete snapshot
may be encoded within second metadata for the second
snapshot .
[0008] In still another embodiment , a distributed comput
ing system may be for uploading a first snapshot of a data
object to an accessible data store . The system may include
one or more processors and memory . The memory may store
one or more programs configured to be executed by the one
or more processors . The one or more programs include
instructions for performing operations comprising identify
ing , within data of the data object , a first set of data blocks
of the first snapshot . The first set of data blocks may include
at least a first block and a second block . Each block of the
first set of data blocks may include data that is different from
data of a corresponding block of a previous snapshot . The
previous snapshot may be a snapshot of the object that was
taken previous to the first snapshot . An indication of a first
snapshot identifier for the first snapshot and an indication of
the first block may be encoded within first metadata of the
first snapshot . The operations may include uploading the
first snapshot . While uploading the first snapshot , the first

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] FIG . 1A is a block diagram illustrating a system
and environment for implementing various components of a
distributed - computing system , in accordance with some
embodiments .
[0010] FIG . 1B is a block diagram illustrating a contain
erized application framework for implementing various
components of a distributed - computing system , in accor
dance with some embodiments .
[0011] FIG . 2 is a block diagram illustrating a virtual
storage area network (VSAN) , in accordance with some
embodiments .
[0012] FIG . 3 is a block diagram illustrating an environ
ment enabling distributed object storage and data recovery ,
in accordance with some embodiments .
[0013] FIG . 4A is a block diagram illustrating a data
structure for a data object , in accordance with some embodi
ments .
[0014] FIG . 4B is a block diagram illustrating a chunked
data object , in accordance with some embodiments .
[0015] FIG . 4C is a block diagram illustrating content
aware addressing of data chunks , in accordance with some
embodiments .
[0016] FIG . 4D is a block diagram illustrating a mapping
between a logical address space , a chunk address space , and
a segment address space , in accordance with some embodi
ments .
[0017] FIG . 4E is a block diagram illustrating content
aware addressing of data chunks , in accordance with some
embodiments .
[0018] FIGS . 5A - 5C include block diagrams illustrating
schemas for storing snapshots of a data object , in accordance
with some embodiments .
[0019] FIG . 5D is a block diagram illustrating a fault
tolerant process for uploading snapshots of a data object , in
accordance to the various embodiments .
[0020] FIG . 5E is a block diagram illustrating a process for a
deleting snapshots of a data object , in accordance to the
various embodiments .
[0021] FIG . 6A illustrates a flowchart of exemplary pro
cesses for storing data in a distributed - computing system , in
accordance with some embodiments .

a

a

US 2022/0121365 A1 Apr. 21 , 2022
3

[0022] FIG . 6B illustrates a flowchart of an exemplary
process for updating stored data in a distributed - computing
system , in accordance with some embodiments .
[0023] FIG . 6C illustrates a flowchart of an exemplary
process for deleting stored data in a distributed computing
system , in accordance with some embodiments .
[0024] FIG . 7 illustrates a flowchart of an exemplary
fault - tolerant processes for uploading a snapshot of a data
object to an accessible data store , in accordance with some
embodiments .

n

a

DETAILED DESCRIPTION

[0028] FIG . 1A is a block diagram illustrating a system
and environment for implementing various components of a
distributed - computing system , according to some embodi
ments . As shown in FIG . 1 , virtual machines (VMs) 1021 ,
1022 ... 120 , are instantiated on host computing device 100 .
In some embodiments , host computing device 100 imple
ments one or more elements of a distributed - computing
system (e.g. , storage nodes of a vSAN 200 described with
reference to FIG . 2) . Hardware platform 120 includes
memory 122 , one or more processors 124 , network interface
126 , and various I / O devices 128. Memory 122 includes
computer - readable storage medium . The computer - readable
storage medium is , for example , tangible and non - transitory .
For example , memory 122 includes high - speed random
access memory and also includes non - volatile memory , such
as one or more magnetic disk storage devices , flash memory
devices , NVMe devices , Persistent Memory , or other non
volatile solid - state memory devices . In some embodiments ,
the computer - readable storage medium of memory 122
stores instructions for performing the methods and processes
described herein . In some embodiments , hardware platform
120 also includes other components , including power sup
plies , internal communications links and busses , peripheral
devices , controllers , and many other components .
[0029] Virtualization layer 110 is installed on top of hard
ware platform 120. Virtualization layer 110 , also referred to
as a hypervisor , is a software layer that provides an execu
tion environment within which multiple VMs 102 are con
currently instantiated and executed . The execution environ
ment of each VM 102 includes virtualized components
analogous to those comprising hardware platform 120 (e.g.
a virtualized processor (s) , virtualized memory , etc.) . In this
manner , virtualization layer 110 abstracts VMs 102 from
physical hardware while enabling VMs 102 to share the
physical resources of hardware platform 120. As a result of
this abstraction , each VM 102 operates as though it has its
own dedicated computing resources .
[0030] Each VM 102 includes operating system (OS) 106 ,
also referred to as a guest operating system , and one or more
applications (Apps) 104 running on or within OS 106. OS
106 (e.g. , Darwin , RTXC , LINUX , UNIX , OS X , iOS ,
WINDOWS , or an embedded operating system such as
VxWorks) includes various software components and / or
drivers for controlling and managing general system tasks
(e.g. , memory management , storage device control , power
management , etc.) and facilitates communication between
various hardware and software components . As in a tradi
tional computing environment , OS 106 provides the inter
face between Apps 104 (i.e. programs containing software
code) and the hardware resources used to execute or run
applications . However , in this case the " hardware ” is virtu
alized or emulated by virtualization layer 110. Consequently ,
Apps 104 generally operate as though they are in a tradi
tional computing environment . That is , from the perspective
of Apps 104 , OS 106 appears to have access to dedicated
hardware analogous to components of hardware platform
120 .
[0031] FIG . 1B is a block diagram illustrating a contain
erized application framework for implementing various
components of a distributed - computing system , in accor
dance with some embodiments . More specifically , FIG . 1B
illustrates VM 102 , implementing a containerized applica
tion framework . Containerization provides an additional
level of abstraction for applications by packaging a runtime

[0025] In the following description of embodiments , ref
erence is made to the accompanying drawings in which are
shown by way of illustration specific embodiments that can
be practiced . It is to be understood that other embodiments
can be used and structural changes can be made without
departing from the scope of the various embodiments .
[0026] Distributed computing systems , such as software
designed data centers (SDDCs) , may implement one or more
virtual storage area networks (VSANs) and one or more
virtual disk file systems (vDFS) . A user of an SDDC may
request that a data object be stored by and / or updated in a
storage system . A data object may include data , as well as
metadata . The data may be the data that the user actually is
interested in , while the metadata encodes various aspects of
the data . Such aspects of the metadata include but are not
limited to information indicating a location in virtual and / or
physical storage (e.g. , an address) , where the data may be
located . Due to the architecture of object storage systems ,
once committed to storage , the data of a data object may not
be overwritten and / or modified . Accordingly , as an object is
updated via various edits to the data , new versions of the
data are written to disk , while leaving the previous versions
stored . Thus , the amount of storage required for such sys
tems grows as new versions of the data objects are gener
ated . Accordingly , there is a need for increased efficiency of
data object storage .
[0027] The various embodiments are directed towards
methods and systems for the increased efficiency of object
storage in SDDCs . The embodiments include the efficient
storage of data objects , while enabling fault - tolerant uploads
of multiple snapshots of the object . A current snapshot of the
object encodes differences between the current version of
the object and a previous version of the object . The current
snapshot , as well as each previous snapshots of the data
object may be efficiently recovered and / or reconstructed via
the various embodiments . The metadata for an object may
encode one or more mappings required for accessing the
current version of the data and / or recovering a previous
version of the data . More specifically , an object's metadata
encodes difference - level mappings for each snapshot in
compact self - balancing data trees . The metadata encoded in
metadata may include mappings between various address
spaces employed by the SDDC , as well as the address spaces
employed by a data store that stores the data on physical
medium (e.g. , one or more traditional and / or solid state disk
drives) . Because the metadata is efficiently structured , the
metadata for an object may be cached for quick lookups
during data access and / or snapshot recovery . The various
embodiments also provide low - latency recovery and / or sys
tem rollback in the event of any failure in an SDDC , as well
as the graceful recovery when a system failure occurs during
the uploading of data for each snapshot .

a

a

US 2022/0121365 A1 Apr. 21 , 2022
4

environment with each individual application . Container
132 includes App 104 , (i.e. , application code) , as well as all
the dependencies , libraries , binaries , and configuration files
needed to run App 104 . Container engine 136 , similar to
virtualization layer 110 discussed above , abstracts App 104 ,
from OS 106 ,, while enabling other applications (e.g. , App
1042) to share operating system resources (e.g. , the operat
ing system kernel) . As a result of this abstraction , each App
104 runs the same regardless of the environment (e.g. , as
though it has its own dedicated operating system) . In some
embodiments , a container (e.g. , container 132 or 134) can
include a gateway application or process , as well as all the
dependencies , libraries , binaries , and configuration files
needed to run the gateway applications .
[0032] It should be appreciated that applications (Apps)
implementing aspects of the present disclosure are , in some
embodiments , implemented as applications running within
traditional computing environments (e.g. , applications run
on an operating system with dedicated physical hardware) ,
virtualized computing environments (e.g. , applications run
on a guest operating system on virtualized hardware) , con
tainerized environments (e.g. , applications packaged with
dependencies and run within their own runtime environ
ment) , distributed - computing environments (e.g. , applica
tions run on or across multiple physical hosts) or any
combination thereof . Furthermore , while specific implemen
tations of virtualization and containerization are discussed ,
it should be recognized that other implementations of vir
tualization and containers can be used without departing
from the scope of the various described embodiments .
[0033] FIG . 2 is a block diagram illustrating a virtual
storage area network (VSAN) 200 , in accordance with some
embodiments . As described above , a VSAN is a logical
partitioning of a physical storage area network . A VSAN
divides and allocates a portion of or an entire physical
storage area network into one or more logical storage area
networks , thereby enabling the user to build a virtual storage
pool . As illustrated in FIG . 2 , VSAN 200 can include a
cluster of storage nodes 210A - N , which can be an exemplary
virtual storage pool . In some embodiments , each node of the
cluster of storage nodes 210A - N can include a host com
puting device . FIG . 2 illustrates that storage node 210A
includes a host computing device 212 ; storage node 210B
includes a host computing device 222 ; and so forth . In some
embodiments , the host computing devices (e.g. , devices 212 ,
222 , 232) can be implemented using host computing device
100 described above . For example , as shown in FIG . 2 ,
similar to those described above , host computing device 212
operating in storage node 210A can include a virtualization
layer 216 and one or more virtual machines 214A - N (col
lectively as VMs 214) . In addition , host computing device
212 can also include one or more disks 218 (e.g. , physical
disks) or disk groups . In some embodiments , VM 214 can
have access to one or more physical disks 218 or disk groups
via virtualization layer 216 (e.g. , a hypervisor) . In the
description of this application , a storage node is sometimes
also referred to as a host computing device .
[0034] As illustrated in FIG . 2 , data can be communicated
among storage nodes 210A - N in vSAN 200. One or more
storage nodes 210A - N can also be logically grouped or
partitioned to form one or more virtual storage pools such as
clusters of storage nodes . The grouping or partitioning of the
storage nodes can be based on pre - configured data storage
policies such as fault tolerance policies . For example , a fault

tolerance policy (e.g. , a redundant array of independent
disks policy or a RAID policy) may require that multiple
duplicates of a same data component be stored in different
storage nodes (e.g. , nodes 210A and 210B) such that data
would not be lost because of a failure of one storage node
containing one duplicate of the data component . Such a
policy thus provides fault tolerance using data redundancy .
In the above example , each duplicate of the entire data
component can be stored in one storage node (e.g. , node
210A or node 210B) . As described in more detail below , in
some embodiments , multiple subcomponents of a data com
ponent or duplicates thereof can be stored in multiple
storage nodes using dynamic partitioning techniques , while
still in compliance with the fault tolerance policy to provide
data redundancy and fault tolerance . For example , par
ticular data component may have a size that is greater than
the storage capacity of a single storage node (e.g. , 256 Gb) .
Using the dynamic partitioning techniques , the data com
ponent can be divided to multiple smaller subcomponents
and stored in multiple storage nodes . A data structure (e.g. ,
a hash map) for the subcomponents is determined and
maintained for efficient data resynchronization . It should be
appreciated that multiple data components can be stored in
a storage node . And data structures for the subcomponents
of the multiple data components can also be determined and
maintained for efficient data resynchronization .
[0035] FIG . 3 is a block diagram illustrating an environ
ment 300 enabling distributed object storage and data recov
ery , in accordance with some embodiments . Environment
300 includes an object storage and recovery system (OSRS)
340. OSRS 340 enables a client 314 to store , retrieve ,
update , delete , or otherwise access one or more data objects ,
such as data object 360. Client 314 may employ a user
interface (UI) 312 to perform such operations . UI 312 may
interface with the management server 348 of OSRS 340. The
management server 348 may generally manage the opera
tions of OSRS 340. Via its various operations , OSRS 340
provides data storage , retrieval , updating , deletion , and
access services (i.e. , data center services) to client 314 for
their data objects . OSRS 340 may employ a primary soft
ware designed data center (SDDC) 310 to at least partially
manage the storage , retrieval , updating , deletion , and / or
accessing of the data objects . Primary SDDC 310 may
include one or more vSANs (e.g. , VSAN 302) . Various
embodiments of a VSAN are discussed at least in conjunc
tion with FIG . 2A . However , briefly here , one of the services
primary SDDC 310 may provide to client 314 is one or more
virtual machines (VMs) . As such , VSAN 302 may imple
ment one or more VMs (e.g. , VM 306) . Such a VM may
provide computational and / or information processing ser
vices to client 314. Primary SDDC 310 may implement a
virtual Distributed File System (VDFS) 304 to interact with
the data objects and enable VSAN 302 , e.g. , VDFS 304 may
provide at least portions of data object 360 to VM 306 for
data analysis and / or data digestion services .
[0036] OSRS 340 may additionally enable the recovery of
service in the event that the data center services provided by
primary SDDC 310 are interrupted for any reason (e.g. , a
hardware malfunction and / or failure , a system state resulting
in a “ hang ” condition , loss of power , or the like) . In the event
of a loss of service of from primary SDDC 310 , the OSRS
may switch to a secondary SDDC 330. The secondary
SDDC 330 may provide data center services , which are
equivalent to the services of primary SDDC 310 , to client

a

a

a

US 2022/0121365 A1 Apr. 21 , 2022
5

2

314. As such , secondary SDDC 330 may implement one or
more vSANs (e.g. , VSAN 332) and / or a vDFS , e.g. , VDFS
334. vSAN 332 may implement one or more VMs , e.g. VM
336. That is , in the event of a failure of primary SDDC 310 ,
VSAN 332 may provide equivalent services as vSAN 302
and vDFS 334 may provide equivalent services as vDFS
304. In some embodiments , secondary SDDC 330 may be
" spun up ” in the event of an interruption and / or failure of
primary SDDC 310. In other embodiments , at least portions
of secondary SDDC 330 may be allocated and implemented
prior to an interruption and / or failure of primary SDDC 310 .
As discussed throughout , when switching from primary
SDDC 310 to secondary SDDC 330 , OSRS 340 orchestrates
the performance of a recovery process (or method) , such that
OSSR 340 may return providing services to client 314 (via
secondary SDDC 330) , with minimal interruption .
[0037] As also discussed throughout , " snapshots ” of
VSAN 302 and / or VDFS 304 may be “ backed up ” , from time
to time . These snapshots enable a “ versioning ” of VSAN 302
and / or VDFS 304 , and the ability to “ rollback ” to any of the
backed up versions of VSAN 302 and / or vDFS 304. That is ,
secondary SDDC 330 may be spun up to be in state that is
an equivalent state to any of the backed up (or “ snapshot
ted ”) states of primary SDDC 310. For instance , VSAN 332
(and thus VM 336) may begin operation in a state that is
equivalent to the most recent snapshot of VSAN 302 (and
thus VM 306) , or in a state that is equivalent to any of the
previous snapshots of VSAN 302 (and thus VM 306) .
Likewise , VDFS 334 (and thus data object 360) may begin
operation in a state that is equivalent to the most recent
snapshot of vDFS 304 (and thus data object 360) , or in a
state that is equivalent to any of the previous snapshots of
VDFS 304 (and thus data object 360) . For example , data
object 360 may be “ rolled back ” to any of its previous
versions that have been snapshotted .
[0038] Note that such a rollback does not require a failure
of primary SDDC 310. For instance , a user of client 314 may
accidently alter and / or delete data object 360 (or portions
thereof) . Several (e.g. , 10) snapshots of vDFS 304 may be
taken before the user notices their error . Data object 360 may
be recovered to its state prior to the user's error , by rolling
back data object 360 to its state encoded a snapshot taken
prior to the user's error . VM 306 may be similarly restored ,
recovered , and / or rolled back via similar mechanisms . The
recovery and / or roll back methods are discussed further
below . In some embodiments , a rollback event , where the
primary SDDC 310 has not failed , may trigger a transition
from primary SDDC 310 to secondary SDDC 330 , e.g. ,
secondary SDDC 330 may be spun up to the desired
previous state of primary SDDC 310. In other embodiments ,
a rollback event , where the primary SDDC 310 has not
failed , may not trigger a transition from primary SDDC 310
to secondary SDDC 330 , e.g. , primary SDDC 310 may be
rolled back to its desired previous state .
[0039] A current snapshot of VSAN 302 captures the
differences between a current state of VSAN 302 and a
previous state of VSAN 302 , captured in a most recent (but
previous) snapshot of VSAN 302. Likewise , a current snap
shot of vDFS 304 captures the differences between a current
state of vDFS 304 and a previous state of vDFS 304 ,
captured in a most recent (but previous) snapshot of vDFS
304. A VSAN may be stored via block storage methods , and
thus the differences captured in a vSAN snapshot may be at
the block level . In contrast , data objects (e.g. , files) managed

by vDFS 304 may be stored via object storage methods . As
such , the differences captured in a vDFS snapshot may be
captured as file differences . In some embodiments , the
differences captured in a vDFS snapshot may be segment
level differences . As discussed below , each object segment
may be subdivided into a plurality of data chunks
(" chunks ”) . In such embodiments , the differences captured
in a vDFS snapshot may be chunk - level differences .
[0040] Snapshots of primary SDDC 310 may be taken at
scheduled intervals (e.g. , periodically and / or aperiodic inter
vals) , from time to time , and / or via a triggering event . For
example , taking a snapshot of vDFS 304 may be triggered
via any data write operation (e.g. , storing a new data object ,
updating a pre - existing data object , deleting a pre - existing
data object , and the like) . Likewise , various events (e.g. ,
creating a new VM , rebooting a pre - existing VM , terminat
ing a pre - existing VM , deleting a pre - existing VM , and the
like) may trigger taking a snapshot of VSAN 302. In some
embodiments , snapshots of each of VSAN 302 and vDFS
304 may be taken synchronously . In other embodiments ,
snapshots of each of VSAN 302 and VDFS 304 may be taken
asynchronously .
[0041] Data object 360 includes data 362 and metadata
364. Data 362 includes the data that the user may care about
and is encoded by object 360 , whereas metadata 364
includes information regarding data 362 (e.g. , " data about
data ”) . In the various embodiments , and in order to provide
contrast from metadata , the data of a data object may be
referred to as " object data . ” Data object 360 may be referred
to as a “ file ” . However , the term file is not limiting , and a
data object may include file , a portion of a file , a set of
multiple files , or any set or collection of data (e.g. , an object
that includes data) . Thus , data object 360 (or alternatively
file 360) may include one or more files , partial files , or any
other collection of data . Data 362 may be subdivided into a
set of N objects segments (e.g. , seg_1 , seg_2 , seg_3 , .
seg_N) , where N is any positive integer . In some embodi
ments , the size of an object segment may be predetermined
and / or configured by client 314. In at least one embodiment ,
the size of the segments may be fixed at a segment size (SS) ,
such that each segment has at least approximately SS of data
(except for Seg_N , which may be smaller than Seg_N
depending on the size of data 362) . In at least one embodi
ment , SS = 4 MB (e.g. , each segment holds 4 MB of data
362) .
[0042] As also discussed below , the data may be further
subdivided into a plurality of data chunks . Each segment
may include multiple data chunks (or simply chunks) . The
size of the data chunks may be variable and be based on a
structure , arrangement , organization , and / or composition of
the data itself . That is , data chunks of the same object may
have difference sizes . The size of the data chunks may be
anything larger than a logical block (discussed below) and
smaller than the size of data segments . In various embodi
ments , a chunking method or algorithm is employed to
chunk the data . The chunking algorithm may identify “ natu
ral breakpoints ” in the data to determine the block addresses
of the start point and end point for each of the chunks . A
breakpoint for a chunk may be identified via a “ signature ”
within a fingerprint of the data . By identifying natural
breakpoints , the chunking algorithm may be resistant to
shifts in the objects data . Thus , when re - chunking edited
data , the boundaries of a chunk are likely to be invariant

a

a

a

US 2022/0121365 A1 Apr. 21 , 2022
6

be

(with respect to which data the chunk includes) in the
re - chunking , even though additional or less data may be
included in the new chunk .
[0043] The chunking method may include employing a
sliding window and a fingerprinting algorithm . The imple
mented fingerprinting algorithm may include a hash func
tion , such as but not limited to a Rabin fingerprinting
scheme . In some embodiments , the size of the chunks may
be variable and may vary from 1 kB to 1 MB . Thus , a single
data segment may include numerous data chunks . In some
embodiments , the data is chunked such that each chunk is
approximately 80 kB .
[0044] In some embodiments , metadata 364 may orga
nized into data blocks and is thus stored via block storage .
Due to the object nature of data object 360 , its data (e.g. , data
362) may be stored via object storage . Metadata 364 may be
stored , via block storage , in a metadata store 320. Data 362
may be stored , via object storage , in a data store 322. The
data store 322 may employ a log - structured file system
(LFS) for storing the data . In non - limiting embodiments ,
metadata store 320 may be provided by one or more block
storage service providers , such as but not limited to Amazon
Elastic Block Store (EBS) . In non - limiting embodiments ,
data store 322 may be provided by one or more object
storage service providers , such as but not limited to Amazon
Simple Storage Service (S3) . These embodiments , are non
limiting , and other block and / or object storage service
providers may be employed .
[0045] In some embodiments , data object of primary
SDDC 310 may identified by a unique object identifier (e.g. ,
file_ID and file_ID = 1 for data object 360) . Each snapshot of
a file object may be identified by a unique snapshot identifier
(e.g. , snapshot_ID) . Because data may be written via a
log - structured file system (LFS) , one feature that is inherent
to many object storage methods is that , once written to the
data store 322 , the data of an object may not be overwritten .
That is , to update and / or change the data of an object , a new
" version " of the object must be written to the data store ,
where at least new " versions ” of the affected data chunks
may be written to the data store . For instance , data object
360 may be a source code file , where the first line includes
a comment describing the code's functionality . The first
snapshot of data object 360 (e.g. , file_ID = 1) may be iden
tified as version 1 (snapshot_ID = 1) of data object 360. The
data 362 of the first version of data object 360 may include
the segments : (seg_1 , seg_2 , seg_3 , ... , seg_N) . The first
line of the source code may be included in a particular chunk
of a particular segment (e.g. , the 4th chunk of a 3rd segment
of the object) .
[004] If a user edits the comment on line 1 of the source
code by one or more characters , and then re - saves the source
code file , the entire particular chunk of the particular seg
ment that includes the first line may be required to be
resaved as a new chunk , which may be included in a
different segment . The new chunk in the different segment
includes line 1 as edited by the user , along with other data
that may have been included in the particular chunk of the
particular segment (e.g. , the old chunk) . As noted above ,
saving a data object may trigger a taking (and saving) of a
new snapshot of the data object , e.g. , a current snapshot
where snapshot_ID = 2 . Snapshots , as used herein , maybe
difference - based snapshots . That is , the current snapshot
(e.g. , snapshot_ID = 2) of data object 360 may capture the
(chunk - level) differences between the updated file and the

most recent previous snapshot (e.g. , snapshot_ID = 1) . In this
way , a data object's state may be recovered via a sequential
traversal “ backwards ” through the snapshots . For instance ,
data object's 360 state associated with snapshot_ID = M , may
be recovered by starting with snapshot_ID = M , then travers
ing backwards to snapshot_ID = (M - 1) , and then sequentially
backwards to snapshot_ID = 1 . In some embodiments , the
snapshot corresponding to snapshot_ID = 1 may be referred
to as the base snapshot , while the subsequent snapshots are
referred to as delta snapshots . Thus , sequential snapshots
may be notated as : base , delta_1 , delta_2 , delta_3 , ... ,
delta_M .
(0047] Because the only difference between the previous
snapshot (snapshot_ID = 1) and the new snapshot (snapshot_
ID = 2) of the data object 360 is the affected (and re - written)
segment (e.g. , replacing old seg_3 with new seg_N + 1) , data
362 for the new snapshot (snapshot_ID = 2) will include the
new chunk and disregard the older version of the chunk
(e.g. , the old chunk) . As noted above , since consecutive
snapshots are based on differences , snapshot_ID = 2 only
needs to indicate that old chunk has been substituted with the
new chunk . As noted above , data is stored via an LFS . When
the old chunk is replaced by the new chunk for the new
version of data object 360 , the new chunk may be written
sequentially to a circular buffer of the LFS , which may be in
a different segment . Thus , the old chunk is not overwritten
or erased , even though it is not included in the updated
version of data object 360. The old chunk may is still
accessible by primary SDDC 310. In the event that the user
would like to roll back the current version (e.g. , snapshot_
ID = 2) of data object 360 to its initial version (e.g. , snapshot_
ID = 1) , the initial version may be recovered (or re - con
structed) by substituting the still available old chunk , rather
than including the new chunk .
[0048] As will be discussed in more detail below , metadata
of a data object (e.g. , metadata 364 of data object 360) may
include metadata that maps logical addresses to a segment
addresses of the data object . That is , metadata maps a logical
address space to a segment address space for the data objects
accessible by primary SDDC 310. The notation of L_X ,
where X is a logical address in the logical address space ,
may be employed to indicate a logical address of a data file .
The notation of Seg_Y , where Y is a segment address in the
segment address space , may be employed to indicate the
segment address of a data file . In various embodiments , a
logical address may be an address for a logical block . Thus ,
each logical block of data may be addressed via a logical
block address (lba) . The size of a logical block may be of
any value . However , in some embodiments , the size of a
logical block is 1 byte . Thus , in the example where a
segment includes 4 MB of data , the data of the segment may
be addressable at the byte level . There would be 4 MB of
logical addresses (e.g. , lba) to address each block in the
segment .
[0049] As discussed more fully below , mappings between
a first and a second address space may be represented by
key - value pairs , where the key indicates a reference to the
first address space and the value corresponding to the key
indicates a reference to the second address space . Such
key - value pairs may be represented via the n - tuple format :
< key >> < value > . In some embodiments , a mapping
between a logical address and a segment address may be
represented as : < lba > » < seg_ID , block_offset > , where lba
indicates the logical block address (L_1) , seg indicates a

.

US 2022/0121365 A1 Apr. 21 , 2022
7

a

a

segment (e.g. , seg_1) , and offset indicates a block offset
within the identified segment . That is , a segment address
may include both an identifier for the segment and a segment
block offset to identify a particular physical block within the
segment . In some embodiments , the size of the logical and
physical blocks are equivalent (e.g. , 1 byte) . For example ,
< L_1 >> < seg_1 , 1 > indicates that the logical address L_1 is
mapped to the first block of seg_1 , whereas < L_2 > < seg_
1 , 2 > indicates that the logical address L_2 is mapped to the
second block of seg 1. Note , in embodiments , at least
portions of such mappings may not be as contiguous as this
simple example exhibits . That is , the correspondences
between the logical address space for a data object and the
segment address space (e.g. , segment_ID and block_offset)
for the data object may be more fragmented than this
example suggests . For example , a mapping may be such that
< L_3 > < seg_512 , 415 > indicates that the logical address is
mapped to the 415th block of seg_512 .
[0050] As also discussed below , each data chunk may be
individually addressable , and the data chunk addresses act as
a layer of “ misdirection ” between the logical addresses and
the segment addresses . That is , a logical address (for a
logical block) is mapped to a chunk address , and the chunk
address is mapped to a segment address . Thus , the mapping
between a logical address space and a segment address space
is mediated by a “ virtual address space ” (e.g. , the chunk
address space) situated in between the logical and segment
address spaces . A chunk address may be indicated as chunk
ID .
[0051] As a data object is updated and corresponding
snapshots are taken , the mapping between the logical
address and the segment addresses may be updated to
encode the mapping of the newest snapshot , while retaining
the mappings of the previous snapshots . In the above
example , the logical address corresponding to the first line
of code (e.g. , L_1) may not vary between the two snapshots ,
but the corresponding segment address is different in the two
snapshots . The segment address for snapshot_ID = 1 is
mapped to the old chunk , while the segment address for
snapshot_ID = 2 is mapped to the new chunk . Thus , such
mappings between the logical address space and the segment
address space (intermediated by the chunk address space)
are dynamic and updated as new objects are created and as
pre - existing objects are modified and / or deleted . The map
pings between addresses spaces may be encoded in key
value pairs as discussed throughout . The key - value pairs
may be included in the metadata for an object . In some
embodiments , the key - value pairs are stored in a key - value
store . The key - value store may be a distributed transactional
key - value database , such as but not limited to TiKV and / or
TiDB . The key - value store may be included in metadata
database 346 , as discussed below .
[0052] In such key - value pair mapping between a first
address space and a second address space , the key may
correspond to one or more indications (or identifiers) within
the first address space (e.g. , an address of the first address
space) . The paired value may correspond to one or more
indications (or identifiers) within the second address space
(e.g. , an address of the second address space) . Such key
value pairings (and thus address mappings) may represented
via an n - tuple representation : < key >> < value > . Such nota
tion is used throughout , where the component to the left of
the arrow character (?) represents a key and the component
to the right of the arrow character represents the paired

value . Thus , mapping a first address of a first address space
(e.g. , address_1) to a second address of a second address
space (e.g. , address_2) may be represented by the n - tuple
representation : < address_1 > < address_2 > . The keys and
corresponding values (e.g. , mappings between address
spaces) may be included in an object's metadata and
arranged in a self - balancing data tree (B - tree) , such as but
not limited to a copy - on - write (COW) B - tree . In other
embodiments , a Log - Structured Merging Tree (LSM Tree)
may be employed . Because the tree is self - balancing , tra
versing a B - tree is a relatively fast process . Storing the keys
and paired values in a B - tree allows for fast lookup access .
In order to further increase a lookup speed for a mapping , at
least a portion of an object's metadata B - tree may be cached .
[0053] In some embodiments , a SDDC may primarily
address a data object via its logical addresses , whereas a data
store (data store 322) may primarily address the data object
via its segment addresses . Segment addresses may be
referred to as a physical address . In some embodiments , a
logical address may correspond to one or more logical
and / or virtual layers associated with a SDDC , while the
corresponding segment address may correspond to a lower
" physical ” layer of a data store . The OSRS 340 may employ
an object's metadata to provide mapping services between
an object's logical address and a file system's segment space
(e.g. , the file system of object store) . In at least one embodi
ment , OSRS 340 may transmit to and / or receive logical
addresses from primary SDDC 310 and receive and / or
transmit corresponding segment addresses to data store 322 ,
via an object's metadata .
[0054] At least due to the finite nature of the circular log
of the LFS storing the snapshots of data (and of an LFS for
storing snapshots of a VSAN) or due to the need to save cost
by limiting the total storage space used , the number storable
snapshots (for each of VSAN 302 and vDFS 304) may be
finite . For example , the finite number of snapshots may be
limited by the circular log allocated for client 314 and / or the
number and size of data objects they are using . In some
embodiments , the number of possible snapshots for VSAN
302 and / or vDFS 304 may be limited to a fixed number (e.g. ,
100) . That is , there may be a fixed window (a data volume
or snapshot number window) of snapshots available to client
314. The snapshots may be rotated through the available
window . Thus , a snapshot extending past this fixed window
will be rolled forward to the beginning of the fixed window .
In the above example where the fixed window is limited to
100 snapshots , when snapshot_ID = 101 is taken (or when the
end of the circular log reached) , the snapshot data for
snapshot_ID = 101 may be written back at the beginning of
the fixed window , e.g. , snapshot_ID = 101 is rolled forward to
the beginning of the fixed window . Thus , one or more older
snapshots may be overwritten . When this occurs , older
snapshots may " expire ” and become non - recoverable . In
various embodiments , a non - linear expiration schedule may
be employed . In some embodiments , a snapshot that has
expired may not be the oldest snapshot . For example , a
snapshot schedule may include keeping 24 hourly snapshots
for the last day , then 30 daily snapshots for the last month ,
12 monthly snapshots for the last year , and 7 annual snap
shots . When a new snapshot is created , the 25th old hourly
snapshot will be deleted , although it is newer than other
daily , monthly , and annual snapshots .
[0055] The expiration of snapshots (and re - writing of data
segments) may require frequent moving of data in a lower

a

a

US 2022/0121365 A1 Apr. 21 , 2022
8

a

physical layer (e.g. , in the segment address space) . Data that
was written for an expired snapshot , but has not be re
written or updated since the expired snapshot was taken ,
may need to be routinely moved on the physical storage
medium , and thus updates to the metadata may be required .
In the above example , a particular chunk (e.g. , chunk_
ID = 100) may have been written during the writing of the
first snapshot (snapshot_ID = 1) of data object 360. The user
may frequently update data object 360 , but not edit the data
stored in chunk_ID = 100 . When snapshot_ID = 101 is written ,
because of the “ rolling forward ” aspect of the LFS's circular
log , the data stored in chunk_ID = 100 may be overwritten . In
order to avoid losing the data of chunk_ID = 100 (and thus all
the snapshots of data object 360 , which include chunk_
ID = 100 as originally written) , the data of chunk_ID = 100
must be re - written at the physical layer to avoid the snap
shot_ID = 101 data overwriting chunk_ID = 100 . For instance ,
the data encoded in chunk_ID = 100 may be moved to an area
on the physical medium and associated with a snapshot that
is not yet expired (e.g. , snapshot_ID = 2) . As will be dis
cussed below , the metadata may need updating to account
for the “ moving ” of data occurring at the physical layer . A
" garbage collection ” process may be generally responsible
for re - allocating expired segments , once the “ live ” data has
been moved .

[0056] After the data is " chunked ” (e.g. , each segment is
subdivided into a plurality of data chunks) each data seg
ment may include a plurality of data chunks . As discussed in
conjunction with at least FIGS . 4C - 4E , each data chunk of
each segment may be individually addressable via a corre
sponding chunk address . The metadata for a data object may
provide a mapping between a logical address space and a
chunk address space , as well as a mapping between the
chunk address space and the segment address space , for a
data object . The metadata may additionally provide content
aware storage (CAS) services for a data object . That is , if the
data of a chunk is known , its logical address , its chunk
address , and its segment address may be determined via a
CAS map (e.g. , a hash mapping) included in the object's
metadata .

[0057] To enable such snapshot and recovery operations ,
OSRS 340 may include an uploader server 342 , a recovery
server 344 , and a metadata database 346. As shown in FIG .
3 , the primary SDDC 310 may include a corresponding
uploader agent 352. Likewise , the secondary SDDC 330
may include a corresponding recovery agent 354. For snap
shots of VSAN 302 , block - level differences (with respect to
the previous snapshot) are provided from vSAN 302 to
uploader agent 352. For snapshots of vDFS 304 , file - level
(or data object - level) differences (with respect to the previ
ous snapshot) are provided to the uploader agent 352. As
discussed below , the file - level differences of vDFS 304 may
be chunk - level differences . The “ fat ” arrow from uploader
agent 352 to data store 322 shows the data (e.g. , difference
data) being provided to the data store 322 for storage . The
uploader agent 352 sends a control signal to uploader server
342 , informing the OSRS 340 of the uploading of the
snapshot to the object store 322. The uploader server 342
may sent a control signal to the data store 322. The control
signal provided to the data store 322 may inform the data
store with regards to how to store the block and file
differences (e.g. , new data) received from the primary
SDDC 310. Such information may include one or more

identifiers for the new data (e.g. , which objects or VSANs the
new data correspond to) , segment address , and the like .
[0058] For a recovery and / or transition to secondary
SDDC 330 , the recovery agent 354 may get information
from the recovery server 344 (e.g. , which data needs to be
downloaded , associated metadata , or the like) . The recovery
server 344 may provide recovery information to the data
store 322 , e.g. , which data needs to be downloaded to the
secondary SDDC 330. The " fat " arrow from the data store
322 to the recovery agent 354 shows the recovery data being
provided to the secondary SDDC 330. The management
server 348 may provide some management services for the
uploader and recovery servers 342/344 . The metadata of an
object may be provided to the metadata store 320 via the
metadata database 346. The metadata database 346 may
include a fast cache for caching metadata .
[0059] Note that prior to data being provided to the data
store 322 , via the uploader agent 352 , the data may be
compressed and / or then encrypted . Encryption of the data
provides data privacy measures , while compression
decreases the amount of required storage space within the
data store 322. Each of the primary SDDC 310 and the
secondary SDDC 330 may be enabled with encryption /
decryption services , as well as compression / decompression
services . Similar to the data , the metadata may be com
pressed and / or then encrypted prior to being stored in the
metadata store 320 .
[0060] FIGS . 4A - 4E are directed towards the address
spaces associated with a data object (e.g. , a data file) , and the
encodings of the mappings between the address spaces
employed to capture snapshots of a data object . It should be
understood that such schemas may be adopted for address
spaces and snapshots of VSAN . FIG . 4A is a block diagram
illustrating an object data structure 400 for a data object , in
accordance with some embodiments . As discussed in con
junction with at least data object 360 of FIG . 3 , a data object
may include both data and metadata . The data and metadata
may be envisioned within a data structure (e.g. , object data
structure 400) that includes a metadata layer 410 and a data
layer 420. The data may be envisioned to reside in the data
layer 420 , as being subdivide into a plurality of segments .
Each data segment may be addressed via segment addresses
of an segment address space : Seg_1 , Seg_2 , Seg_3 , .
Seg_N . For simplicity , the plurality of data chunks associ
ated with each of the data segments are not shown in FIG .
4A . See FIG . 4B for an illustration of " chunked ” data .
[0061] As noted above , metadata may provide a map
between the logical address space (e.g. , an address space
employed a VM when processing data) and the segment
address space (e.g. , an address space that includes segment
addresses provided to a data store for accessing the data) .
The metadata may be envisioned to reside in the metadata
layer 410. As noted above , because data for snapshots may
be " rolled forward , ” the segment address where a particular
data is stored may change over time . When data is moved
(e.g. , for expired chunks , chunk deletion , and the like) , the
segment address for the moved data may need to be updated .
Thus , the mapping between a logical address and the cor
responding segment address of the moved data may need to
be updated . In order to decouple data movements from
deletion of data (and thus diminishing the need for frequent
updates to the logical address space to segment address
space map) , the metadata layer 410 may include two sub
layers : the logical layer 412 and content addressable storage

a

a

a

a

US 2022/0121365 A1 Apr. 21 , 2022
9

a

a

a

(CAS) layer 414. As shown below , the CAS layer 414
provides a level of misdirection between the logical and
segment mapping that decreases the need to update the
logical to segment address mapping , when data is moved
around (via garbage collection processes) at the data layer
420 (e.g. , a physical layer) . The data in data layer 420 may
be arranged via a LFS file system . The metadata of the
metadata layer 410 may include a plurality of key - value
pairs that store the mappings between the address spaces .
The key - value pairs may be stored in a self - balancing data
tree (e.g. , a B - Tree) . A vDFS of a SDDC may be enabled to
implement the LFS for the data , as well cache (for fast
lookup) at least a portion of the metadata .
[0062] The logical layer 412 is associated with the logical
addresses for one or more data objects , such as but not
limited to virtual machine disk files (VMDKs) : e.g. ,
VMDK_1 and VMDK_2 . A VMDK may be referred to as a
“ file ” or data object accessible via a SDDC . The CAS layer
414 is associated with a “ virtual address ” corresponding to
a logical address . As discussed below , the CAS layer 414
includes an address space that provides a “ misdirection ”
between the logical address space of logical layer 412 and
the segment address space of data layer 420. The “ virtual
address ” address is then mapped to the corresponding seg
ment address . Via a hash mapping , the virtual address may
be a content aware address . That is , an address (logical ,
virtual , or segment) may be identified via a signature of the
data . As data is moved around the segment address space ,
but the content itself is not changed (e.g. , for a garbage
ollection process) , its signature is altered . The signature

of the content may be a hash value of the content . As noted
above , the data may be “ chunked ” into smaller units than
segments , where each chunk may be addressable via a
logical address . The hashing of the data (e.g. , to provide
CAS properties) may be performed at the chunk - level .
[0063] FIG . 4B is a block diagram illustrating a chunked
data 480 , in accordance with some embodiments . Data 480
includes two segments of data (e.g. , Seg_1 and Seg_2) . Each
data segment may include multiple chunks of data . In the
non - limiting example of FIG . 4B , Seg_1 includes two
chunks of data (e.g. , referred to as chunk_10 and chunk_11)
and Seg_2 includes two chunks of data (e.g. , referred to as
chunk_12 and chunk_14) . In other embodiments , data 480
may include more than two segments , and each segment
may include more than two chunks .
[0064] In various embodiments , a chunking method or
algorithm is employed to chunk the data 480. The chunking
algorithm may identify “ natural breakpoints ” in the data 480
to determine the block addresses of the start point and end
point for each of the chunks . A breakpoint for a chunk may
be identified via a “ signature ” within a fingerprint of the
data . By identifying natural breakpoints , the chunking algo
rithm may be resistant to shifts in the objects data . Thus ,
when re - chunking edited data 480 , the boundaries of a chunk
are likely to be invariant (with respect to which data the
chunk includes) in the re - chunking , even though additional
or less data may be included in the new chunk . The chunking
method may include employing a sliding window and a
fingerprinting algorithm . The implemented fingerprinting
algorithm may include a hash function , such as but not
limited to a Rabin fingerprinting scheme . In some embodi
ments , the size of the chunks may be variable and may vary
from 1 kB to 1 MB . Thus , a single data segment may include

numerous data chunks . In some embodiments , the data is
chunked such that each chunk is approximately 80 kB .
[0065] FIG . 4C is a block diagram illustrating content
aware addressing of data chunks , in accordance with some
embodiments . Shown in FIG . 4C are three address spaces
(e.g. , logical address space 450 , hash value space 460 , and
segment address space 470) and a mapping between the
address spaces 422. In this non - limiting embodiment , the
hashing of the data is performed at the chunk - level , where
the size of each chunk corresponds to a logical block . In
various embodiments , the logical layer 412 of FIG . 4A may
provide the mapping from logical address space 450 and
hash value space 460. The CAS layer 414 may provide the
mapping from the hash value space 460 and the segment
address space 470. The hash value space 460 may be a
“ virtual ” address space . As shown in FIG . 4C , the hash value
space 460 may provide a misdirection layer between the
logical address space 450 and the segment address space
470. Thus , the hash value space 460 decouples the move
ment of chunks within the segment address space 470 (e.g. ,
a physical layer) from the deletion of chunks .
[0066] Referring back to FIG . 4B , a hash value for the data
in each chunk may be generated and logical addresses may
correspond to the chunks . That is , in this non - limiting
embodiment , the chunk size and the logical block size are
providing a one - to - one mapping between logical blocks and
chunks . Furthermore , the segment size in this non - limiting
embodiment is 2 logical blocks . Other embodiments are not
so limited , and chunk sizes may be significantly greater than
one logical block , such that each chunk may include mul
tiple logical blocks . Additionally , the segment size may be
significantly greater than two logical blocks . In other non
limiting embodiments , a segment size may be approximately
4 MB , the chunk sizes may vary from 1 kB to 1 MB , and the
logical block size may be 1 byte . In some embodiments , the
data is chunked such that each chunk is approximately 80
kB .
[0067] In the non - limiting embodiment of FIGS . 4B - 4E ,
the one - to - one mapping includes L_1- > chunk_10
L_2- > chunk_11 , L_3 > chunk_12 , and L_4 > chunk_13 .
The hash value for the data of chunk_10 may be “ BA36 ” , the
hash value for the data of chunk_11 may be “ 78E5 ” , the hash
value for the data of chunk_12 may be “ FDO2 " and the hash
value for the data of chunk_13 may be “ 24F9 ” . The arrows
between the logical address space 450 and hash value space
460 show the mapping between the logical layer 412 and the
CAS layer 414 of the metadata layer 410 of FIG . 4A .
Likewise , the arrows between the hash value space 460 and
the segment address space 470 show mapping between the
CAS layer 414 and the data layer 420 of FIG . 4A . Note that
as long as the data in the chunks is unique and the hash
function is of sufficient quality , the hash value uniquely
identifies the chunk . Thus , the hash value may be a unique
identifier for a data chunk (e.g. , when deduplication pro
cesses are employed) , as well as a unique identifier for the
data of a chunk . Various deduplication processes may ensure
that redundant data is not stored in multiple segments . Thus ,
the hash value may serve as a chunk identifier . Because the
hash value is dependent on the data included in the chunk ,
and is unique to that data (e.g. , when a hash function of
sufficient quality is employed) , the hash value may be a
signature of the chunk and / or the data included in the chunk .
[0068] The metadata may encode mappings between vari
ous address spaces (e.g. , a mapping between a logical

a

a

US 2022/0121365 A1 Apr. 21 , 2022
10

a

.

address space and virtual address space , a mapping between
the virtual address space and a segment address space , and
the like) via key - value pairs . The key - value pairs may be
encoded in a data tree , such as a B - Tree or a LSM Tree . In
some embodiments , a copy - on - write (COW) B - tree is
employed to store the key - value pairs . In such a B - Tree
encoding of the mappings , the keys may be represented by
the non - leaf nodes of a B - Tree , while the corresponding
values may be represented as the leaf nodes . In other
embodiments , a Log - Structured Merging Tree (LSM Tree)
may be employed to store the key - value pairs . The keys and
corresponding paired values may be represented as an
n - tuple .
[0069] The notation for the n - tuple representation of key
value pairs is now reviewed . Each data object may have a
unique identifier (e.g. , Object_ID) . Each snapshot of a data
object has a unique identifier (snapshot_ID) . Because each
logical address addresses a block of data , a logical address
may be referred to as a logical block address (LBA) . Thus ,
a specific logical address for a specific data chunk of a
specific snapshot of a specific data object (e.g. , a file) may
be represented as the n - tuple < object_ID , snapshot_ID , lba >
The mapping of the specific logical address (of the logical
address space 450) to a specific hash value (e.g. , < hash_
value >) of the hash value space 460 (e.g. , a virtual address
space) may be represented the n - tuple mapping : < object_ID ,
snapshot_ID , lba > < hash_value > . Note that both the
< key > and the < value > may be an n - tuple with more than
one component . The key < object_ID , snapshot_ID , Iba >
includes 3 components : object_ID , snapshot_ID , and lba .
[0070] The ordering of the components of a key and / or
paired values may be significant , at least because of the
placement or insertion of the key - value pair in a B - Tree . In
the above example , the object_ID is the 15 - order component
(or most significant component) , the snapshot_ID is the
2nd - order components , and Iba is the 3rd - order component
(or least significant component) . When inserted into a
B - tree , the keys are sorted via the ordering of the compo
nents in the n - tuple representation . The most significant
component being the primary component for the sorting and
the least significant component being the least - significant
component for the sorting . Thus , keys with a common
1st - order component are grouped together first . Keys with a
common 1st - order component and a common 2nd - order
component are grouped together (within the initial grouping
of the common 1 - st order component) , and so on until the
least significant component . Thus , all keys with a common
1st - order component may grouped in a similar region (e.g. ,
all within the same sub - tree) of the B - Tree . Keys with a
common 2nd - order component (but dissimilar 1st - order com
ponents) may be located in disparate regions (e.g. , separate
sub - trees) of the B - tree .
[0071] Mappings between vector spaces (and / or mappings
of keys to corresponding values) may be represented via an
n - tuple representation . As used throughout , an n - tuple to the
left of an arrow (~) character (e.g. , < object_ID , snapshot_
ID , lba >) may indicate a key and the n - tuple to the right of
the arrow character (e.g. , < hash_value >) indicates the value
corresponding to the key . Note that the specific hash value
is the hash value for the data stored in the specific data
chunk . Using this notation , the mapping between the logical
address space 450 and the hash value space 460 may be
represented by the following 4 n - tuples : < object_ID ,
snaphshot_ID , L_1 > » < “ BA36 " > , < object_ID , snaphshot_

ID , L_2 > < 78E5 " > , < object_ID , snaphshot_ID ,
L_3 > FDO2 ' > , and < object_ID , snaphshot_ID , L_4 > ,
< “ B24F9 " > . The mapping between the logical address space
450 and the hash value space 460 may be referred to as a
logical map . Thus , the logical map of FIG . 4C requires 4
n - tuples . Note that in this non - limiting embodiment , because
the logical block size is equivalent to the chunk size , the
hashing of the data may be considered to be performed at
either the logical block - level or the chunk - level . In other
embodiments , the hashing is performed at the chunk level ,
such that multiple logical addresses may correspond to a
single hash value .
[0072] The n - tuple < seg_ID > may represent a segment
address of the segment address space 470. For garbage
collection purposes , a reference counting process may be
used to track the number of references that point to < seg_
ID > . In these embodiments , the n - tuple < seg_ID , block_
offset , ref_count > may be employed to represent the seg
ment address (e.g. , the segment identifier and the logical
block_offset) , as well as the corresponding reference coun
ter , e.g. , ref_count . The format for the mapping of the hash
value space 460 to the segment address space 470 may be
represented by the n - tuple format : < hash_value >> < seg_ID ,
block_offset , ref_count > , where < hash_value > is the key
and < seg_ID , block_offset , ref_count > is the corresponding
value . Using this notation , the mapping between the hash
value space 460 and segment address space 470 may be
represented by the following 4 n - tuples : < 24F9 ' > < seg
2 , 1 , ref_count_2 > , < ̂ 78E5 " > + < seg_1 , 2 , ref_count_1 > ,
< BA36 " > < seg_1 , 1 , ref_count_1 > , and
< FDO2 ” >> < seg_2 , 2 , ref_count_2 > . The mapping
between the hash value space 460 and the segment address
space 470 may be referred to as a hash map . Thus , the hash
map of FIG . 4C requires 4 n - tuples .
[0073] The hash values of the chunks provide a unique
identifier for the content stored in a chunk . Thus , the hash
values provide the content aware property for the CAS layer
414 of FIG . 4A . Because the segment addresses may be
addressed via content aware addresses , the hash values may
be employed for deduplication processes , e.g. , removing
chunks that include identical data . Such deduplication pro
cesses ensure that multiple chunks storing the same data are
not stored by a data store , reducing the total volume required
by a client .
[0074] In some embodiments , the metadata of a data
object may be cached for quick reference (e.g. , to speed up
a deduplication process) . In some embodiments , one or more
VSANs in a SDDC may cache the metadata for one or more
data objects . As noted above , metadata database 346 of the
OSRS 340 may cache an object's metadata . Employing a
hash function of sufficient quality generates the appearance
of pseudo - random hash values . Therefore , the hash values
may lack “ locality ” in a hash value space . This non locality
is shown via the logical mapping of FIG . 4C . Furthermore ,
imposing a natural ordering on the hash values may be
difficult . In order to lookup information included in a cache ,
it may be preferred to have sequential values and / or values
of sufficient locality . Thus , it may be difficult to employ
cached hash values .
[0075] To overcome this hash value caching issue , some
embodiments employ another unique identifier for each
chunk . That is , a unique " chunk_ID " may be assigned to
each chunk . Furthermore , any set of chunk_IDs may have a
natural ordering . The chunk_IDs may be generated sequen

a

a

US 2022/0121365 A1 Apr. 21 , 2022
11

a

a

2

tially , in view of their natural ordering . Thus , such chunk_
IDs have good locality and may be cached for quick refer
ence (e.g. , to use in a deduplication process) . As used herein ,
the following notation may refer to a chunk_ID : C_X , where
X is a positive integer . Due to the sequential nature of
generating chunk_IDs , when two new chunks are received
for storage , the first new chunk may be assigned a chunk_ID
of C_N , and the second new chunk may be assigned a
chunk_ID of C_N + 1 , where the previous chunk was
assigned a chunk_ID of C_N - 1 . Because it is unique , a
chunk_ID may serve as a chunk address in a chunk address
space .
[0076] FIG . 4D is a block diagram illustrating a mapping
430 between a logical address space 450 , a chunk address
space 490 , and a segment address space 470 , in accordance
with some embodiments . In such embodiments , each chunk
is assigned a logical address and a chunk address (e.g. , a
chunk_ID) . Similar to the hash value space 460 of FIG . 4C ,
the chunk_ID provides a misdirection layer between the
logical address space 450 and the segment address space
470. Thus , the chunk address space 490 may be a virtual
address space that decouples the movement of chunks from
the deletion of chunks , as previously discussed . Note the
“ locality ” (or sequential / ordered nature) of the chunk_IDs in
the chunk address space 490. Thus , in contrast to the hash
values of FIG . 4C , the chunk_IDs may be cached for quick
reference . The logical address space 450 and segment
address space 470 are equivalent to the corresponding
address spaces in FIG . 4C . However , the “ misdirection
layer ” (e.g. , chunk address space 490) includes four chunk
addressed (e.g. , chunk_IDs) : C_10 , C_11 , C12 , and C_13 .
[0077] In contrast to FIG . 4C , the logical address space
450 is mapped into the virtual address space (e.g. , chunk
address space 490) in a sequential , contiguous , and localized
manner . Due to this “ locality ” of the chunk address space
490 and the “ locality ” of the logical address space 450 , a
more compact n - tuple notation may be employed for logical
mappings that map logical addresses to chunk_IDs . The
logical map of FIG . 4D requires a single n - tuple of the form
< lba > < chunk_ID , num_chunks > . In this notation , < lba >
represents a logical address as a key , and < chunk_ID ,
num_chunks > as the corresponding value . The num_chunks
value indicates the number of contiguous logical addresses
mapped to corresponding contiguous chunk addresses . As
shown in the arrows between the logical address space 450
and the chunk address space 490 of FIG . 4D , the num_
chunks for L_1 = 4 . Thus , the logical map of FIG . 4D may be
represented by the single n - tuple : < L_1 >> < C_10 , 4 > .
Because of the high locality of the logical and chunk address
spaces , this compact notation encodes four logical to chunk
mappings : < L_1 > = < C_10 > , < L_2 > » < C_11 > ,
< L_3 > < C_12 > , and < L_4 >> < C_13 > . Because only a
single n - tuple is required to represent the logical mapping of
FIG . 4D , the B - tree encoding the logical mapping of FIG .
4D is more compact than the B - tree required for FIG . 4C
(which required 4 n - tuples) . Thus , the B - tree of FIG . 4D may
be smaller , faster to traverse , and / or more compressible than
the B - tree of FIG . 4C .
[0078] The mapping between the chunk address space 490
and the segment address space 470 may be referred to as the
chunk mapping . The chunk mapping may have an n - tuple
representation of : < chunk_ID >> < seg_ID , num_chunks ,
ref_count > , where similar to above , num_chunks indicates
the number of consecutive (or contiguous) chunks that map

to the seg_ID . Thus , the chunk mapping of FIG . 4D may be
represented by 2 n - tuples : < C_10 >> < seg_1 , 2 , ref_count
seg_1 > , < C_12 >> < seg_2 , 2 , ref_count_2 > . These two
n - tuples encode the four mappings : < C_10 >> < seg_1 , 1 ,
ref_count_1 > , < C_11 > < seg_1 , 2 , ref_count_1 > ,
< C_12 >> < seg_2 , 1 , ref_count_2 > , and < C_13 >> < seg_2 ,
2 , ref_count_2 > . The chunk mapping of FIG . 4D is rela
tively compact , requiring only 2 n - tuples , as compared to the
4 n - tuples required for the “ virtual layer " to the segment
layer of FIG . 4C .
[0079] In some embodiments , to preserve the content
aware storage for deduplication purposes , a mapping
between a hash value space and the chunk address space
may also be included in the metadata . FIG . 4E is a block
diagram illustrating content aware addressing of data
chunks , in accordance with some embodiments . More spe
cifically , FIG . 4E illustrates a hash value mapping (or hash
mapping) 430 for the metadata encoded in FIG . 4D . The
hash mapping maps the hash value space 460 (see FIG . 4C)
to the chunk address space 490. The hash mapping of FIG .
4E requires 4 n - tuples : < “ 2459 " > < C_13 > ,
< “ 78E5 " > < C_11 > , < “ BA36 ” > < > < C_10 > , and
< “ FD02 ” >> < C_12 > .
[0080] In various embodiments , the logical mapping and
chunk mapping of FIG . 4D , as well as the hash mapping 440
of FIG . 4E may be included in the metadata for a data object .
As noted throughout , such metadata may be encoded in a
B - tree (e.g. , copy - on - write (COW) B - tree or a Log - Struc
tured Merging Tree (LSM Tree)) . The logical mapping may
be associated with the logical layer 412 of FIG . 4A , while
the chunk mapping and the hash mapping may be associated
with the CAS layer 414 of FIG . 4A . To implement such
mappings encoded in the metadata , a vDFS (e.g. , VDFS 304
and vDFS 334 of FIG . 3) may implement a two - layered
metadata mechanism . The first layer may be a logical layer
that implements and traverses the B - trees encoding the
mapping . The second layer may be a chunk store layer that
generates (or allocates) new chunk_IDs for new chunks and
enables the reading , writing , allocating , and freeing of data
chunks . Each new chunk_ID allocated by the chunk store
layer may be the “ next ” chunk_ID (in view of the most
recent previous chunk_ID) in the natural ordering of the
chunk_IDs . In some embodiments , there may be no practical
upper limit to the number of available chunk_IDs . The
chunk store may be a CAS aware store , and thus the VDFS
may implement chunk - level deduplication . The vDFS may
employ a LFS file system for the data .
[0081] AvDFS may be responsible for chunking the data .
The size of the data chunks may be variable and be based on
a structure , arrangement , organization , and / or composition
of the data itself . The size of the data chunks may be
anything smaller than the size of data segments , but in some
embodiments , the size of the chunks may vary from 1 kB to
1 MB . Thus , a single data segment may include numerous
data chunks . In some embodiments , the data is chunked such
that each chunk is approximately 80 kB .
[0082] In some embodiments the chunk mapping may take
the following form : < inode_ID , type , lba > < chunk_ID ,
chunk_size > , where inode_ID identifies a particular inode of
the vDFS , type indicates a type or category (e.g. , File_Map)
of the inode identified by inode_ID , and chunk_size indi
cates the size of the chunk . The size of the chunk indicated
by size_chunk in logical blocks . In such embodiments , the
size of the key may be 16 - bytes wide . As discussed below ,

9

US 2022/0121365 A1 Apr. 21 , 2022
12

a

a

a a

a VDFS may encode snapshots via key - value pairs encoded
in a B - Tree (e.g. , a COW B - Tree) .
[0083] When taking a new snapshot (e.g. , snapshot_ID = 6)
of a data object (inode_ID = 10 and type = File_Map) , the
“ new ” or “ different ” data for a snapshot is written to a newly
allocated chunk . In snapshot_ID = 5 (e.g. , the snapshot pre
vious to snapshot_ID = 6) , the logical mapping may include
the two key - value pairs : < i10 , File_Map , L_0 >> < C_1 ,
10003 > and < i10 , File_Map , L_10003 > = < C_2 , 12007 > .
Thus , in the fifth snapshot of the data object , the chunk_size
of C_1 is 10003 logical blocks and the chunk_size of C_2 is
12007 logical blocks . The logical addresses L_0 through
L_10002 are mapped to the C_1 chunk , while the logical
addresses L_10003 through L_22009 are mapped to the C_2
chunk .

[0084] The user may edit data within the C_1 chunk (e.g. ,
the user may add an additional 20 blocks to the data
associated within C_1) , and not edit data within the C_2
chunk . When snapshot_ID = 6 is taken , the data for the entire
object is re - chunked . After the re - chunking , a new chunk is
allocated for the updated data . Because chunks are allocated
with sequential and / or contiguous chunk identifiers (and
assuming that the data object includes only two chunks :
chunk_ID = C_1 and chunk_ID = C_2) , the newly allocated
chunk is identified as chunk_ID = C_3 . Because the updated
data includes an additional 20 blocks of data (and the data
associated with chunk_ID = C_2) the chunk_size of the new
chunk C_3 is chunk_size = 10023 . The logical mapping of
snapshot_ID = 6 includes the two key - value pairs : < i10 ,
File_Map , L_0 > < C_3 , 10023 > and < 10 , File_Map ,
L_10023 > » < C_2 , 12007 > . Thus , for this new snapshot , the
logical addresses L_0 through L_10022 are mapped to the
new C_3 chunk , while the logical addresses L_10023
through L_22029 are mapped to the older C_2 chunk . The
C_1 chunk is still stored for recovery of the snapshot_ID = 5
snapshot , however , C_1 is not included in the snapshot_
ID = 6 snapshot .
[0085] FIGS . 5A - 5C include block diagrams illustrating
schemas for storing snapshots of a data object , in accordance
with some embodiments . FIG . 5A shows the mapping
between the logical address space and the chunk address
space of two consecutive snapshots . Mapping 500 shows the
mapping of the logical address space to chunk address space
of the fifth snapshot (e.g. , snapshot_ID = 5) of the data object .
In the compact notation discussed in conjunction with FIG .
4D (< lba > < chunk_ID , num_chunks >) , the mapping 500
may be captured by the single n - tuple < L_1 >> < C_1 , N_5 > ,
where N_5 indicates the number of contiguous logical
addresses mapped to corresponding contiguous chunk
addresses . In this non - limiting example , the size of each
chunk is equivalent to the size of a logical block . The user
may edit data within the logical blocks L_4 and L_5 . In the
next snapshot (e.g. , snapshot_ID = 6) , new chunks may be
sequentially allocated (e.g. , C_9 and C_10) for the edited
data corresponding to L_4 and L_5 . Mapping 502 shows the
logical to chunk mapping for snapshot_ID = 6 , where the
mapping of snapshot_ID = 5 between < L_1 > < C_1 > ,
< L_2 > » < C_2 > , and < L_3 >> < C_3 > (of mapping 500) is
still valid . The mapping encoding snapshot_ID = 6 needs to
account for the mapping of the new chunks (< L_4 >> < C_9 >
and (< L_5 > * < C_10 >) , while disregarding the previous
mappings (of snapshot_ID = 5) : (< L_4 >> < C_7 > and < L_
5 >> < C_8 >) .

[0086] As noted , snapshots may be encoded in a B - Tree
(e.g. , a COW B - Tree) stored in the object's metadata . More
specifically , the snapshots are encoded in key - value pairs
that arranged in a B - Tree . FIG . 5B shows a first schema 510
for the key - value pairs encoding snapshots , while FIG . 5C
shows a second schema 520 for the key - value pairs encoding
snapshots . The first schema 510 has the first format < L_X ,
snapshot_ID > < chunk_ID , num_chunks > . The second
schema 520 has the second format < snapshot_ID ,
L_X >> < chunk_ID , num_chunks > . Note that in the non
limiting embodiments of FIGS . 5B - 5C , the object_ID keys
(e.g. , inode_ID , type) are omitted for simplicity . In both
schemas 510/520 , the object_ID keys would be the most
significant components of the key .
[0087] As noted above , the ordering of the components of
a key and / or paired values may be significant , at least
because of the placement or insertion of the key - value pair
in a B - Tree . When inserted into a B - tree , the keys are sorted
via the ordering of the components in the n - tuple represen
tation . The most significant component being the primary
component for the sorting and the least significant compo
nent being the least - significant component for the sorting .
Thus , keys with a common 1st - order component are grouped
together first . Keys with a common 1st - order component and
a common 2nd - order component are grouped together
(within the initial grouping of the common 1 - st order
component) , and so on until the least significant component .
Thus , all keys with a common 1st - order component may
grouped in a similar region (e.g. , all within the same
sub - tree) of the B - Tree . Keys with a common 2nd - order
component (but dissimilar 1st - order components) may be
located in disparate regions (e.g. , separate sub - trees) of the
B - tree .

[0088] In the first schema 510 , the logical address com
ponent is more significant than the snapshot_ID component .
Thus , when key - value pairs represented by the first schema
510 are inserted into a B - Tree , the keys are sorted by the
logical address before sorting by the snapshot_ID . In the
second schema 520 , the snapshot_ID component is more
significant than the logical address component . Thus , when
key - value pairs represented by the second schema 520 are
inserted into a B - Tree , the keys are sorted by the snapshot_
ID before sorting by the logical address .
[0089] FIG . 5B shows the n - tuples required for encoding
snapshot_ID = 5 and snapshot_ID = 6 via the first schema 510 .
Encoding 512 encodes snapshot_ID = 5 via first schema 510 .
Encoding 514 show an updating of the encoding 512 to
account for snapshot_ID = 6 . Because first schema 510
arranges the n - tuples via a common logical address (rather
than a common snapshot_ID) , note that encoding 514
requires the splitting of encoding 512 from < L_1 ,
S_5 >> < C_4 , N_5 > to < L_1 , S_5 > < C_4 , N_3 > and
< L_4 , S_5 >> < C_7 , N_2 > . Thus , when snapshot_6 is cap
tured , the B - tree has to be updated to account for this
splitting of the n - tuple representation . Also note the effect
when traversing the updated B - Tree for looking up values
for a key . First schema 510 optimizes looking up the values
for a specific logical address for all snapshots . However ,
when trying to perform a lookup for a specific snapshot
(with a snapshot_ID smaller (e.g. , snapshot_ID = 5) than the
tree's current snapshot_ID (e.g. , snapshot_ID = 6)) , then the
B - tree must be traversed multiple times to find all instances
of a key that includes the snapshot_ID corresponding to the

a

9

US 2022/0121365 A1 Apr. 21 , 2022
13

.

snapshot that is being recovered . That is , disconnected
regions of the tree (regions encoding snapshot_ID = 5) need
to be located and traversed .
[0090] FIG . 5C shows the n - tuples required for encoding
snapshot_ID = 5 and snapshot_ID = 6 via the second schema
520. Encoding 522 encodes snapshot_ID = 5 via second
schema 520. Encoding 524 show an updating of the encod
ing 522 to account for snapshot_ID = 6 . Note that because the
n - tuple representation is arranged around common snapshot
IDs , the splitting of the n - tuple representation of from
snapshot_ID = 5 to snapshot_ID = 6 , as required via the first
schema 510 , is not required for the second schema 520 .
When recovering snapshot_ID = 5 from a B - Tree that
encodes subsequent snapshots , the tree only needs traversed
along regions of the common snapshot_ID = 5 . Thus , in some
embodiments , second schema 520 may be preferable over
first schema 510. However , note the tradeoff for the second
schema 520. To lookup the values for L_4 and L_5 for all
snapshots , multiple traverses of the tree are required . That is ,
disconnected regions of the tree (regions encoding L_4 and
L_5) need to be located and traversed . Thus , in other
embodiments , first schema 510 may be preferred over sec
ond schema 520 .
[0091] As discussed in conjunction with FIG . 3 , when
taking a snapshot of an object , an uploader agent of a SDDC
(e.g. , uploader agent 352 of primary SDDC 310) may upload
block - level differences of the data object to a data store (e.g. ,
data store 322) . The uploader agent also communicates the
uploading of a snapshot to an uploader server of an object
storage and recovery system (e.g. , uploader server 342 of
OSRS 340) . If a system failure (e.g. , a disruption in the
communication network that allows communication
between the SDDC , data store , and / or OSRS) occurs during
the uploading , the uploading of the snapshot will not be
completed . The probability that a system failure occurs
during an upload of a snapshot is non - zero . Furthermore ,
because data objects may be of significant size , a large
amount of difference data may need to be transferred from
the SDDC to the data store . The probability for such a
system failure is increased for longer upload periods .
[0092] In conventional systems , the recovery from a sys
tem failure cannot be simply to re - start the uploading from
the last data that was uploaded prior to the failure . If this
approach is undertaken , data may be duplicated in the
snapshot . Since difference - based snapshots require that data
not be duplicated within a single snapshot , this method may
result in data corruption . Many conventional systems may
recover from the system failure by re - starting the data
upload , from the beginning of the failed snapshot , when the
system's resources become available again . In this way , data
may not be duplicated within a snapshot . However , because
significant amounts of data may need to be uploaded ,
re - starting the upload may be a wasteful solution because
significant amounts of the system's resources (e.g. , network
bandwidth) may be required to re - start the upload . For
example , if the failure occurs after 95 % of the data to be
uploaded has been successfully uploaded , it is inefficiently
to re - upload the 95 % in order to upload the remaining 5 % of
the data . Furthermore , if another failure occurs after the
uploading is re - started , then the upload may have to be
re - started a second time .
[0093] The various embodiments provide an enhanced
methods for uploading snapshots . The uploading methods of
the various embodiment tolerate system failures during an

upload , and are significantly more efficient than conven
tional methods . The various embodiment ensure that data is
not duplicated within a single snapshot , and thus are not
prone to data corruption from starting the upload , after a
failure , based on the last known successfully upload block .
In the various embodiments , each snapshot has a state
variable associated with its successful uploading , (e.g. , an
upload_status state) . When the uploading of a snapshot is
initiated , the value of the upload_status state is assigned a
value of “ Not_Complete ” . The SDDC may receive an
acknowledgment signal , from the destination of the upload
or another resource in communication with the destination
(e.g. , a data store or an OSRS) , for each uploaded block that
the block was successfully uploaded . If the acknowledgment
signal is not received , then the SDDC is aware that the block
was not received . Thus , the SDDC may be aware of the
success (or failure) of uploading each block during an
upload . If all the blocks are acknowledged as having been
successfully uploaded , then the upload_status state of the
snapshot may be transitioned to a value of “ Complete ” .
[0094] If a system failure occurs during an upload for a
snapshot , then the upload_status state for that snapshot is not
transitioned to complete . Thus , the SDDC is aware of
whether a snapshot upload has been successfully completed .
After the system recovers , a new snapshot (with a new
snapshot_ID) is initiated . For example , a system failure may
occur during snapshot_ID = N . Because the last block to be
transmitted has not yet been transmitted (or its successful
upload has not been acknowledged) , snapshot_ID = N is not
completed . After the system recovers , a new snapshot (e.g. ,
snapshot_ID = N + 1) is initiated . The first block data trans
mitted in the new snapshot may be the next block , after the
last successfully acknowledged block from the previous
failed snapshot . This may result in the re - transmittance of a
small amount of data (e.g. , data that has been uploaded , but
the failure occurred prior to receiving the successful
acknowledgment signal) . However , the re - transmitted data
is not included in the same snapshot , and thus the embodi
ments are not prone to data corruption . Furthermore , only a
small amount of data may need to be re - transmitted , reduc
ing the inefficiencies of re - starting the upload from the
beginning . Due to the system failure during the upload ,
snaphot_ID = N may not be recoverable (e.g. , the snapshot is
not a complete snapshot) , but the successfully uploaded data
may be employed to recover snapshot_ID = N + 1 . The meth
ods for uploading a snapshots , as well as deleting snapshots ,
are discussed in conjunction with FIGS . 5D - 5E .
[0095] FIG . 5D is a block diagram illustrating a fault
tolerant process for uploading snapshots of a data object , in
accordance to the various embodiments . The 2D table 540 in
FIG . 5D illustrates the uploading of the object's first five
snapshots . A horizontal row in the table 540 indicates a
single snapshot , and a vertical column represents a single
logical address . Each cell in the table 540 corresponds to an
upload of the corresponding logical block (as indicated by
the cell's column) for the corresponding snapshot (as indi
cated by the cell's row) . A rectangle placed in the cell
indicates that the block was uploaded by the SDDC for the
snapshot . If the rectangle is shaded or “ hatched ” , the SDDC
received the successful acknowledgment signal . If the rect
angle is not shaded then the SDDC uploaded the block , but
did not receive the acknowledgment signal for the block .
The last column (e.g. , the column labeled “ Complete ? ”) in
the table 540 indicates the value of the upload_status state

US 2022/0121365 A1 Apr. 21 , 2022
14

2

variable for the snapshot . A “ check ” in the snapshot’s cell of
the last column indicates that the value of upload_status is
set to " Complete . ” An absence of the check indicates that
value of the upload_status is “ Not Complete ” . A system
failure occurred during the upload of snapshot_ID = 3 , and
thus its upload_status state variable is set to “ Not_Com
plete . ” As shown in the column of the table 540 , the
upload_status state variable of each of the other snapshots is
set to “ Complete . "
[0096] As shown in table 540 , a first snapshot (e.g. , row
corresponding to snapshot_ID = 1) is taken of a data object .
For purposes of illustration , the object is 10 blocks wide ,
with logical address ranging from L_1 to L_10 . However ,
this embodiment is non - limiting , and an object may include
significantly more blocks . Because snapshot_ID = 1 is the
base - level snapshot , each of the 10 are uploaded . As shown
by the 10 shaded rectangles in the first row of the table 540 ,
each of the uploaded blocks were acknowledged as being
successfully uploaded , and the snapshot is indicated as
complete . For snapshot_ID = 2 , the only differences in the
data occur in L_2 and L_7 . The shaded rectangles corre
sponding to these blocks indicate the successful uploading
of these blocks , and snapshot_ID = 2 is marked as complete .
[0097] For snapshot_ID = 3 , the data has been edited such
that blocks L_1 , L_2 , L_3 , L_5 , L_6 , L_8 , and L_10 are
marked for uploading . The SDDC uploads L_1 , L_2 , and
L_3 prior to the system failure . As indicated by the shaded
and not shaded rectangles in the third row of the table 540 ,
the SDDC received the acknowledgment signal for L_1 and
L_2 , but not for L_3 . Because upload_status state variable is
marked as “ Not_Complete ” for snapshot_ID = 3 , when the
system resources come back online , snapshot_ID = 4 is ini
tiated . Snapshot_ID = 4 is initiated by starting with L_3
because the signal indicating its successful upload has not
been received by the SDDC . Snapshot_ID = 4 finishes the
intended upload of snapshot_ID = 3 successfully and is
marked complete after successfully uploading L_3 , L_5 ,
L_6 , L_8 , and L_10 . Snapshot_ID = 5 is successfully com
pleted by successfully uploading blocks L_1 , L_3 , L_5 , L_7 ,
L_9 , and L10 . As noted above , snapshot_ID = 3 is not recov
erable , but its versions of L_1 and L_2 are needed to recover
snapshot_ID = 4 , and its version of L_2 is required to recover
snapshot_ID = 5 .
[0098] FIG . 5E is a block diagram illustrating a process for
deleting snapshots of a data object , in accordance to the
various embodiments . FIG . 5E shows the table 560 , which
includes the five snapshots of FIG . 5D , where snapshot_
ID = 4 is to be deleted . The cells marked with a “ D ” corre
spond to blocks (of a snapshot) that may be deleted when
snapshot_ID = 4 is deleted . More particularly , not all of the
blocks of snapshot_ID will be deleted because some of the
blocks may be required to reconstruct snapshot_ID = 5 (or
later snapshots) . For example , because L_6 and L_8 remain
unchanged between snapshot_ID = 4 and snapshot_5 , these
blocks stored for snapshot_ID = 4 are required to recover
snapshot_ID = 5 . Furthermore , some of the blocks (e.g. , L_1)
stored for snapshot_ID = 3 may be deleted because snapshot_
ID = 4 is the only snapshot that requires this block for
recovery . i.e. , L_1 was edited for snapshot_ID = 5 .
[0099] In general , to delete snapshot_ID = N , then all snap
shots with (a snapshot_ID < = snapshot_ID = N) and (a snap
shot_ID > than the most recent previous snapshot) are iden
tified . Blocks within these identified snapshots are identified
by deletion based on difference between the blocks of these

identified snapshots and the corresponding blocks in snap
shot_ID = N + 1 . For this example (deletion of snapshot_
ID = 4) , snapshot_ID = 3 and snapshot_ID = 4 are identified .
Because differences between snapshot_ID = 5 and the iden
tified snapshots occur in L_1 , L_3 , L_5 and L_10 , these
blocks may be deleted . Note that blocks corresponding to
L_6 and L_8 in snapshot_ID = 4 are not marked for deletion
because they are needed for the recovery of snapshot_ID = 5 .
[0100] FIGS . 6A - 7 illustrate flowcharts for exemplary
processes 600-700 , in accordance with some embodiments
Processes 600-700 are performed , for example , at one or
more storage nodes of a cluster of storage nodes operating
in the cloud - computing environment . In some embodiments , the distributed computing system comprises a plurality of
storage nodes or host computing devices (e.g. , host com
puting device 100 described in reference to FIG . 1A) that are
communicatively coupled together in a VSAN . In some
embodiments , the distributed - computing system is imple
mented by one or more virtual machines (e.g. , VM 102
described in reference to FIGS . 1A - 1B) . The distributed
computing system implements , for example , any of the
components discussed in conjunction with environment 300
of FIG . 3 (e.g. , an object storage & recovery system and / or
a software designed data center) . In some embodiments , the
operations of any of processes 600-700 are distributed
across the various systems (e.g. , storage nodes) of the
distributed - computing system . In processes 600-700 , some
blocks are , optionally , combined , the order of some blocks
is , optionally , changed , and some blocks are , optionally ,
omitted . In some embodiments , additional operations may
be performed in combination with any of processes 600-700 .
[0101] FIG . 6A illustrates a flowchart of an exemplary
process 600 for storing data in a distributed - computing
system , in accordance with some embodiments . Process 600
begins at step 602 , where data is received for a data object .
The data may be structured as a consisting of a set of data
blocks . The set of blocks may be an ordered set (e.g. ,
block_1 , block_2 , block_3 , ... , block_M , where M is any
positive integer) . Each data block may be assigned a logical
block address (lba) , and be addressable via its lba . Assigning
an lba (e.g. , L_X) to a block may be based on the ordering
of the set of blocks (e.g. , L_1- > block_1 , L_2_block_2 ,
L_3_block_3 , L_M > block_M) . That is , a unique (to
the data object) logical address may be sequentially and / or
contiguously assigned to each block of the set of data blocks
of the object . The logical address assignment may be based
on the ordering of the set of data blocks . The received data
(along with its object_ID , e.g. , inode_ID and type) may be
transmitted to and / or received from a data store and / or
SDDC . Thus , the data may be structured as a set of data
segments , where each data segment includes multiple blocks
of data .
[0102] At step 604 , the data may be subdivided into a set
of data chunks . That is , the data may be “ chunked ” in an
ordered set of chunks . In various embodiments , a chunking
method or algorithm is employed to chunk the data . The
chunking algorithm may identify “ natural breakpoints " in
the data to determine the block addresses of the start point
and end point for each of the chunks . A breakpoint for a
chunk may be identified via a " signature ” within a finger
print of the data . By identifying natural breakpoints based on
chunk content , the chunking algorithm may be resistant to
shifts in the objects data . Thus , when re - chunking edited
data , the boundaries of a chunk are likely to be invariant

a

a

2

US 2022/0121365 A1 Apr. 21 , 2022
15

=

a

(with respect to which data the chunk includes) in the
re - chunking , even though additional or less data may be
included in the new chunk . The chunking method may
include employing a sliding window and a fingerprinting
algorithm . The implemented fingerprinting algorithm may
include a hash function , such as but not limited to a Rabin
fingerprinting scheme . In some embodiments , the size of the
chunks may be variable and may vary from 1 kB to 1 MB .
Thus , a single data segment may include numerous data
chunks . In some embodiments , the data is chunked such that
each chunk is approximately 80 kB .
[0103] When the data is subdivided into a set of chunks ,
each chunk in the set of chunks may include a subset of the
set of blocks . In some embodiments , each chunk includes a
plurality of chunks . Each block may be included in only a
single chunk , such that an intersection of any two subsets of
blocks is the null set . Chunking the data may be based on the
ordering of the blocks , such that the blocks included in a
chunk are contiguous blocks . The ordering of the set of
chunks may be based on the ordering of the blocks included
in the chunks . The ordering of the set of chunks may be
based on the ordering of the blocks included in the chunks .
The set of chunks may include N chunks , where N is any
positive integer .
[0104] At step 606 , a signature is generated for each
chunk . Generating the signature for a particular chunk may
be based on the data of the subset of blocks that is included
in the particular chunk . In at least one embodiment , the
signature for the particular chunk may be a hash value
(generated by a hash function) of the data included in the
particular chunk .
[0105] At step 608 , values for a block counter (e.g. ,
block_counter) , a chunk counter (e.g. , chunk_counter) , and
a loop counter (e.g. , loop_counter) may be in initialized . In
some embodiments , the value of the block counter may be
initializes based on an initial logical address of the sequen
tially assigned logical addresses of the data object . The value
for the block counter may be initialized such that block_
counter = 1 . In some embodiments , the value of the chunk
counter may be initialized based on a chunk identifier of the
most recently processed chunk . The chunk counter may be
initialized to a value corresponding to a single increment of
the chunk_ID of the most recently processed chunk . For
example , if the last processed chunk of a previous object has
a chunk_ID = 100 , then the chunk counter may be initialized
at step 608 such that chunk_counter = 101 . The value of the
loop counter may be initialized such that loop_counter = 1 . In
various embodiments , the block_counter counts the number
of data blocks of the object processed via process 600. The
chunk_counter may be employed to determine a unique
value for chunk identifier (e.g. , chunk_ID) for newly allo
cated chunk identifiers . In at least one embodiment , the
chunk_counter may be initialized such that chunk_coun
ter = 1 . The loop_counter counts the number of times through
the loop defined by blocks 610-630 . In some embodiments ,
the total number of times through the loop of blocks 610-630
may be equivalent to the number of chunks included in the
set of chunks (e.g. , the cardinality of the ordered set of
chunks) . At step 610 , a loop over the set of blocks is
initiated .
[0106] At step 612 , a chunk is selected from the set of
chunks based on the chunk_counter . The selection of the
chunk may be based on the ordering of the chunk and the
chunk_counter . For example , during the first time through

the loop (e.g. , loop_counter = 1) , the 1st chunk of the set
(based on the ordering of the set of chunks) may be selected
at step 612. During the 2nd time through the loop (e.g. ,
loop_counter = 2) , the 2nd chunk of the set (based on the
ordering of the set of chunks) may be selected , and so on .
For the discussion corresponding to blocks 614-630 , the
chunk selected at step 610 may be referred to as the next (or
selected) chunk selected from the set of chunks . The selected
chunk (e.g. , the next chunk) has a particular (or next)
signature associated with it , and includes a number of data
blocks .
[0107] At step 614 , a key for the selected chunk (e.g. , a
next key) may be generated based on the block_counter . In
the various embodiments , the value of the block_counter
may correspond to the logical address of the first block
(based on the ordering of the set of data blocks) in the
selected chunk . For example , during the first time through
the loop , loop_counter = 1 and the logical address of the first
block in the first selected block is L_1 . The key generated at
step 614 may be included in a logical mapping (e.g. , a
mapping that goes from the logical address space to the
chunk address space) . As discussed throughout , the key may
be generated via the n - tuple < object_ID , Iba > . The value for
iba may be the logical address of the first block for the
selected chunk , and thus may be determinable from the
value of the block_counter . As also discussed above , the
value for object_ID may include an inode identifier , as well
as a type of the identified inode .
[0108] At decision step 616 , it is determined whether the
selected chunk is a duplication of a previously selected
chunk . That is , it is determined whether the selected next
chunk includes data that is equivalent to (or a copy of) data
already stored by and / or processed by process 600. The
duplicated chunk (e.g. , the previously selected chunk) may
have been selected during the loop for this object , or a
previously processed object . The decision of step 616 may
be based on a comparison of the signature of the selected
chunk and a signature of the duplicated block . If the signa
tures (e.g. , hash values) are equivalent , then the data blocks
of the data in both the selected chunk and the previously
selected chunk are identical , i.e. , the selected chunk is a
duplication of the previously selected chunk .
[0109] In some embodiments , the signature of each pro
cessed chunk is stored in a content aware store (e.g. , a CAS) .
At decision step 616 , the signature of the selected may be
provided to the CAS . The CAS may store a signature
mapping . The signature mapping may be a hash mapping ,
such as hash mapping 460 of FIG . 4E . The signature
mapping may be a signature table and / or a signature index ,
e.g. , a hash table and / or hash index . The CAS may store
object level - hash tables , user - level hash tables , device - level
hash tables , client level - hash tables , customer - level hash
tables , SDDC - level hash tables , and / or data store - level hash
table levels . The CAS may perform the comparison between
the signature of the selected chunk and each of the signatures
stored in the signature table . The CAS may provide a signal
of whether the signature has already been stored at the CAS .
If the signature of the selected chunk has already been stored
in the CAS , the selected chunk is a duplication of a previ
ously selected chunk . If the signature of the selected chunk
has not been previously stored in the CAS , then the selected
chunk is not a duplication of a previously selected chunk . If
the selected chunk is a duplication of a previously selected
chunk , then process 600 flows to step 618. When the

US 2022/0121365 A1 Apr. 21 , 2022
16

a

2 2

selected chunk is a duplication of the previously selected
chunk , then the signal from the CAS may indicate informa
tion regarding the duplicated chunk , such as but not limited
to a chunk identifier and the size of the chunk , e.g. , the
number of blocks included in the duplicated chunk . If the
selected chunk is not a duplicated chunk , process 600 flows
to step 620 .
[0110] Because the signatures for chunks that have been
previously processed are stored (or cached) in the CAS , the
method does not need to store multiple copies of identical
chunks of object . Thus , process 600 provides deduplication
services for data duplicated at the chunk level . Because
signature (or hash) tables may be implemented for any
combinations of distinctions between data object , custom
ers , clients , and the like , such deduplication services may be
provided at the data object level , the user level , the device
level , the client level , the customer level , or any other such
level of division within a SDDC or data store .
[0111] At step 618 , and in response to determining that the
selected chunk is a duplication of a previously selected
chunk , a value for the key for the selected chunk (e.g. , a
value for the key of the selected chunk) may be generated
based on the duplicated chunk , e.g. , the previously selected
chunk that is duplicated by the selected chunk . The value
may be based on a chunk identifier for the previously
selected chunk and the size of the previously selected chunk .
Because the size of the selected chunk is identical to the size
of the duplicated chunk , the value may be based on a number
of blocks included in the selected chunk , or equivalently the
number of blocks included in the duplicated chunk . In some
embodiments , the value may be encoded in the format
< chunk_ID , num_blocks > , where chunk_D is the chunk
identifier for the duplicated chunk and num_blocks indicates
its chunk_size (in data blocks) . Process 700 may flow to step
628 .
[0112] At step 620 , and in response to determining that the
selected chunk is not a duplication of a previously selected
chunk , a new chunk identifier may be allocated for the
selected chunk . The new chunk identifier may be based on
a current value of the chunk_counter . Some embodiment
may include a chunk store that allocates new chunk identi
fiers . As discussed throughout , new chunk identifiers may be
allocated and / or generated in a contiguous sequence , e.g. ,
C_1 , C_2 , C_3 , and so on with no practical upper limit .
Similar to the deduplication process discussed above , the
new chunk identifiers may be sequentially and contiguously
numbered at the object level , user level , client level , device
level , customer level , and any other such level . The chunk
store may employ the chunk_counter to determine the chunk
identifier . The chunk store may be generally responsible for
the chunk_counter . In some embodiments , the chunk_coun
ter may not be initialized at bock 608 , because the chunk_
counter keeps a running count at the appropriate level (e.g. ,
object , user , device , customer , or the like) .
[0113] At step 622 , the value for the key is generated
based in the newly allocated chunk identifier and the size of
the selected chunk . Similar to step 618 , the value may be
formatted as < chunk_ID , num_blocks > , where chunk_D is
the chunk identifier allocated for the specific chunk and
num_blocks indicates its size .
[0114] At step 624 , the signature of the selected chunk
may be stored in the CAS . For example , the hash table (at
each of the appropriate levels) may be updated to include the
mapping between the signature of the selected chunk and its

chunk identifier . In some embodiments , the size of each
chunk is stored in the hash table . As discussed throughout ,
the hash table (or hash mapping) may be encoded in key
value pairs stored in a B - tree . At step 626 , the chunk counter
is updated . The chunk store may sequentially increment the
value of the chunk counter by increasing its value by 1 .
[0115] Process 600 flows to step 628 (from step 618 or
step 626) . At step 628 , the object's metadata may be updated
to include an indication of an association between the key
and the value in metadata for the data object . That is , the key
and value may be stored as a key - value pair in a B - Tree (e.g. ,
a COW B - Tree) included in the metadata to encode the
logical mapping for the object . In some embodiments , the
key and paired value may be inserted into the logical
mapping B - Tree at step 628. Such logical mappings are
discussed at least in conjunction with FIG . 4D , and provide
a mapping between a logical address space and a chunk
address space for the data object .
[0116] Also at step 628 , the loop counter may be updated .
That is , the value of the loop_counter may be incremented
by 1. Also , the block counter is updated based on the chunk
size . The value of block_count may be increased by the
number of data blocks included in the selected chunk . Thus ,
the block counter keeps tabs of the number of data blocks
processed by the loop of process 600. Thus , the block
counter may be employed to determine the logical block
address of the each block of each chunk . At decision step
630 , it is determined whether to end or finish loop . The
decision to end the loop may be based on the loop counter .
If the loop counter is greater than the number of blocks in the
data object (e.g. , each chunk in the data object has been
processed by the loop) , the loop may be terminated . If the
loop is not terminated , process 600 may flow back to step
612 to select the next chunk . Otherwise , the loop may be
terminated and process 600 may flow to step 632 .
[0117] At step 632 , the data for the data object may be
stored , e.g. , in a data store . Each chunk may be stored in data
store . The data store may employ a Log - Structured File
System (LFS) . The chunk of the data chunks of the data
object are distributed over a set of data segments of the LFS .
Each segment of the set of data segments may include a
subset of the set of data chunks . The LFS may address each
block of the set of data blocks by a segment address of a
segment addresses space of the LFS . Via the loop of blocks
610-630 , each chunk of the set of data chunks is uniquely
identified by a chunk identifier of a set of sequential chunk
identifiers . Thus , each chunk is addressed by chunk
addresses of a chunk address space
[0118] Storing the data may include generating a chunk
mapping for the stored object . That is , storing the data may
include generating a mapping for each chunk address of the
chunk address space to a segment address of the segment
address space . The chunk mapping may be similar to those
embodiments discussed in conjunction with FIG . 4D . That
is , the chunk mapping may provide a mapping between the
chunk address space and the segment address space of the
stored data , and be stored as key - value pairs in a B - Tree
(e.g. , a COW B - Tree) . The metadata for the object (encoding
the mappings between the logical address space , the chunk
address space , the segment address space , and the hash
values) may be stored at step 632 .
[0119] Also at step 632 , a snapshot of the data object may
be captured . The snapshot of the data object may be encoded
in the B - Tree mappings , via snapshot key - value pairs . A

a

a

US 2022/0121365 A1 Apr. 21 , 2022
17

a

a

a

snapshot key may indicate a snapshot identifier (snapshot_
ID) and a logical address of the data) . A snapshot value for
the key may indicate a chunk identifier for where the data of
the logical address is included in . The snapshot captured at
step 630 may be a first snapshot . Updated data may be
received and a second snapshot of the data may be captured .
The snapshot key - value pairs may be encoded in a B - Tree
that sorts n - tuple representations of the snapshot key - value
pairs via a common snapshot identifier .
[0120] FIG . 6B illustrates a flowchart of an exemplary
process 640 for updating a stored data in a distributed
computing system , in accordance with some embodiments .
Process 640 begins at step 642 , where updated data of an
existing object is received . The data , prior to being updated
(e.g. , edited by a user) , may have been stored in the
distributed - computing system via process 600 of FIG . 6A .
At step 644 , the data is re - chunked (e.g. , the updated data is
re - subdivided into a set of new chunks) . In the various
embodiments , the entirety of the data may be re - chunked ,
even if the data has been only slightly updated (e.g. , the
entirety of the data will be re - chunked even if the user only
changes a single bit in the data) . Various embodiments for
chunking data are described at least in conjunction with step
604 of FIG . 6A . At step 646 , a signature is generated for
each of the data chunks . Various embodiments for generat
ing a signature for a data chunk are discussed at least in
conjunction with step 606 of FIG . 6A .
[0121] At step 648 , the block signatures generated at step
648 are compared to the object's previous block signatures
(e.g. , the signatures generated for a most recent (but previ
ous) updating of the data) . If this is the first instance of a data
update for the object , then the signatures will be compared
to the signatures generated via process 600 of FIG . 6A . In
some embodiments , an object signature list is generated and
stored for each storing and / or updating of the data . The
signature list may be kept in the CAS discussed at least in
conjunction with process 600. At decision step 650 , it is
determined whether at least one of the signatures of the
current version of the object (e.g. , those signatures deter
mined at step 646) is different from the signatures of the
previous version of the object . If the signatures differ , then
the updated data will be stored , via process 640 flowing to
step 652. If the signatures are identical , then the data is
identical (and does not need to be stored) and process 640 is
terminated by flowing to step 656 .
[0122] At step 652 , the key - value pairs storing the objects
logical mapping (for the previous version of the object) are
deleted from the object's metadata . At step 654 , the updated
data is stored . Embodiments for storing data are discussed at
least in conjunction with blocks 608-632 of FIG . 6A .
Process 640 is halted and / or terminated at step 656 .
[0123] FIG . 6C illustrates a flowchart of an exemplary
process 660 for deleting a stored data in a distributed
computing system , in accordance with some embodiments .
At step 662 , the object identifier (e.g. , Object_ID) for the
object to delete is received . At step 664 , identify each n - tuple
of the logical mapping of the object . The n - tuples may be
identified by traversing object's B - Tree encoding its logical
mapping . The object identifier may be employed to locate
the object's B - Tree . At step 666 , each chunk associated with
the object is identified , via the n - tuples identified at step 664 .
The associated chunks may be identified via accessing the
values of the keys encoded in the identified n - tuples . At step
668 , the reference counter is updated for each chunk iden

tified at step 666. Updating the reference counter of an
identified chunk may include decrementing the value of the
reference counter by 1 because the object is being deleted .
A garbage collection process may be generally responsible
for deleting chunks where the value of the reference counter
has reached 0. At step 670 , the metadata for the object ,
including the logical mapping for the object is deleted .
[0124] FIG . 7 illustrates a flowchart of an exemplary
fault - tolerant processes 700 for uploading a snapshot of a
data object to an accessible data store , in accordance with
some embodiments . Process 700 begins , at step 702 where
updated data for the data object is received , as well as a
snapshot identifier . The snapshot identifier may be an iden
tifier of a most recent (but previous) snapshot . In various
embodiment , the received snapshot identifier may refer to a
previous snapshot that is directed towards a most recent (but
previous) version of the data object . The updated data may
be for a current , updated , and / or new version of the data
object . At step 704 , the received snapshot identifier is
updated . To update the snapshot identifier , the received
snapshot identifier may be incremented by one . For
example , the received snapshot identifier may have a value
of N , where N is a non - negative integer (e.g. , snapshot_
ID = N) . The updated value may have a value of N + 1 , e.g. ,
snapshot_ID = N + 1 . The updated snapshot identifier may
identify the requested snapshot (e.g. , the snapshot that
includes the current , updated , and / or new version of the
data) . In instances where the first snapshot of a data object
is the first snapshot for the data object , N = 0 , and there is no
previous versions of the data object to refer to .
[0125] At step 706 , the snapshot (or its corresponding
snapshot identifier) is labeled as an incomplete snapshot .
The label may be a state variable for the snapshot that
indicates that the snapshot has not yet successfully been
uploaded , and thus is not in a complete state . At step 708 , a
set of difference data blocks is identified . The identified
difference blocks may be the blocks in the data that have
been updated from and / or not included in the previous
version of the data . That is , each block of the set of
difference blocks includes data that is different from and / or
not included in the data of a corresponding block of the
previous snapshot of the object , where the previous snapshot
is the snapshot identified via the snapshot identifier received
at step 702. The set of difference blocks may be unacknowl
edged blocks . For example , a difference block that has been
successfully uploaded to the data store may be labeled a
label that indicates the blocks as being an acknowledged
block . An uploaded block may be determined to be success
fully uploaded via receiving an acknowledgment signal that
indicates successfully receiving the block for the snapshot .
Thus , the acknowledgment signal may include the value for
the current snapshot identifier to indicate that the successful
uploading of the block was for the current snapshot . Any
block that is not labeled as an acknowledged block may be
an unacknowledged block .
[0126] At decision step 710 , it is determined whether the
identified set of blocks is the null set . If the set of blocks is
the null set , then process 700 flows to step 738. Otherwise ,
process 700 flows to step 712. At step 712 , the set of
difference blocks may begin being uploaded to the data
store . The uploading may be asynchronous uploading , in
that the blocks may be uploaded one after another , without
receiving an acknowledgment of other handshaking mecha
nism from the data store . At step 714 , as each block begins

US 2022/0121365 A1 Apr. 21 , 2022
18

a

a

2

its upload , the block is labeled as an outstanding block . The
label may be a state variable for the block . For a block that
is in a state labeled as outstanding may be a block that has
begun its uploading , however , an indication of a successful
receipt of the block (e.g. , a corresponding acknowledgment
signal) has not yet been received .
(0127] Blocks 716-726 of process 700 are directed to
ensure that an asynchronous upload of the data blocks is
limited by an upload threshold , e.g. , these blocks ensure an
asynchronous upload does not upload a number of blocks ,
which is greater than the upload threshold , without receiving
an acknowledgment from the upload's destination (e.g. , the
data store) . At decision step 716 , it is determined whether the
number of outstanding blocks (e.g. , the number of blocks
that are labeled as outstanding) is greater than the upload
threshold . If the number of outstanding blocks is less than
the threshold , then process flows to step 718 , where the
uploading of the blocks is continued and process 700 then
flows to step 728. Otherwise , if too many outstanding blocks
have been uploaded without acknowledgment (e.g. , as mea
sured via comparison to the upload threshold) , then process
700 flows to step 720. At step 720 , the uploading of the
blocks is suspended until the number of outstanding blocks
drops below the upload threshold .
[0128] At step 722 , it is determined whether a system
failure has occurred . A system failure may include that the
formerly accessible data store is no longer accessible . That
is , a system failure occurred such that the data store has
become inaccessible . If a system failure is detected , then
process 700 flows to step 734. If no system failure is
detected at step 722 , then process 700 flows to step 724. At
decision step 724 , it is determined whether an acknowledg
ment signal for at least a portion of the outstanding blocks
has been received . If such an acknowledgment signal is not
received , then process 700 returns to step 722 to determine
is a system failure is detected . If an acknowledgment signal
for a portion of the outstanding blocks has been received ,
then process 700 flows to step 726. At step 726 , and in
response to receiving an acknowledgment signal for the
portion of the outstanding blocks , the label (e.g. , a state
variable) for each outstanding block in the portion of the
outstanding blocks is transition from indicating that the
block is outstanding to indicating that the block is acknowl
edged (e.g. , the block has been successfully uploaded) .
When a block is transitioned from an outstanding block to an
acknowledged block , the block may be removed from the set
of difference blocks . From step 726 , process returns to
decision step 716 to determine if the outstanding blocks
count has been sufficiently reduced to fall below the upload
threshold . If the count has been sufficiently reduced , process
700 flows to step 718 , where the uploading of the blocks is
re - started and / or continued . From step 718 , process 700
flows to step 728. Otherwise , process 700 continues to step
720 to further suspend the uploading process until the count
of outstanding blocks has been sufficiently reduced .
[0129] At decision step 728 , similar to decision step 722 ,
it is determined whether a system failure has occurred . If a
system failure is detected at step 728 , process 700 flows to
step 734. Otherwise , process 700 flows to decision step 730 .
At decision step 730 , similar to step 724 , it is determined
whether an acknowledgement signal has been received . If an
acknowledgment signal has not been received , process 700
returns to step 710 to determine if the identified set of

difference block is the null set . If an acknowledgment signal
has been received , process 700 flows to step 732 .
[0130] At step 732 , similar to step 726 and in response to
receiving an acknowledgment signal for the portion of the
outstanding blocks , the label (e.g. , a state variable) for each
outstanding block in the portion of the outstanding blocks is
transition from indicating that the block is outstanding to
indicating that the block is acknowledged (e.g. , the block has
been successfully uploaded) . When a block is transitioned
from an outstanding block to an acknowledged block , the
block may be removed from the set of difference blocks .
From step 732 , process returns to decision step 710 to
determine if the set of difference blocks is the null set . If
more blocks require uploading , then process 700 returns to
step 712 to continue uploading blocks .
[0131] If a system failure is detected (at either step 722 or
step 728) , process 700 flows to step 734. At step 734 ,
metadata for the unsuccessful (e.g. , incomplete) snapshot is
written and / or generated . The metadata written includes
indications of each block that was successfully uploaded in
the snapshot (e.g. , the metadata includes an indication of
each block that was transitioned from an outstanding block
to an acknowledged block during the failed snapshot) . The
metadata for the snapshot may additionally indicate that the
snapshot's state variable is set to incomplete . As noted
throughout , an incomplete snapshot may not be recoverable .
The metadata may include key - value pairs arranged in a
B - Tree , as discussed in conjunction with at least the embodi
ments of FIGS . 5D - 5E . After the metadata is written , process
700 flows to decision step 736 , to determine whether the
system is online and / or the failure of the has been resolved ,
e.g. , the previously inaccessible data store has become
accessible once again . Process 700 loops around decision
step 736 , until the system is back online . When system
failure has been resolved , process 700 returns to step 704 to
begin another snapshot after the uploading of this snapshot
has failed . At step 704 , the snapshot identifier is incremented
and the next snapshot is started . Note that because any block
that was transitioned to an acknowledged block during the
uploading of the failed snapshot is labeled as an acknowl
edged block , will not be included in the next set of unac
knowledged difference blocks identified in step 708. How
ever , blocks still labeled as outstanding blocks will be
included in the set of unacknowledged difference blocks .
[0132] When the set of difference blocks is the null set
(e.g. , each of the initially identified difference blocks has
been successfully updated) , process 700 flows from step 710
to 738. At step 738 , the snapshot (or the snapshot identifier)
is labeled as complete . At step 740 , the metadata for the
complete snapshot is written and / or generated . The metadata
written may include includes indications of each block that
was successfully uploaded in the snapshot (e.g. , the meta
data includes an indication of each block that was transi
tioned from an outstanding block to an acknowledged block
during the completed snapshot) . The metadata for the snap
shot may additionally indicate that the snapshot's state
variable is set to complete . The metadata may include
key - value pairs arranged in a B - Tree , as discussed in con
junction with at least the embodiments of FIGS . 5D - 5E .
After the metadata is written , process 700 flows to step 742 ,
where the snapshot identifier is returned .
[0133] Described herein are techniques for the efficient
storage and recovery of difference - level snapshots for data
objects . In one embodiment , a method for storing data on a

a

US 2022/0121365 A1 Apr. 21 , 2022
19

a

distributed computing system is performed . The method
may include receiving data of a data object . The data may be
structured as an ordered set of data blocks . The data may be
subdivide into an ordered set of data chunks . Each chunk in
the set of data chunks may include an ordered subset of the
set of data blocks . A next chunk of the set of data chunks
may be selected . The selection of the next chunk may be
based on at least one of the order of the set of chunks or a
previous chunk identifier for a previously selected chunk of
the set of chunks . A key for the next chunk may be generated
based on an indication of an initial block of the next chunk .
A value for the key may be generated . The value may be
based on a number of blocks included in the next chunk . The
value may be further based on at least one of a next chunk
identifier for the next chunk or another chunk identifier for
a duplicated chunk . Metadata for the data object may be
updated to indicate an association between the key for the
next chunk and the value for the key .
[0134] The method may further include determining
whether the next chunk is a duplication of another chunk
based on a next signature for the next chunk and duplicated
signature for the duplicated chunk . The duplicated chunk
may have been previously selected . In response to deter
mining that the next chunk is a duplication of another chunk ,
the value for the key may be generated based on the number
of blocks included in the next chunk and another chunk
identifier for the duplicated chunk . The next chunk identifier
for the next chunk may be allocated based on a previous
chunk identifier for the previously selected chunk . The value
for the key may be generated based on the number of blocks
included in the next chunk and the next chunk identifier for
the next chunk . A value for the previous chunk identifier
may be updated to be the next chunk identifier .
[0135] In some embodiments , and in response to deter
mining that the next chunk is not a duplication of another
chunk , the method may further include storing an associa
tion between the next signature and the next chunk identifier
in a content aware store (CAS) . The CAS may store an
association between the duplicated signature and the other
chunk identifier for the duplicated chunk . In such embodi
ments , and in further response to determining that the next
chunk is a duplication of another chunk , the method may
further include incrementing a value for a reference counter
for the duplicated chunk . The value for the key may be
further based on the incremented value for the reference
counter for the duplicated chunk . In further response to
determining that the next chunk is not a duplication of
another chunk , the method may further include initializing a
value for a reference counter for the next chunk . The value
for the key may be generated further based on the initialized
value for the reference counter for the next chunk .
[0136] In some embodiments , for each chunk of the set of
the data chunks , an associated chunk signature may be
determined based on the subset of data blocks included in
the chunk and a hash function . A unique logical block
address (lba) may be assigned to each block of the set of data
blocks based on the ordering of the set of data blocks . The
key for the next chunk may encode the lba of the initial block
of the next chunk . The value for the key may encode at least
one of the number of sequential blocks in the next chunk or
a number of contiguous chunks that in an ordered combi
nation include a contiguous subset of the set of data blocks .
The lba for each block in the next chunk may be indicated
by the order of the blocks included in the next chunk and a

combination of the encoded Iba of the initial block of the
next chunk and the encoded number of blocks included in
the next chunk . A virtualized data center may be employed
to provide the data of the data object . The virtualized data
center may implement at least one of a virtual storage area
network (VSAN) , a virtual disk file system (VDFS) , or a
virtual machine (VM) .
[0137] In various embodiments , the association between
the key for the next chunk and the value for the key may be
encoded in a key - value pair of at least one of a copy - on
write (COW) B - tree or a log - structured merge tree (LSM
tree) included in the metadata for the data object . The
method may further include storing each chunk of the set of
chunks in an object data store . The object data store may
employ a Log - Structured File System (LFS) . The set of data
chunks may be distributed over a set of data segments of the
LFS . Each segment of the set of data segments may include
a subset of the set of data chunks . The LFS may address each
block of the set of data blocks by a segment address of a
segment addresses space . Each chunk of the set of data
chunks may be uniquely identified by a chunk identifier of
a set of sequential chunk identifiers . Each chunk may be
addressed by chunk addresses of a chunk address space . In
such embodiments , the method may further include gener
ating a mapping for each chunk address of the chunk address
space to a segment address of the segment address space .
[0138] In another embodiment , a method for uploading a
first snapshot of a data object to an accessible data store is
provided . The method may include identifying , within data
of the data object , a first set of data blocks of the first
snapshot . The first set of data blocks may include at least a
first block and a second block . Each block of the first set of
data blocks may include data that is different from data of a
corresponding block of a previous snapshot . The previous
snapshot may be a snapshot of the object that was taken
previous to the first snapshot . An indication of a first
snapshot identifier for the first snapshot and an indication of
the first block may be encoded within first metadata of the
first snapshot . The method may include uploading the first
snapshot . While uploading the first snapshot , the first block
may be uploaded to the data store . While uploading the first
snapshot , and subsequent to uploading the first block , it may
be determined that the data store has become inaccessible . In
such an event , an indication that the first snapshot is an
incomplete snapshot may be encoded within the first meta
data for the first snapshot . In response to determining that
the data store has become inaccessible , the uploading of the
first snapshot may be terminated . Subsequent to terminating
the uploading of the first snapshot , it may be determined that
the data store has again become accessible subsequent to the
data store becoming inaccessible while uploading the first
complete snapshot In response to determining that the data
store is again accessible , uploading a second snapshot of the
data object may be initiated . A second snapshot identifier for
the second snapshot of the data object may be generated .
While uploading the second snapshot , the second block may
be uploaded to the data store . An indication of the second
snapshot identifier , an indication of the second block , and an
indication that the second snapshot is a complete snapshot
may be encoded within second metadata for the second
snapshot .
[0139] In response to uploading the first block to the
accessible data store while uploading the first snapshot , the
method may further include generating a first label for the

US 2022/0121365 A1 Apr. 21 , 2022
20

first block . The first label may indicate that the first block is
an outstanding block . Prior to determining that the acces
sible data store has become inaccessible while uploading the
first snapshot , a first acknowledgment signal may be
received from the data store . The first acknowledgment
signal may indicate a receipt of the first block while upload
ing the first snapshot . In response to receiving the first
acknowledgment signal , the first label for the first block may
be transitioned to indicate that the first block is an acknowl
edged block . The indication of the first block may be
encoded within the first metadata . The encoding of the
indication of the first block may be based on the first label
for the first block indicating that the first block is an acknowledged block .
[0140] Prior to determining that the accessible data store
has become inaccessible while uploading the first snapshot ,
the second block may be uploaded to the data store while
uploading the first snapshot . In response to uploading the
second block to the accessible data store while uploading the
first snapshot , a second label for the second block may be
generated . The second label may indicate that the second
block is an outstanding block . The method may further
include foregoing encoding , within the first metadata , an
indication of the second block . The foregoing of the encod
ing of the indication of the second block may be based on the
second label for the second block indicating that the second
block is an outstanding block .
[0141] In such embodiments , in response to determining
that the inaccessible data store has become accessible while
uploading the first snapshot may further include uploading
the second block to the data store while uploading the
second snapshot . Uploading the second block may be based
on the second label for the second block indicating that the
second block is an outstanding block . A second acknowl
edgment signal may be received from the data store . The
second acknowledgment signal may indicate a receipt of the
second block while uploading the second snapshot . In
response to receiving the second acknowledgment signal
while uploading the second snapshot , the second label for
the second block may be transitioned to indicate that the
second block is an acknowledged block . The indication of
the second block may be encoded within the second meta
data . The encoding of the indication of the second block may
be based on the second label for the second block indicating
that the second block is an acknowledged block .
[0142] In some embodiments , the first set of data blocks
includes a third data block . In response to determining that
the inaccessible data store has become accessible while
uploading the first snapshot may further comprise uploading
the third block to the data store while uploading the second
snapshot . An indication of the third block may be encoded
within the second metadata . In such embodiments , the
method may further include and in response to receiving a
request to upload a third snapshot of the data object to the
data store , generating a third snapshot identifier for the third
snapshot of the data object . A second set of data blocks of
the third snapshot may be identified within the data of the
data object . The second set of data blocks may include at
least an updated version of the first block and an updated
version of the third block . Each block of the second set of
data blocks may include data that is different from data of a
corresponding block of at least one of the incomplete first
snapshot or the complete of the object . The updated version
of the first block and the updated version of the third block

may be uploaded to the data store while uploading the third
snapshot . An indication of the third snapshot identifier may
be encoded within third metadata for the third snapshot . An
indication of the updated first block , an indication of the
updated third block , and an indication that the third snapshot
is a complete snapshot may also be encoded in the third
metadata .
[0143] In various embodiments , and in response to receiv
ing a request to delete the second snapshot of the data object ,
the method may further include accessing the first metadata
for the first snapshot , the second metadata for the second
snapshot , and the third metadata for the third snapshot . In
response to identifying within the first metadata that the first
snapshot is an incomplete snapshot , the method may further
include foregoing accessing previous metadata for the pre
vious snapshot . In response to identifying that the third
metadata includes the indication of the updated version of
the first block and that the second metadata does not include
an indication of the first block , the method may further
include deleting the first block of the first snapshot and the
indication of the first block in the first metadata . In response
to identifying that the third metadata does not include an
indication of the second block and that the second metadata
includes the indication of the second block , the method may
further include foregoing deleting the second block of the
second snapshot and foregoing deleting the indication of the
second block in the second metadata . In response to iden
tifying that the third metadata includes the indication of the
updated third block and that the second metadata does
include the indication of the third data block , the method
may further include deleting the third block of the second
snapshot and deleting the indication of the third block in the
second metadata .
[0144] In still additional embodiments , the indication of
the first block in the first metadata may be a first n - tuple . The
first n - tuple may include the first snapshot identifier as a first
component and a logical address of the first bock as second
component . The first component may be a more significant
component than the second component . In some of these
embodiments , the first n - tuple may represent a first key . The
first metadata may further encode a second n - tuple that
includes a first value that is paired with the first key . The
second n - tuple may further include an identifier for a first
data chunk that stores the first block as a first component and
a value of a reference counter for the first data chunk as a
second component . The first and second metadata may be
encoded as key - value pairs in a copy - on - write (COW)
B - Tree or a Log - Structured Merging Tree (LSM - Tree) .
[0145] The method may further include employing a vir
tualized data center to identify the first set of data blocks .
The virtualized data center may implements at least one of
a virtual storage area network (VSAN) , a virtual disk file
system (vDFS) , or a virtual machine (VM) . An uploader
agent of the virtualized data center may be employed to
upload the first block to the data store while uploading the
first snapshot .
[0146] In another embodiment , a method for storing data
on a distributed computing system is performed . The dis
tributed computing system may include a content aware
store (CAS) . The method may include receiving data of a
data object . The data may be structured as an ordered set of
data blocks . The data may be subdivided into an ordered set
of data chunks . Each chunk in the set of data chunks may
include an ordered subset of the set of data blocks . An

a

a

US 2022/0121365 A1 Apr. 21 , 2022
21

associated chunk signature may be determined for each
chunk in the set of data chunks . The chunk signature may be
determined based on the subset of data blocks included in
the chunk . A particular chunk of the set of data chunks may
be selected . The selection of the particular chunk may be
based on the order of the set of data chunks . A particular
chunk signature may be associated with the particular
chunk . A particular key for the particular chunk may be
generated . The generation of the particular key may be based
on a logical address and / or a block_counter . It may be
determined whether the particular chunk is a duplication of
a previously selected chunk of the set of data chunks . The
determination may be based on the particular signature and
a duplicated signature that is associated with the previously
selected chunk . The duplicated signature may be stored in
the CAS . In response to determining that the particular
chunk is the duplication of the previously selected chunk , a
particular value for the particular key may be generations .
The generation of the key may be based on a chunk identifier
for the previously selected chunk and a particular number of
blocks included in the particular chunk . In response to
determining that the particular chunk is not the duplication
of the previously selected chunk , a particular chunk identi
fier for the particular chunk may be allocated . In some
embodiments , the particular chunk identifier may be based
on a chunk counter . In further response to determining that
the particular chunk is not a duplicated chunk , the particular
value for the particular key may be generated based on the
particular chunk identifier and the particular number of
blocks . In still further response to determining that the
particular chunk is not a duplicated chunk , the particular
signature may be stored in the CAS and the chunk counter
may be updated . The block counter may be updated based on
the particular number of blocks . An association between the
particular key and the particular value may be indicated in
metadata for the data object .
[0147] In another embodiment , a method for uploading a
first snapshot of a data object to an accessible data store is
provided . The first snapshot may be identified by a snapshot
identifier . The method may include identifying a first set of
data blocks within data of the data object . The first set of
blocks may include at least a first block and a second block .
Each block of the first set of data blocks includes data that
is different from data of a corresponding block of a previous
snapshot of the object . In various embodiments , the first
block may be uploaded to the accessible data store . In some
embodiments , after the block is uploaded to the data store ,
it may be determined that the data store has become inac
cessible . In response to determining that the data store has
become inaccessible , first metadata for the first snapshot
may be generated . The first metadata for the first snapshot
may indicate at least the first snapshot identifier , the first
block , and that the first snapshot is an incomplete snapshot .
In some embodiments , after determining that the data store
has become inaccessible , it may be determined that the
inaccessible data store has now become accessible . In
response to determining that the data store is now accessible ,
a second snapshot identifier for a second snapshot of the data
object may be generated . The second block may be uploaded
to the data store . Second metadata for the second snapshot
may be generated . The second metadata may indicate the
second snapshot identifier , the second block , and that the
second snapshot is a complete snapshot .

[0148] In accordance with some implementations , a com
puter - readable storage medium (e.g. , a non - transitory com
puter - readable storage medium) is provided , the computer
readable storage medium storing one or more programs for
execution by one or more processors of an electronic device ,
the one or more programs including instructions for per
forming any of the methods or processes described herein .
[0149] The foregoing descriptions of specific embodi
ments have been presented for purposes of illustration and
description . They are not intended to be exhaustive or to
limit the scope of the claims to the precise forms disclosed ,
and it should be understood that many modifications and
variations are possible in light of the above teaching .
What is claimed is :
1. A method for storing data on a distributed computing

system , the method comprising :
receiving data of a data object that is structured as an

ordered set of data blocks ;
subdividing the data into an ordered set of data chunks

such that each chunk in the set of data chunks includes
an ordered subset of the set of data blocks ;

selecting a next chunk of the set of data chunks based on
at least one of the order of the set of chunks or a
previous chunk identifier for a previously selected
chunk of the set of chunks ;

generating a key for the next chunk based on an indication
of an initial block of the next chunk ;

generating a value for the key based on a number of
blocks included in the next chunk and at least one of a
next chunk identifier for the next chunk or another
chunk identifier for a duplicated chunk ; and

updating metadata for the data object to indicate an
association between the key for the next chunk and the
value for the key .

2. The method of claim 1 , further comprising :
determining whether the next chunk is a duplication of

another chunk based on a next signature for the next
chunk and duplicated signature for the duplicated
chunk , wherein the duplicated chunk has been previ
ously selected ;

in response to determining that the next chunk is a
duplication of another chunk :
generating the value for the key based on the number of

blocks included in the next chunk and another chunk
identifier for the duplicated chunk ; and

in response to determining that the next chunk is not a
duplication of another chunk :
allocating the next chunk identifier for the next chunk

based on a previous chunk identifier for the previ
ously selected chunk ;

generating the value for the key based on the number of
blocks included in the next chunk and the next chunk
identifier for the next chunk ; and

updating a value for the previous chunk identifier to be
the next chunk identifier .

3. The method of claim 2 , wherein in response to deter
mining that the next chunk is not a duplication of another
chunk , the method further comprises :

storing an association between the next signature and the
next chunk identifier in a content aware store (CAS) ,
wherein the CAS stores an association between the
duplicated signature and the other chunk identifier for
the duplicated chunk .

a

a a

US 2022/0121365 A1 Apr. 21 , 2022
22

4. The method of claim 2 , further comprising :
in further response to determining that the next chunk is

a duplication of another chunk :
incrementing a value for a reference counter for the

duplicated chunk ; and
generating the value for the key further based on the

incremented value for the reference counter for the
duplicated chunk ;

in further response to determining that the next chunk is
not a duplication of another chunk :
initializing a value for a reference counter for the next

chunk ; and
generating the value for the key further based on the

initialized value for the reference counter for the next
chunk .

5. The method of claim 1 , further comprising :
for each chunk of the set of the data chunks , determining

an associated chunk signature based on the subset of
data blocks included in the chunk and a hash function .

6. The method of claim 1 , further comprising :
sequentially assigning a unique logical block address (lba)

to each block of the set of data blocks based on the
ordering of the set of data blocks ;

wherein the key for the next chunk encodes the lba of the
initial block of the next chunk ; and

wherein the value for the key encodes at least one of the
number of sequential blocks in the next chunk or a
number of contiguous chunks that in an ordered com
bination include a contiguous subset of the set of data
blocks , such that the lba for each block in the next
chunk is indicated by the order of the blocks included
in the next chunk and a combination of the encoded lba
of the initial block of the next chunk and the encoded
number of blocks included in the next chunk .

7. The method of claim 1 , further comprising :
employing a virtualized data center to provide the data of

the data object , wherein the virtualized data center
implements at least one of a virtual storage area net
work (VSAN) , a virtual disk file system (vDFS) , or a
virtual machine (VM) .

8. The method of claim 1 , wherein the association
between the key for the next chunk and the value for the key
is encoded in a key - value pair of at least one of a copy - on
write (COW) B - tree or a log - structured merge tree (LSM
tree) included in the metadata for the data object .

9. The method of claim 1 , further comprising :
storing each chunk of the set of chunks in an object data

store , wherein the object data store employs a Log
Structured File System (LFS) and the set of data chunks
is distributed over a set of data segments of the LFS
such that each segment of the set of data segments
includes a subset of the set of data chunks .

10. The method of claim 9 , wherein the LFS addresses
each block of the set of data blocks by a segment address of
a segment addresses space and each chunk of the set of data
chunks is uniquely identified by a chunk identifier of a set of
sequential chunk identifiers , such that each chunk is
addressed by chunk addresses of a chunk address space , the
method further comprising :

generating a mapping for each chunk address of the chunk
address space to a segment address of the segment

distributed computing system , one or more processors , and
memory , the one or more programs including instructions
for performing operations comprising :

receiving data of a data object that is structured as an
ordered set of data blocks ;

subdividing the data into an ordered set of data chunks
such that each chunk in the set of data chunks includes
an ordered subset of the set of data blocks ;

selecting a next chunk of the set of data chunks based on
at least one of the order of the set of chunks or a
previous chunk identifier for a previously selected
chunk of the set of chunks ;

generating a key for the next chunk based on an indication
of an initial block of the next chunk ;

generating a value for the key based on a number of
blocks included in the next chunk and at least one of a
next chunk identifier for the next chunk or another
chunk identifier for a duplicated chunk ; and

updating metadata for the data object to indicate an
association between the key for the next chunk and the
value for the key .

12. The storage medium of claim 11 , the operations
further comprising :

determining whether the next chunk is a duplication of a
another chunk based on a next signature for the next
chunk and duplicated signature for the duplicated
chunk , wherein the duplicated chunk has been previ
ously selected ;

in response to determining that the next chunk is a
duplication of another chunk :
generating the value for the key based on the number of

blocks included in the next chunk and another chunk
identifier for the duplicated chunk ; and

in response to determining that the next chunk is not a
duplication of another chunk :
allocating the next chunk identifier for the next chunk

based on a previous chunk identifier for the previ
ously selected chunk ;

generating the value for the key based on the number of
blocks included in the next chunk and the next chunk
identifier for the next chunk ; and

updating a value for the previous chunk identifier to be
the next chunk identifier .

13. The storage medium of claim 12 , wherein in response
to determining that the next chunk is not a duplication of
another chunk , the operations further comprise :

storing an association between the next signature and the
next chunk identifier in a content aware store (CAS) ,
wherein the CAS stores an association between the
duplicated signature and the other chunk identifier for
the duplicated chunk .

14. The storage medium of claim 12 , the operations
further comprising :

in further response to determining that the next chunk is
a duplication of another chunk :
incrementing a value for a reference counter for the

duplicated chunk ; and
generating the value for the key further based on the

incremented value for the reference counter for the
duplicated chunk ;

in further response to determining that the next chunk is
not a duplication of another chunk :
initializing a value for a reference counter for the next
chunk ; and

address space .
11. A non - transitory computer - readable storage medium

storing one or more programs configured to be executed by

US 2022/0121365 A1 Apr. 21 , 2022
23

a

a

generating the value for the key further based on the
initialized value for the reference counter for the next
chunk .

15. The storage medium of claim 11 , the operations
further comprising :

for each chunk of the set of the data chunks , determining
an associated chunk signature based on the subset of
data blocks included in the chunk and a hash function .

16. The storage medium of claim 11 , further comprising :
sequentially assigning a unique logical block address (lba)

to each block of the set of data blocks based on the
ordering of the set of data blocks ;

wherein the key for the next chunk encodes the lba of the
initial block of the next chunk ; and

wherein the value for the key encodes at least one of the
number of sequential blocks in the next chunk or a
number of contiguous chunks that in an ordered com
bination include a contiguous subset of the set of data
blocks , such that the lba for each block in the next
chunk is indicated by the order of the blocks included
in the next chunk and a combination of the encoded lba
of the initial block of the next chunk and the encoded
number of blocks included in the next chunk .

17. The storage medium of claim 11 , the operations
further comprising :

employing a virtualized data center to provide the data of
the data object , wherein the virtualized data center
implements at least one of a virtual storage area net
work (VSAN) , a virtual disk file system (vDFS) , or a
virtual machine (VM) .

18. The storage medium of claim 11 , wherein the asso
ciation between the key for the next chunk and the value for
the key is encoded in a key - value pair of at least one of a
copy - on - write (COW) B - tree or a log - structured merge tree
(LSM - tree) included in the metadata for the data object .

19. The storage medium of claim 11 , the operations
further comprising :

storing each chunk of the set of chunks in an object data
store , wherein the object data store employs a Log
Structured File System (LFS) and the set of data chunks
is distributed over a set of data segments of the LFS
such that each segment of the set of data segments
includes a subset of the set of data chunks .

20. The storage medium of claim 19 , wherein the LFS
addresses each block of the set of data blocks by a segment
address of a segment addresses space and each chunk of the
set of data chunks is uniquely identified by a chunk identifier
of a set of sequential chunk identifiers , such that each chunk
is addressed by chunk addresses of a chunk address space ,
the operations further comprising :

generating a mapping for each chunk address of the chunk
address space to a segment address of the segment

subdividing the data into an ordered set of data chunks
such that each chunk in the set of data chunks
includes an ordered subset of the set of data blocks ;

selecting a next chunk of the set of data chunks based
on at least one of the order of the set of chunks or a
previous chunk identifier for a previously selected
chunk of the set of chunks ;

generating a key for the next chunk based on an
indication of an initial block of the next chunk ;

generating a value for the key based on a number of
blocks included in the next chunk and at least one of
a next chunk identifier for the next chunk or another
chunk identifier for a duplicated chunk ; and

updating metadata for the data object to indicate an
association between the key for the next chunk and
the value for the key .

22. The system of claim 21 , the operations further com
prising :

determining whether the next chunk is a duplication of a
another chunk based on a next signature for the next
chunk and duplicated signature for the duplicated
chunk , wherein the duplicated chunk has been previ
ously selected ;

in response to determining that the next chunk is a
duplication of another chunk :
generating the value for the key based on the number of

blocks included in the next chunk and another chunk
identifier for the duplicated chunk ; and

in response to determining that the next chunk is not a
duplication of another chunk :
allocating the next chunk identifier for the next chunk

based on a previous chunk identifier for the previ
ously selected chunk ;

generating the value for the key based on the number of
blocks included in the next chunk and the next chunk
identifier for the next chunk ; and

updating a value for the previous chunk identifier to be
the next chunk identifier .

23. The system of claim 22 , wherein in response to
determining that the next chunk is not a duplication of
another chunk , the operations further comprise :

storing an association between the next signature and the
next chunk identifier in a content aware store (CAS) ,
wherein the CAS stores an association between the
duplicated signature and the other chunk identifier for
the duplicated chunk .

24. The system of claim 22 , the operations further com
prising :

in further response to determining that the next chunk is
a duplication of another chunk :
incrementing a value for a reference counter for the

duplicated chunk ; and
generating the value for the key further based on the

incremented value for the reference counter for the
duplicated chunk ;

in further response to determining that the next chunk is
not a duplication of another chunk :
initializing a value for a reference counter for the next

chunk ; and
generating the value for the key further based on the

initialized value for the reference counter for the next
chunk .

25. The system of claim 21 , the operations further com
prising :

address space .
21. A distributed computing system for storing data , the

system comprising :
one or more processors ; and
a memory storing one or more programs configured to be

executed by the one or more processors , the one or
more programs including instructions for performing
operations comprising :
receiving data of a data object that is structured as an

ordered set of data blocks ;
a

US 2022/0121365 A1 Apr. 21 , 2022
24

for each chunk of the set of the data chunks , determining
an associated chunk signature based on the subset of
data blocks included in the chunk and a hash function .

26. The system of claim 21 , the operations further com
prising :

sequentially assigning a unique logical block address (lba)
to each block of the set of data blocks based on the
ordering of the set of data blocks ;

wherein the key for the next chunk encodes the lba of the
initial block of the next chunk ; and

wherein the value for the key encodes at least one of the
number of sequential blocks in the next chunk or a
number of contiguous chunks that in an ordered com
bination include a contiguous subset of the set of data
blocks , such that the lba for each block in the next
chunk is indicated by the order of the blocks included
in the next chunk and a combination of the encoded lba
of the initial block of the next chunk and the encoded
number of blocks included in the next chunk .

27. The system of claim 21 , the operations further com
prising :

employing a virtualized data center to provide the data of
the data object , wherein the virtualized data center
implements at least one of a virtual storage area net
work (VSAN) , a virtual disk file system (VDFS) , or a
virtual machine (VM) .

28. The system of claim 21 , wherein the association
between the key for the next chunk and the value for the key
is encoded in a key - value pair of at least one of a copy - on
write (COW) B - tree or a log - structured merge tree (LSM
tree) included in the metadata for the data object .

29. The system of claim 21 , the operations further com
prising :

storing each chunk of the set of chunks in an object data
store , wherein the object data store employs a Log
Structured File System (LFS) and the set of data chunks
is distributed over a set of data segments of the LFS
such that each segment of the set of data segments
includes a subset of the set of data chunks .

30. The system of claim 29 , wherein the LFS addresses
each block of the set of data blocks by a segment address of
a segment addresses space and each chunk of the set of data
chunks is uniquely identified by a chunk identifier of a set of
sequential chunk identifiers , such that each chunk is
addressed by chunk addresses of a chunk address space , the
method further comprising :

generating a mapping for each chunk address of the chunk
address space to a segment address of the segment

a

address space .
*

