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DISTRIBUTED OBJECT STORAGE 
SUPPORTING DIFFERENCE - LEVEL 

SNAPSHOTS 

FIELD 

[ 0001 ] The present disclosure relates generally to distrib 
uted - computing systems and , more specifically , to methods 
and systems that enable storing data objects in an object 
store in a distributed software designed data center ( SDDC ) , 
where the SDDC supports difference - level snapshots of the 
stored data objects . 

? 

BACKGROUND 

[ 0002 ] Modern computing systems provide distributed 
data center services . Such services may be provided by a 
software designed data center ( SDDC ) that may implement 
one or more virtual storage area networks ( e.g. , a VSAN ) and 
a virtual disk file system ( e.g. , a VDFS ) . Many of these 
distributed systems struggle to meet the ever - increasing 
needs of their users , such as high storage efficiency for vast 
quantities of data , high demands for system bandwidth , 
recoverability for lost data , and low - latency in the event of 
system failures . Attempts at optimizing conventional sys 
tems for enhanced performance in any one of these system 
requirements may compromise the performance in one or 
more of the other system requirements . Thus , there is a need 
for enhanced efficiencies for such distributed systems . 

OVERVIEW 

at least one of the order of the set of chunks or a previous 
chunk identifier for a previously selected chunk of the set of 
chunks . A key for the next chunk may be generated based on 
an indication of an initial block of the next chunk . A value 
for the key may be generated . The value may be based on a 
number of blocks included in the next chunk . The value may 
be further based on at least one of a next chunk identifier for 
the next chunk or another chunk identifier for a duplicated 
chunk . Metadata for the data object may be updated to 
indicate an association between the key for the next chunk 
and the value for the key . 
[ 0005 ] In one embodiment , a distributed computing sys 
tem for storing data may include one or more processors and 
memory . The memory may store one or more programs 
configured to be executed by the one or more processors . 
The one or more programs include instructions for perform 
ing operations comprising receiving data of a data object . 
The data may be structured as an ordered set of data blocks . 
The data may be subdivided into an ordered set of data 
chunks . Each chunk in the set of data chunks may include an 
ordered subset of the set of data blocks . A next chunk of the 
set of data chunks may be selected . The selection of the next 
chunk may be based on at least one of the order of the set 
of chunks or a previous chunk identifier for a previously 
selected chunk of the set of chunks . A key for the next chunk 
may be generated based on an indication of an initial block 
of the next chunk . A value for the key may be generated . The 
value may be based on a number of blocks included in the 
next chunk . The value may be further based on at least one 
of a next chunk identifier for the next chunk or another 
chunk identifier for a duplicated chunk . Metadata for the 
data object may be updated to indicate an association 
between the key for the next chunk and the value for the key . 
[ 0006 ] In another embodiment , a method for uploading a 
first snapshot of a data object to an accessible data store is 
provided . The method may include identifying , within data 
of the data object , a first set of data blocks of the first 
snapshot . The first set of data blocks may include at least a 
first block and a second block . Each block of the first set of 
data blocks may include data that is different from data of a 
corresponding block of a previous snapshot . The previous 
snapshot may be a snapshot of the object that was taken 
previous to the first snapshot . An indication of a first 
snapshot identifier for the first snapshot and an indication of 
the first block may be encoded within first metadata of the 
first snapshot . The method may include uploading the first 
snapshot . While uploading the first snapshot , the first block 
may be uploaded to the data store . While uploading the first 
snapshot , and subsequent to uploading the first block , it may 
be determined that the data store has become inaccessible . In 
such an event , an indication that the first snapshot is an 
incomplete snapshot may be encoded within the first meta 
data for the first snapshot . In response to determining that 
the data store has become inaccessible , the uploading of the 
first snapshot may be terminated . Subsequent to terminating 
the uploading of the first snapshot , it may be determined that 
the data store has again become accessible subsequent to the 
data store becoming inaccessible while uploading the first 
complete snapshot In response to determining that the data 
store is again accessible , uploading a second snapshot of the 
data object may be initiated . A second snapshot identifier for 
the second snapshot of the data object may be generated . 
While uploading the second snapshot , the second block may 
be uploaded to the data store . An indication of the second 

[ 0003 ] Described herein are techniques for the efficient 
storage and recovery of difference - level snapshots for data 
objects . In one embodiment , a method for storing data on a 
distributed computing system is performed . The method 
may include receiving data of a data object . The data may be 
structured as an ordered set of data blocks . The data may be 
subdivide into an ordered set of data chunks . Each chunk in 
the set of data chunks may include an ordered subset of the 
set of data blocks . A next chunk of the set of data chunks 
may be selected . The selection of the next chunk may be 
based on at least one of the order of the set of chunks or a 
previous chunk identifier for a previously selected chunk of 
the set of chunks . A key for the next chunk may be generated 
based on an indication of an initial block of the next chunk . 
A value for the key may be generated . The value may be 
based on a number of blocks included in the next chunk . The 
value may be further based on at least one of a next chunk 
identifier for the next chunk or another chunk identifier for 
a duplicated chunk . Metadata for the data object may be 
updated to indicate an association between the key for the 
next chunk and the value for the key . 
[ 0004 ] In one embodiment , a non - transitory computer 
readable storage medium storing one or more programs 
configured to be executed by one or more processors is 
provided . The one or more programs stored by the non 
transitory computer - readable storage medium include 
instructions for performing operations that are executable by 
a distributed computing system . The operations may include 
receiving data of a data object . The data may be structured 
as an ordered set of data blocks . The data may be subdivided 
into an ordered set of data chunks . Each chunk in the set of 
data chunks may include an ordered subset of the set of data 
blocks . A next chunk of the set of data chunks may be 
selected . The selection of the next chunk may be based on 
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block may be uploaded to the data store . While uploading 
the first snapshot , and subsequent to uploading the first 
block , it may be determined that the data store has become 
inaccessible . In such an event , an indication that the first 
snapshot is an incomplete snapshot may be encoded within 
the first metadata for the first snapshot . In response to 
determining that the data store has become inaccessible , the 
uploading of the first snapshot may be terminated . Subse 
quent to terminating the uploading of the first snapshot , it 
may be determined that the data store has again become 
accessible subsequent to the data store becoming inacces 
sible while uploading the first complete snapshot In response 
to determining that the data store is again accessible , upload 
ing a second snapshot of the data object may be initiated . A 
second snapshot identifier for the second snapshot of the 
data object may be generated . While uploading the second 
snapshot , the second block may be uploaded to the data 
store . An indication of the second snapshot identifier , an 
indication of the second block , and an indication that the 
second snapshot is a complete snapshot may be encoded 
within second metadata for the second snapshot . a 

snapshot identifier , an indication of the second block , and an 
indication that the second snapshot is a complete snapshot 
may be encoded within second metadata for the second 
snapshot . 
[ 0007 ] In one embodiment , a non - transitory computer 
readable storage medium storing one or more programs 
configured to be executed by one or more processors is 
provided . The one or more programs stored by the non 
transitory computer - readable storage medium include 
instructions for performing operations that are executable by 
a distributed computing system that includes an accessible 
data store . The operations may be for uploading a first 
snapshot of a data object to the accessible data store . The 
operations may include identifying , within data of the data 
object , a first set of data blocks of the first snapshot . The first 
set of data blocks may include at least a first block and a 
second block . Each block of the first set of data blocks may 
include data that is different from data of a corresponding 
block of a previous snapshot . The previous snapshot may be 
a snapshot of the object that was taken previous to the first 
snapshot . An indication of a first snapshot identifier for the 
first snapshot and an indication of the first block may be 
encoded within first metadata of the first snapshot . The 
operations may include uploading the first snapshot . While 
uploading the first snapshot , the first block may be uploaded 
to the data store . While uploading the first snapshot , and 
subsequent to uploading the first block , it may be determined 
that the data store has become inaccessible . In such an event , 
an indication that the first snapshot is an incomplete snap 
shot may be encoded within the first metadata for the first 
snapshot . In response to determining that the data store has 
become inaccessible , the uploading of the first snapshot may 
be terminated . Subsequent to terminating the uploading of 
the first snapshot , it may be determined that the data store 
has again become accessible subsequent to the data store 
becoming inaccessible while uploading the first complete 
snapshot In response to determining that the data store is 
again accessible , uploading a second snapshot of the data 
object may be initiated . A second snapshot identifier for the 
second snapshot of the data object may be generated . While 
uploading the second snapshot , the second block may be 
uploaded to the data store . An indication of the second 
snapshot identifier , an indication of the second block , and an 
indication that the second snapshot is a complete snapshot 
may be encoded within second metadata for the second 
snapshot . 
[ 0008 ] In still another embodiment , a distributed comput 
ing system may be for uploading a first snapshot of a data 
object to an accessible data store . The system may include 
one or more processors and memory . The memory may store 
one or more programs configured to be executed by the one 
or more processors . The one or more programs include 
instructions for performing operations comprising identify 
ing , within data of the data object , a first set of data blocks 
of the first snapshot . The first set of data blocks may include 
at least a first block and a second block . Each block of the 
first set of data blocks may include data that is different from 
data of a corresponding block of a previous snapshot . The 
previous snapshot may be a snapshot of the object that was 
taken previous to the first snapshot . An indication of a first 
snapshot identifier for the first snapshot and an indication of 
the first block may be encoded within first metadata of the 
first snapshot . The operations may include uploading the 
first snapshot . While uploading the first snapshot , the first 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0009 ] FIG . 1A is a block diagram illustrating a system 
and environment for implementing various components of a 
distributed - computing system , in accordance with some 
embodiments . 
[ 0010 ] FIG . 1B is a block diagram illustrating a contain 
erized application framework for implementing various 
components of a distributed - computing system , in accor 
dance with some embodiments . 
[ 0011 ] FIG . 2 is a block diagram illustrating a virtual 
storage area network ( VSAN ) , in accordance with some 
embodiments . 
[ 0012 ] FIG . 3 is a block diagram illustrating an environ 
ment enabling distributed object storage and data recovery , 
in accordance with some embodiments . 
[ 0013 ] FIG . 4A is a block diagram illustrating a data 
structure for a data object , in accordance with some embodi 
ments . 
[ 0014 ] FIG . 4B is a block diagram illustrating a chunked 
data object , in accordance with some embodiments . 
[ 0015 ] FIG . 4C is a block diagram illustrating content 
aware addressing of data chunks , in accordance with some 
embodiments . 
[ 0016 ] FIG . 4D is a block diagram illustrating a mapping 
between a logical address space , a chunk address space , and 
a segment address space , in accordance with some embodi 
ments . 
[ 0017 ] FIG . 4E is a block diagram illustrating content 
aware addressing of data chunks , in accordance with some 
embodiments . 
[ 0018 ] FIGS . 5A - 5C include block diagrams illustrating 
schemas for storing snapshots of a data object , in accordance 
with some embodiments . 
[ 0019 ] FIG . 5D is a block diagram illustrating a fault 
tolerant process for uploading snapshots of a data object , in 
accordance to the various embodiments . 
[ 0020 ] FIG . 5E is a block diagram illustrating a process for a 
deleting snapshots of a data object , in accordance to the 
various embodiments . 
[ 0021 ] FIG . 6A illustrates a flowchart of exemplary pro 
cesses for storing data in a distributed - computing system , in 
accordance with some embodiments . 
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[ 0022 ] FIG . 6B illustrates a flowchart of an exemplary 
process for updating stored data in a distributed - computing 
system , in accordance with some embodiments . 
[ 0023 ] FIG . 6C illustrates a flowchart of an exemplary 
process for deleting stored data in a distributed computing 
system , in accordance with some embodiments . 
[ 0024 ] FIG . 7 illustrates a flowchart of an exemplary 
fault - tolerant processes for uploading a snapshot of a data 
object to an accessible data store , in accordance with some 
embodiments . 

n 

a 

DETAILED DESCRIPTION 

[ 0028 ] FIG . 1A is a block diagram illustrating a system 
and environment for implementing various components of a 
distributed - computing system , according to some embodi 
ments . As shown in FIG . 1 , virtual machines ( VMs ) 1021 , 
1022 ... 120 , are instantiated on host computing device 100 . 
In some embodiments , host computing device 100 imple 
ments one or more elements of a distributed - computing 
system ( e.g. , storage nodes of a vSAN 200 described with 
reference to FIG . 2 ) . Hardware platform 120 includes 
memory 122 , one or more processors 124 , network interface 
126 , and various I / O devices 128. Memory 122 includes 
computer - readable storage medium . The computer - readable 
storage medium is , for example , tangible and non - transitory . 
For example , memory 122 includes high - speed random 
access memory and also includes non - volatile memory , such 
as one or more magnetic disk storage devices , flash memory 
devices , NVMe devices , Persistent Memory , or other non 
volatile solid - state memory devices . In some embodiments , 
the computer - readable storage medium of memory 122 
stores instructions for performing the methods and processes 
described herein . In some embodiments , hardware platform 
120 also includes other components , including power sup 
plies , internal communications links and busses , peripheral 
devices , controllers , and many other components . 
[ 0029 ] Virtualization layer 110 is installed on top of hard 
ware platform 120. Virtualization layer 110 , also referred to 
as a hypervisor , is a software layer that provides an execu 
tion environment within which multiple VMs 102 are con 
currently instantiated and executed . The execution environ 
ment of each VM 102 includes virtualized components 
analogous to those comprising hardware platform 120 ( e.g. 
a virtualized processor ( s ) , virtualized memory , etc. ) . In this 
manner , virtualization layer 110 abstracts VMs 102 from 
physical hardware while enabling VMs 102 to share the 
physical resources of hardware platform 120. As a result of 
this abstraction , each VM 102 operates as though it has its 
own dedicated computing resources . 
[ 0030 ] Each VM 102 includes operating system ( OS ) 106 , 
also referred to as a guest operating system , and one or more 
applications ( Apps ) 104 running on or within OS 106. OS 
106 ( e.g. , Darwin , RTXC , LINUX , UNIX , OS X , iOS , 
WINDOWS , or an embedded operating system such as 
VxWorks ) includes various software components and / or 
drivers for controlling and managing general system tasks 
( e.g. , memory management , storage device control , power 
management , etc. ) and facilitates communication between 
various hardware and software components . As in a tradi 
tional computing environment , OS 106 provides the inter 
face between Apps 104 ( i.e. programs containing software 
code ) and the hardware resources used to execute or run 
applications . However , in this case the " hardware ” is virtu 
alized or emulated by virtualization layer 110. Consequently , 
Apps 104 generally operate as though they are in a tradi 
tional computing environment . That is , from the perspective 
of Apps 104 , OS 106 appears to have access to dedicated 
hardware analogous to components of hardware platform 
120 . 
[ 0031 ] FIG . 1B is a block diagram illustrating a contain 
erized application framework for implementing various 
components of a distributed - computing system , in accor 
dance with some embodiments . More specifically , FIG . 1B 
illustrates VM 102 , implementing a containerized applica 
tion framework . Containerization provides an additional 
level of abstraction for applications by packaging a runtime 

[ 0025 ] In the following description of embodiments , ref 
erence is made to the accompanying drawings in which are 
shown by way of illustration specific embodiments that can 
be practiced . It is to be understood that other embodiments 
can be used and structural changes can be made without 
departing from the scope of the various embodiments . 
[ 0026 ] Distributed computing systems , such as software 
designed data centers ( SDDCs ) , may implement one or more 
virtual storage area networks ( VSANs ) and one or more 
virtual disk file systems ( vDFS ) . A user of an SDDC may 
request that a data object be stored by and / or updated in a 
storage system . A data object may include data , as well as 
metadata . The data may be the data that the user actually is 
interested in , while the metadata encodes various aspects of 
the data . Such aspects of the metadata include but are not 
limited to information indicating a location in virtual and / or 
physical storage ( e.g. , an address ) , where the data may be 
located . Due to the architecture of object storage systems , 
once committed to storage , the data of a data object may not 
be overwritten and / or modified . Accordingly , as an object is 
updated via various edits to the data , new versions of the 
data are written to disk , while leaving the previous versions 
stored . Thus , the amount of storage required for such sys 
tems grows as new versions of the data objects are gener 
ated . Accordingly , there is a need for increased efficiency of 
data object storage . 
[ 0027 ] The various embodiments are directed towards 
methods and systems for the increased efficiency of object 
storage in SDDCs . The embodiments include the efficient 
storage of data objects , while enabling fault - tolerant uploads 
of multiple snapshots of the object . A current snapshot of the 
object encodes differences between the current version of 
the object and a previous version of the object . The current 
snapshot , as well as each previous snapshots of the data 
object may be efficiently recovered and / or reconstructed via 
the various embodiments . The metadata for an object may 
encode one or more mappings required for accessing the 
current version of the data and / or recovering a previous 
version of the data . More specifically , an object's metadata 
encodes difference - level mappings for each snapshot in 
compact self - balancing data trees . The metadata encoded in 
metadata may include mappings between various address 
spaces employed by the SDDC , as well as the address spaces 
employed by a data store that stores the data on physical 
medium ( e.g. , one or more traditional and / or solid state disk 
drives ) . Because the metadata is efficiently structured , the 
metadata for an object may be cached for quick lookups 
during data access and / or snapshot recovery . The various 
embodiments also provide low - latency recovery and / or sys 
tem rollback in the event of any failure in an SDDC , as well 
as the graceful recovery when a system failure occurs during 
the uploading of data for each snapshot . 
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environment with each individual application . Container 
132 includes App 104 , ( i.e. , application code ) , as well as all 
the dependencies , libraries , binaries , and configuration files 
needed to run App 104 . Container engine 136 , similar to 
virtualization layer 110 discussed above , abstracts App 104 , 
from OS 106 ,, while enabling other applications ( e.g. , App 
1042 ) to share operating system resources ( e.g. , the operat 
ing system kernel ) . As a result of this abstraction , each App 
104 runs the same regardless of the environment ( e.g. , as 
though it has its own dedicated operating system ) . In some 
embodiments , a container ( e.g. , container 132 or 134 ) can 
include a gateway application or process , as well as all the 
dependencies , libraries , binaries , and configuration files 
needed to run the gateway applications . 
[ 0032 ] It should be appreciated that applications ( Apps ) 
implementing aspects of the present disclosure are , in some 
embodiments , implemented as applications running within 
traditional computing environments ( e.g. , applications run 
on an operating system with dedicated physical hardware ) , 
virtualized computing environments ( e.g. , applications run 
on a guest operating system on virtualized hardware ) , con 
tainerized environments ( e.g. , applications packaged with 
dependencies and run within their own runtime environ 
ment ) , distributed - computing environments ( e.g. , applica 
tions run on or across multiple physical hosts ) or any 
combination thereof . Furthermore , while specific implemen 
tations of virtualization and containerization are discussed , 
it should be recognized that other implementations of vir 
tualization and containers can be used without departing 
from the scope of the various described embodiments . 
[ 0033 ] FIG . 2 is a block diagram illustrating a virtual 
storage area network ( VSAN ) 200 , in accordance with some 
embodiments . As described above , a VSAN is a logical 
partitioning of a physical storage area network . A VSAN 
divides and allocates a portion of or an entire physical 
storage area network into one or more logical storage area 
networks , thereby enabling the user to build a virtual storage 
pool . As illustrated in FIG . 2 , VSAN 200 can include a 
cluster of storage nodes 210A - N , which can be an exemplary 
virtual storage pool . In some embodiments , each node of the 
cluster of storage nodes 210A - N can include a host com 
puting device . FIG . 2 illustrates that storage node 210A 
includes a host computing device 212 ; storage node 210B 
includes a host computing device 222 ; and so forth . In some 
embodiments , the host computing devices ( e.g. , devices 212 , 
222 , 232 ) can be implemented using host computing device 
100 described above . For example , as shown in FIG . 2 , 
similar to those described above , host computing device 212 
operating in storage node 210A can include a virtualization 
layer 216 and one or more virtual machines 214A - N ( col 
lectively as VMs 214 ) . In addition , host computing device 
212 can also include one or more disks 218 ( e.g. , physical 
disks ) or disk groups . In some embodiments , VM 214 can 
have access to one or more physical disks 218 or disk groups 
via virtualization layer 216 ( e.g. , a hypervisor ) . In the 
description of this application , a storage node is sometimes 
also referred to as a host computing device . 
[ 0034 ] As illustrated in FIG . 2 , data can be communicated 
among storage nodes 210A - N in vSAN 200. One or more 
storage nodes 210A - N can also be logically grouped or 
partitioned to form one or more virtual storage pools such as 
clusters of storage nodes . The grouping or partitioning of the 
storage nodes can be based on pre - configured data storage 
policies such as fault tolerance policies . For example , a fault 

tolerance policy ( e.g. , a redundant array of independent 
disks policy or a RAID policy ) may require that multiple 
duplicates of a same data component be stored in different 
storage nodes ( e.g. , nodes 210A and 210B ) such that data 
would not be lost because of a failure of one storage node 
containing one duplicate of the data component . Such a 
policy thus provides fault tolerance using data redundancy . 
In the above example , each duplicate of the entire data 
component can be stored in one storage node ( e.g. , node 
210A or node 210B ) . As described in more detail below , in 
some embodiments , multiple subcomponents of a data com 
ponent or duplicates thereof can be stored in multiple 
storage nodes using dynamic partitioning techniques , while 
still in compliance with the fault tolerance policy to provide 
data redundancy and fault tolerance . For example , par 
ticular data component may have a size that is greater than 
the storage capacity of a single storage node ( e.g. , 256 Gb ) . 
Using the dynamic partitioning techniques , the data com 
ponent can be divided to multiple smaller subcomponents 
and stored in multiple storage nodes . A data structure ( e.g. , 
a hash map ) for the subcomponents is determined and 
maintained for efficient data resynchronization . It should be 
appreciated that multiple data components can be stored in 
a storage node . And data structures for the subcomponents 
of the multiple data components can also be determined and 
maintained for efficient data resynchronization . 
[ 0035 ] FIG . 3 is a block diagram illustrating an environ 
ment 300 enabling distributed object storage and data recov 
ery , in accordance with some embodiments . Environment 
300 includes an object storage and recovery system ( OSRS ) 
340. OSRS 340 enables a client 314 to store , retrieve , 
update , delete , or otherwise access one or more data objects , 
such as data object 360. Client 314 may employ a user 
interface ( UI ) 312 to perform such operations . UI 312 may 
interface with the management server 348 of OSRS 340. The 
management server 348 may generally manage the opera 
tions of OSRS 340. Via its various operations , OSRS 340 
provides data storage , retrieval , updating , deletion , and 
access services ( i.e. , data center services ) to client 314 for 
their data objects . OSRS 340 may employ a primary soft 
ware designed data center ( SDDC ) 310 to at least partially 
manage the storage , retrieval , updating , deletion , and / or 
accessing of the data objects . Primary SDDC 310 may 
include one or more vSANs ( e.g. , VSAN 302 ) . Various 
embodiments of a VSAN are discussed at least in conjunc 
tion with FIG . 2A . However , briefly here , one of the services 
primary SDDC 310 may provide to client 314 is one or more 
virtual machines ( VMs ) . As such , VSAN 302 may imple 
ment one or more VMs ( e.g. , VM 306 ) . Such a VM may 
provide computational and / or information processing ser 
vices to client 314. Primary SDDC 310 may implement a 
virtual Distributed File System ( VDFS ) 304 to interact with 
the data objects and enable VSAN 302 , e.g. , VDFS 304 may 
provide at least portions of data object 360 to VM 306 for 
data analysis and / or data digestion services . 
[ 0036 ] OSRS 340 may additionally enable the recovery of 
service in the event that the data center services provided by 
primary SDDC 310 are interrupted for any reason ( e.g. , a 
hardware malfunction and / or failure , a system state resulting 
in a “ hang ” condition , loss of power , or the like ) . In the event 
of a loss of service of from primary SDDC 310 , the OSRS 
may switch to a secondary SDDC 330. The secondary 
SDDC 330 may provide data center services , which are 
equivalent to the services of primary SDDC 310 , to client 
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314. As such , secondary SDDC 330 may implement one or 
more vSANs ( e.g. , VSAN 332 ) and / or a vDFS , e.g. , VDFS 
334. vSAN 332 may implement one or more VMs , e.g. VM 
336. That is , in the event of a failure of primary SDDC 310 , 
VSAN 332 may provide equivalent services as vSAN 302 
and vDFS 334 may provide equivalent services as vDFS 
304. In some embodiments , secondary SDDC 330 may be 
" spun up ” in the event of an interruption and / or failure of 
primary SDDC 310. In other embodiments , at least portions 
of secondary SDDC 330 may be allocated and implemented 
prior to an interruption and / or failure of primary SDDC 310 . 
As discussed throughout , when switching from primary 
SDDC 310 to secondary SDDC 330 , OSRS 340 orchestrates 
the performance of a recovery process ( or method ) , such that 
OSSR 340 may return providing services to client 314 ( via 
secondary SDDC 330 ) , with minimal interruption . 
[ 0037 ] As also discussed throughout , " snapshots ” of 
VSAN 302 and / or VDFS 304 may be “ backed up ” , from time 
to time . These snapshots enable a “ versioning ” of VSAN 302 
and / or VDFS 304 , and the ability to “ rollback ” to any of the 
backed up versions of VSAN 302 and / or vDFS 304. That is , 
secondary SDDC 330 may be spun up to be in state that is 
an equivalent state to any of the backed up ( or “ snapshot 
ted ” ) states of primary SDDC 310. For instance , VSAN 332 
( and thus VM 336 ) may begin operation in a state that is 
equivalent to the most recent snapshot of VSAN 302 ( and 
thus VM 306 ) , or in a state that is equivalent to any of the 
previous snapshots of VSAN 302 ( and thus VM 306 ) . 
Likewise , VDFS 334 ( and thus data object 360 ) may begin 
operation in a state that is equivalent to the most recent 
snapshot of vDFS 304 ( and thus data object 360 ) , or in a 
state that is equivalent to any of the previous snapshots of 
VDFS 304 ( and thus data object 360 ) . For example , data 
object 360 may be “ rolled back ” to any of its previous 
versions that have been snapshotted . 
[ 0038 ] Note that such a rollback does not require a failure 
of primary SDDC 310. For instance , a user of client 314 may 
accidently alter and / or delete data object 360 ( or portions 
thereof ) . Several ( e.g. , 10 ) snapshots of vDFS 304 may be 
taken before the user notices their error . Data object 360 may 
be recovered to its state prior to the user's error , by rolling 
back data object 360 to its state encoded a snapshot taken 
prior to the user's error . VM 306 may be similarly restored , 
recovered , and / or rolled back via similar mechanisms . The 
recovery and / or roll back methods are discussed further 
below . In some embodiments , a rollback event , where the 
primary SDDC 310 has not failed , may trigger a transition 
from primary SDDC 310 to secondary SDDC 330 , e.g. , 
secondary SDDC 330 may be spun up to the desired 
previous state of primary SDDC 310. In other embodiments , 
a rollback event , where the primary SDDC 310 has not 
failed , may not trigger a transition from primary SDDC 310 
to secondary SDDC 330 , e.g. , primary SDDC 310 may be 
rolled back to its desired previous state . 
[ 0039 ] A current snapshot of VSAN 302 captures the 
differences between a current state of VSAN 302 and a 
previous state of VSAN 302 , captured in a most recent ( but 
previous ) snapshot of VSAN 302. Likewise , a current snap 
shot of vDFS 304 captures the differences between a current 
state of vDFS 304 and a previous state of vDFS 304 , 
captured in a most recent ( but previous ) snapshot of vDFS 
304. A VSAN may be stored via block storage methods , and 
thus the differences captured in a vSAN snapshot may be at 
the block level . In contrast , data objects ( e.g. , files ) managed 

by vDFS 304 may be stored via object storage methods . As 
such , the differences captured in a vDFS snapshot may be 
captured as file differences . In some embodiments , the 
differences captured in a vDFS snapshot may be segment 
level differences . As discussed below , each object segment 
may be subdivided into a plurality of data chunks 
( " chunks ” ) . In such embodiments , the differences captured 
in a vDFS snapshot may be chunk - level differences . 
[ 0040 ] Snapshots of primary SDDC 310 may be taken at 
scheduled intervals ( e.g. , periodically and / or aperiodic inter 
vals ) , from time to time , and / or via a triggering event . For 
example , taking a snapshot of vDFS 304 may be triggered 
via any data write operation ( e.g. , storing a new data object , 
updating a pre - existing data object , deleting a pre - existing 
data object , and the like ) . Likewise , various events ( e.g. , 
creating a new VM , rebooting a pre - existing VM , terminat 
ing a pre - existing VM , deleting a pre - existing VM , and the 
like ) may trigger taking a snapshot of VSAN 302. In some 
embodiments , snapshots of each of VSAN 302 and vDFS 
304 may be taken synchronously . In other embodiments , 
snapshots of each of VSAN 302 and VDFS 304 may be taken 
asynchronously . 
[ 0041 ] Data object 360 includes data 362 and metadata 
364. Data 362 includes the data that the user may care about 
and is encoded by object 360 , whereas metadata 364 
includes information regarding data 362 ( e.g. , " data about 
data ” ) . In the various embodiments , and in order to provide 
contrast from metadata , the data of a data object may be 
referred to as " object data . ” Data object 360 may be referred 
to as a “ file ” . However , the term file is not limiting , and a 
data object may include file , a portion of a file , a set of 
multiple files , or any set or collection of data ( e.g. , an object 
that includes data ) . Thus , data object 360 ( or alternatively 
file 360 ) may include one or more files , partial files , or any 
other collection of data . Data 362 may be subdivided into a 
set of N objects segments ( e.g. , seg_1 , seg_2 , seg_3 , . 
seg_N ) , where N is any positive integer . In some embodi 
ments , the size of an object segment may be predetermined 
and / or configured by client 314. In at least one embodiment , 
the size of the segments may be fixed at a segment size ( SS ) , 
such that each segment has at least approximately SS of data 
( except for Seg_N , which may be smaller than Seg_N 
depending on the size of data 362 ) . In at least one embodi 
ment , SS = 4 MB ( e.g. , each segment holds 4 MB of data 
362 ) . 
[ 0042 ] As also discussed below , the data may be further 
subdivided into a plurality of data chunks . Each segment 
may include multiple data chunks ( or simply chunks ) . The 
size of the data chunks may be variable and be based on a 
structure , arrangement , organization , and / or composition of 
the data itself . That is , data chunks of the same object may 
have difference sizes . The size of the data chunks may be 
anything larger than a logical block ( discussed below ) and 
smaller than the size of data segments . In various embodi 
ments , a chunking method or algorithm is employed to 
chunk the data . The chunking algorithm may identify “ natu 
ral breakpoints ” in the data to determine the block addresses 
of the start point and end point for each of the chunks . A 
breakpoint for a chunk may be identified via a “ signature ” 
within a fingerprint of the data . By identifying natural 
breakpoints , the chunking algorithm may be resistant to 
shifts in the objects data . Thus , when re - chunking edited 
data , the boundaries of a chunk are likely to be invariant 
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( with respect to which data the chunk includes ) in the 
re - chunking , even though additional or less data may be 
included in the new chunk . 
[ 0043 ] The chunking method may include employing a 
sliding window and a fingerprinting algorithm . The imple 
mented fingerprinting algorithm may include a hash func 
tion , such as but not limited to a Rabin fingerprinting 
scheme . In some embodiments , the size of the chunks may 
be variable and may vary from 1 kB to 1 MB . Thus , a single 
data segment may include numerous data chunks . In some 
embodiments , the data is chunked such that each chunk is 
approximately 80 kB . 
[ 0044 ] In some embodiments , metadata 364 may orga 
nized into data blocks and is thus stored via block storage . 
Due to the object nature of data object 360 , its data ( e.g. , data 
362 ) may be stored via object storage . Metadata 364 may be 
stored , via block storage , in a metadata store 320. Data 362 
may be stored , via object storage , in a data store 322. The 
data store 322 may employ a log - structured file system 
( LFS ) for storing the data . In non - limiting embodiments , 
metadata store 320 may be provided by one or more block 
storage service providers , such as but not limited to Amazon 
Elastic Block Store ( EBS ) . In non - limiting embodiments , 
data store 322 may be provided by one or more object 
storage service providers , such as but not limited to Amazon 
Simple Storage Service ( S3 ) . These embodiments , are non 
limiting , and other block and / or object storage service 
providers may be employed . 
[ 0045 ] In some embodiments , data object of primary 
SDDC 310 may identified by a unique object identifier ( e.g. , 
file_ID and file_ID = 1 for data object 360 ) . Each snapshot of 
a file object may be identified by a unique snapshot identifier 
( e.g. , snapshot_ID ) . Because data may be written via a 
log - structured file system ( LFS ) , one feature that is inherent 
to many object storage methods is that , once written to the 
data store 322 , the data of an object may not be overwritten . 
That is , to update and / or change the data of an object , a new 
" version " of the object must be written to the data store , 
where at least new " versions ” of the affected data chunks 
may be written to the data store . For instance , data object 
360 may be a source code file , where the first line includes 
a comment describing the code's functionality . The first 
snapshot of data object 360 ( e.g. , file_ID = 1 ) may be iden 
tified as version 1 ( snapshot_ID = 1 ) of data object 360. The 
data 362 of the first version of data object 360 may include 
the segments : ( seg_1 , seg_2 , seg_3 , ... , seg_N ) . The first 
line of the source code may be included in a particular chunk 
of a particular segment ( e.g. , the 4th chunk of a 3rd segment 
of the object ) . 
[ 004 ] If a user edits the comment on line 1 of the source 
code by one or more characters , and then re - saves the source 
code file , the entire particular chunk of the particular seg 
ment that includes the first line may be required to be 
resaved as a new chunk , which may be included in a 
different segment . The new chunk in the different segment 
includes line 1 as edited by the user , along with other data 
that may have been included in the particular chunk of the 
particular segment ( e.g. , the old chunk ) . As noted above , 
saving a data object may trigger a taking ( and saving ) of a 
new snapshot of the data object , e.g. , a current snapshot 
where snapshot_ID = 2 . Snapshots , as used herein , maybe 
difference - based snapshots . That is , the current snapshot 
( e.g. , snapshot_ID = 2 ) of data object 360 may capture the 
( chunk - level ) differences between the updated file and the 

most recent previous snapshot ( e.g. , snapshot_ID = 1 ) . In this 
way , a data object's state may be recovered via a sequential 
traversal “ backwards ” through the snapshots . For instance , 
data object's 360 state associated with snapshot_ID = M , may 
be recovered by starting with snapshot_ID = M , then travers 
ing backwards to snapshot_ID = ( M - 1 ) , and then sequentially 
backwards to snapshot_ID = 1 . In some embodiments , the 
snapshot corresponding to snapshot_ID = 1 may be referred 
to as the base snapshot , while the subsequent snapshots are 
referred to as delta snapshots . Thus , sequential snapshots 
may be notated as : base , delta_1 , delta_2 , delta_3 , ... , 
delta_M . 
( 0047 ] Because the only difference between the previous 
snapshot ( snapshot_ID = 1 ) and the new snapshot ( snapshot_ 
ID = 2 ) of the data object 360 is the affected ( and re - written ) 
segment ( e.g. , replacing old seg_3 with new seg_N + 1 ) , data 
362 for the new snapshot ( snapshot_ID = 2 ) will include the 
new chunk and disregard the older version of the chunk 
( e.g. , the old chunk ) . As noted above , since consecutive 
snapshots are based on differences , snapshot_ID = 2 only 
needs to indicate that old chunk has been substituted with the 
new chunk . As noted above , data is stored via an LFS . When 
the old chunk is replaced by the new chunk for the new 
version of data object 360 , the new chunk may be written 
sequentially to a circular buffer of the LFS , which may be in 
a different segment . Thus , the old chunk is not overwritten 
or erased , even though it is not included in the updated 
version of data object 360. The old chunk may is still 
accessible by primary SDDC 310. In the event that the user 
would like to roll back the current version ( e.g. , snapshot_ 
ID = 2 ) of data object 360 to its initial version ( e.g. , snapshot_ 
ID = 1 ) , the initial version may be recovered ( or re - con 
structed ) by substituting the still available old chunk , rather 
than including the new chunk . 
[ 0048 ] As will be discussed in more detail below , metadata 
of a data object ( e.g. , metadata 364 of data object 360 ) may 
include metadata that maps logical addresses to a segment 
addresses of the data object . That is , metadata maps a logical 
address space to a segment address space for the data objects 
accessible by primary SDDC 310. The notation of L_X , 
where X is a logical address in the logical address space , 
may be employed to indicate a logical address of a data file . 
The notation of Seg_Y , where Y is a segment address in the 
segment address space , may be employed to indicate the 
segment address of a data file . In various embodiments , a 
logical address may be an address for a logical block . Thus , 
each logical block of data may be addressed via a logical 
block address ( lba ) . The size of a logical block may be of 
any value . However , in some embodiments , the size of a 
logical block is 1 byte . Thus , in the example where a 
segment includes 4 MB of data , the data of the segment may 
be addressable at the byte level . There would be 4 MB of 
logical addresses ( e.g. , lba ) to address each block in the 
segment . 
[ 0049 ] As discussed more fully below , mappings between 
a first and a second address space may be represented by 
key - value pairs , where the key indicates a reference to the 
first address space and the value corresponding to the key 
indicates a reference to the second address space . Such 
key - value pairs may be represented via the n - tuple format : 
< key >> < value > . In some embodiments , a mapping 
between a logical address and a segment address may be 
represented as : < lba > » < seg_ID , block_offset > , where lba 
indicates the logical block address ( L_1 ) , seg indicates a 
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segment ( e.g. , seg_1 ) , and offset indicates a block offset 
within the identified segment . That is , a segment address 
may include both an identifier for the segment and a segment 
block offset to identify a particular physical block within the 
segment . In some embodiments , the size of the logical and 
physical blocks are equivalent ( e.g. , 1 byte ) . For example , 
< L_1 >> < seg_1 , 1 > indicates that the logical address L_1 is 
mapped to the first block of seg_1 , whereas < L_2 > < seg_ 
1 , 2 > indicates that the logical address L_2 is mapped to the 
second block of seg 1. Note , in embodiments , at least 
portions of such mappings may not be as contiguous as this 
simple example exhibits . That is , the correspondences 
between the logical address space for a data object and the 
segment address space ( e.g. , segment_ID and block_offset ) 
for the data object may be more fragmented than this 
example suggests . For example , a mapping may be such that 
< L_3 > < seg_512 , 415 > indicates that the logical address is 
mapped to the 415th block of seg_512 . 
[ 0050 ] As also discussed below , each data chunk may be 
individually addressable , and the data chunk addresses act as 
a layer of “ misdirection ” between the logical addresses and 
the segment addresses . That is , a logical address ( for a 
logical block ) is mapped to a chunk address , and the chunk 
address is mapped to a segment address . Thus , the mapping 
between a logical address space and a segment address space 
is mediated by a “ virtual address space ” ( e.g. , the chunk 
address space ) situated in between the logical and segment 
address spaces . A chunk address may be indicated as chunk 
ID . 
[ 0051 ] As a data object is updated and corresponding 
snapshots are taken , the mapping between the logical 
address and the segment addresses may be updated to 
encode the mapping of the newest snapshot , while retaining 
the mappings of the previous snapshots . In the above 
example , the logical address corresponding to the first line 
of code ( e.g. , L_1 ) may not vary between the two snapshots , 
but the corresponding segment address is different in the two 
snapshots . The segment address for snapshot_ID = 1 is 
mapped to the old chunk , while the segment address for 
snapshot_ID = 2 is mapped to the new chunk . Thus , such 
mappings between the logical address space and the segment 
address space ( intermediated by the chunk address space ) 
are dynamic and updated as new objects are created and as 
pre - existing objects are modified and / or deleted . The map 
pings between addresses spaces may be encoded in key 
value pairs as discussed throughout . The key - value pairs 
may be included in the metadata for an object . In some 
embodiments , the key - value pairs are stored in a key - value 
store . The key - value store may be a distributed transactional 
key - value database , such as but not limited to TiKV and / or 
TiDB . The key - value store may be included in metadata 
database 346 , as discussed below . 
[ 0052 ] In such key - value pair mapping between a first 
address space and a second address space , the key may 
correspond to one or more indications ( or identifiers ) within 
the first address space ( e.g. , an address of the first address 
space ) . The paired value may correspond to one or more 
indications ( or identifiers ) within the second address space 
( e.g. , an address of the second address space ) . Such key 
value pairings ( and thus address mappings ) may represented 
via an n - tuple representation : < key >> < value > . Such nota 
tion is used throughout , where the component to the left of 
the arrow character ( ? ) represents a key and the component 
to the right of the arrow character represents the paired 

value . Thus , mapping a first address of a first address space 
( e.g. , address_1 ) to a second address of a second address 
space ( e.g. , address_2 ) may be represented by the n - tuple 
representation : < address_1 > < address_2 > . The keys and 
corresponding values ( e.g. , mappings between address 
spaces ) may be included in an object's metadata and 
arranged in a self - balancing data tree ( B - tree ) , such as but 
not limited to a copy - on - write ( COW ) B - tree . In other 
embodiments , a Log - Structured Merging Tree ( LSM Tree ) 
may be employed . Because the tree is self - balancing , tra 
versing a B - tree is a relatively fast process . Storing the keys 
and paired values in a B - tree allows for fast lookup access . 
In order to further increase a lookup speed for a mapping , at 
least a portion of an object's metadata B - tree may be cached . 
[ 0053 ] In some embodiments , a SDDC may primarily 
address a data object via its logical addresses , whereas a data 
store ( data store 322 ) may primarily address the data object 
via its segment addresses . Segment addresses may be 
referred to as a physical address . In some embodiments , a 
logical address may correspond to one or more logical 
and / or virtual layers associated with a SDDC , while the 
corresponding segment address may correspond to a lower 
" physical ” layer of a data store . The OSRS 340 may employ 
an object's metadata to provide mapping services between 
an object's logical address and a file system's segment space 
( e.g. , the file system of object store ) . In at least one embodi 
ment , OSRS 340 may transmit to and / or receive logical 
addresses from primary SDDC 310 and receive and / or 
transmit corresponding segment addresses to data store 322 , 
via an object's metadata . 
[ 0054 ] At least due to the finite nature of the circular log 
of the LFS storing the snapshots of data ( and of an LFS for 
storing snapshots of a VSAN ) or due to the need to save cost 
by limiting the total storage space used , the number storable 
snapshots ( for each of VSAN 302 and vDFS 304 ) may be 
finite . For example , the finite number of snapshots may be 
limited by the circular log allocated for client 314 and / or the 
number and size of data objects they are using . In some 
embodiments , the number of possible snapshots for VSAN 
302 and / or vDFS 304 may be limited to a fixed number ( e.g. , 
100 ) . That is , there may be a fixed window ( a data volume 
or snapshot number window ) of snapshots available to client 
314. The snapshots may be rotated through the available 
window . Thus , a snapshot extending past this fixed window 
will be rolled forward to the beginning of the fixed window . 
In the above example where the fixed window is limited to 
100 snapshots , when snapshot_ID = 101 is taken ( or when the 
end of the circular log reached ) , the snapshot data for 
snapshot_ID = 101 may be written back at the beginning of 
the fixed window , e.g. , snapshot_ID = 101 is rolled forward to 
the beginning of the fixed window . Thus , one or more older 
snapshots may be overwritten . When this occurs , older 
snapshots may " expire ” and become non - recoverable . In 
various embodiments , a non - linear expiration schedule may 
be employed . In some embodiments , a snapshot that has 
expired may not be the oldest snapshot . For example , a 
snapshot schedule may include keeping 24 hourly snapshots 
for the last day , then 30 daily snapshots for the last month , 
12 monthly snapshots for the last year , and 7 annual snap 
shots . When a new snapshot is created , the 25th old hourly 
snapshot will be deleted , although it is newer than other 
daily , monthly , and annual snapshots . 
[ 0055 ] The expiration of snapshots ( and re - writing of data 
segments ) may require frequent moving of data in a lower 
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physical layer ( e.g. , in the segment address space ) . Data that 
was written for an expired snapshot , but has not be re 
written or updated since the expired snapshot was taken , 
may need to be routinely moved on the physical storage 
medium , and thus updates to the metadata may be required . 
In the above example , a particular chunk ( e.g. , chunk_ 
ID = 100 ) may have been written during the writing of the 
first snapshot ( snapshot_ID = 1 ) of data object 360. The user 
may frequently update data object 360 , but not edit the data 
stored in chunk_ID = 100 . When snapshot_ID = 101 is written , 
because of the “ rolling forward ” aspect of the LFS's circular 
log , the data stored in chunk_ID = 100 may be overwritten . In 
order to avoid losing the data of chunk_ID = 100 ( and thus all 
the snapshots of data object 360 , which include chunk_ 
ID = 100 as originally written ) , the data of chunk_ID = 100 
must be re - written at the physical layer to avoid the snap 
shot_ID = 101 data overwriting chunk_ID = 100 . For instance , 
the data encoded in chunk_ID = 100 may be moved to an area 
on the physical medium and associated with a snapshot that 
is not yet expired ( e.g. , snapshot_ID = 2 ) . As will be dis 
cussed below , the metadata may need updating to account 
for the “ moving ” of data occurring at the physical layer . A 
" garbage collection ” process may be generally responsible 
for re - allocating expired segments , once the “ live ” data has 
been moved . 

[ 0056 ] After the data is " chunked ” ( e.g. , each segment is 
subdivided into a plurality of data chunks ) each data seg 
ment may include a plurality of data chunks . As discussed in 
conjunction with at least FIGS . 4C - 4E , each data chunk of 
each segment may be individually addressable via a corre 
sponding chunk address . The metadata for a data object may 
provide a mapping between a logical address space and a 
chunk address space , as well as a mapping between the 
chunk address space and the segment address space , for a 
data object . The metadata may additionally provide content 
aware storage ( CAS ) services for a data object . That is , if the 
data of a chunk is known , its logical address , its chunk 
address , and its segment address may be determined via a 
CAS map ( e.g. , a hash mapping ) included in the object's 
metadata . 

[ 0057 ] To enable such snapshot and recovery operations , 
OSRS 340 may include an uploader server 342 , a recovery 
server 344 , and a metadata database 346. As shown in FIG . 
3 , the primary SDDC 310 may include a corresponding 
uploader agent 352. Likewise , the secondary SDDC 330 
may include a corresponding recovery agent 354. For snap 
shots of VSAN 302 , block - level differences ( with respect to 
the previous snapshot ) are provided from vSAN 302 to 
uploader agent 352. For snapshots of vDFS 304 , file - level 
( or data object - level ) differences ( with respect to the previ 
ous snapshot ) are provided to the uploader agent 352. As 
discussed below , the file - level differences of vDFS 304 may 
be chunk - level differences . The “ fat ” arrow from uploader 
agent 352 to data store 322 shows the data ( e.g. , difference 
data ) being provided to the data store 322 for storage . The 
uploader agent 352 sends a control signal to uploader server 
342 , informing the OSRS 340 of the uploading of the 
snapshot to the object store 322. The uploader server 342 
may sent a control signal to the data store 322. The control 
signal provided to the data store 322 may inform the data 
store with regards to how to store the block and file 
differences ( e.g. , new data ) received from the primary 
SDDC 310. Such information may include one or more 

identifiers for the new data ( e.g. , which objects or VSANs the 
new data correspond to ) , segment address , and the like . 
[ 0058 ] For a recovery and / or transition to secondary 
SDDC 330 , the recovery agent 354 may get information 
from the recovery server 344 ( e.g. , which data needs to be 
downloaded , associated metadata , or the like ) . The recovery 
server 344 may provide recovery information to the data 
store 322 , e.g. , which data needs to be downloaded to the 
secondary SDDC 330. The " fat " arrow from the data store 
322 to the recovery agent 354 shows the recovery data being 
provided to the secondary SDDC 330. The management 
server 348 may provide some management services for the 
uploader and recovery servers 342/344 . The metadata of an 
object may be provided to the metadata store 320 via the 
metadata database 346. The metadata database 346 may 
include a fast cache for caching metadata . 
[ 0059 ] Note that prior to data being provided to the data 
store 322 , via the uploader agent 352 , the data may be 
compressed and / or then encrypted . Encryption of the data 
provides data privacy measures , while compression 
decreases the amount of required storage space within the 
data store 322. Each of the primary SDDC 310 and the 
secondary SDDC 330 may be enabled with encryption / 
decryption services , as well as compression / decompression 
services . Similar to the data , the metadata may be com 
pressed and / or then encrypted prior to being stored in the 
metadata store 320 . 
[ 0060 ] FIGS . 4A - 4E are directed towards the address 
spaces associated with a data object ( e.g. , a data file ) , and the 
encodings of the mappings between the address spaces 
employed to capture snapshots of a data object . It should be 
understood that such schemas may be adopted for address 
spaces and snapshots of VSAN . FIG . 4A is a block diagram 
illustrating an object data structure 400 for a data object , in 
accordance with some embodiments . As discussed in con 
junction with at least data object 360 of FIG . 3 , a data object 
may include both data and metadata . The data and metadata 
may be envisioned within a data structure ( e.g. , object data 
structure 400 ) that includes a metadata layer 410 and a data 
layer 420. The data may be envisioned to reside in the data 
layer 420 , as being subdivide into a plurality of segments . 
Each data segment may be addressed via segment addresses 
of an segment address space : Seg_1 , Seg_2 , Seg_3 , . 
Seg_N . For simplicity , the plurality of data chunks associ 
ated with each of the data segments are not shown in FIG . 
4A . See FIG . 4B for an illustration of " chunked ” data . 
[ 0061 ] As noted above , metadata may provide a map 
between the logical address space ( e.g. , an address space 
employed a VM when processing data ) and the segment 
address space ( e.g. , an address space that includes segment 
addresses provided to a data store for accessing the data ) . 
The metadata may be envisioned to reside in the metadata 
layer 410. As noted above , because data for snapshots may 
be " rolled forward , ” the segment address where a particular 
data is stored may change over time . When data is moved 
( e.g. , for expired chunks , chunk deletion , and the like ) , the 
segment address for the moved data may need to be updated . 
Thus , the mapping between a logical address and the cor 
responding segment address of the moved data may need to 
be updated . In order to decouple data movements from 
deletion of data ( and thus diminishing the need for frequent 
updates to the logical address space to segment address 
space map ) , the metadata layer 410 may include two sub 
layers : the logical layer 412 and content addressable storage 
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( CAS ) layer 414. As shown below , the CAS layer 414 
provides a level of misdirection between the logical and 
segment mapping that decreases the need to update the 
logical to segment address mapping , when data is moved 
around ( via garbage collection processes ) at the data layer 
420 ( e.g. , a physical layer ) . The data in data layer 420 may 
be arranged via a LFS file system . The metadata of the 
metadata layer 410 may include a plurality of key - value 
pairs that store the mappings between the address spaces . 
The key - value pairs may be stored in a self - balancing data 
tree ( e.g. , a B - Tree ) . A vDFS of a SDDC may be enabled to 
implement the LFS for the data , as well cache ( for fast 
lookup ) at least a portion of the metadata . 
[ 0062 ] The logical layer 412 is associated with the logical 
addresses for one or more data objects , such as but not 
limited to virtual machine disk files ( VMDKs ) : e.g. , 
VMDK_1 and VMDK_2 . A VMDK may be referred to as a 
“ file ” or data object accessible via a SDDC . The CAS layer 
414 is associated with a “ virtual address ” corresponding to 
a logical address . As discussed below , the CAS layer 414 
includes an address space that provides a “ misdirection ” 
between the logical address space of logical layer 412 and 
the segment address space of data layer 420. The “ virtual 
address ” address is then mapped to the corresponding seg 
ment address . Via a hash mapping , the virtual address may 
be a content aware address . That is , an address ( logical , 
virtual , or segment ) may be identified via a signature of the 
data . As data is moved around the segment address space , 
but the content itself is not changed ( e.g. , for a garbage 
ollection process ) , its signature is altered . The signature 

of the content may be a hash value of the content . As noted 
above , the data may be “ chunked ” into smaller units than 
segments , where each chunk may be addressable via a 
logical address . The hashing of the data ( e.g. , to provide 
CAS properties ) may be performed at the chunk - level . 
[ 0063 ] FIG . 4B is a block diagram illustrating a chunked 
data 480 , in accordance with some embodiments . Data 480 
includes two segments of data ( e.g. , Seg_1 and Seg_2 ) . Each 
data segment may include multiple chunks of data . In the 
non - limiting example of FIG . 4B , Seg_1 includes two 
chunks of data ( e.g. , referred to as chunk_10 and chunk_11 ) 
and Seg_2 includes two chunks of data ( e.g. , referred to as 
chunk_12 and chunk_14 ) . In other embodiments , data 480 
may include more than two segments , and each segment 
may include more than two chunks . 
[ 0064 ] In various embodiments , a chunking method or 
algorithm is employed to chunk the data 480. The chunking 
algorithm may identify “ natural breakpoints ” in the data 480 
to determine the block addresses of the start point and end 
point for each of the chunks . A breakpoint for a chunk may 
be identified via a “ signature ” within a fingerprint of the 
data . By identifying natural breakpoints , the chunking algo 
rithm may be resistant to shifts in the objects data . Thus , 
when re - chunking edited data 480 , the boundaries of a chunk 
are likely to be invariant ( with respect to which data the 
chunk includes ) in the re - chunking , even though additional 
or less data may be included in the new chunk . The chunking 
method may include employing a sliding window and a 
fingerprinting algorithm . The implemented fingerprinting 
algorithm may include a hash function , such as but not 
limited to a Rabin fingerprinting scheme . In some embodi 
ments , the size of the chunks may be variable and may vary 
from 1 kB to 1 MB . Thus , a single data segment may include 

numerous data chunks . In some embodiments , the data is 
chunked such that each chunk is approximately 80 kB . 
[ 0065 ] FIG . 4C is a block diagram illustrating content 
aware addressing of data chunks , in accordance with some 
embodiments . Shown in FIG . 4C are three address spaces 
( e.g. , logical address space 450 , hash value space 460 , and 
segment address space 470 ) and a mapping between the 
address spaces 422. In this non - limiting embodiment , the 
hashing of the data is performed at the chunk - level , where 
the size of each chunk corresponds to a logical block . In 
various embodiments , the logical layer 412 of FIG . 4A may 
provide the mapping from logical address space 450 and 
hash value space 460. The CAS layer 414 may provide the 
mapping from the hash value space 460 and the segment 
address space 470. The hash value space 460 may be a 
“ virtual ” address space . As shown in FIG . 4C , the hash value 
space 460 may provide a misdirection layer between the 
logical address space 450 and the segment address space 
470. Thus , the hash value space 460 decouples the move 
ment of chunks within the segment address space 470 ( e.g. , 
a physical layer ) from the deletion of chunks . 
[ 0066 ] Referring back to FIG . 4B , a hash value for the data 
in each chunk may be generated and logical addresses may 
correspond to the chunks . That is , in this non - limiting 
embodiment , the chunk size and the logical block size are 
providing a one - to - one mapping between logical blocks and 
chunks . Furthermore , the segment size in this non - limiting 
embodiment is 2 logical blocks . Other embodiments are not 
so limited , and chunk sizes may be significantly greater than 
one logical block , such that each chunk may include mul 
tiple logical blocks . Additionally , the segment size may be 
significantly greater than two logical blocks . In other non 
limiting embodiments , a segment size may be approximately 
4 MB , the chunk sizes may vary from 1 kB to 1 MB , and the 
logical block size may be 1 byte . In some embodiments , the 
data is chunked such that each chunk is approximately 80 
kB . 
[ 0067 ] In the non - limiting embodiment of FIGS . 4B - 4E , 
the one - to - one mapping includes L_1- > chunk_10 
L_2- > chunk_11 , L_3 > chunk_12 , and L_4 > chunk_13 . 
The hash value for the data of chunk_10 may be “ BA36 ” , the 
hash value for the data of chunk_11 may be “ 78E5 ” , the hash 
value for the data of chunk_12 may be “ FDO2 " and the hash 
value for the data of chunk_13 may be “ 24F9 ” . The arrows 
between the logical address space 450 and hash value space 
460 show the mapping between the logical layer 412 and the 
CAS layer 414 of the metadata layer 410 of FIG . 4A . 
Likewise , the arrows between the hash value space 460 and 
the segment address space 470 show mapping between the 
CAS layer 414 and the data layer 420 of FIG . 4A . Note that 
as long as the data in the chunks is unique and the hash 
function is of sufficient quality , the hash value uniquely 
identifies the chunk . Thus , the hash value may be a unique 
identifier for a data chunk ( e.g. , when deduplication pro 
cesses are employed ) , as well as a unique identifier for the 
data of a chunk . Various deduplication processes may ensure 
that redundant data is not stored in multiple segments . Thus , 
the hash value may serve as a chunk identifier . Because the 
hash value is dependent on the data included in the chunk , 
and is unique to that data ( e.g. , when a hash function of 
sufficient quality is employed ) , the hash value may be a 
signature of the chunk and / or the data included in the chunk . 
[ 0068 ] The metadata may encode mappings between vari 
ous address spaces ( e.g. , a mapping between a logical 
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address space and virtual address space , a mapping between 
the virtual address space and a segment address space , and 
the like ) via key - value pairs . The key - value pairs may be 
encoded in a data tree , such as a B - Tree or a LSM Tree . In 
some embodiments , a copy - on - write ( COW ) B - tree is 
employed to store the key - value pairs . In such a B - Tree 
encoding of the mappings , the keys may be represented by 
the non - leaf nodes of a B - Tree , while the corresponding 
values may be represented as the leaf nodes . In other 
embodiments , a Log - Structured Merging Tree ( LSM Tree ) 
may be employed to store the key - value pairs . The keys and 
corresponding paired values may be represented as an 
n - tuple . 
[ 0069 ] The notation for the n - tuple representation of key 
value pairs is now reviewed . Each data object may have a 
unique identifier ( e.g. , Object_ID ) . Each snapshot of a data 
object has a unique identifier ( snapshot_ID ) . Because each 
logical address addresses a block of data , a logical address 
may be referred to as a logical block address ( LBA ) . Thus , 
a specific logical address for a specific data chunk of a 
specific snapshot of a specific data object ( e.g. , a file ) may 
be represented as the n - tuple < object_ID , snapshot_ID , lba > 
The mapping of the specific logical address ( of the logical 
address space 450 ) to a specific hash value ( e.g. , < hash_ 
value > ) of the hash value space 460 ( e.g. , a virtual address 
space ) may be represented the n - tuple mapping : < object_ID , 
snapshot_ID , lba > < hash_value > . Note that both the 
< key > and the < value > may be an n - tuple with more than 
one component . The key < object_ID , snapshot_ID , Iba > 
includes 3 components : object_ID , snapshot_ID , and lba . 
[ 0070 ] The ordering of the components of a key and / or 
paired values may be significant , at least because of the 
placement or insertion of the key - value pair in a B - Tree . In 
the above example , the object_ID is the 15 - order component 
( or most significant component ) , the snapshot_ID is the 
2nd - order components , and Iba is the 3rd - order component 
( or least significant component ) . When inserted into a 
B - tree , the keys are sorted via the ordering of the compo 
nents in the n - tuple representation . The most significant 
component being the primary component for the sorting and 
the least significant component being the least - significant 
component for the sorting . Thus , keys with a common 
1st - order component are grouped together first . Keys with a 
common 1st - order component and a common 2nd - order 
component are grouped together ( within the initial grouping 
of the common 1 - st order component ) , and so on until the 
least significant component . Thus , all keys with a common 
1st - order component may grouped in a similar region ( e.g. , 
all within the same sub - tree ) of the B - Tree . Keys with a 
common 2nd - order component ( but dissimilar 1st - order com 
ponents ) may be located in disparate regions ( e.g. , separate 
sub - trees ) of the B - tree . 
[ 0071 ] Mappings between vector spaces ( and / or mappings 
of keys to corresponding values ) may be represented via an 
n - tuple representation . As used throughout , an n - tuple to the 
left of an arrow ( ~ ) character ( e.g. , < object_ID , snapshot_ 
ID , lba > ) may indicate a key and the n - tuple to the right of 
the arrow character ( e.g. , < hash_value > ) indicates the value 
corresponding to the key . Note that the specific hash value 
is the hash value for the data stored in the specific data 
chunk . Using this notation , the mapping between the logical 
address space 450 and the hash value space 460 may be 
represented by the following 4 n - tuples : < object_ID , 
snaphshot_ID , L_1 > » < “ BA36 " > , < object_ID , snaphshot_ 

ID , L_2 > < 78E5 " > , < object_ID , snaphshot_ID , 
L_3 > FDO2 ' > , and < object_ID , snaphshot_ID , L_4 > , 
< “ B24F9 " > . The mapping between the logical address space 
450 and the hash value space 460 may be referred to as a 
logical map . Thus , the logical map of FIG . 4C requires 4 
n - tuples . Note that in this non - limiting embodiment , because 
the logical block size is equivalent to the chunk size , the 
hashing of the data may be considered to be performed at 
either the logical block - level or the chunk - level . In other 
embodiments , the hashing is performed at the chunk level , 
such that multiple logical addresses may correspond to a 
single hash value . 
[ 0072 ] The n - tuple < seg_ID > may represent a segment 
address of the segment address space 470. For garbage 
collection purposes , a reference counting process may be 
used to track the number of references that point to < seg_ 
ID > . In these embodiments , the n - tuple < seg_ID , block_ 
offset , ref_count > may be employed to represent the seg 
ment address ( e.g. , the segment identifier and the logical 
block_offset ) , as well as the corresponding reference coun 
ter , e.g. , ref_count . The format for the mapping of the hash 
value space 460 to the segment address space 470 may be 
represented by the n - tuple format : < hash_value >> < seg_ID , 
block_offset , ref_count > , where < hash_value > is the key 
and < seg_ID , block_offset , ref_count > is the corresponding 
value . Using this notation , the mapping between the hash 
value space 460 and segment address space 470 may be 
represented by the following 4 n - tuples : < 24F9 ' > < seg 
2 , 1 , ref_count_2 > , < ̂ 78E5 " > + < seg_1 , 2 , ref_count_1 > , 
< BA36 " > < seg_1 , 1 , ref_count_1 > , and 
< FDO2 ” >> < seg_2 , 2 , ref_count_2 > . The mapping 
between the hash value space 460 and the segment address 
space 470 may be referred to as a hash map . Thus , the hash 
map of FIG . 4C requires 4 n - tuples . 
[ 0073 ] The hash values of the chunks provide a unique 
identifier for the content stored in a chunk . Thus , the hash 
values provide the content aware property for the CAS layer 
414 of FIG . 4A . Because the segment addresses may be 
addressed via content aware addresses , the hash values may 
be employed for deduplication processes , e.g. , removing 
chunks that include identical data . Such deduplication pro 
cesses ensure that multiple chunks storing the same data are 
not stored by a data store , reducing the total volume required 
by a client . 
[ 0074 ] In some embodiments , the metadata of a data 
object may be cached for quick reference ( e.g. , to speed up 
a deduplication process ) . In some embodiments , one or more 
VSANs in a SDDC may cache the metadata for one or more 
data objects . As noted above , metadata database 346 of the 
OSRS 340 may cache an object's metadata . Employing a 
hash function of sufficient quality generates the appearance 
of pseudo - random hash values . Therefore , the hash values 
may lack “ locality ” in a hash value space . This non locality 
is shown via the logical mapping of FIG . 4C . Furthermore , 
imposing a natural ordering on the hash values may be 
difficult . In order to lookup information included in a cache , 
it may be preferred to have sequential values and / or values 
of sufficient locality . Thus , it may be difficult to employ 
cached hash values . 
[ 0075 ] To overcome this hash value caching issue , some 
embodiments employ another unique identifier for each 
chunk . That is , a unique " chunk_ID " may be assigned to 
each chunk . Furthermore , any set of chunk_IDs may have a 
natural ordering . The chunk_IDs may be generated sequen 
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tially , in view of their natural ordering . Thus , such chunk_ 
IDs have good locality and may be cached for quick refer 
ence ( e.g. , to use in a deduplication process ) . As used herein , 
the following notation may refer to a chunk_ID : C_X , where 
X is a positive integer . Due to the sequential nature of 
generating chunk_IDs , when two new chunks are received 
for storage , the first new chunk may be assigned a chunk_ID 
of C_N , and the second new chunk may be assigned a 
chunk_ID of C_N + 1 , where the previous chunk was 
assigned a chunk_ID of C_N - 1 . Because it is unique , a 
chunk_ID may serve as a chunk address in a chunk address 
space . 
[ 0076 ] FIG . 4D is a block diagram illustrating a mapping 
430 between a logical address space 450 , a chunk address 
space 490 , and a segment address space 470 , in accordance 
with some embodiments . In such embodiments , each chunk 
is assigned a logical address and a chunk address ( e.g. , a 
chunk_ID ) . Similar to the hash value space 460 of FIG . 4C , 
the chunk_ID provides a misdirection layer between the 
logical address space 450 and the segment address space 
470. Thus , the chunk address space 490 may be a virtual 
address space that decouples the movement of chunks from 
the deletion of chunks , as previously discussed . Note the 
“ locality ” ( or sequential / ordered nature ) of the chunk_IDs in 
the chunk address space 490. Thus , in contrast to the hash 
values of FIG . 4C , the chunk_IDs may be cached for quick 
reference . The logical address space 450 and segment 
address space 470 are equivalent to the corresponding 
address spaces in FIG . 4C . However , the “ misdirection 
layer ” ( e.g. , chunk address space 490 ) includes four chunk 
addressed ( e.g. , chunk_IDs ) : C_10 , C_11 , C12 , and C_13 . 
[ 0077 ] In contrast to FIG . 4C , the logical address space 
450 is mapped into the virtual address space ( e.g. , chunk 
address space 490 ) in a sequential , contiguous , and localized 
manner . Due to this “ locality ” of the chunk address space 
490 and the “ locality ” of the logical address space 450 , a 
more compact n - tuple notation may be employed for logical 
mappings that map logical addresses to chunk_IDs . The 
logical map of FIG . 4D requires a single n - tuple of the form 
< lba > < chunk_ID , num_chunks > . In this notation , < lba > 
represents a logical address as a key , and < chunk_ID , 
num_chunks > as the corresponding value . The num_chunks 
value indicates the number of contiguous logical addresses 
mapped to corresponding contiguous chunk addresses . As 
shown in the arrows between the logical address space 450 
and the chunk address space 490 of FIG . 4D , the num_ 
chunks for L_1 = 4 . Thus , the logical map of FIG . 4D may be 
represented by the single n - tuple : < L_1 >> < C_10 , 4 > . 
Because of the high locality of the logical and chunk address 
spaces , this compact notation encodes four logical to chunk 
mappings : < L_1 > = < C_10 > , < L_2 > » < C_11 > , 
< L_3 > < C_12 > , and < L_4 >> < C_13 > . Because only a 
single n - tuple is required to represent the logical mapping of 
FIG . 4D , the B - tree encoding the logical mapping of FIG . 
4D is more compact than the B - tree required for FIG . 4C 
( which required 4 n - tuples ) . Thus , the B - tree of FIG . 4D may 
be smaller , faster to traverse , and / or more compressible than 
the B - tree of FIG . 4C . 
[ 0078 ] The mapping between the chunk address space 490 
and the segment address space 470 may be referred to as the 
chunk mapping . The chunk mapping may have an n - tuple 
representation of : < chunk_ID >> < seg_ID , num_chunks , 
ref_count > , where similar to above , num_chunks indicates 
the number of consecutive ( or contiguous ) chunks that map 

to the seg_ID . Thus , the chunk mapping of FIG . 4D may be 
represented by 2 n - tuples : < C_10 >> < seg_1 , 2 , ref_count 
seg_1 > , < C_12 >> < seg_2 , 2 , ref_count_2 > . These two 
n - tuples encode the four mappings : < C_10 >> < seg_1 , 1 , 
ref_count_1 > , < C_11 > < seg_1 , 2 , ref_count_1 > , 
< C_12 >> < seg_2 , 1 , ref_count_2 > , and < C_13 >> < seg_2 , 
2 , ref_count_2 > . The chunk mapping of FIG . 4D is rela 
tively compact , requiring only 2 n - tuples , as compared to the 
4 n - tuples required for the “ virtual layer " to the segment 
layer of FIG . 4C . 
[ 0079 ] In some embodiments , to preserve the content 
aware storage for deduplication purposes , a mapping 
between a hash value space and the chunk address space 
may also be included in the metadata . FIG . 4E is a block 
diagram illustrating content aware addressing of data 
chunks , in accordance with some embodiments . More spe 
cifically , FIG . 4E illustrates a hash value mapping ( or hash 
mapping ) 430 for the metadata encoded in FIG . 4D . The 
hash mapping maps the hash value space 460 ( see FIG . 4C ) 
to the chunk address space 490. The hash mapping of FIG . 
4E requires 4 n - tuples : < “ 2459 " > < C_13 > , 
< “ 78E5 " > < C_11 > , < “ BA36 ” > < > < C_10 > , and 
< “ FD02 ” >> < C_12 > . 
[ 0080 ] In various embodiments , the logical mapping and 
chunk mapping of FIG . 4D , as well as the hash mapping 440 
of FIG . 4E may be included in the metadata for a data object . 
As noted throughout , such metadata may be encoded in a 
B - tree ( e.g. , copy - on - write ( COW ) B - tree or a Log - Struc 
tured Merging Tree ( LSM Tree ) ) . The logical mapping may 
be associated with the logical layer 412 of FIG . 4A , while 
the chunk mapping and the hash mapping may be associated 
with the CAS layer 414 of FIG . 4A . To implement such 
mappings encoded in the metadata , a vDFS ( e.g. , VDFS 304 
and vDFS 334 of FIG . 3 ) may implement a two - layered 
metadata mechanism . The first layer may be a logical layer 
that implements and traverses the B - trees encoding the 
mapping . The second layer may be a chunk store layer that 
generates ( or allocates ) new chunk_IDs for new chunks and 
enables the reading , writing , allocating , and freeing of data 
chunks . Each new chunk_ID allocated by the chunk store 
layer may be the “ next ” chunk_ID ( in view of the most 
recent previous chunk_ID ) in the natural ordering of the 
chunk_IDs . In some embodiments , there may be no practical 
upper limit to the number of available chunk_IDs . The 
chunk store may be a CAS aware store , and thus the VDFS 
may implement chunk - level deduplication . The vDFS may 
employ a LFS file system for the data . 
[ 0081 ] AvDFS may be responsible for chunking the data . 
The size of the data chunks may be variable and be based on 
a structure , arrangement , organization , and / or composition 
of the data itself . The size of the data chunks may be 
anything smaller than the size of data segments , but in some 
embodiments , the size of the chunks may vary from 1 kB to 
1 MB . Thus , a single data segment may include numerous 
data chunks . In some embodiments , the data is chunked such 
that each chunk is approximately 80 kB . 
[ 0082 ] In some embodiments the chunk mapping may take 
the following form : < inode_ID , type , lba > < chunk_ID , 
chunk_size > , where inode_ID identifies a particular inode of 
the vDFS , type indicates a type or category ( e.g. , File_Map ) 
of the inode identified by inode_ID , and chunk_size indi 
cates the size of the chunk . The size of the chunk indicated 
by size_chunk in logical blocks . In such embodiments , the 
size of the key may be 16 - bytes wide . As discussed below , 
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a VDFS may encode snapshots via key - value pairs encoded 
in a B - Tree ( e.g. , a COW B - Tree ) . 
[ 0083 ] When taking a new snapshot ( e.g. , snapshot_ID = 6 ) 
of a data object ( inode_ID = 10 and type = File_Map ) , the 
“ new ” or “ different ” data for a snapshot is written to a newly 
allocated chunk . In snapshot_ID = 5 ( e.g. , the snapshot pre 
vious to snapshot_ID = 6 ) , the logical mapping may include 
the two key - value pairs : < i10 , File_Map , L_0 >> < C_1 , 
10003 > and < i10 , File_Map , L_10003 > = < C_2 , 12007 > . 
Thus , in the fifth snapshot of the data object , the chunk_size 
of C_1 is 10003 logical blocks and the chunk_size of C_2 is 
12007 logical blocks . The logical addresses L_0 through 
L_10002 are mapped to the C_1 chunk , while the logical 
addresses L_10003 through L_22009 are mapped to the C_2 
chunk . 

[ 0084 ] The user may edit data within the C_1 chunk ( e.g. , 
the user may add an additional 20 blocks to the data 
associated within C_1 ) , and not edit data within the C_2 
chunk . When snapshot_ID = 6 is taken , the data for the entire 
object is re - chunked . After the re - chunking , a new chunk is 
allocated for the updated data . Because chunks are allocated 
with sequential and / or contiguous chunk identifiers ( and 
assuming that the data object includes only two chunks : 
chunk_ID = C_1 and chunk_ID = C_2 ) , the newly allocated 
chunk is identified as chunk_ID = C_3 . Because the updated 
data includes an additional 20 blocks of data ( and the data 
associated with chunk_ID = C_2 ) the chunk_size of the new 
chunk C_3 is chunk_size = 10023 . The logical mapping of 
snapshot_ID = 6 includes the two key - value pairs : < i10 , 
File_Map , L_0 > < C_3 , 10023 > and < 10 , File_Map , 
L_10023 > » < C_2 , 12007 > . Thus , for this new snapshot , the 
logical addresses L_0 through L_10022 are mapped to the 
new C_3 chunk , while the logical addresses L_10023 
through L_22029 are mapped to the older C_2 chunk . The 
C_1 chunk is still stored for recovery of the snapshot_ID = 5 
snapshot , however , C_1 is not included in the snapshot_ 
ID = 6 snapshot . 
[ 0085 ] FIGS . 5A - 5C include block diagrams illustrating 
schemas for storing snapshots of a data object , in accordance 
with some embodiments . FIG . 5A shows the mapping 
between the logical address space and the chunk address 
space of two consecutive snapshots . Mapping 500 shows the 
mapping of the logical address space to chunk address space 
of the fifth snapshot ( e.g. , snapshot_ID = 5 ) of the data object . 
In the compact notation discussed in conjunction with FIG . 
4D ( < lba > < chunk_ID , num_chunks > ) , the mapping 500 
may be captured by the single n - tuple < L_1 >> < C_1 , N_5 > , 
where N_5 indicates the number of contiguous logical 
addresses mapped to corresponding contiguous chunk 
addresses . In this non - limiting example , the size of each 
chunk is equivalent to the size of a logical block . The user 
may edit data within the logical blocks L_4 and L_5 . In the 
next snapshot ( e.g. , snapshot_ID = 6 ) , new chunks may be 
sequentially allocated ( e.g. , C_9 and C_10 ) for the edited 
data corresponding to L_4 and L_5 . Mapping 502 shows the 
logical to chunk mapping for snapshot_ID = 6 , where the 
mapping of snapshot_ID = 5 between < L_1 > < C_1 > , 
< L_2 > » < C_2 > , and < L_3 >> < C_3 > ( of mapping 500 ) is 
still valid . The mapping encoding snapshot_ID = 6 needs to 
account for the mapping of the new chunks ( < L_4 >> < C_9 > 
and ( < L_5 > * < C_10 > ) , while disregarding the previous 
mappings ( of snapshot_ID = 5 ) : ( < L_4 >> < C_7 > and < L_ 
5 >> < C_8 > ) . 

[ 0086 ] As noted , snapshots may be encoded in a B - Tree 
( e.g. , a COW B - Tree ) stored in the object's metadata . More 
specifically , the snapshots are encoded in key - value pairs 
that arranged in a B - Tree . FIG . 5B shows a first schema 510 
for the key - value pairs encoding snapshots , while FIG . 5C 
shows a second schema 520 for the key - value pairs encoding 
snapshots . The first schema 510 has the first format < L_X , 
snapshot_ID > < chunk_ID , num_chunks > . The second 
schema 520 has the second format < snapshot_ID , 
L_X >> < chunk_ID , num_chunks > . Note that in the non 
limiting embodiments of FIGS . 5B - 5C , the object_ID keys 
( e.g. , inode_ID , type ) are omitted for simplicity . In both 
schemas 510/520 , the object_ID keys would be the most 
significant components of the key . 
[ 0087 ] As noted above , the ordering of the components of 
a key and / or paired values may be significant , at least 
because of the placement or insertion of the key - value pair 
in a B - Tree . When inserted into a B - tree , the keys are sorted 
via the ordering of the components in the n - tuple represen 
tation . The most significant component being the primary 
component for the sorting and the least significant compo 
nent being the least - significant component for the sorting . 
Thus , keys with a common 1st - order component are grouped 
together first . Keys with a common 1st - order component and 
a common 2nd - order component are grouped together 
( within the initial grouping of the common 1 - st order 
component ) , and so on until the least significant component . 
Thus , all keys with a common 1st - order component may 
grouped in a similar region ( e.g. , all within the same 
sub - tree ) of the B - Tree . Keys with a common 2nd - order 
component ( but dissimilar 1st - order components ) may be 
located in disparate regions ( e.g. , separate sub - trees ) of the 
B - tree . 

[ 0088 ] In the first schema 510 , the logical address com 
ponent is more significant than the snapshot_ID component . 
Thus , when key - value pairs represented by the first schema 
510 are inserted into a B - Tree , the keys are sorted by the 
logical address before sorting by the snapshot_ID . In the 
second schema 520 , the snapshot_ID component is more 
significant than the logical address component . Thus , when 
key - value pairs represented by the second schema 520 are 
inserted into a B - Tree , the keys are sorted by the snapshot_ 
ID before sorting by the logical address . 
[ 0089 ] FIG . 5B shows the n - tuples required for encoding 
snapshot_ID = 5 and snapshot_ID = 6 via the first schema 510 . 
Encoding 512 encodes snapshot_ID = 5 via first schema 510 . 
Encoding 514 show an updating of the encoding 512 to 
account for snapshot_ID = 6 . Because first schema 510 
arranges the n - tuples via a common logical address ( rather 
than a common snapshot_ID ) , note that encoding 514 
requires the splitting of encoding 512 from < L_1 , 
S_5 >> < C_4 , N_5 > to < L_1 , S_5 > < C_4 , N_3 > and 
< L_4 , S_5 >> < C_7 , N_2 > . Thus , when snapshot_6 is cap 
tured , the B - tree has to be updated to account for this 
splitting of the n - tuple representation . Also note the effect 
when traversing the updated B - Tree for looking up values 
for a key . First schema 510 optimizes looking up the values 
for a specific logical address for all snapshots . However , 
when trying to perform a lookup for a specific snapshot 
( with a snapshot_ID smaller ( e.g. , snapshot_ID = 5 ) than the 
tree's current snapshot_ID ( e.g. , snapshot_ID = 6 ) ) , then the 
B - tree must be traversed multiple times to find all instances 
of a key that includes the snapshot_ID corresponding to the 
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snapshot that is being recovered . That is , disconnected 
regions of the tree ( regions encoding snapshot_ID = 5 ) need 
to be located and traversed . 
[ 0090 ] FIG . 5C shows the n - tuples required for encoding 
snapshot_ID = 5 and snapshot_ID = 6 via the second schema 
520. Encoding 522 encodes snapshot_ID = 5 via second 
schema 520. Encoding 524 show an updating of the encod 
ing 522 to account for snapshot_ID = 6 . Note that because the 
n - tuple representation is arranged around common snapshot 
IDs , the splitting of the n - tuple representation of from 
snapshot_ID = 5 to snapshot_ID = 6 , as required via the first 
schema 510 , is not required for the second schema 520 . 
When recovering snapshot_ID = 5 from a B - Tree that 
encodes subsequent snapshots , the tree only needs traversed 
along regions of the common snapshot_ID = 5 . Thus , in some 
embodiments , second schema 520 may be preferable over 
first schema 510. However , note the tradeoff for the second 
schema 520. To lookup the values for L_4 and L_5 for all 
snapshots , multiple traverses of the tree are required . That is , 
disconnected regions of the tree ( regions encoding L_4 and 
L_5 ) need to be located and traversed . Thus , in other 
embodiments , first schema 510 may be preferred over sec 
ond schema 520 . 
[ 0091 ] As discussed in conjunction with FIG . 3 , when 
taking a snapshot of an object , an uploader agent of a SDDC 
( e.g. , uploader agent 352 of primary SDDC 310 ) may upload 
block - level differences of the data object to a data store ( e.g. , 
data store 322 ) . The uploader agent also communicates the 
uploading of a snapshot to an uploader server of an object 
storage and recovery system ( e.g. , uploader server 342 of 
OSRS 340 ) . If a system failure ( e.g. , a disruption in the 
communication network that allows communication 
between the SDDC , data store , and / or OSRS ) occurs during 
the uploading , the uploading of the snapshot will not be 
completed . The probability that a system failure occurs 
during an upload of a snapshot is non - zero . Furthermore , 
because data objects may be of significant size , a large 
amount of difference data may need to be transferred from 
the SDDC to the data store . The probability for such a 
system failure is increased for longer upload periods . 
[ 0092 ] In conventional systems , the recovery from a sys 
tem failure cannot be simply to re - start the uploading from 
the last data that was uploaded prior to the failure . If this 
approach is undertaken , data may be duplicated in the 
snapshot . Since difference - based snapshots require that data 
not be duplicated within a single snapshot , this method may 
result in data corruption . Many conventional systems may 
recover from the system failure by re - starting the data 
upload , from the beginning of the failed snapshot , when the 
system's resources become available again . In this way , data 
may not be duplicated within a snapshot . However , because 
significant amounts of data may need to be uploaded , 
re - starting the upload may be a wasteful solution because 
significant amounts of the system's resources ( e.g. , network 
bandwidth ) may be required to re - start the upload . For 
example , if the failure occurs after 95 % of the data to be 
uploaded has been successfully uploaded , it is inefficiently 
to re - upload the 95 % in order to upload the remaining 5 % of 
the data . Furthermore , if another failure occurs after the 
uploading is re - started , then the upload may have to be 
re - started a second time . 
[ 0093 ] The various embodiments provide an enhanced 
methods for uploading snapshots . The uploading methods of 
the various embodiment tolerate system failures during an 

upload , and are significantly more efficient than conven 
tional methods . The various embodiment ensure that data is 
not duplicated within a single snapshot , and thus are not 
prone to data corruption from starting the upload , after a 
failure , based on the last known successfully upload block . 
In the various embodiments , each snapshot has a state 
variable associated with its successful uploading , ( e.g. , an 
upload_status state ) . When the uploading of a snapshot is 
initiated , the value of the upload_status state is assigned a 
value of “ Not_Complete ” . The SDDC may receive an 
acknowledgment signal , from the destination of the upload 
or another resource in communication with the destination 
( e.g. , a data store or an OSRS ) , for each uploaded block that 
the block was successfully uploaded . If the acknowledgment 
signal is not received , then the SDDC is aware that the block 
was not received . Thus , the SDDC may be aware of the 
success ( or failure ) of uploading each block during an 
upload . If all the blocks are acknowledged as having been 
successfully uploaded , then the upload_status state of the 
snapshot may be transitioned to a value of “ Complete ” . 
[ 0094 ] If a system failure occurs during an upload for a 
snapshot , then the upload_status state for that snapshot is not 
transitioned to complete . Thus , the SDDC is aware of 
whether a snapshot upload has been successfully completed . 
After the system recovers , a new snapshot ( with a new 
snapshot_ID ) is initiated . For example , a system failure may 
occur during snapshot_ID = N . Because the last block to be 
transmitted has not yet been transmitted ( or its successful 
upload has not been acknowledged ) , snapshot_ID = N is not 
completed . After the system recovers , a new snapshot ( e.g. , 
snapshot_ID = N + 1 ) is initiated . The first block data trans 
mitted in the new snapshot may be the next block , after the 
last successfully acknowledged block from the previous 
failed snapshot . This may result in the re - transmittance of a 
small amount of data ( e.g. , data that has been uploaded , but 
the failure occurred prior to receiving the successful 
acknowledgment signal ) . However , the re - transmitted data 
is not included in the same snapshot , and thus the embodi 
ments are not prone to data corruption . Furthermore , only a 
small amount of data may need to be re - transmitted , reduc 
ing the inefficiencies of re - starting the upload from the 
beginning . Due to the system failure during the upload , 
snaphot_ID = N may not be recoverable ( e.g. , the snapshot is 
not a complete snapshot ) , but the successfully uploaded data 
may be employed to recover snapshot_ID = N + 1 . The meth 
ods for uploading a snapshots , as well as deleting snapshots , 
are discussed in conjunction with FIGS . 5D - 5E . 
[ 0095 ] FIG . 5D is a block diagram illustrating a fault 
tolerant process for uploading snapshots of a data object , in 
accordance to the various embodiments . The 2D table 540 in 
FIG . 5D illustrates the uploading of the object's first five 
snapshots . A horizontal row in the table 540 indicates a 
single snapshot , and a vertical column represents a single 
logical address . Each cell in the table 540 corresponds to an 
upload of the corresponding logical block ( as indicated by 
the cell's column ) for the corresponding snapshot ( as indi 
cated by the cell's row ) . A rectangle placed in the cell 
indicates that the block was uploaded by the SDDC for the 
snapshot . If the rectangle is shaded or “ hatched ” , the SDDC 
received the successful acknowledgment signal . If the rect 
angle is not shaded then the SDDC uploaded the block , but 
did not receive the acknowledgment signal for the block . 
The last column ( e.g. , the column labeled “ Complete ? ” ) in 
the table 540 indicates the value of the upload_status state 
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variable for the snapshot . A “ check ” in the snapshot’s cell of 
the last column indicates that the value of upload_status is 
set to " Complete . ” An absence of the check indicates that 
value of the upload_status is “ Not Complete ” . A system 
failure occurred during the upload of snapshot_ID = 3 , and 
thus its upload_status state variable is set to “ Not_Com 
plete . ” As shown in the column of the table 540 , the 
upload_status state variable of each of the other snapshots is 
set to “ Complete . " 
[ 0096 ] As shown in table 540 , a first snapshot ( e.g. , row 
corresponding to snapshot_ID = 1 ) is taken of a data object . 
For purposes of illustration , the object is 10 blocks wide , 
with logical address ranging from L_1 to L_10 . However , 
this embodiment is non - limiting , and an object may include 
significantly more blocks . Because snapshot_ID = 1 is the 
base - level snapshot , each of the 10 are uploaded . As shown 
by the 10 shaded rectangles in the first row of the table 540 , 
each of the uploaded blocks were acknowledged as being 
successfully uploaded , and the snapshot is indicated as 
complete . For snapshot_ID = 2 , the only differences in the 
data occur in L_2 and L_7 . The shaded rectangles corre 
sponding to these blocks indicate the successful uploading 
of these blocks , and snapshot_ID = 2 is marked as complete . 
[ 0097 ] For snapshot_ID = 3 , the data has been edited such 
that blocks L_1 , L_2 , L_3 , L_5 , L_6 , L_8 , and L_10 are 
marked for uploading . The SDDC uploads L_1 , L_2 , and 
L_3 prior to the system failure . As indicated by the shaded 
and not shaded rectangles in the third row of the table 540 , 
the SDDC received the acknowledgment signal for L_1 and 
L_2 , but not for L_3 . Because upload_status state variable is 
marked as “ Not_Complete ” for snapshot_ID = 3 , when the 
system resources come back online , snapshot_ID = 4 is ini 
tiated . Snapshot_ID = 4 is initiated by starting with L_3 
because the signal indicating its successful upload has not 
been received by the SDDC . Snapshot_ID = 4 finishes the 
intended upload of snapshot_ID = 3 successfully and is 
marked complete after successfully uploading L_3 , L_5 , 
L_6 , L_8 , and L_10 . Snapshot_ID = 5 is successfully com 
pleted by successfully uploading blocks L_1 , L_3 , L_5 , L_7 , 
L_9 , and L10 . As noted above , snapshot_ID = 3 is not recov 
erable , but its versions of L_1 and L_2 are needed to recover 
snapshot_ID = 4 , and its version of L_2 is required to recover 
snapshot_ID = 5 . 
[ 0098 ] FIG . 5E is a block diagram illustrating a process for 
deleting snapshots of a data object , in accordance to the 
various embodiments . FIG . 5E shows the table 560 , which 
includes the five snapshots of FIG . 5D , where snapshot_ 
ID = 4 is to be deleted . The cells marked with a “ D ” corre 
spond to blocks ( of a snapshot ) that may be deleted when 
snapshot_ID = 4 is deleted . More particularly , not all of the 
blocks of snapshot_ID will be deleted because some of the 
blocks may be required to reconstruct snapshot_ID = 5 ( or 
later snapshots ) . For example , because L_6 and L_8 remain 
unchanged between snapshot_ID = 4 and snapshot_5 , these 
blocks stored for snapshot_ID = 4 are required to recover 
snapshot_ID = 5 . Furthermore , some of the blocks ( e.g. , L_1 ) 
stored for snapshot_ID = 3 may be deleted because snapshot_ 
ID = 4 is the only snapshot that requires this block for 
recovery . i.e. , L_1 was edited for snapshot_ID = 5 . 
[ 0099 ] In general , to delete snapshot_ID = N , then all snap 
shots with ( a snapshot_ID < = snapshot_ID = N ) and ( a snap 
shot_ID > than the most recent previous snapshot ) are iden 
tified . Blocks within these identified snapshots are identified 
by deletion based on difference between the blocks of these 

identified snapshots and the corresponding blocks in snap 
shot_ID = N + 1 . For this example ( deletion of snapshot_ 
ID = 4 ) , snapshot_ID = 3 and snapshot_ID = 4 are identified . 
Because differences between snapshot_ID = 5 and the iden 
tified snapshots occur in L_1 , L_3 , L_5 and L_10 , these 
blocks may be deleted . Note that blocks corresponding to 
L_6 and L_8 in snapshot_ID = 4 are not marked for deletion 
because they are needed for the recovery of snapshot_ID = 5 . 
[ 0100 ] FIGS . 6A - 7 illustrate flowcharts for exemplary 
processes 600-700 , in accordance with some embodiments 
Processes 600-700 are performed , for example , at one or 
more storage nodes of a cluster of storage nodes operating 
in the cloud - computing environment . In some embodiments , the distributed computing system comprises a plurality of 
storage nodes or host computing devices ( e.g. , host com 
puting device 100 described in reference to FIG . 1A ) that are 
communicatively coupled together in a VSAN . In some 
embodiments , the distributed - computing system is imple 
mented by one or more virtual machines ( e.g. , VM 102 
described in reference to FIGS . 1A - 1B ) . The distributed 
computing system implements , for example , any of the 
components discussed in conjunction with environment 300 
of FIG . 3 ( e.g. , an object storage & recovery system and / or 
a software designed data center ) . In some embodiments , the 
operations of any of processes 600-700 are distributed 
across the various systems ( e.g. , storage nodes ) of the 
distributed - computing system . In processes 600-700 , some 
blocks are , optionally , combined , the order of some blocks 
is , optionally , changed , and some blocks are , optionally , 
omitted . In some embodiments , additional operations may 
be performed in combination with any of processes 600-700 . 
[ 0101 ] FIG . 6A illustrates a flowchart of an exemplary 
process 600 for storing data in a distributed - computing 
system , in accordance with some embodiments . Process 600 
begins at step 602 , where data is received for a data object . 
The data may be structured as a consisting of a set of data 
blocks . The set of blocks may be an ordered set ( e.g. , 
block_1 , block_2 , block_3 , ... , block_M , where M is any 
positive integer ) . Each data block may be assigned a logical 
block address ( lba ) , and be addressable via its lba . Assigning 
an lba ( e.g. , L_X ) to a block may be based on the ordering 
of the set of blocks ( e.g. , L_1- > block_1 , L_2_block_2 , 
L_3_block_3 , .... L_M > block_M ) . That is , a unique ( to 
the data object ) logical address may be sequentially and / or 
contiguously assigned to each block of the set of data blocks 
of the object . The logical address assignment may be based 
on the ordering of the set of data blocks . The received data 
( along with its object_ID , e.g. , inode_ID and type ) may be 
transmitted to and / or received from a data store and / or 
SDDC . Thus , the data may be structured as a set of data 
segments , where each data segment includes multiple blocks 
of data . 
[ 0102 ] At step 604 , the data may be subdivided into a set 
of data chunks . That is , the data may be “ chunked ” in an 
ordered set of chunks . In various embodiments , a chunking 
method or algorithm is employed to chunk the data . The 
chunking algorithm may identify “ natural breakpoints " in 
the data to determine the block addresses of the start point 
and end point for each of the chunks . A breakpoint for a 
chunk may be identified via a " signature ” within a finger 
print of the data . By identifying natural breakpoints based on 
chunk content , the chunking algorithm may be resistant to 
shifts in the objects data . Thus , when re - chunking edited 
data , the boundaries of a chunk are likely to be invariant 
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( with respect to which data the chunk includes ) in the 
re - chunking , even though additional or less data may be 
included in the new chunk . The chunking method may 
include employing a sliding window and a fingerprinting 
algorithm . The implemented fingerprinting algorithm may 
include a hash function , such as but not limited to a Rabin 
fingerprinting scheme . In some embodiments , the size of the 
chunks may be variable and may vary from 1 kB to 1 MB . 
Thus , a single data segment may include numerous data 
chunks . In some embodiments , the data is chunked such that 
each chunk is approximately 80 kB . 
[ 0103 ] When the data is subdivided into a set of chunks , 
each chunk in the set of chunks may include a subset of the 
set of blocks . In some embodiments , each chunk includes a 
plurality of chunks . Each block may be included in only a 
single chunk , such that an intersection of any two subsets of 
blocks is the null set . Chunking the data may be based on the 
ordering of the blocks , such that the blocks included in a 
chunk are contiguous blocks . The ordering of the set of 
chunks may be based on the ordering of the blocks included 
in the chunks . The ordering of the set of chunks may be 
based on the ordering of the blocks included in the chunks . 
The set of chunks may include N chunks , where N is any 
positive integer . 
[ 0104 ] At step 606 , a signature is generated for each 
chunk . Generating the signature for a particular chunk may 
be based on the data of the subset of blocks that is included 
in the particular chunk . In at least one embodiment , the 
signature for the particular chunk may be a hash value 
( generated by a hash function ) of the data included in the 
particular chunk . 
[ 0105 ] At step 608 , values for a block counter ( e.g. , 
block_counter ) , a chunk counter ( e.g. , chunk_counter ) , and 
a loop counter ( e.g. , loop_counter ) may be in initialized . In 
some embodiments , the value of the block counter may be 
initializes based on an initial logical address of the sequen 
tially assigned logical addresses of the data object . The value 
for the block counter may be initialized such that block_ 
counter = 1 . In some embodiments , the value of the chunk 
counter may be initialized based on a chunk identifier of the 
most recently processed chunk . The chunk counter may be 
initialized to a value corresponding to a single increment of 
the chunk_ID of the most recently processed chunk . For 
example , if the last processed chunk of a previous object has 
a chunk_ID = 100 , then the chunk counter may be initialized 
at step 608 such that chunk_counter = 101 . The value of the 
loop counter may be initialized such that loop_counter = 1 . In 
various embodiments , the block_counter counts the number 
of data blocks of the object processed via process 600. The 
chunk_counter may be employed to determine a unique 
value for chunk identifier ( e.g. , chunk_ID ) for newly allo 
cated chunk identifiers . In at least one embodiment , the 
chunk_counter may be initialized such that chunk_coun 
ter = 1 . The loop_counter counts the number of times through 
the loop defined by blocks 610-630 . In some embodiments , 
the total number of times through the loop of blocks 610-630 
may be equivalent to the number of chunks included in the 
set of chunks ( e.g. , the cardinality of the ordered set of 
chunks ) . At step 610 , a loop over the set of blocks is 
initiated . 
[ 0106 ] At step 612 , a chunk is selected from the set of 
chunks based on the chunk_counter . The selection of the 
chunk may be based on the ordering of the chunk and the 
chunk_counter . For example , during the first time through 

the loop ( e.g. , loop_counter = 1 ) , the 1st chunk of the set 
( based on the ordering of the set of chunks ) may be selected 
at step 612. During the 2nd time through the loop ( e.g. , 
loop_counter = 2 ) , the 2nd chunk of the set ( based on the 
ordering of the set of chunks ) may be selected , and so on . 
For the discussion corresponding to blocks 614-630 , the 
chunk selected at step 610 may be referred to as the next ( or 
selected ) chunk selected from the set of chunks . The selected 
chunk ( e.g. , the next chunk ) has a particular ( or next ) 
signature associated with it , and includes a number of data 
blocks . 
[ 0107 ] At step 614 , a key for the selected chunk ( e.g. , a 
next key ) may be generated based on the block_counter . In 
the various embodiments , the value of the block_counter 
may correspond to the logical address of the first block 
( based on the ordering of the set of data blocks ) in the 
selected chunk . For example , during the first time through 
the loop , loop_counter = 1 and the logical address of the first 
block in the first selected block is L_1 . The key generated at 
step 614 may be included in a logical mapping ( e.g. , a 
mapping that goes from the logical address space to the 
chunk address space ) . As discussed throughout , the key may 
be generated via the n - tuple < object_ID , Iba > . The value for 
iba may be the logical address of the first block for the 
selected chunk , and thus may be determinable from the 
value of the block_counter . As also discussed above , the 
value for object_ID may include an inode identifier , as well 
as a type of the identified inode . 
[ 0108 ] At decision step 616 , it is determined whether the 
selected chunk is a duplication of a previously selected 
chunk . That is , it is determined whether the selected next 
chunk includes data that is equivalent to ( or a copy of ) data 
already stored by and / or processed by process 600. The 
duplicated chunk ( e.g. , the previously selected chunk ) may 
have been selected during the loop for this object , or a 
previously processed object . The decision of step 616 may 
be based on a comparison of the signature of the selected 
chunk and a signature of the duplicated block . If the signa 
tures ( e.g. , hash values ) are equivalent , then the data blocks 
of the data in both the selected chunk and the previously 
selected chunk are identical , i.e. , the selected chunk is a 
duplication of the previously selected chunk . 
[ 0109 ] In some embodiments , the signature of each pro 
cessed chunk is stored in a content aware store ( e.g. , a CAS ) . 
At decision step 616 , the signature of the selected may be 
provided to the CAS . The CAS may store a signature 
mapping . The signature mapping may be a hash mapping , 
such as hash mapping 460 of FIG . 4E . The signature 
mapping may be a signature table and / or a signature index , 
e.g. , a hash table and / or hash index . The CAS may store 
object level - hash tables , user - level hash tables , device - level 
hash tables , client level - hash tables , customer - level hash 
tables , SDDC - level hash tables , and / or data store - level hash 
table levels . The CAS may perform the comparison between 
the signature of the selected chunk and each of the signatures 
stored in the signature table . The CAS may provide a signal 
of whether the signature has already been stored at the CAS . 
If the signature of the selected chunk has already been stored 
in the CAS , the selected chunk is a duplication of a previ 
ously selected chunk . If the signature of the selected chunk 
has not been previously stored in the CAS , then the selected 
chunk is not a duplication of a previously selected chunk . If 
the selected chunk is a duplication of a previously selected 
chunk , then process 600 flows to step 618. When the 
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selected chunk is a duplication of the previously selected 
chunk , then the signal from the CAS may indicate informa 
tion regarding the duplicated chunk , such as but not limited 
to a chunk identifier and the size of the chunk , e.g. , the 
number of blocks included in the duplicated chunk . If the 
selected chunk is not a duplicated chunk , process 600 flows 
to step 620 . 
[ 0110 ] Because the signatures for chunks that have been 
previously processed are stored ( or cached ) in the CAS , the 
method does not need to store multiple copies of identical 
chunks of object . Thus , process 600 provides deduplication 
services for data duplicated at the chunk level . Because 
signature ( or hash ) tables may be implemented for any 
combinations of distinctions between data object , custom 
ers , clients , and the like , such deduplication services may be 
provided at the data object level , the user level , the device 
level , the client level , the customer level , or any other such 
level of division within a SDDC or data store . 
[ 0111 ] At step 618 , and in response to determining that the 
selected chunk is a duplication of a previously selected 
chunk , a value for the key for the selected chunk ( e.g. , a 
value for the key of the selected chunk ) may be generated 
based on the duplicated chunk , e.g. , the previously selected 
chunk that is duplicated by the selected chunk . The value 
may be based on a chunk identifier for the previously 
selected chunk and the size of the previously selected chunk . 
Because the size of the selected chunk is identical to the size 
of the duplicated chunk , the value may be based on a number 
of blocks included in the selected chunk , or equivalently the 
number of blocks included in the duplicated chunk . In some 
embodiments , the value may be encoded in the format 
< chunk_ID , num_blocks > , where chunk_D is the chunk 
identifier for the duplicated chunk and num_blocks indicates 
its chunk_size ( in data blocks ) . Process 700 may flow to step 
628 . 
[ 0112 ] At step 620 , and in response to determining that the 
selected chunk is not a duplication of a previously selected 
chunk , a new chunk identifier may be allocated for the 
selected chunk . The new chunk identifier may be based on 
a current value of the chunk_counter . Some embodiment 
may include a chunk store that allocates new chunk identi 
fiers . As discussed throughout , new chunk identifiers may be 
allocated and / or generated in a contiguous sequence , e.g. , 
C_1 , C_2 , C_3 , and so on with no practical upper limit . 
Similar to the deduplication process discussed above , the 
new chunk identifiers may be sequentially and contiguously 
numbered at the object level , user level , client level , device 
level , customer level , and any other such level . The chunk 
store may employ the chunk_counter to determine the chunk 
identifier . The chunk store may be generally responsible for 
the chunk_counter . In some embodiments , the chunk_coun 
ter may not be initialized at bock 608 , because the chunk_ 
counter keeps a running count at the appropriate level ( e.g. , 
object , user , device , customer , or the like ) . 
[ 0113 ] At step 622 , the value for the key is generated 
based in the newly allocated chunk identifier and the size of 
the selected chunk . Similar to step 618 , the value may be 
formatted as < chunk_ID , num_blocks > , where chunk_D is 
the chunk identifier allocated for the specific chunk and 
num_blocks indicates its size . 
[ 0114 ] At step 624 , the signature of the selected chunk 
may be stored in the CAS . For example , the hash table ( at 
each of the appropriate levels ) may be updated to include the 
mapping between the signature of the selected chunk and its 

chunk identifier . In some embodiments , the size of each 
chunk is stored in the hash table . As discussed throughout , 
the hash table ( or hash mapping ) may be encoded in key 
value pairs stored in a B - tree . At step 626 , the chunk counter 
is updated . The chunk store may sequentially increment the 
value of the chunk counter by increasing its value by 1 . 
[ 0115 ] Process 600 flows to step 628 ( from step 618 or 
step 626 ) . At step 628 , the object's metadata may be updated 
to include an indication of an association between the key 
and the value in metadata for the data object . That is , the key 
and value may be stored as a key - value pair in a B - Tree ( e.g. , 
a COW B - Tree ) included in the metadata to encode the 
logical mapping for the object . In some embodiments , the 
key and paired value may be inserted into the logical 
mapping B - Tree at step 628. Such logical mappings are 
discussed at least in conjunction with FIG . 4D , and provide 
a mapping between a logical address space and a chunk 
address space for the data object . 
[ 0116 ] Also at step 628 , the loop counter may be updated . 
That is , the value of the loop_counter may be incremented 
by 1. Also , the block counter is updated based on the chunk 
size . The value of block_count may be increased by the 
number of data blocks included in the selected chunk . Thus , 
the block counter keeps tabs of the number of data blocks 
processed by the loop of process 600. Thus , the block 
counter may be employed to determine the logical block 
address of the each block of each chunk . At decision step 
630 , it is determined whether to end or finish loop . The 
decision to end the loop may be based on the loop counter . 
If the loop counter is greater than the number of blocks in the 
data object ( e.g. , each chunk in the data object has been 
processed by the loop ) , the loop may be terminated . If the 
loop is not terminated , process 600 may flow back to step 
612 to select the next chunk . Otherwise , the loop may be 
terminated and process 600 may flow to step 632 . 
[ 0117 ] At step 632 , the data for the data object may be 
stored , e.g. , in a data store . Each chunk may be stored in data 
store . The data store may employ a Log - Structured File 
System ( LFS ) . The chunk of the data chunks of the data 
object are distributed over a set of data segments of the LFS . 
Each segment of the set of data segments may include a 
subset of the set of data chunks . The LFS may address each 
block of the set of data blocks by a segment address of a 
segment addresses space of the LFS . Via the loop of blocks 
610-630 , each chunk of the set of data chunks is uniquely 
identified by a chunk identifier of a set of sequential chunk 
identifiers . Thus , each chunk is addressed by chunk 
addresses of a chunk address space 
[ 0118 ] Storing the data may include generating a chunk 
mapping for the stored object . That is , storing the data may 
include generating a mapping for each chunk address of the 
chunk address space to a segment address of the segment 
address space . The chunk mapping may be similar to those 
embodiments discussed in conjunction with FIG . 4D . That 
is , the chunk mapping may provide a mapping between the 
chunk address space and the segment address space of the 
stored data , and be stored as key - value pairs in a B - Tree 
( e.g. , a COW B - Tree ) . The metadata for the object ( encoding 
the mappings between the logical address space , the chunk 
address space , the segment address space , and the hash 
values ) may be stored at step 632 . 
[ 0119 ] Also at step 632 , a snapshot of the data object may 
be captured . The snapshot of the data object may be encoded 
in the B - Tree mappings , via snapshot key - value pairs . A 
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snapshot key may indicate a snapshot identifier ( snapshot_ 
ID ) and a logical address of the data ) . A snapshot value for 
the key may indicate a chunk identifier for where the data of 
the logical address is included in . The snapshot captured at 
step 630 may be a first snapshot . Updated data may be 
received and a second snapshot of the data may be captured . 
The snapshot key - value pairs may be encoded in a B - Tree 
that sorts n - tuple representations of the snapshot key - value 
pairs via a common snapshot identifier . 
[ 0120 ] FIG . 6B illustrates a flowchart of an exemplary 
process 640 for updating a stored data in a distributed 
computing system , in accordance with some embodiments . 
Process 640 begins at step 642 , where updated data of an 
existing object is received . The data , prior to being updated 
( e.g. , edited by a user ) , may have been stored in the 
distributed - computing system via process 600 of FIG . 6A . 
At step 644 , the data is re - chunked ( e.g. , the updated data is 
re - subdivided into a set of new chunks ) . In the various 
embodiments , the entirety of the data may be re - chunked , 
even if the data has been only slightly updated ( e.g. , the 
entirety of the data will be re - chunked even if the user only 
changes a single bit in the data ) . Various embodiments for 
chunking data are described at least in conjunction with step 
604 of FIG . 6A . At step 646 , a signature is generated for 
each of the data chunks . Various embodiments for generat 
ing a signature for a data chunk are discussed at least in 
conjunction with step 606 of FIG . 6A . 
[ 0121 ] At step 648 , the block signatures generated at step 
648 are compared to the object's previous block signatures 
( e.g. , the signatures generated for a most recent ( but previ 
ous ) updating of the data ) . If this is the first instance of a data 
update for the object , then the signatures will be compared 
to the signatures generated via process 600 of FIG . 6A . In 
some embodiments , an object signature list is generated and 
stored for each storing and / or updating of the data . The 
signature list may be kept in the CAS discussed at least in 
conjunction with process 600. At decision step 650 , it is 
determined whether at least one of the signatures of the 
current version of the object ( e.g. , those signatures deter 
mined at step 646 ) is different from the signatures of the 
previous version of the object . If the signatures differ , then 
the updated data will be stored , via process 640 flowing to 
step 652. If the signatures are identical , then the data is 
identical ( and does not need to be stored ) and process 640 is 
terminated by flowing to step 656 . 
[ 0122 ] At step 652 , the key - value pairs storing the objects 
logical mapping ( for the previous version of the object ) are 
deleted from the object's metadata . At step 654 , the updated 
data is stored . Embodiments for storing data are discussed at 
least in conjunction with blocks 608-632 of FIG . 6A . 
Process 640 is halted and / or terminated at step 656 . 
[ 0123 ] FIG . 6C illustrates a flowchart of an exemplary 
process 660 for deleting a stored data in a distributed 
computing system , in accordance with some embodiments . 
At step 662 , the object identifier ( e.g. , Object_ID ) for the 
object to delete is received . At step 664 , identify each n - tuple 
of the logical mapping of the object . The n - tuples may be 
identified by traversing object's B - Tree encoding its logical 
mapping . The object identifier may be employed to locate 
the object's B - Tree . At step 666 , each chunk associated with 
the object is identified , via the n - tuples identified at step 664 . 
The associated chunks may be identified via accessing the 
values of the keys encoded in the identified n - tuples . At step 
668 , the reference counter is updated for each chunk iden 

tified at step 666. Updating the reference counter of an 
identified chunk may include decrementing the value of the 
reference counter by 1 because the object is being deleted . 
A garbage collection process may be generally responsible 
for deleting chunks where the value of the reference counter 
has reached 0. At step 670 , the metadata for the object , 
including the logical mapping for the object is deleted . 
[ 0124 ] FIG . 7 illustrates a flowchart of an exemplary 
fault - tolerant processes 700 for uploading a snapshot of a 
data object to an accessible data store , in accordance with 
some embodiments . Process 700 begins , at step 702 where 
updated data for the data object is received , as well as a 
snapshot identifier . The snapshot identifier may be an iden 
tifier of a most recent ( but previous ) snapshot . In various 
embodiment , the received snapshot identifier may refer to a 
previous snapshot that is directed towards a most recent ( but 
previous ) version of the data object . The updated data may 
be for a current , updated , and / or new version of the data 
object . At step 704 , the received snapshot identifier is 
updated . To update the snapshot identifier , the received 
snapshot identifier may be incremented by one . For 
example , the received snapshot identifier may have a value 
of N , where N is a non - negative integer ( e.g. , snapshot_ 
ID = N ) . The updated value may have a value of N + 1 , e.g. , 
snapshot_ID = N + 1 . The updated snapshot identifier may 
identify the requested snapshot ( e.g. , the snapshot that 
includes the current , updated , and / or new version of the 
data ) . In instances where the first snapshot of a data object 
is the first snapshot for the data object , N = 0 , and there is no 
previous versions of the data object to refer to . 
[ 0125 ] At step 706 , the snapshot ( or its corresponding 
snapshot identifier ) is labeled as an incomplete snapshot . 
The label may be a state variable for the snapshot that 
indicates that the snapshot has not yet successfully been 
uploaded , and thus is not in a complete state . At step 708 , a 
set of difference data blocks is identified . The identified 
difference blocks may be the blocks in the data that have 
been updated from and / or not included in the previous 
version of the data . That is , each block of the set of 
difference blocks includes data that is different from and / or 
not included in the data of a corresponding block of the 
previous snapshot of the object , where the previous snapshot 
is the snapshot identified via the snapshot identifier received 
at step 702. The set of difference blocks may be unacknowl 
edged blocks . For example , a difference block that has been 
successfully uploaded to the data store may be labeled a 
label that indicates the blocks as being an acknowledged 
block . An uploaded block may be determined to be success 
fully uploaded via receiving an acknowledgment signal that 
indicates successfully receiving the block for the snapshot . 
Thus , the acknowledgment signal may include the value for 
the current snapshot identifier to indicate that the successful 
uploading of the block was for the current snapshot . Any 
block that is not labeled as an acknowledged block may be 
an unacknowledged block . 
[ 0126 ] At decision step 710 , it is determined whether the 
identified set of blocks is the null set . If the set of blocks is 
the null set , then process 700 flows to step 738. Otherwise , 
process 700 flows to step 712. At step 712 , the set of 
difference blocks may begin being uploaded to the data 
store . The uploading may be asynchronous uploading , in 
that the blocks may be uploaded one after another , without 
receiving an acknowledgment of other handshaking mecha 
nism from the data store . At step 714 , as each block begins 
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its upload , the block is labeled as an outstanding block . The 
label may be a state variable for the block . For a block that 
is in a state labeled as outstanding may be a block that has 
begun its uploading , however , an indication of a successful 
receipt of the block ( e.g. , a corresponding acknowledgment 
signal ) has not yet been received . 
( 0127 ] Blocks 716-726 of process 700 are directed to 
ensure that an asynchronous upload of the data blocks is 
limited by an upload threshold , e.g. , these blocks ensure an 
asynchronous upload does not upload a number of blocks , 
which is greater than the upload threshold , without receiving 
an acknowledgment from the upload's destination ( e.g. , the 
data store ) . At decision step 716 , it is determined whether the 
number of outstanding blocks ( e.g. , the number of blocks 
that are labeled as outstanding ) is greater than the upload 
threshold . If the number of outstanding blocks is less than 
the threshold , then process flows to step 718 , where the 
uploading of the blocks is continued and process 700 then 
flows to step 728. Otherwise , if too many outstanding blocks 
have been uploaded without acknowledgment ( e.g. , as mea 
sured via comparison to the upload threshold ) , then process 
700 flows to step 720. At step 720 , the uploading of the 
blocks is suspended until the number of outstanding blocks 
drops below the upload threshold . 
[ 0128 ] At step 722 , it is determined whether a system 
failure has occurred . A system failure may include that the 
formerly accessible data store is no longer accessible . That 
is , a system failure occurred such that the data store has 
become inaccessible . If a system failure is detected , then 
process 700 flows to step 734. If no system failure is 
detected at step 722 , then process 700 flows to step 724. At 
decision step 724 , it is determined whether an acknowledg 
ment signal for at least a portion of the outstanding blocks 
has been received . If such an acknowledgment signal is not 
received , then process 700 returns to step 722 to determine 
is a system failure is detected . If an acknowledgment signal 
for a portion of the outstanding blocks has been received , 
then process 700 flows to step 726. At step 726 , and in 
response to receiving an acknowledgment signal for the 
portion of the outstanding blocks , the label ( e.g. , a state 
variable ) for each outstanding block in the portion of the 
outstanding blocks is transition from indicating that the 
block is outstanding to indicating that the block is acknowl 
edged ( e.g. , the block has been successfully uploaded ) . 
When a block is transitioned from an outstanding block to an 
acknowledged block , the block may be removed from the set 
of difference blocks . From step 726 , process returns to 
decision step 716 to determine if the outstanding blocks 
count has been sufficiently reduced to fall below the upload 
threshold . If the count has been sufficiently reduced , process 
700 flows to step 718 , where the uploading of the blocks is 
re - started and / or continued . From step 718 , process 700 
flows to step 728. Otherwise , process 700 continues to step 
720 to further suspend the uploading process until the count 
of outstanding blocks has been sufficiently reduced . 
[ 0129 ] At decision step 728 , similar to decision step 722 , 
it is determined whether a system failure has occurred . If a 
system failure is detected at step 728 , process 700 flows to 
step 734. Otherwise , process 700 flows to decision step 730 . 
At decision step 730 , similar to step 724 , it is determined 
whether an acknowledgement signal has been received . If an 
acknowledgment signal has not been received , process 700 
returns to step 710 to determine if the identified set of 

difference block is the null set . If an acknowledgment signal 
has been received , process 700 flows to step 732 . 
[ 0130 ] At step 732 , similar to step 726 and in response to 
receiving an acknowledgment signal for the portion of the 
outstanding blocks , the label ( e.g. , a state variable ) for each 
outstanding block in the portion of the outstanding blocks is 
transition from indicating that the block is outstanding to 
indicating that the block is acknowledged ( e.g. , the block has 
been successfully uploaded ) . When a block is transitioned 
from an outstanding block to an acknowledged block , the 
block may be removed from the set of difference blocks . 
From step 732 , process returns to decision step 710 to 
determine if the set of difference blocks is the null set . If 
more blocks require uploading , then process 700 returns to 
step 712 to continue uploading blocks . 
[ 0131 ] If a system failure is detected ( at either step 722 or 
step 728 ) , process 700 flows to step 734. At step 734 , 
metadata for the unsuccessful ( e.g. , incomplete ) snapshot is 
written and / or generated . The metadata written includes 
indications of each block that was successfully uploaded in 
the snapshot ( e.g. , the metadata includes an indication of 
each block that was transitioned from an outstanding block 
to an acknowledged block during the failed snapshot ) . The 
metadata for the snapshot may additionally indicate that the 
snapshot's state variable is set to incomplete . As noted 
throughout , an incomplete snapshot may not be recoverable . 
The metadata may include key - value pairs arranged in a 
B - Tree , as discussed in conjunction with at least the embodi 
ments of FIGS . 5D - 5E . After the metadata is written , process 
700 flows to decision step 736 , to determine whether the 
system is online and / or the failure of the has been resolved , 
e.g. , the previously inaccessible data store has become 
accessible once again . Process 700 loops around decision 
step 736 , until the system is back online . When system 
failure has been resolved , process 700 returns to step 704 to 
begin another snapshot after the uploading of this snapshot 
has failed . At step 704 , the snapshot identifier is incremented 
and the next snapshot is started . Note that because any block 
that was transitioned to an acknowledged block during the 
uploading of the failed snapshot is labeled as an acknowl 
edged block , will not be included in the next set of unac 
knowledged difference blocks identified in step 708. How 
ever , blocks still labeled as outstanding blocks will be 
included in the set of unacknowledged difference blocks . 
[ 0132 ] When the set of difference blocks is the null set 
( e.g. , each of the initially identified difference blocks has 
been successfully updated ) , process 700 flows from step 710 
to 738. At step 738 , the snapshot ( or the snapshot identifier ) 
is labeled as complete . At step 740 , the metadata for the 
complete snapshot is written and / or generated . The metadata 
written may include includes indications of each block that 
was successfully uploaded in the snapshot ( e.g. , the meta 
data includes an indication of each block that was transi 
tioned from an outstanding block to an acknowledged block 
during the completed snapshot ) . The metadata for the snap 
shot may additionally indicate that the snapshot's state 
variable is set to complete . The metadata may include 
key - value pairs arranged in a B - Tree , as discussed in con 
junction with at least the embodiments of FIGS . 5D - 5E . 
After the metadata is written , process 700 flows to step 742 , 
where the snapshot identifier is returned . 
[ 0133 ] Described herein are techniques for the efficient 
storage and recovery of difference - level snapshots for data 
objects . In one embodiment , a method for storing data on a 
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distributed computing system is performed . The method 
may include receiving data of a data object . The data may be 
structured as an ordered set of data blocks . The data may be 
subdivide into an ordered set of data chunks . Each chunk in 
the set of data chunks may include an ordered subset of the 
set of data blocks . A next chunk of the set of data chunks 
may be selected . The selection of the next chunk may be 
based on at least one of the order of the set of chunks or a 
previous chunk identifier for a previously selected chunk of 
the set of chunks . A key for the next chunk may be generated 
based on an indication of an initial block of the next chunk . 
A value for the key may be generated . The value may be 
based on a number of blocks included in the next chunk . The 
value may be further based on at least one of a next chunk 
identifier for the next chunk or another chunk identifier for 
a duplicated chunk . Metadata for the data object may be 
updated to indicate an association between the key for the 
next chunk and the value for the key . 
[ 0134 ] The method may further include determining 
whether the next chunk is a duplication of another chunk 
based on a next signature for the next chunk and duplicated 
signature for the duplicated chunk . The duplicated chunk 
may have been previously selected . In response to deter 
mining that the next chunk is a duplication of another chunk , 
the value for the key may be generated based on the number 
of blocks included in the next chunk and another chunk 
identifier for the duplicated chunk . The next chunk identifier 
for the next chunk may be allocated based on a previous 
chunk identifier for the previously selected chunk . The value 
for the key may be generated based on the number of blocks 
included in the next chunk and the next chunk identifier for 
the next chunk . A value for the previous chunk identifier 
may be updated to be the next chunk identifier . 
[ 0135 ] In some embodiments , and in response to deter 
mining that the next chunk is not a duplication of another 
chunk , the method may further include storing an associa 
tion between the next signature and the next chunk identifier 
in a content aware store ( CAS ) . The CAS may store an 
association between the duplicated signature and the other 
chunk identifier for the duplicated chunk . In such embodi 
ments , and in further response to determining that the next 
chunk is a duplication of another chunk , the method may 
further include incrementing a value for a reference counter 
for the duplicated chunk . The value for the key may be 
further based on the incremented value for the reference 
counter for the duplicated chunk . In further response to 
determining that the next chunk is not a duplication of 
another chunk , the method may further include initializing a 
value for a reference counter for the next chunk . The value 
for the key may be generated further based on the initialized 
value for the reference counter for the next chunk . 
[ 0136 ] In some embodiments , for each chunk of the set of 
the data chunks , an associated chunk signature may be 
determined based on the subset of data blocks included in 
the chunk and a hash function . A unique logical block 
address ( lba ) may be assigned to each block of the set of data 
blocks based on the ordering of the set of data blocks . The 
key for the next chunk may encode the lba of the initial block 
of the next chunk . The value for the key may encode at least 
one of the number of sequential blocks in the next chunk or 
a number of contiguous chunks that in an ordered combi 
nation include a contiguous subset of the set of data blocks . 
The lba for each block in the next chunk may be indicated 
by the order of the blocks included in the next chunk and a 

combination of the encoded Iba of the initial block of the 
next chunk and the encoded number of blocks included in 
the next chunk . A virtualized data center may be employed 
to provide the data of the data object . The virtualized data 
center may implement at least one of a virtual storage area 
network ( VSAN ) , a virtual disk file system ( VDFS ) , or a 
virtual machine ( VM ) . 
[ 0137 ] In various embodiments , the association between 
the key for the next chunk and the value for the key may be 
encoded in a key - value pair of at least one of a copy - on 
write ( COW ) B - tree or a log - structured merge tree ( LSM 
tree ) included in the metadata for the data object . The 
method may further include storing each chunk of the set of 
chunks in an object data store . The object data store may 
employ a Log - Structured File System ( LFS ) . The set of data 
chunks may be distributed over a set of data segments of the 
LFS . Each segment of the set of data segments may include 
a subset of the set of data chunks . The LFS may address each 
block of the set of data blocks by a segment address of a 
segment addresses space . Each chunk of the set of data 
chunks may be uniquely identified by a chunk identifier of 
a set of sequential chunk identifiers . Each chunk may be 
addressed by chunk addresses of a chunk address space . In 
such embodiments , the method may further include gener 
ating a mapping for each chunk address of the chunk address 
space to a segment address of the segment address space . 
[ 0138 ] In another embodiment , a method for uploading a 
first snapshot of a data object to an accessible data store is 
provided . The method may include identifying , within data 
of the data object , a first set of data blocks of the first 
snapshot . The first set of data blocks may include at least a 
first block and a second block . Each block of the first set of 
data blocks may include data that is different from data of a 
corresponding block of a previous snapshot . The previous 
snapshot may be a snapshot of the object that was taken 
previous to the first snapshot . An indication of a first 
snapshot identifier for the first snapshot and an indication of 
the first block may be encoded within first metadata of the 
first snapshot . The method may include uploading the first 
snapshot . While uploading the first snapshot , the first block 
may be uploaded to the data store . While uploading the first 
snapshot , and subsequent to uploading the first block , it may 
be determined that the data store has become inaccessible . In 
such an event , an indication that the first snapshot is an 
incomplete snapshot may be encoded within the first meta 
data for the first snapshot . In response to determining that 
the data store has become inaccessible , the uploading of the 
first snapshot may be terminated . Subsequent to terminating 
the uploading of the first snapshot , it may be determined that 
the data store has again become accessible subsequent to the 
data store becoming inaccessible while uploading the first 
complete snapshot In response to determining that the data 
store is again accessible , uploading a second snapshot of the 
data object may be initiated . A second snapshot identifier for 
the second snapshot of the data object may be generated . 
While uploading the second snapshot , the second block may 
be uploaded to the data store . An indication of the second 
snapshot identifier , an indication of the second block , and an 
indication that the second snapshot is a complete snapshot 
may be encoded within second metadata for the second 
snapshot . 
[ 0139 ] In response to uploading the first block to the 
accessible data store while uploading the first snapshot , the 
method may further include generating a first label for the 
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first block . The first label may indicate that the first block is 
an outstanding block . Prior to determining that the acces 
sible data store has become inaccessible while uploading the 
first snapshot , a first acknowledgment signal may be 
received from the data store . The first acknowledgment 
signal may indicate a receipt of the first block while upload 
ing the first snapshot . In response to receiving the first 
acknowledgment signal , the first label for the first block may 
be transitioned to indicate that the first block is an acknowl 
edged block . The indication of the first block may be 
encoded within the first metadata . The encoding of the 
indication of the first block may be based on the first label 
for the first block indicating that the first block is an acknowledged block . 
[ 0140 ] Prior to determining that the accessible data store 
has become inaccessible while uploading the first snapshot , 
the second block may be uploaded to the data store while 
uploading the first snapshot . In response to uploading the 
second block to the accessible data store while uploading the 
first snapshot , a second label for the second block may be 
generated . The second label may indicate that the second 
block is an outstanding block . The method may further 
include foregoing encoding , within the first metadata , an 
indication of the second block . The foregoing of the encod 
ing of the indication of the second block may be based on the 
second label for the second block indicating that the second 
block is an outstanding block . 
[ 0141 ] In such embodiments , in response to determining 
that the inaccessible data store has become accessible while 
uploading the first snapshot may further include uploading 
the second block to the data store while uploading the 
second snapshot . Uploading the second block may be based 
on the second label for the second block indicating that the 
second block is an outstanding block . A second acknowl 
edgment signal may be received from the data store . The 
second acknowledgment signal may indicate a receipt of the 
second block while uploading the second snapshot . In 
response to receiving the second acknowledgment signal 
while uploading the second snapshot , the second label for 
the second block may be transitioned to indicate that the 
second block is an acknowledged block . The indication of 
the second block may be encoded within the second meta 
data . The encoding of the indication of the second block may 
be based on the second label for the second block indicating 
that the second block is an acknowledged block . 
[ 0142 ] In some embodiments , the first set of data blocks 
includes a third data block . In response to determining that 
the inaccessible data store has become accessible while 
uploading the first snapshot may further comprise uploading 
the third block to the data store while uploading the second 
snapshot . An indication of the third block may be encoded 
within the second metadata . In such embodiments , the 
method may further include and in response to receiving a 
request to upload a third snapshot of the data object to the 
data store , generating a third snapshot identifier for the third 
snapshot of the data object . A second set of data blocks of 
the third snapshot may be identified within the data of the 
data object . The second set of data blocks may include at 
least an updated version of the first block and an updated 
version of the third block . Each block of the second set of 
data blocks may include data that is different from data of a 
corresponding block of at least one of the incomplete first 
snapshot or the complete of the object . The updated version 
of the first block and the updated version of the third block 

may be uploaded to the data store while uploading the third 
snapshot . An indication of the third snapshot identifier may 
be encoded within third metadata for the third snapshot . An 
indication of the updated first block , an indication of the 
updated third block , and an indication that the third snapshot 
is a complete snapshot may also be encoded in the third 
metadata . 
[ 0143 ] In various embodiments , and in response to receiv 
ing a request to delete the second snapshot of the data object , 
the method may further include accessing the first metadata 
for the first snapshot , the second metadata for the second 
snapshot , and the third metadata for the third snapshot . In 
response to identifying within the first metadata that the first 
snapshot is an incomplete snapshot , the method may further 
include foregoing accessing previous metadata for the pre 
vious snapshot . In response to identifying that the third 
metadata includes the indication of the updated version of 
the first block and that the second metadata does not include 
an indication of the first block , the method may further 
include deleting the first block of the first snapshot and the 
indication of the first block in the first metadata . In response 
to identifying that the third metadata does not include an 
indication of the second block and that the second metadata 
includes the indication of the second block , the method may 
further include foregoing deleting the second block of the 
second snapshot and foregoing deleting the indication of the 
second block in the second metadata . In response to iden 
tifying that the third metadata includes the indication of the 
updated third block and that the second metadata does 
include the indication of the third data block , the method 
may further include deleting the third block of the second 
snapshot and deleting the indication of the third block in the 
second metadata . 
[ 0144 ] In still additional embodiments , the indication of 
the first block in the first metadata may be a first n - tuple . The 
first n - tuple may include the first snapshot identifier as a first 
component and a logical address of the first bock as second 
component . The first component may be a more significant 
component than the second component . In some of these 
embodiments , the first n - tuple may represent a first key . The 
first metadata may further encode a second n - tuple that 
includes a first value that is paired with the first key . The 
second n - tuple may further include an identifier for a first 
data chunk that stores the first block as a first component and 
a value of a reference counter for the first data chunk as a 
second component . The first and second metadata may be 
encoded as key - value pairs in a copy - on - write ( COW ) 
B - Tree or a Log - Structured Merging Tree ( LSM - Tree ) . 
[ 0145 ] The method may further include employing a vir 
tualized data center to identify the first set of data blocks . 
The virtualized data center may implements at least one of 
a virtual storage area network ( VSAN ) , a virtual disk file 
system ( vDFS ) , or a virtual machine ( VM ) . An uploader 
agent of the virtualized data center may be employed to 
upload the first block to the data store while uploading the 
first snapshot . 
[ 0146 ] In another embodiment , a method for storing data 
on a distributed computing system is performed . The dis 
tributed computing system may include a content aware 
store ( CAS ) . The method may include receiving data of a 
data object . The data may be structured as an ordered set of 
data blocks . The data may be subdivided into an ordered set 
of data chunks . Each chunk in the set of data chunks may 
include an ordered subset of the set of data blocks . An 
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associated chunk signature may be determined for each 
chunk in the set of data chunks . The chunk signature may be 
determined based on the subset of data blocks included in 
the chunk . A particular chunk of the set of data chunks may 
be selected . The selection of the particular chunk may be 
based on the order of the set of data chunks . A particular 
chunk signature may be associated with the particular 
chunk . A particular key for the particular chunk may be 
generated . The generation of the particular key may be based 
on a logical address and / or a block_counter . It may be 
determined whether the particular chunk is a duplication of 
a previously selected chunk of the set of data chunks . The 
determination may be based on the particular signature and 
a duplicated signature that is associated with the previously 
selected chunk . The duplicated signature may be stored in 
the CAS . In response to determining that the particular 
chunk is the duplication of the previously selected chunk , a 
particular value for the particular key may be generations . 
The generation of the key may be based on a chunk identifier 
for the previously selected chunk and a particular number of 
blocks included in the particular chunk . In response to 
determining that the particular chunk is not the duplication 
of the previously selected chunk , a particular chunk identi 
fier for the particular chunk may be allocated . In some 
embodiments , the particular chunk identifier may be based 
on a chunk counter . In further response to determining that 
the particular chunk is not a duplicated chunk , the particular 
value for the particular key may be generated based on the 
particular chunk identifier and the particular number of 
blocks . In still further response to determining that the 
particular chunk is not a duplicated chunk , the particular 
signature may be stored in the CAS and the chunk counter 
may be updated . The block counter may be updated based on 
the particular number of blocks . An association between the 
particular key and the particular value may be indicated in 
metadata for the data object . 
[ 0147 ] In another embodiment , a method for uploading a 
first snapshot of a data object to an accessible data store is 
provided . The first snapshot may be identified by a snapshot 
identifier . The method may include identifying a first set of 
data blocks within data of the data object . The first set of 
blocks may include at least a first block and a second block . 
Each block of the first set of data blocks includes data that 
is different from data of a corresponding block of a previous 
snapshot of the object . In various embodiments , the first 
block may be uploaded to the accessible data store . In some 
embodiments , after the block is uploaded to the data store , 
it may be determined that the data store has become inac 
cessible . In response to determining that the data store has 
become inaccessible , first metadata for the first snapshot 
may be generated . The first metadata for the first snapshot 
may indicate at least the first snapshot identifier , the first 
block , and that the first snapshot is an incomplete snapshot . 
In some embodiments , after determining that the data store 
has become inaccessible , it may be determined that the 
inaccessible data store has now become accessible . In 
response to determining that the data store is now accessible , 
a second snapshot identifier for a second snapshot of the data 
object may be generated . The second block may be uploaded 
to the data store . Second metadata for the second snapshot 
may be generated . The second metadata may indicate the 
second snapshot identifier , the second block , and that the 
second snapshot is a complete snapshot . 

[ 0148 ] In accordance with some implementations , a com 
puter - readable storage medium ( e.g. , a non - transitory com 
puter - readable storage medium ) is provided , the computer 
readable storage medium storing one or more programs for 
execution by one or more processors of an electronic device , 
the one or more programs including instructions for per 
forming any of the methods or processes described herein . 
[ 0149 ] The foregoing descriptions of specific embodi 
ments have been presented for purposes of illustration and 
description . They are not intended to be exhaustive or to 
limit the scope of the claims to the precise forms disclosed , 
and it should be understood that many modifications and 
variations are possible in light of the above teaching . 
What is claimed is : 
1. A method for storing data on a distributed computing 

system , the method comprising : 
receiving data of a data object that is structured as an 

ordered set of data blocks ; 
subdividing the data into an ordered set of data chunks 

such that each chunk in the set of data chunks includes 
an ordered subset of the set of data blocks ; 

selecting a next chunk of the set of data chunks based on 
at least one of the order of the set of chunks or a 
previous chunk identifier for a previously selected 
chunk of the set of chunks ; 

generating a key for the next chunk based on an indication 
of an initial block of the next chunk ; 

generating a value for the key based on a number of 
blocks included in the next chunk and at least one of a 
next chunk identifier for the next chunk or another 
chunk identifier for a duplicated chunk ; and 

updating metadata for the data object to indicate an 
association between the key for the next chunk and the 
value for the key . 

2. The method of claim 1 , further comprising : 
determining whether the next chunk is a duplication of 

another chunk based on a next signature for the next 
chunk and duplicated signature for the duplicated 
chunk , wherein the duplicated chunk has been previ 
ously selected ; 

in response to determining that the next chunk is a 
duplication of another chunk : 
generating the value for the key based on the number of 

blocks included in the next chunk and another chunk 
identifier for the duplicated chunk ; and 

in response to determining that the next chunk is not a 
duplication of another chunk : 
allocating the next chunk identifier for the next chunk 

based on a previous chunk identifier for the previ 
ously selected chunk ; 

generating the value for the key based on the number of 
blocks included in the next chunk and the next chunk 
identifier for the next chunk ; and 

updating a value for the previous chunk identifier to be 
the next chunk identifier . 

3. The method of claim 2 , wherein in response to deter 
mining that the next chunk is not a duplication of another 
chunk , the method further comprises : 

storing an association between the next signature and the 
next chunk identifier in a content aware store ( CAS ) , 
wherein the CAS stores an association between the 
duplicated signature and the other chunk identifier for 
the duplicated chunk . 
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4. The method of claim 2 , further comprising : 
in further response to determining that the next chunk is 

a duplication of another chunk : 
incrementing a value for a reference counter for the 

duplicated chunk ; and 
generating the value for the key further based on the 

incremented value for the reference counter for the 
duplicated chunk ; 

in further response to determining that the next chunk is 
not a duplication of another chunk : 
initializing a value for a reference counter for the next 

chunk ; and 
generating the value for the key further based on the 

initialized value for the reference counter for the next 
chunk . 

5. The method of claim 1 , further comprising : 
for each chunk of the set of the data chunks , determining 

an associated chunk signature based on the subset of 
data blocks included in the chunk and a hash function . 

6. The method of claim 1 , further comprising : 
sequentially assigning a unique logical block address ( lba ) 

to each block of the set of data blocks based on the 
ordering of the set of data blocks ; 

wherein the key for the next chunk encodes the lba of the 
initial block of the next chunk ; and 

wherein the value for the key encodes at least one of the 
number of sequential blocks in the next chunk or a 
number of contiguous chunks that in an ordered com 
bination include a contiguous subset of the set of data 
blocks , such that the lba for each block in the next 
chunk is indicated by the order of the blocks included 
in the next chunk and a combination of the encoded lba 
of the initial block of the next chunk and the encoded 
number of blocks included in the next chunk . 

7. The method of claim 1 , further comprising : 
employing a virtualized data center to provide the data of 

the data object , wherein the virtualized data center 
implements at least one of a virtual storage area net 
work ( VSAN ) , a virtual disk file system ( vDFS ) , or a 
virtual machine ( VM ) . 

8. The method of claim 1 , wherein the association 
between the key for the next chunk and the value for the key 
is encoded in a key - value pair of at least one of a copy - on 
write ( COW ) B - tree or a log - structured merge tree ( LSM 
tree ) included in the metadata for the data object . 

9. The method of claim 1 , further comprising : 
storing each chunk of the set of chunks in an object data 

store , wherein the object data store employs a Log 
Structured File System ( LFS ) and the set of data chunks 
is distributed over a set of data segments of the LFS 
such that each segment of the set of data segments 
includes a subset of the set of data chunks . 

10. The method of claim 9 , wherein the LFS addresses 
each block of the set of data blocks by a segment address of 
a segment addresses space and each chunk of the set of data 
chunks is uniquely identified by a chunk identifier of a set of 
sequential chunk identifiers , such that each chunk is 
addressed by chunk addresses of a chunk address space , the 
method further comprising : 

generating a mapping for each chunk address of the chunk 
address space to a segment address of the segment 

distributed computing system , one or more processors , and 
memory , the one or more programs including instructions 
for performing operations comprising : 

receiving data of a data object that is structured as an 
ordered set of data blocks ; 

subdividing the data into an ordered set of data chunks 
such that each chunk in the set of data chunks includes 
an ordered subset of the set of data blocks ; 

selecting a next chunk of the set of data chunks based on 
at least one of the order of the set of chunks or a 
previous chunk identifier for a previously selected 
chunk of the set of chunks ; 

generating a key for the next chunk based on an indication 
of an initial block of the next chunk ; 

generating a value for the key based on a number of 
blocks included in the next chunk and at least one of a 
next chunk identifier for the next chunk or another 
chunk identifier for a duplicated chunk ; and 

updating metadata for the data object to indicate an 
association between the key for the next chunk and the 
value for the key . 

12. The storage medium of claim 11 , the operations 
further comprising : 

determining whether the next chunk is a duplication of a 
another chunk based on a next signature for the next 
chunk and duplicated signature for the duplicated 
chunk , wherein the duplicated chunk has been previ 
ously selected ; 

in response to determining that the next chunk is a 
duplication of another chunk : 
generating the value for the key based on the number of 

blocks included in the next chunk and another chunk 
identifier for the duplicated chunk ; and 

in response to determining that the next chunk is not a 
duplication of another chunk : 
allocating the next chunk identifier for the next chunk 

based on a previous chunk identifier for the previ 
ously selected chunk ; 

generating the value for the key based on the number of 
blocks included in the next chunk and the next chunk 
identifier for the next chunk ; and 

updating a value for the previous chunk identifier to be 
the next chunk identifier . 

13. The storage medium of claim 12 , wherein in response 
to determining that the next chunk is not a duplication of 
another chunk , the operations further comprise : 

storing an association between the next signature and the 
next chunk identifier in a content aware store ( CAS ) , 
wherein the CAS stores an association between the 
duplicated signature and the other chunk identifier for 
the duplicated chunk . 

14. The storage medium of claim 12 , the operations 
further comprising : 

in further response to determining that the next chunk is 
a duplication of another chunk : 
incrementing a value for a reference counter for the 

duplicated chunk ; and 
generating the value for the key further based on the 

incremented value for the reference counter for the 
duplicated chunk ; 

in further response to determining that the next chunk is 
not a duplication of another chunk : 
initializing a value for a reference counter for the next 
chunk ; and 

address space . 
11. A non - transitory computer - readable storage medium 

storing one or more programs configured to be executed by 
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generating the value for the key further based on the 
initialized value for the reference counter for the next 
chunk . 

15. The storage medium of claim 11 , the operations 
further comprising : 

for each chunk of the set of the data chunks , determining 
an associated chunk signature based on the subset of 
data blocks included in the chunk and a hash function . 

16. The storage medium of claim 11 , further comprising : 
sequentially assigning a unique logical block address ( lba ) 

to each block of the set of data blocks based on the 
ordering of the set of data blocks ; 

wherein the key for the next chunk encodes the lba of the 
initial block of the next chunk ; and 

wherein the value for the key encodes at least one of the 
number of sequential blocks in the next chunk or a 
number of contiguous chunks that in an ordered com 
bination include a contiguous subset of the set of data 
blocks , such that the lba for each block in the next 
chunk is indicated by the order of the blocks included 
in the next chunk and a combination of the encoded lba 
of the initial block of the next chunk and the encoded 
number of blocks included in the next chunk . 

17. The storage medium of claim 11 , the operations 
further comprising : 

employing a virtualized data center to provide the data of 
the data object , wherein the virtualized data center 
implements at least one of a virtual storage area net 
work ( VSAN ) , a virtual disk file system ( vDFS ) , or a 
virtual machine ( VM ) . 

18. The storage medium of claim 11 , wherein the asso 
ciation between the key for the next chunk and the value for 
the key is encoded in a key - value pair of at least one of a 
copy - on - write ( COW ) B - tree or a log - structured merge tree 
( LSM - tree ) included in the metadata for the data object . 

19. The storage medium of claim 11 , the operations 
further comprising : 

storing each chunk of the set of chunks in an object data 
store , wherein the object data store employs a Log 
Structured File System ( LFS ) and the set of data chunks 
is distributed over a set of data segments of the LFS 
such that each segment of the set of data segments 
includes a subset of the set of data chunks . 

20. The storage medium of claim 19 , wherein the LFS 
addresses each block of the set of data blocks by a segment 
address of a segment addresses space and each chunk of the 
set of data chunks is uniquely identified by a chunk identifier 
of a set of sequential chunk identifiers , such that each chunk 
is addressed by chunk addresses of a chunk address space , 
the operations further comprising : 

generating a mapping for each chunk address of the chunk 
address space to a segment address of the segment 

subdividing the data into an ordered set of data chunks 
such that each chunk in the set of data chunks 
includes an ordered subset of the set of data blocks ; 

selecting a next chunk of the set of data chunks based 
on at least one of the order of the set of chunks or a 
previous chunk identifier for a previously selected 
chunk of the set of chunks ; 

generating a key for the next chunk based on an 
indication of an initial block of the next chunk ; 

generating a value for the key based on a number of 
blocks included in the next chunk and at least one of 
a next chunk identifier for the next chunk or another 
chunk identifier for a duplicated chunk ; and 

updating metadata for the data object to indicate an 
association between the key for the next chunk and 
the value for the key . 

22. The system of claim 21 , the operations further com 
prising : 

determining whether the next chunk is a duplication of a 
another chunk based on a next signature for the next 
chunk and duplicated signature for the duplicated 
chunk , wherein the duplicated chunk has been previ 
ously selected ; 

in response to determining that the next chunk is a 
duplication of another chunk : 
generating the value for the key based on the number of 

blocks included in the next chunk and another chunk 
identifier for the duplicated chunk ; and 

in response to determining that the next chunk is not a 
duplication of another chunk : 
allocating the next chunk identifier for the next chunk 

based on a previous chunk identifier for the previ 
ously selected chunk ; 

generating the value for the key based on the number of 
blocks included in the next chunk and the next chunk 
identifier for the next chunk ; and 

updating a value for the previous chunk identifier to be 
the next chunk identifier . 

23. The system of claim 22 , wherein in response to 
determining that the next chunk is not a duplication of 
another chunk , the operations further comprise : 

storing an association between the next signature and the 
next chunk identifier in a content aware store ( CAS ) , 
wherein the CAS stores an association between the 
duplicated signature and the other chunk identifier for 
the duplicated chunk . 

24. The system of claim 22 , the operations further com 
prising : 

in further response to determining that the next chunk is 
a duplication of another chunk : 
incrementing a value for a reference counter for the 

duplicated chunk ; and 
generating the value for the key further based on the 

incremented value for the reference counter for the 
duplicated chunk ; 

in further response to determining that the next chunk is 
not a duplication of another chunk : 
initializing a value for a reference counter for the next 

chunk ; and 
generating the value for the key further based on the 

initialized value for the reference counter for the next 
chunk . 

25. The system of claim 21 , the operations further com 
prising : 

address space . 
21. A distributed computing system for storing data , the 

system comprising : 
one or more processors ; and 
a memory storing one or more programs configured to be 

executed by the one or more processors , the one or 
more programs including instructions for performing 
operations comprising : 
receiving data of a data object that is structured as an 

ordered set of data blocks ; 
a 
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for each chunk of the set of the data chunks , determining 
an associated chunk signature based on the subset of 
data blocks included in the chunk and a hash function . 

26. The system of claim 21 , the operations further com 
prising : 

sequentially assigning a unique logical block address ( lba ) 
to each block of the set of data blocks based on the 
ordering of the set of data blocks ; 

wherein the key for the next chunk encodes the lba of the 
initial block of the next chunk ; and 

wherein the value for the key encodes at least one of the 
number of sequential blocks in the next chunk or a 
number of contiguous chunks that in an ordered com 
bination include a contiguous subset of the set of data 
blocks , such that the lba for each block in the next 
chunk is indicated by the order of the blocks included 
in the next chunk and a combination of the encoded lba 
of the initial block of the next chunk and the encoded 
number of blocks included in the next chunk . 

27. The system of claim 21 , the operations further com 
prising : 

employing a virtualized data center to provide the data of 
the data object , wherein the virtualized data center 
implements at least one of a virtual storage area net 
work ( VSAN ) , a virtual disk file system ( VDFS ) , or a 
virtual machine ( VM ) . 

28. The system of claim 21 , wherein the association 
between the key for the next chunk and the value for the key 
is encoded in a key - value pair of at least one of a copy - on 
write ( COW ) B - tree or a log - structured merge tree ( LSM 
tree ) included in the metadata for the data object . 

29. The system of claim 21 , the operations further com 
prising : 

storing each chunk of the set of chunks in an object data 
store , wherein the object data store employs a Log 
Structured File System ( LFS ) and the set of data chunks 
is distributed over a set of data segments of the LFS 
such that each segment of the set of data segments 
includes a subset of the set of data chunks . 

30. The system of claim 29 , wherein the LFS addresses 
each block of the set of data blocks by a segment address of 
a segment addresses space and each chunk of the set of data 
chunks is uniquely identified by a chunk identifier of a set of 
sequential chunk identifiers , such that each chunk is 
addressed by chunk addresses of a chunk address space , the 
method further comprising : 

generating a mapping for each chunk address of the chunk 
address space to a segment address of the segment 

a 

address space . 
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