
(12) United States Patent
Bertacco et al.

USOO8051368B2

US 8,051,368 B2
Nov. 1, 2011

(10) Patent No.:
(45) Date of Patent:

(54) MICROPROCESSOR AND METHOD FOR
DETECTING FAULTS THEREN

(75) Inventors: Valeria Bertacco, Ann Arbor, MI (US);
Todd Michael Austin, Ann Arbor, MI
(US); Smitha Shyam, San Jose, CA
(US); Kypros Constantinides, Ann
Arbor, MI (US); Sujay Phadke, Ann
Arbor, MI (US)

(73) Assignee: The Regents of the Univeristy of
Michigan, Ann Arbor, MI (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 13/036,276

(22) Filed: Feb. 28, 2011

(65) Prior Publication Data

US 2011/0214014 A1 Sep. 1, 2011

Related U.S. Application Data

(62) Division of application No. 12/252,861, filed on Oct.
16, 2008, now Pat. No. 7,966,538.

(60) Provisional application No. 60/999,442, filed on Oct.
18, 2007.

(51) Int. Cl.
G06F 7702 (2006.01)

(52) U.S. Cl. ... 71.4/819
(58) Field of Classification Search 714/733,

714/734, 718, 819, 735, 736,815, 814, 799
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

4,625,308 A * 1 1/1986 Kim et al. 370,321
5,233,615 A 8, 1993 Goetz
7,243,283 B2 7/2007 Onodera
7,424,658 B1 9, 2008 Ghosh Dastidar
7,634,702 B2 12/2009 Kim et al.

OTHER PUBLICATIONS

Austin et al., Making Typical Silicon Matter With Razor, IEEE, Mar.
2004, pp. 57-65.
Bower et al., Tolerating Hard Faults in Microprocessor Array Struc
tures, International Conference on Dependable Systems and Net
works (DSN), Florence, Italy, Jun. 2004, pp. 1-10.
Bower et al., A Mechanism for Online Diagnosis of Hard Faults in
Microprocessors, 38th Annual International Symposium on
Microarchitecture (MICRO), Barcelona, Spain, Nov. 2005, pp. 1-12.
Bradley et al., Immunotronics Novel Finite-State-Machine Archi
tectures With Built-In Self-Test Using Self-Nonself Differentiation,
IEEE, vol. 6, No. 3, Jun. 2002, pp. 227-238.
Heath et al., A Defect-Tolerant Computer Architecture: Opportuni
ties for Nanotechnology, Science, vol. 280, Jun. 12, 1998, pp. 1716
1721.
Klein Osowski et al. The NanoBox Project: Exploring Fabrics of
Self-Correcting Logic Blocks for High Defect Rate Molecular
Device Technologies, IEEE, ISVLSI 04, Feb. 19, 2004, pp. 1-6.
Martinez et al., Cherry: Checkpointed Early Resource Recycling in
Out-Of-Order Microprocessors, Micro 02, Nov. 18, 2002, pp. 1-12.

(Continued)
Primary Examiner — Phung M Chung
(74) Attorney, Agent, or Firm — Brooks Kushman P.C.
(57) ABSTRACT
A method for detecting microprocessor hardware faults
includes sending at least one input signal to a logic block
within the microprocessor, collecting an output response to
the input signal from the logic block, and determining
whether the output response matches an expected output
response of the logic block.

8 Claims, 5 Drawing Sheets

1. f

US 8,051,368 B2
Page 2

OTHER PUBLICATIONS

Mitra et al., Robust System Design With Built-In Soft-Error Resil
ience, IEEE Computer 05, Feb. 2005, pp. 43-52.
Qureshi et al., Microarchitecture-Based Introspection: A Technique
for Transient-Fault Tolerance In Microprocessors, DSN 05, Jun. 28.
2005, pp. 1-10.
Schuchman et al., Rescue: A Microarchitecture for Testability and
Defect Tolerance, IEEE, ISCA 05, Jun. 4, 2005, pp. 1-12.

Shivakumar et al., Exploiting Microarchitectural Redundancy for
Defect Tolerance, ICCD 03, Oct. 13, 2003, pp. 1-14.
Teodorescu et al., Swich: A Prototype for Efficient Cache-Level
Checkpointing and Rollback. IEEE, Micro 06 Sep. 2006, pp. 28-40.
Weaver et al., A Fault Tolerant Approach to Microprocessor Design,
DSN, Jul. 2001, pp. 1-10.
Bolchini et al., A State Encoding for Self-Checking Finite State
Machines, IEEE, ASPDAC 95, Aug. 29, 1995, pp. 711-716.

* cited by examiner

U.S. Patent Nov. 1, 2011 Sheet 1 of 5 US 8,051,368 B2

10
12 A1

R

y

s
s

Coatputation

Checking 8 to checking

1. h ided 8 fate fSce checkpoint & checking compete: epoch extended to 8
agipete checking detected checkpoint

18 20 22 24

Fig-2

U.S. Patent Nov. 1, 2011 Sheet 2 of 5 US 8,051,368 B2

26
28 32a 30 A1

esting 37N -
44-esting cik

42
N 44 43 46

REGSER e s Olex
E stage

est
59-59. 52
60-isstige:

54 56 58

U.S. Patent Nov. 1, 2011 Sheet 3 of 5 US 8,051,368 B2

Fig 6

- 8:3 data ir thkiast data
90

ck

88
festing cik

Fig-7

U.S. Patent Nov. 1, 2011 Sheet 4 of 5 US 8,051,368 B2

ESSER

site:38

U.S. Patent Nov. 1, 2011 Sheet 5 of 5 US 8,051,368 B2

re

S: 166--- ScANFF
168-oc

SCAN.C.K :56

PROTECT s
170- 448 a 'fries'.

SCARAA. E-i). 2: Sls 72---ee-ee-Ho Ye H()) (l f74
MANDAAEN) 180

138 - 1 154- is

raff a
FE-91 182
f52

£3%

w w - w w w w w w w w w w w w w s

7 \ I
34 f36 Fig 10

INPUT CONFIGURATIONS FOR CE USE
PROTECTSCANOAAER MANLATA EN FEEDOT

Normal ep, who protection
Normatop, - with protection

Shift out S of error signal
air data to scal chair

est FF for hard faire Single pulse

US 8,051,368 B2
1.

MCROPROCESSOR AND METHOD FOR
DETECTING FAULTS THEREN

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a divisional of application Ser. No.
12/252,861, filed Oct. 16, 2008, the contents of which are
hereby incorporated by reference in their entirety, application
Ser. No. 12/252,861 claims the benefit of Provisional Appli
cation No. 60/999,442, filed Oct. 18, 2007, FIGS. 1 and 2 of
which are hereby incorporated by reference.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH ORDEVELOPMENT

The invention was made with Government support under
CCR0093044 awarded by the National Science Foundation.
The Government has certain rights in the invention.

BACKGROUND

As silicon technologies move into the nanometer regime,
there is growing concern for the reliability of transistor
devices. Device Scaling may aggravate a number of long
standing silicon failure mechanisms, and it may introduce a
number of new non-trivial failure modes. Unless these reli
ability concerns are addressed, component yield and lifetime
may soon be compromised.
The following list highlights certain silicon faults.
Device Wear-Out Metal electro-migration and hot car

rier degradation are traditional mechanisms that lead to even
tual device failure. While these mechanisms continue to be a
problem for deep-submicron silicon, new concerns arise due
to the extremely thin gate oxides utilized in current and future
process technologies, which lead to gate oxide wear-out (or
time dependent dielectric breakdown). Overtime, gate oxides
can break and become conductive, essentially shorting the
transistor and rendering it useless. Fast clocks, high tempera
tures, and Voltage Scaling limitations are well-established
architectural trends that conspire to aggravate this failure
mode.

Transistor Infant Mortality—Extreme device scaling also
exacerbates early transistor failures, due to weak transistors
that escape post-manufacturing testing. These weak transis
tors work initially, but they have dimensional and doping
deficiencies that Subject them to much higher stress than
normal. Quickly (within days to months from deployment)
they break down and render the device unusable. Tradition
ally, early transistor failures have been addressed with aggres
sive burn-in testing, where, before being placed in the field,
devices are subjected to high Voltage and temperature testing,
to accelerate the failure of weak transistors. Those that sur
vive this grueling birth are likely to be robust devices, thereby
ensuring a long product lifetime. In the deep-submicron
regime, burn-in becomes less effective as devices are subject
to thermal run-away effects, where increased temperature
leads to increased leakage current, which in turn leads to yet
higher temperatures and further increases in leakage current.
The end result is that aggressive burn-in can destroy even
robust devices. Manufacturers may be forced to either sacri
fice yield with an aggressive burn-in or experience more
frequent early transistor failures in the field.

Manufacturing Defects that Escape Testing Optical
proximity effects, airborne impurities, and processing mate
rial defects can all lead to the manufacturing of faulty tran
sistors and interconnect. Moreover, deep-submicron gate

10

15

25

30

35

40

45

50

55

60

65

2
oxides have become so thin that manufacturing variation can
lead to currents penetrating the gate, rendering it unusable. In
current 90 nm devices, these oxides are only about 20 atoms
thick. In 45 nm technology, this thickness is expected to be
below 10 atoms. Thus, Small amounts of manufacturing
variation in the gate oxide can lead to currents penetrating the
gate, rendering the device unusable. This problem is com
pounded by the immense complexity of current designs,
which may make it more difficult to test for defects during
manufacturing. Vendors may be forced to either spend more
time with parts on the tester, or risk having untested defects
escape into the field.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an embodiment of a fault
tolerant microprocessor system.

FIG. 2 is a timeline of execution for an example microar
chitectural checkpoint and recovery mechanism.

FIGS. 3 through 5 are block diagrams of embodiments of
microprocessor pipelines and test harnesses.

FIG. 6 is a block diagram of an embodiment of a cache.
FIG. 7 illustrates waveforms of an example clock and

testing clock.
FIG. 8 is a block diagram of an embodiment of a central

processing unit.
FIG. 9 is a block diagram of an embodiment of a micro

processor.
FIG. 10 is a schematic diagram of an embodiment of a

fault-tolerant scan cell.
FIG.11 is a table depicting different operating modes of the

Scan cell of FIG. 10.

DETAILED DESCRIPTION

As required, detailed embodiments of the present invention
are disclosed herein; however, it is to be understood that the
disclosed embodiments are merely exemplary of the inven
tion that may be embodied in various and alternative forms.
The figures are not necessarily to scale; some features may be
exaggerated or minimized to show details of particular com
ponents. Therefore, specific structural and functional details
disclosed herein are not to be interpreted as limiting, but
merely as a representative basis for teaching one skilled in the
art to variously employ the present invention.

In certain embodiments, a mechanism to protect a micro
processor pipeline and on-chip memory system from silicon
defects is provided. Area-frugal on-line testing techniques
may be combined with system-level checkpointing to provide
reliability. As an example, a microarchitectural checkpoint
ing mechanism may create speculative computational epochs
during which distributed domain-specific on-line test tech
niques are used to verify the integrity of the underlying hard
ware components. If at the end of an epoch the hardware is
determined to be correct, the speculative computation of the
epoch is allowed to commit. Otherwise, the program state is
rolled back to the beginning of the epoch, and the defective
component is disabled, thereby allowing the processor to
continue correct execution in a degraded performance mode.
Such techniques may perform well for desktop and server
microprocessors. As another example, on-line testing infra
structure may be used to tune frequency and Voltage to elimi
nate ambient temperature and Voltage margins. Similarly, a
microarchitectural checkpoint mechanism may also be used
to provide Support for transient fault tolerance or speculative
shared memory access.

US 8,051,368 B2
3

Some techniques discussed herein utilize a microarchitec
tural checkpointing mechanism to create coarse-grained
epochs of execution, during which distributed on-line built in
self-test (BIST) mechanisms validate the integrity of under
lying hardware. If a fault is detected, the redundancy of 5
instruction-level parallel (ILP) processors may be relied on to
repair the system such that it can still operate in a degraded
performance mode.

Using detailed circuit-level and architectural simulation, it
was found that certain techniques provide high coverage of 10
silicon defects, e.g., 89%, with little area cost, e.g., 5.8%.
Additionally, if a defect occurs, the Subsequent degraded
mode of operation was found to have only moderate perfor
mance impacts.

Certain embodiments may target low in-field defect rates
and may be installed into a microprocessor product. The
systems health may be monitored until the first defect is
encountered. At that point, the system may stay operative but
at a lower performance level. The user (and/or system con- 20
troller) may be notified and may have to choose to either: i)
live with the degraded mode performance or ii) repair the
system. System-level repair techniques that identify faulty
components and Swap in a new processor transparently to the
user are also contemplated.
A combination of on-line distributed testing and microar

chitectural checkpointing may be leveraged to efficiently
identify defects, and recover from their impact. Some
microarchitectural checkpointing mechanisms may provide a
computational epoch, which in certain embodiments, is a
period of computation over which the processors hardware is
checked. During a computational epoch, on-line distributed
built-in self-testing (BIST) techniques may exploit idle cycles
to verify the functional integrity of the underlying hardware.
When the on-line testing completes without finding faults, the
underlying hardware is known to be free of silicon defects,
and the epoch’s computation may be allowed to safely retire
to a non-speculative state. By contrast, if the underlying hard
ware is found to be faulty, the results of the computational 40
epoch may be thrown away, and the system's state may be
restored to the last known-good machine state at the start of
the epoch. Before continuing execution from this point, the
defective component may, for example, be disabled and the
system may continue in a performance degraded mode with
out the broken resource.

Referring now to FIG. 1, an embodiment of a fault tolerant
microprocessor system 10 is illustrated. As discussed below,
a microprocessor pipeline 12 may be equipped for defect
protection. Component-specific hardware testing blocks 14n
(14a-14e) may be associated with each design component
16n (16a-16e) to implement test generation and checking
mechanisms. If a fault occurs, it may be possible that results
computed in the microprocessor core are incorrect. A specu
lative "epoch'-based execution, however, may guarantee that
the computation can be reversed to the last known-correct
State.

Some microarchitectural checkpoint and recovery mecha
nisms create computational epochs. A computational epoch
may be a protected region of computation, typically at least
1000's of cycles in length, during which the occurrence of any
erroneous computation (in this example due to the use of a
defective device) can be undone by rolling the computation
back to the beginning of the computational epoch. During the
computational epoch, on-line distributed BIST-style tests
may be performed in the background, checking the integrity
of Some/all system components. This checking may occur

15

25

30

45

50

55

60

65

4
while functional units, decoders and other microprocessor
components are idle, as is often the case in a processor with
parallel resources.

Referring now to FIG. 2, a timeline 18 of execution that
demonstrates the operation of an example microarchitectural
checkpoint and recovery mechanism is illustrated. At the end
of a computational epoch, there may be three possible sce
narios that control logic may handle. The first scenario
(shown in epoch 20) occurs when the checking completes
before the end of the computational epoch. In this scenario,
the hardware is known to be free of defects. Thus, the results
of the computational epoch are known to be free of defect
induced errors, and it can be safely retired to non-speculative
Storage.

In the second scenario (shown in epoch 22), the computa
tional epoch ends before the on-line testing infrastructure
could complete the testing of all of the underlying hardware
components. This scenario can occur because certain
microarchitectural checkpointing mechanisms may have
only a finite amount of storage into which speculative state
can be stored. Once this space is exhausted, the computational
epoch may end. Additionally, I/O requests can force early
termination of a computational epoch. In this event, testing
may be the only activity allowed on the processor, and it may
run to completion while the processor pipeline is stalled. If at
the end of this testing the hardware is still deemed free of
defects, the epoch's speculative state can safely retire to non
speculative storage.
The third scenario (shown in epoch 24) occurs when the

on-line testing infrastructure encounters a defect in an under
lying component due to transistor wear-out, early transistor
failure, or manifestation of an untested manufacturing defect.
In this event, the execution from the start of the computational

5 epoch to the point where the defect was detected cannot be
trusted as correct, because this unchecked computation may
have used the faulty component. Consequently, the results of
the computational epoch are thrown away, and the underlying
hardware may be repaired, for example, by disabling the
defective component. In a processor with instruction-level
parallelism (ILP), there are typically multiple copies of Vir
tually all components. Once a component is disabled, the
processor may continue to run in a performance-degraded
mode. Additionally, a Software interrupt may be generated
which notifies the system that the underlying hardware has
been degraded, so the user can optionally replace the proces
SO.

On-line testing infrastructure is responsible for verifying
the integrity of the underlying hardware components in cer
tain embodiments. Some of the testing techniques are adopted
from built-in self-test (BIST), although they are tailored to
minimize the area of the testing hardware, and hence the area
of the defect-protection infrastructure. For each of the pipe
line components, a high quality input vector set may be stored
in an on-chip ROM, which is fed into the modules during idle
cycles. A checker may also be associated with each compo
nent to detect any defect in the system. Certain systems and
techniques utilized to Verify the integrity of underlying hard
ware are illustrated in FIGS.3 through 7 and described below.

Referring now to FIG.3, a microprocessor pipeline 26 may
include an instruction decode stage comprising decoders 27n
(27a-27c), pipeline registers 28 between the fetch and decode
stages and pipeline registers 30 between the decode and
execute stages. Several multiplexers 32n (32a-32c) may be
included in the processor's decode logic. The multiplexers
32n enable the system to send testing values from a test
harness 36 (described below) or values from the instruction

US 8,051,368 B2
5

fetch/decode registers 28 to the decoders 27n. The control
signal of the multiplexers 32n is the testing mode signal 37.
The test harness 36 for the microprocessor pipeline 26 may

include a BIST module 38 and a checker block 40. The BIST
module 38 may generate test vectors. In certain embodi
ments, the test vectors are generated by reading an internal
memory, in others they may be generated at runtime by a
linear-feedback shift register or by other logic components.
Embodiments that generate test vectors leveraging a mix of
the solutions above are also contemplated. A test vector may
be funneled to all the decoders 27n through the multiplexers
32n, for example, only when the testing mode is active. The
response values from the decoders 27m are then collected by
the checker block 40. The checker block 40 determines if the
decoders 27 provided the correct response to each test vector.
In certain embodiments, the checker block 40 may determine
the correctness of the responses by simply comparing the
decoders' responses against each other. In other embodi
ments, for instance, if half or more of the decoders 27n may be
faulty, or if there is only a small number of decoders 27m, the
checker block 40 may store the correct responses in an inter
nal memory. The checker block 40 may be active only during
the testing mode, as indicated by a testing mode signal 37.
Moreover, the checker block 40 may be operating on a sepa
rate testing clock 41, which may be providing an early clock
edge so that wear-out faults manifesting with increasing
response delay may also be detected.

In the event that the checker block 40 detects an incorrect
response to the test vector, it determines that at least one of the
decoders 27m has experienced a defect-related failure. The
checker block 40 may be equipped to pinpoint which of the
decoder(s) 27m has experienced a failure, possibly with the
aid of additional test vectors. In certain embodiments, it may
be possible to fully test one of the decoders 27n for stuck-at-0
and stuck-at-1 faults by using only 63 carefully selected vec
tOrS.

Referring now to FIG. 4, a microprocessor pipeline 42 may
include a register file 43 included between instruction fetch/
decode pipeline registers 44 and instruction decode/execute
pipeline registers 46. Several multiplexers 48m (48a-48c) may
be serially connected between the pipeline registers 44, 46
and the register file 43 to enable the selection between test
signals from a test harness 52 (described below) and other
processor signals from the pipeline registers 44 and/or regis
ter file 43.

The test harness 52 for the microprocessor pipeline 42 may
comprise a BIST module 54, a checker block 56 and one or
more replacement registers 58. The BIST module 54 may
generate one or more test vectors. Such test vectors may be
directed to the read ports of the register file 43 when a testing
modesignal 59 is active. During one of the subsequent clock
cycles, the test vector stored in the register file 43 is read and
sent to the checker block 56 through the multiplexer 48c. The
checker block 56 compares the value read from the register
file 43 with the test vector generated in the BIST block 54. If
the comparison indicates a mismatch, the corresponding reg
ister in the register file 43 may be faulty and the logic con
nections are modified to permanently use one of the replace
ment registers 58 instead of the original register.

While a register in the register file 43 is being tested, its
original value may be temporarily stored in the replacement
register 58. Thus, if the checker block 56 determines that the
response to the test vector is correct, the original value can be
transferred from the replacement register 58 to the register file
43. More specifically, register file integrity may be checked
using a four phase split-transaction test procedure in certain
embodiments. The register file 43 may include two address

10

15

25

30

35

40

45

50

55

60

65

6
decoders (one for read and one for write), which permit
testing of address decoder faults. In the first phase, a register
file entry may be read from the register file 43 and stored in the
replacement register 58. Testing of that register may now
proceed whenever free read/write ports are available. If the
register being tested is read or written by the processor, the
value may be supplied by the replacement register 58. The
same register may be used to repair a broken entry as
described below. In the second phase, a test vector (generated,
for example, with a linear feedback shift register or stored
within the BIST block 54) may be written into the register
being tested, and in the third phase it may be readback out and
compared to the original vector. In the last phase, the register
file entry (originally read out into the replacement register 58
during the first phase) may be written back into the appropri
ate register.

This process may effectively test both the register storage
as well as the address decoders in the register file 43. The
register storage may be tested by writing and reading a value
from the register. The address decoders may be tested by
virtue of the fact that the value written and read is fairly
unique, i.e., it is randomly generated, thus if either the read or
write address decoder incurs a defect, some other (likely
another register value) value will incorrectly appear during
the read phase of the register file testing. Because the value
stored in the register file entry under test is available at all
times from the replacement register, the testing process may
be implemented as a series of split transactions. Conse
quently, different phases may be implemented in non-Subse
quent cycles, whenever a free port is available on the register
file 43. The register file testing procedure may be repeated
until all of the registers have been validated. In certain
embodiments having a processor with 32 registers, the regis
terfile 43 may be fully tested with 128 cycles, spread out over
an entire computational epoch in cycles when the register file
43 is not in use. The checker block 56 may also rely on a
testing clock signal 60 so as to detect failures revealed by the
increasing propagation delay of signals.

Referring now to FIG. 5, a microprocessor pipeline 61 may
include an execution logic block between instruction decode/
execute pipeline registers 62 and execute/memory pipeline
registers 64. An arithmetic logic unit (ALU) 68 may be seri
ally connected between the pipeline registers 62, 64 to
execute the arithmetic operations specified by the instructions
in execution. Multiplexers 66n (66a and 66b) may be
included to enable the selection of test inputs sent to the ALU
68 instead of pipeline register values.
A test harness 70 for the microprocessor pipeline 61 may

include a BIST module 74 and a checker block 76. The BIST
module 74 may generate one or more test vectors, which are
sent to the ALU 68 when a testing modesignal 75 is selected.
The response of the ALU 68 is routed to the checker block 76
to validate that it corresponds to the correct response to the
test inputs. In certain embodiments, the checker block 76 may
include an ALU of smaller datapath width then the main ALU
68. In these embodiments, the checker block 76 may check
the correctness of the test responses by performing the same
computing as the ALU 68 over a small bit-interval of the input
vectors. The checker block 76 could compute the full
response over several cycles of computation, by sliding the
bit-interval at each cycle.
The ALU 68 may be checked using the mini-ALU 76.

During each cycle, a test vector from the BIST module 72 is
given to the ALU 68 and compared with the output of the
mini-ALU76. It may take several cycles for the mini-ALU76
to test the full output of the main ALU 68. For example, if the
main ALU 68 is 32-bit wide, the mini-ALU 76 could be 9-bit

US 8,051,368 B2
7

wide and validate one test vector response over four cycles of
computation. The 9-bit ALU 76 may be used to validate the
carry out of each 8' bit in the 32-bit output. The same type of
ALU checker 76 may also be used to verify the output of the
address generation logic. Using the mini-ALU checker 76, it
is possible to fully verify that the ALU 68 circuitry is free of
stuck-at-0 and stuck-at-1 faults with only 20 carefully
selected test vectors in some embodiments. The checker
block 76 may also rely on a testing clock signal 77 so as to
detect failures revealed by the increasing propagation delay
of signals.
A similar approach may be used to validate the multiplier,

which employs arithmetic residue checks. Given an n-bit
operand X, the residue X, with respect to r is the result of the
operation X % r. When applied to multiplication, residue
codes adhere to the following property: (X,*y,)=(x*y). When
the value of r=2'-1 for some a, the residue operations are
much simpler to implement in hardware. The resulting mul
tiplication checker may require only a shifter and simple
custom logic. Residue codes may detect most of the faults in
a multiplier except those that manifest as multiples of the
residue (a small class of faults where a single fault at an
internal node could manifest as a multiple of the correct value
on the output). The errors missed by the residue checker may
be caught by a few additional selected test vectors, against
which the exact output is matched. By using this approach,
the multiplier may be fully tested for stuck-at-0 and stuck
at-1 faults with a total of only 55 test vectors in certain
embodiments.

Referring to FIG. 6, a k-way associative cache (k22) 78
includes a plurality of cache lines 80, each including a tag 82,
and parity bits 84. As apparent to those of ordinary skill, the
cache lines 80 are arranged into a plurality of sets 85m. The
parity bits 84 store the parity of the data in their corresponding
cache line 80. Thus if a fault occurs in any cache line 80, the
fault can be exposed upon the first cache line read operation
by detecting an error on the line's parity. Specifically, cache
line integrity may be maintained through the use of cache line
parity. Each of the parity bits 84 holds the parity of the cache
line data 80 and the corresponding tag 82, valid bit, and LRU
state for the line 80. When data is written to the cache 78, the
parity bit 84 for the updated line 80 is re-generated and stored.
Subsequently, when a cache line 80 is read, the parity is
recomputed from the data values, tag, valid bit and LRU state
to verify the contents. In the event that the parity is correct,
notwithstanding a multi-bit failure, the cacheline 80 is known
to be correct. In some embodiments, it may also be possible to
detect multi-bit failures by augmenting each cache line 80
with several bits for error detection. It is also possible to
implement error correction mechanisms by using these same
additional bits.

In the event that a cache line parity check fails, a defect has
been detected within the storage of the cache 78. Conse
quently, the affected line 80 may be disabled from further use
and execution may be rolled back to the last checkpointed
computational epoch. Cache lines 80 may be disabled by
setting a two bit field in the LRU state table, which indicates
which line 80 in the current set 85n has been disabled. The
disable bits in the LRU table may be periodically reset to
avoid soft errors in caches being interpreted as hard errors and
rendering the cache lines 80 unusable for the rest of the
designs lifetime. Furthermore, at the end of each computa
tional epoch, dirty cachelines 80 may be checked and written
back to the next level of the memory hierarchy to guarantee
recoverability in the presence of cache silicon defects. This
approach is area-efficient, but it may only Support a single
failed line 80 per set 85n of the cache 78. Additional failed

5

10

15

25

30

35

40

45

50

55

60

65

8
lines 80 could be supported within a single set 85n if more
disable bits were to be included in the LRU logic.
A consideration in the testing of hardware components

may be the timing of the test vector samples. Since many
transistor wear-out-related failures manifest as progressively
slower devices, the failure of the device may occur in a way
where timing is no longer met for the component's critical
path.

Referring now to FIG. 7, this issue may be addressed by
utilizing a separate clock signal 88 for sampling and evaluat
ing test vector outputs. The testing clock signal 88 should
present the latching edge slightly before the latching edge of
the main clock 90, thus shortening the length of the clock
cycle available to the testing hardware to evaluate the correct
ness of the test vector response. The goal is that of detecting
hardware failures that have an increased propagation delay as
a leading indicator. Safety margins in propagation delays are
typically included in the design of current microprocessors to
accommodate variation effects, such as process, temperature
and Voltage variations. These safety margins make use of a
slightly shorter cycle testing clock viable, leading to a negli
gible amount of false positives. By using, for example, a
shorter clock cycle for the testing harness 78 illustrated in
FIG. 6, it may be possible to ensure that if a device is failing
by showing slower response, the failure can be detected long
before it affects any processor computation, since the com
putation operates on the main clock cycle 90, longer than the
testing cycle 88.
A microarchitectural rollback mechanism may be relied on

to restore correct program state in the event of defect detec
tion. During the execution of a computational epoch, the
processor may make register and memory updates which
would need to be discarded if a fault is detected. To prevent
any memory updates with corrupted data, Such updates may
be buffered in a speculative state within the processor, until
the hardware is checked and certified to be functionally cor
rect. The same level of fault coverage is not feasible by simply
stopping the computation and running the built-in tests on a
regular basis (without any checkpointing) and reconfiguring
the pipeline if a fault is found. In fact, with this approach it
would not be possible to ensure that a detected fault had not
corrupted earlier computation. In contrast, with certain
microarchitectural checkpointing facilities, the state of the
machine may be rolled back to the point when an on-line
testing pass successfully completed (a point in the computa
tion known to be correct). In addition, once the hardware is
repaired, the program may be restarted from this checkpoint.

Referring now to FIG. 8, a central processing unit 92
includes a register file 94 and data cache 96. The data cache 96
includes cache lines 98 and volatile bits 100 associated with
each of the cache lines 98. To preserve the state of the micro
processor 92 at the beginning of a computational epoch, the
values stored in the register file 94 may be backed-up into a
backup register file 102. In certain embodiments, the backup
register file 102 may be implemented as a dedicated single
port SRAM to limit the area overhead of the back up storage
space. Moreover, in some embodiments, the register file
backup may be implemented with a “lazy' policy, whereby
individual registers are backed-up and copied to the backup
register file 102 only if and when they are about to be over
written for the first time within an epoch.

Cache data may also be preserved at the beginning of a
computational epoch. In some embodiments, this may be
accomplished by copying the entire state of the cache 96 onto
main memory 104. In other embodiments, memory updates
may be buffered within the local cache hierarchy 96 to limit
the data transfer overhead.

US 8,051,368 B2

To implement an in-cache speculative state, each cacheline
98 may be augmented with a “volatile' bit 100. All cache lines
98 are set as non-volatile (that is the volatile bits 100 are reset)
at the beginning of a computational epoch. During the com
putation occurring within an epoch, when a value is stored to
the cache 96, the volatile bit 100 of the corresponding target
cacheline 98 is set to indicate that the contents are speculative
with respect to the current epoch. The end of an epoch is then
determined by the ability of the local cache hierarchy 96 to
buffer the memory updates issued during the epoch. If a cache
miss occurs on a cache set in which all of the cache lines 98
have already been marked as volatile, then one of the lines 98
storing speculative data must be evicted. Since this event
would allow for speculative information to exit the cache
96/microprocessor system 92, the computational epoch
should end and the testing sequences should complete first, to
determine that the values computed up to this point are valid.
When the event triggering the end of a computational epoch
occurs, the processor 92 may stall until the testing Sweep is
complete. Once the testing sequence is completed, if no hard
ware failure is detected, the state of the cache 96 can be
considered valid and correct, thus all the volatile bits 100 are
reset and a new computational epoch may begin. If a hard
ware failure is detected, it may be necessary to retrieve the
processor state from the beginning of the epoch. Specifically,
the register file 94 may be overwritten with the register file
backup 102. Moreover, the cache 96 should be updated by
marking invalid all the cachelines 98 for which the volatile bit
100 had been set, thus invalidating the speculative state.
Once the underlying hardware is determined to be defect

free, an epoch may end. At this point, all volatile bits 100 from
the cache lines 98 are cleared, moving all formerly specula
tive state to non-speculative. To minimize performance costs
associated with starting epochs, i.e., copying the register file
and clearing Volatile bits, each epoch may be extended as long
as possible, until when speculative state resources are
exhausted or a high-priority I/O request is generated. To
provide even longer epochs, a small fully associative victim
cache for volatile cache lines may be introduced, so that the
end of an epoch may now be designated by a cache miss on a
cache set with all its lines being marked as volatile, and while
the victim cache is full of volatile lines. The above discussion
assumes a uni-processor environment; therefore, delaying the
commit of stores to non-speculative storage has no effect on
the system's performance.

If only one checkpoint of the microprocessors architec
tural state is preserved, there is a possibility that errant com
putation from a new defect manifestation could be missed. If
a hardware check completes before a fault manifests, it
becomes possible for an errant computation to be generated
later in the same computational epoch. In this event, cor
rupted State updates would be committed to non-speculative
state at the end of the epoch. The manifested fault may even
tually be detected in the next epoch, but not before erroneous
computation had a chance to be committed to non-speculative
storage. This issue may be solved by adopting a two-phase
commit procedure, which maintains two checkpoints of the
processor's state.

To implement this two-phase commit in certain embodi
ments, an additional bit for each L1 data cache line may be
used. An additional backup register file may also be used so
that the microprocessors architectural state can be stored
alternatively to one or the other of the two backup register
files. The microprocessor's state for the last two epochs may
thus be available. Lines in the L1 data cache may be marked
(using the two volatile bits) as being either non-speculative, in
the previous epoch, or in the current epoch. At the end of each

10

15

25

30

35

40

45

50

55

60

65

10
epoch, the volatile bits of the previous epoch are cleared, and
the tags of the current epoch are updated to indicate that they
refer to the previous epoch. During the new epoch, any access
to the previous epoch's state is first copied into the current
epoch before being written, so that the previous epoch's state
is not corrupted.

In the presence of a fault, recovery to a correct micropro
cessor architectural State may be accomplished by flushing
the pipeline and copying the architectural registers from the
backup register file. The memory system is protected against
possible corrupted updates issued after the fault manifesta
tion by invalidating all the cache lines marked as Volatile in
the local cache hierarchy. Therefore, the presence of the fault
is transparent to the application's correct execution. To pro
vide forward progress, the defective module cannot be dis
abled via hardware reconfiguration.

In the event of a fault manifestation, certain embodiments
of the microarchitectural checkpointing mechanism may
restore correct program state. Before execution can safely
continue, however, the underlying hardware should be
repaired. The redundancy of ILP processors may be relied on
to reduce the cost of repair. Faulty components may be
removed from future operations, and the pipeline can keep
running in a performance-degraded mode. To implement
pipeline repair, the following facilities may be included in
certain designs:
1) Faulty functional units. Such as ALUs, multipliers and
decoders may be disabled from further use. Consequently,
further execution may limit the extent of parallelism allowed.
2) Faulty register file entries may be repaired using the
replacement register 58 as illustrated in FIG. 4. The replace
ment register 58 may overwrite a single entry of the register
file 43, thus, any value read or written to the defective register
is now serviced by the replacement register 58.
3) Faulty cache lines may be excluded using a two-bit register
in the LRU logic. Upon detecting a faulty line, the LRU state
register may be updated to indicate that the defective line is no
longer eligible as a candidate line during replacement.

Given enough silicon defects, it may be no longer possible
to tolerate another defect in a particular subcomponent. The
degree to which defects can be tolerated is dictated by the
number of redundant components available. In general, with
N components, it may be possible to tolerate N-1 defects.
Once the N-1" component fails, the hardware may generate
a signal to the operating system to indicate that the system is
no longer protected against defects.

If the fault is the result of a transistor slowdown, e.g., due
to gate oxide wear-out or negative-bias temperature instabil
ity, it may be possible to recover the faulty component by
slowing down the system clock or increasing the compo
nent's Voltage.

Instructions that perform input and output requests may
require special handling in some defect tolerant microproces
Sor design. Since I/O operations are typically non-specula
tive, they may be executed at the end of a computational
epoch. To accommodate them efficiently, three types of I/O
requests may be introduced into a design: high-priority, low
priority and speculative (the type of I/O request may be asso
ciated with the memory address, and it may be specified in the
corresponding page table entry).

High priority I/O requests are deemed time sensitive, thus,
they force the end of a computational epoch, which may force
the processor to stall to complete the testing Sweep. After this,
the I/O request executes safely, and another epoch can start
immediately after it.
Low priority I/O requests are less time sensitive, thus, are

held in a small queue where they age until the end of the

US 8,051,368 B2
11

current epoch, when they are all serviced. To prevent I/O
starvation in programs with long computational epochs, low
priority I/O requests are only allowed to age for a small fixed
period of time, e.g., about one microsecond. In addition, the
computational epoch should end when any attempt is made to
insert a low-priority request into a full I/O queue.

Speculative I/O requests are I/O requests that are either
insufficiently important to care about the impacts of unlikely
defects, e.g., writes to video RAM, which could be easily
fixed in the next frame update, or they are idempotent, e.g.,
the reading of a data packet from a network interface buffer.
Such requests are allowed to execute speculatively before the
end of a computational epoch. If a defect is encountered
during the epoch in which they execute, they will just be
re-executed in the following epoch, once the defective com
ponent has been disabled.

In Some embodiments, disabling defective functional units
may require multiple units of each class, otherwise, a single
defect in a critical non-replicated unit could render the pro
cessor broken. Additionally, cache organization may be set
associative to accommodate both speculative and non-specu
lative state.
A detailed physical design of a 4-wide VLIW processor

including instruction and data caches, and enhanced with
certain technology described herein is presented below.
The 4-wide VLIW prototype was specified in Verilog, and

synthesized for minimum delay using Synopsys Design
Compiler. This produced a structural Verilog netlist of the
processor mapped to Artisan standard cell logic in a TSMC
0.18 um fabrication technology. The design was then placed
and routed using Cadence Sedsm, which in turn yielded a
physical design with wire capacitances and individual com
ponent areas. The design was then back annotated to obtain a
more accurate delay profile, and simulated to Verify timing
and functional correctness with Symposys PrimeTime.

For each component and test vector set, it was verified that
all stuck-at-0 and stuck-at-1 faults were detected. In general,
test vector sets were identified using hand-selected vectors, or
by randomly cycling through random vector sets until a small
group of effective vectors was located. Test vector coverage
was verified by inserting a hard fault at each net of the design
and then determining if a change in the output was observable
for the current input test vector set. For a test vector set to
provide full coverage, there should be at least one vector that
identifies a hard fault in all nets of the design. Once the test
vector set was identified, it was encoded into an on-chip ROM
storage unit, created using Synopsys design tools.

Architectural evaluation was done using the Trimaran tool
set, a re-targetable compiler framework for VLIW/EPIC pro
cessors, and the Dinero IV cache simulator. The simulator
was configured to model the VLIW baseline configuration
and memory hierarchy as detailed below. The designs were
evaluated using benchmarks from SPECint2000, Media
Bench and MiBench benchmark Suites. These benchmarks
cover a wide range of potential applications, including desk
top applications, server workloads and embedded codes.

Coverage analysis was implemented by injecting faults
into a logic timing level simulation of the detailed VLIW
processor physical design. A stuck-at-0 and stuck-at-1 fault
model was selected. Defects were injected into a placed-and
routed implementation of the design. Faults were assigned to
gates and wires so that the probability of a deviceX becoming
defective p was equal to: p.C.A.), where A, is the
area of the device and W is the average estimated activity of
the device. As such, large devices with high activity rates
were most apt to fail, while Small components or components
with little activity are at lower risk.

10

15

25

30

35

40

45

50

55

60

65

12
Referring now to FIG.9, a baseline pipeline 106 includes a

4-wide VLIW processor with 32-bit fixed-point datapath. The
instruction set of the processor is loosely based on the Alpha
instruction set. Each VLIW instruction bundle is 128-bit long,
consisting of 4 independent 32-bit instructions.
The processor pipeline 106 has five stages 108, 110, 112,

114, 116. The instruction fetch (IF) stage 108 is responsible
for fetching the 128-bit VLIW instruction from a 32-KByte
instruction cache 117. The instruction decode (ID) stage 110
decodes 4 independent instructions per cycle and reads reg
ister operands from a register file 118 with 8 read ports and 4
write ports. The execute (EX) stage 112 performs arithmetic
operations, multiplications and address generation. The
memory (MEM) stage 114 accesses a 32-KByte data cache
119 and main memory. Finally, the writeback (WB) stage 116
retires instruction results to the register file 118.
The register file 118 and a plurality of decoders 120m

(120a-120d) are connected between pipeline registers sepa
rating stages 108 from 110 and 110 from 112. ALUs 122,
address generation blocks 124 and multipliers 126 are con
nected between pipeline registers separating stages 110 from
112 and 112 from 114. The data cache 119 is connected
between pipeline registers separating stages 112 from 114
and 114 from 116. The instruction cache 117 and program
counter 132 are part of the instruction fetch stage 108 and are
connected to the pipeline registers separating stages 108 from
110. The test architecture also includes specialized units 124,
126 to compute memory access addresses and/or execute
multiply operations. Thus, each bundle of 4 instructions could
include at most two ALU operations and two load/store/
multiply operations. The latency of the ALUs 122 is one clock
cycle, while the latency of the load/store/multiply units 124,
126 is three clock cycles. The latency of a miss on the instruc
tion and data caches 117, 119 is 10 cycles.
The bandwidth requirements of testing are the number of

vectors needed to fully test components for stuck-at-0 and
stuck-at-1 faults. Table 1 lists the number of vectors to fully
test each component, showing that few vectors are required to
test each unit.

TABLE 1

Component Test vectors (or cycles)

ALU 2O
MULT 55
Decoder 63

Register File 128

Considering that the length of a computational epoch will
typically be 1000's of cycles, testing may be completed using
only occasional idle cycles. The caches 117, 119 are not listed
in Table 1 because the use of parity bits allows for the con
tinuous detection of defects.
The addition of test vector ROMs, where test vectors are

stored, plus the checkers and checkpointing infrastructure
bears a cost on the overall size of the design. Table 2 lists the
total area of the defect tolerant component (Total area), the
defect protection infrastructure area (Checker area), and the
area that is covered by the test harness (Protected area).

TABLE 2

Design Total area Checker area 9% of Protected 96 of
Block (um) (um) tot. area area (um) tot. area
IF 131323 4523 3.4 118190 90.0
ID 278396 22776 8.2 237726 85.4

US 8,051,368 B2
13

TABLE 2-continued

Design Total area Checker area 9% of Protected 96 of
Block (um) (um) tot. area area (um) tot. area
RF 2698.213 133213 4.9 25O1787 92.7
EX 214O1OO 37558O 17.5 1740486 813
WB 394.673 4763 1.2 25O165 63.4

Overall Core 5642705 540855 9.6 4848.354 85.9
I-cache 32 KB 2037062 13012 O6 1881416 92.4
D-cache 32 KB 2047472 13012 O6 1891826 92.4
Overall System 9727239 S66879 5.83 8621596 886

The coverage of the component is also shown as a percent
age (this is the total fraction of the final design in which a
defect that occurs will be detected and repaired). This metric
can also be thought of as the probability that a defect in the
component would be detected, given a random occurrence of
a defect.
As shown in Table 2, area overheads for defect protection

are quite modest, with most overheads less than 10%. The
overheads within the caches are even lower, less than 1% for
the prototype. Consequently, the overall overhead for defect
protection is quite low. Adding Support for defect protection
increased the total area of the design by only 5.83%. The
defect coverage is also quite good, with most components in
the 80 and 90 percentiles. The overall coverage of the design,
i.e., the total area of the final defect tolerant design in which
a defect could be detected and corrected, is 88.6%. In other
words, 9 out of 10 randomly placed defects would be detected
and corrected by the prototype design.

Table 3 lists statistics about computational epochs for a
variety of programs while running on the baseline VLIW
processor with a 32 KByte 4-way set-associate data cache and
an eight entry fully associative volatile victim cache.

TABLE 3

Avg. Avg.
epoch Data L1 Avg. Avg. Dec. Avg.
size miss ALU LSM util. reg.

Benchmark (cycles) rate util. (%) util. (%) (%) rwicycle

175.vpr SO499 3.10 69.71 1841 59.00 4.72
181.mcf 120936 3.54 36.89 10.70 67.00 5.36
197.parser 106380 2.10 54.22 19.71 52.25 4.18
256.bzip2 162508 8.88 SS-91 33.93 73.50 5.88
Unepic 33604 17.16 68.70 14.29 55.50 4.44
Epic 1962.11 6.60 72.80 8.28 29.25 2.34
mpeg2dec 1135142 0.59 55.81 54.55 46.25 3.70
Pegwitclec 1696.17 10.42 62.15 45.06 62.50 S.OO
Pegwitenc 304310 12.81 69.09 42.19 63.75 S.10
FFT 2314S 149 S6.88 43.95 33.50 2.68
Patricia 1399.52 1.19 SS.20 37.69 57.75 4.62
Qsort 1184756 2.SS 20.08 18.74 32.25 2.58
Average 3O2254 S.87 S6.45 28.96 52.71 4.22

Listed is the average epoch size in cycles along with the L1
data cache miss rate. Also shown are statistics regarding the
utilization of ALUs, L1 data cache memory ports (LSM),
decoders, and register file ports. It appears from this table that
the performance overhead of defect testing is quite low. For
the program with the shortest average epoch length (FFT), the
number of test cycles is at most 0.5% of the total number of
cycles within the epoch. For this program, even if the testing
during idle cycles could not complete, the performance
impact would be negligible. All programs were able to com
plete testing within each epoch without delaying the start of
the next.

It should be noted that there is a useful correlation between
epoch length and average component utilization. For many of
the programs with short epoch lengths, e.g., FFT and unepic,

10

15

25

30

35

40

45

50

55

60

65

14
there are correspondingly low functional unit utilizations.
This is to be expected because a program with a short epoch
length would have a large amount of cache turnover, which in
turn would lead to many pipeline stalls and low functional
unit utilization, and plenty of time for defect testing. While
programs with long epochs tend to have higher component
utilization, they provide more time for the test harness to
complete its task. In addition, the effect of cache geometry on
average epoch size was examined, and it was found that there
was little performance impact for defect testing for a wide
range of cache geometries.
Once a defect has been located, the processor may be

reconfigured by disabling the defective component. This
reconfiguration may not allow as much parallelism as previ
ously afforded in the unbroken pipeline, resulting in perfor
mance degradation.

In other embodiments, a processor pipeline and its cache
memory system may be protected from both transient faults
and permanent silicon defects. Given this fault model, a com
bination of on-line distributed checkers and microarchitec
tural checkpointing which efficiently identifies defects and
recovers from their impact is presented. Certain embodiments
of the microarchitectural checkpointing mechanism imple
ment a capability to roll back execution up to 1000's of
cycles. Using the protection of checkpointing, the on-line
distributed checkers are periodically exercised to verify the
functional integrity of the hardware. If the online tests suc
ceed, the underlying hardware is known to be free of defects,
and the previous checkpoint is no longer needed. Ifa defect is
detected, processor state may be restored through the last
checkpoint, and the hardware may be repaired by reconfig
uring it to operate without the defective component, possibly
with slight performance degradation. The redundancy of
instruction-level parallel processors may be used to reduce
repair costs. A double-sampling latch design may be utilized
to protect the pipeline from transient faults and latch defects.
Some embodiments may include certain of the following

features:
1) A resilient design capable of tolerating both transient and
hard silicon faults. For a 15% area overhead, for example,
99% and 95% coverage against transient faults and silicon
defects is provided, respectively.
2) A reflexive self-test which allows each distributed checker
to check itself. This may obviate the need for expensive logic
to check the functional integrity of the checkers, resulting in
higher overall fault coverage with no increases in area costs.
3) Defect protection for arbitrary control logic blocks.

In certain embodiments discussed below, a computation is
not checked. Rather, the underlying hardware is periodically
Verified: if a faulty component is detected, the computation is
repaired by restoring the last known-good checkpoint. By
avoiding expensive computation-checking hardware, signifi
cantly lower area costs may be achieved.

Referring now to FIG. 10, an embodiment of a circuit 134
for transient fault detection based on a double-sampling latch
which detects the occurrence of transient faults is provided.
The fault-tolerant scan cell 134 may detect soft errors in both
sequential and combinational logic. In addition, it may detect
hard failures in sequential elements.
The embodiment of the SER-tolerant flip-flop 134 may

include a main flip-flop (FF) block 136 and a scan flip-flop
(FF) block 138. The main FF block 136 includes master and
slave latches 140, 142. The scan FF block 138 also includes
master and slave latches 144, 146. In addition, the scan FF
block 138 includes an XOR gate 148 for detecting when the
two master-slave FFs 136, 138 have latched different values
(as is the case when an SER hits) and an additional latch 150

US 8,051,368 B2
15

for storing this information permanently. The two blocks 136,
138 are fed with two distinct clocks, the main clock 152 and
a skewed clock 154. In certain cases, the skewed clock 154 is
the inverse of the main clock 152. The main FF 136 latches the
incoming data signal on the positive edge of the clock, while
the scan FF 138 samples the same signal on the skewed
clock's positive edge. If an incorrect value is latched in the
main FF 136 due to an SER, the glitch will subdue before the
signal is latched again half a clock cycle later by the scan
block 138. When this situation occurs, the XOR gate 148
outputs a 1, which is stored in the output latch 150. In addi
tion, the output signal 156 is fed back to XOR1 gate 158,
which forces the input of the scan FF 138 to always observe
the complement of the data signal, continuously forcing an
“SER-detected situation.
As apparent to those of ordinary skill, the SER-tolerant

flip-flop 134 also includes an inverter 160, AND gate 162, and
NAND gates 163, 164. Inputs are designated by 166, 168,
170, 172,174, 176, 178. Outputs are designated by 180,182.
During processor mainstream operation, the data input to be
stored is provided through the input 178, while the main clock
signal is provided at the input 152. During manufacturing
testing, when the processor undergoes normal testing rou
tines, values can be stored in the latches through the scan
chain design. The scan chain clock is provided at the input
168, and the scan-input value is provided at 164. To enable the
use of the flip-flop 134 in Scan-chain mode, the scan-data
enable signal 172 should be used. During this same process,
in order to evaluate test responses during manufacturing test
ing, the input 174 main data enable should be used to transfer
out the values stored in the flip-flop 134 through the scan
chain.

During normal system operation, it may be possible to
activate the flip-flop 134 to log any occurrence of a transient
fault by activating the input 170 protect, along with both
scandata and maindata enable 172, 174. At the end of a
computational epoch, it may also be possible to detect if a
transient failure has occurred during the last epoch by pulsing
the input 176 feed out and resetting the input protect 170.

The latch 134 works by relying on the assumption that
transient faults manifest as logic glitches with a maximum
duration of less than a clock cycle. This assumption is widely
supported in both the VLSI and process technology literature.
Given this assumption, the double-sampling latch 134 will
reliably detect the presence of a transient fault logic glitch if
it sees that the two samples differ. This difference can only
occur when a transient fault logic glitch is at the input to the
latch 134 when the clock ticks; since the duration between
samples is larger than the worst-case glitch duration, the two
samples must differifa glitch is in process. The skewed clock
154 is provided to the scanlatch 138 to implement the second
logic sample, and a comparator (implemented in the embodi
ment of FIG. 10 by logic gates 148, 163, 164) validates the
sample during the second half of the clock cycle. When a
mismatch occurs, the Scanlatch 138 may lock to a logical one
value until reset.
At the end of each computation epoch, all error signals are

shifted out on the scan chain. In presence of an error, the
faulty cell is tested individually using the scan chain to iden
tify whether the fault was initiated by a soft or hard failure.
Both SO 180 and Q 182 outputs of the faulty cell are captured,
shifted out and verified to determine the possibility of hard
failures in the main and scan flip-flops 136, 138. If no fault is
detected in this test, it may be concluded that a soft error
caused the original failure. Consequently, a Suitable rollback
mechanism may be activated to restore the last known correct

10

15

25

30

35

40

45

50

55

60

65

16
state. Detection of any error in the test reveals that the error
had been caused by a hard failure in one of the flip-flops 136,
138.

Therefore, the protection for the corresponding cell should
be disabled and, based on the location of the hard failure,
either the main flip-flop 136 or the scan flip-flop. 138 may be
used as the primary sequential element in that cell. Since it
may be costly to selectively disable individual latches, pro
tection for all flip-flops may be disabled, or sequential ele
ments to several groups may be partitioned and individual
control signals for each group may be added. By taking the
latter approach, it may be possible to disable protection for
one group and maintain fault tolerance for the rest of the chip.

Referring now to FIG. 11, different operating modes of the
cell 134 and their corresponding input configurations are
listed.

Another detailed physical design of a 4-wide VLIW pro
cessor including instruction and data caches, enhanced to
include protection against SER faults and silicon defects is
presented below.

Circuit-level evaluation was performed on a 4-wide VLIW
prototype, specified in Verilog and synthesized for a 0.18 um
TSMC process using Synopsys Design Compiler. The design
was then placed and routed using Cadence Sedsm, which in
turn yields a physical design with wire capacitances and
individual component areas. Finally, the design was back
annotated to obtain a more accurate delay profile, and simu
lated with Symposys PrimeTime to verify its timing and func
tional correctness.

Architectural evaluation was done using the Trimaran tool
set, a re-targetable compiler framework for VLIW/EPIC pro
cessors, and the Dinero IV cache simulator. The simulator
was configured to model the VLIW baseline configuration
and memory hierarchy as detailed below. Designs were evalu
ated running benchmarks from SPECint2000, MediaBench
and MiBench benchmark suites. These benchmarks cover a
wide range of potential applications, including desktop appli
cations, server workloads and embedded codes.
The baseline processor and memory architecture is a

4-wide VLIW architecture, with 32-Kbyte instruction and
data caches. The instruction set of the processor is loosely
based on Alpha instruction set. Each VLIW instruction
bundle is 128-bit long, consisting of 4 independent 32-bit
instructions. The processor pipeline has five stages, including
instruction fetch, decode, execution, memory access and
writeback.

Self-test BIST vectors were generated using hand-selected
vectors, or by randomly cycling through random vector sets
until a small group of effective vectors was located. Test
vector coverage was verified by inserting a hard fault at each
net of the design and then determining if a change in the
output was observable for the current input test vector set. For
a test vector set to provide full coverage, there should be at
least one vector that identifies a hard fault in all nets of the
design. Once the test vector set was identified, it was encoded
into an on-chip ROM storage unit, created using Synopsys
design tools. Coverage analysis simulation was performed by
injecting faults into a logic timing level simulation of the
detailed VLIW processor gate-level design. Defects were
injected into the design (as stuck-at-one and stuck-at-Zero
faults), and the design was fully tested using a complete
battery of functional tests. If the functional tests pass, the fault
was masked, otherwise, the fault was not covered by fault
tolerance hardware.
The coverage of fault-tolerant mechanisms was examined

by measuring, through fault injection experiments, the frac
tion of faults covered. This fraction represents the overall

US 8,051,368 B2
17

design defect coverage. Table 4 lists the coverage of the
overall design, as well as the coverage of individual processor
components.

TABLE 4

Total Checker 96 of Protected
Design Area Area Total 88 % of Area
Block (im) (im) Area (m) (Coverage)

IF 127374 8374 6.6 114359 89.8
ID 278396 2.2776 8.2 260605 93.6
RF 2698.213 133213 4.9 2635OOO 97.7
EX 29929.17 1166O16 39.0 2896063 96.8
WB 170795 7208 4.2 158299 92.7

Latches 1642S6 122200 1.4 1640O2 99.0
Overall Core 6431951. 1459.787 22.7 6228582 96.8
I-cache 32 KB 2O33345 9299 O.S 1881416 92.6
D-cache 32 KB 2043755 92992 O.S 1891826 92.6
Overall System 10509051 1478385 14.1 10001824 95.1

Design coverage is quite good. Overall design coverage is
95%, meaning that 95 out of 100 defects randomly placed into
the process will be covered.

Examination of the design indicates that currently 95% of
the area is protected from defects. Consequently, devising
protection schemes for the remaining fraction of the design,
even if very expensive, would not incura significant area cost.
The unprotected area of the design mainly consists of
resources that do not exhibit inherent redundancy in the
design, such as global interconnect and various glue logic.
The addition of test vector ROMs, where test vectors are

stored, plus the checkers and checkpointing infrastructure
bears a cost on the overall size of the design. Table 4 lists the
total area of the defect tolerant component (Total area), the
defect protection infrastructure area (Checker area), and the
area that is covered by the test harness (Protected area). As
shown in Table 4, area overheads for defect protection are
quite modest, with most overheads being less than 10%. The
overheads within the caches are even lower, less than 1% for
the prototype. Consequently, the overall overhead for defect
protection is quite low. Adding Support for defect protection
increased the total area of the design by only 14%. The defect
coverage is also quite good, with most components in the
mid-90 percentiles. The overall coverage of the design, i.e.,
the total area of the final defect tolerant design in which a
defect could be detected and corrected, is 95%.
As the system runs, it will periodically pause to run online

self-tests. These pauses constitute a down-time and a poten
tial performance loss if they occur with too much frequency.
The impact of this defect protection mechanism on the per
formance of programs running on the defect tolerant proto
type design was examined. Table 5 lists the number of vectors
to fully test each component, showing that few vectors are
required to test each unit.

TABLE 5

Component # of test vectors

ALU 2O
MULT 55
Decoder 63

Register File 128
Pipeline Control 12
Memory Control 13

The bandwidth requirements of testing are the number of
vectors needed to fully test components for stuck-at-0 and
stuck-at-1 faults. The caches are not listed in Table 5 because
the use of parity bits allow for the continuous detection of

10

15

25

30

35

40

45

50

55

60

65

18
defects. The time required to fully test the hardware is quite
Small, only 128 cycles, with the register file taking the longest
time to complete tests.

Table 6 lists statistics about computational epochs for a
variety of programs while running on the baseline VLIW
processor with a 32Kbyte 4-way set associate data cache and
an eight entry fully associative volatile victim cache.

TABLE 6

Avg. epoch Testing
Benchmark Size (cycles) Overheard (%)

175 vpr SO499 O.S1
181 mcf 120936 O.21
197 parser 10638O O.24
256 bzip2 162508 O16
unepic 33604 O.76
epic 196211 O.13
mpeg2dec 1135142 O.O2
pegwitclec 1696.17 O.15
pegwitenc 304310 O.08
FFT 231.45 1.11
patricia 139952 O.18
qsort 11847S6 O.O2
Average 3O2254 O.08

Listed is the average epoch size in cycles along with the L1
data cache miss rate. Also shown are statistics regarding the
utilization of ALUs, L1 data cache memory ports (LSM),
decoders, and register file ports. The performance overhead
of defect testing is quite low. Considering that testing will
only take at most 128 cycles, performance impacts listed in
the table are quite small. For the program with the shortest
average epoch length (FFT), the number of test cycles is at
most 0.5% of the total number of cycles within the epoch. For
this program, even if testing could not complete during idle
cycles, the performance impact would be negligible. Perfor
mance impacts were not graphed directly because there sim
ply were none. All programs were able to complete testing
within each epoch without delaying the start of the next.

While exemplary embodiments are described above, it is
not intended that these embodiments describe all possible
forms of the invention. Rather, the words used in the specifi
cation are words of description rather than limitation, and it is
understood that various changes may be made without depart
ing from the spirit and scope of the invention. Additionally,
the features of various implementing embodiments may be
combined to form further embodiments of the invention.
What is claimed is:
1. A method for detecting microprocessor hardware faults

comprising:
partitioning the microprocessor's runtime computation

into execution intervals; and
during each of the execution intervals, (i) sampling at least

one storage element input signal of the microprocessor
at differing times during a single clock cycle, (ii) deter
mining whether the sampled storage element input sig
nals differ, and (iii) creating a record of an occurrence of
a hardware fault in another storage element if the
sampled storage element input signals differ.

2. The method of claim 1 wherein the at least one storage
element input signal is sampled at the end of the clock cycle.

3. The method of claim 1 wherein a state of the micropro
cessor is preserved at each start of the intervals.

4. The method of claim 3 further comprising restoring the
preserved State of the microprocessor.

5. A microprocessor comprising:
a plurality of storage elements electrically connected with

logic blocks of the microprocessor and configured to (i)

US 8,051,368 B2
19

sample at least one storage element input signal of the
microprocessor at differing times during a single clock
cycle, (ii) determine whether the sampled storage ele
ment input signals differ, and (iii) create a record of an
occurrence of a hardware fault in at least one of the
plurality of storage elements if the sampled storage ele
ment input signals differ.

6. The method of claim 5 wherein the at least one storage
element input signal is sampled at the end of the clock cycle.

5

20
7. The microprocessor of claim 5 further comprising at

least one control logic block configured to periodically pre
serve a state of the microprocessor.

8. The microprocessor of claim 5 further comprising at
least one control logic block electrically connected with at
least one of the plurality of storage elements and configured to
restore a preserved state of the microprocessor if the record
indicates an occurrence of a hardware fault.

k k k k k

