US 20190305927A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2019/0305927 A1

Bhunia et al. 43) Pub. Date: Oct. 3, 2019
(54) BITSTREAM SECURITY BASED ON NODE GO6F 21/44 (2006.01)
LOCKING GO6F 21/76 (2006.01)
HO4L 29/06 (2006.01)
(71) Applicant: University of Florida Research HO04L 9/08 (2006.01)
Foundation Incorporated, Gainesville, (52) U.S. CL
FL (US) CPC ... HO4L 9/002 (2013.01); HO3K 19/17768
. . . (2013.01); GO6F 21/44 (2013.01); HO4L
(72) Inventors: Swarup Bhllllla, Galngsmllg, FL (US), 2209/16 (201301), HO4L 63/0457 (201301),
Robert A. Karam, Gainesville, FL HO4L 9/0866 (2013.01); GOGF 21/76
(US); Tamzidul Hoque, Gainesville, FL.
(2013.01)
(US)
(21) Appl. No.: 16/081,027 (57) ABSTRACT
(22) PCT Filed: Mar. 17, 2017
) A technique to generate node locked bitstreams for FPGAs
(86) PCT No.: PCT/US2017/023017 to simultaneously protect against malicious reconfiguration
§ 371 (c)(1), as well as FPGA IP piracy is provided. According to some
(2) Date: Aug. 29, 2018 aspects, modifications in FPGA architecture along with an
.. associated mapping flow enable authenticating and pro-
Related U.S. Application Data gramming a device in a way that maintains FPGA security
(60) Provisional application No. 62/310,543, filed on Mar. while requiring low overhead. The technique is more robust
18, 2016. against side channel and destructive reverse-engineering
A . . attacks in comparison with key-based encryption methods,
Publication Classification and has less area, power, and latency overhead. The node
(51) Int. CL locked bitstream approach is attractive in many existing and
HO4L 9/00 (2006.01) emerging applications including IoTs, which may require
HO3K 19/177 (2006.01) field upgrade of FPGA.

bitstream

Patent Application Publication Oct. 3,2019 Sheet 1 of 12 US 2019/0305927 A1

100

\

Distream ——s] |) :
‘ fsiream ﬁagf* Bitstream Digest
HMAC Key ~——ef (SHA]
= et Encrypted
(_HMACKey J Bistean J Digest }—=t Encrypton __ Bistream
Encryption Key ——|__{AES) E
mmmmmmmmmmmmmmmmmmmmmmm ;
. Decryption
= (CiMAC Key | (RES)
& - < —Enabled slartup
“““““““““““““““““ e Diseted st

FIG. 1

Patent Application Publication Oct. 3,2019 Sheet 2 of 12 US 2019/0305927 A1

200
\ 250
yab 230
LV /
Ki P owner/Vendor Tocl ’ FPGA device 3\
ZINTTCE | ol] Sl Cai |
zaﬁéeﬁgs | ‘ Challenges
““““ : CloR
% x| CloR
. o
Responses | . Responses
R45 RE51 . - R45 R651 RI113
([[] J\CE T T Tem])
A\
232

FIG. 2

Patent Application Publication

300

“~

initiate Device
L Communication
4 i é’
end Challenges vectors
4 to Device
7 é f
Challenges received and used
L by PUF to generale Responses
¥
Responses are fransmitted

N

back fo OEM

(Device NOT | N0~ A
Authentic |

(Device Auenficated

Oct. 3,2019 Sheet 3 of 12

M"()
-

_—
-
-

OEM generates bitstream
A
SR —
Authenticate and identify
 larget FPGAuging CRCP
'
" Load Device's shuffle keys
L fromthe Vendor database
i
(" Shufile bitstream using device-
4 specific keys
i
[Send shuffled bitstream to
L authenticated FPGA
Receive and store shuffled
4 bitstream
3

" Generate deshutfle keys from
Challenge vactors

~

Deshuffie bitsream and map

info device resources

\.

Tl

FIG. 3b

US 2019/0305927 A1

OEM
»210

VAN

US 2019/0305927 A1

Oct. 3,2019 Sheet 4 of 12

Patent Application Publication

2

HawE
{45}
1R 610 (=
6]
7 = 910 HEOR €70 FEDH €70 =
NI 555 VAN
liod ﬁ%,% s4 &

3

0bv
A
7 N
m .ﬁvm“i\x:mxmmx;ﬁ .wg&ng,mx%m
M 4) N\
: Koy jeoisfug | Aoy reoibon
i €0 ,ii,:;,;,:;,;,;iwmuik y
mé {WesAs)g
: 2in09g -
R g
m USR] =
; dyeeds-aameg TS
H % AVGR
wesnsig =
Bublio
V0¥

Patent Application Publication Oct. 3,2019 Sheet 5 of 12 US 2019/0305927 A1

Responses for Device 1D ?espcnsas for

and Authentication Key G benez atsun
R&5 1 R6DT R9113 L RS - RO0 - RE15]
i3 %’ v

Inv. Transform Subkeys

W . ﬁ @;@ — -t Key Generation Logic
(@)
FIG. 5a

Transform

Plain Bitstream ¥
"0101..0001...1101.. SO He-0001..0001..0100..
bB content CLB content v
S He- 10101101000
T Transformed Bitstream
)
Wi

US 2019/0305927 A1

Oct. 3,2019 Sheet 6 of 12

Patent Application Publication

49 9l e9 Ol

o y)

Lo 0J HIINS %
a0 a0 8 ol oo [84

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

NS WI0SLRH| 8SIaRY
A,

W 1
g P |
i ¥ %]
| e
i
i
|

S il
g1 e H a0 fr a0 8 0 |84 WN SPR82

{0 i mf VA i
i) = FT E = Ty A N

;] (

== dn)
—d
<>

IR
-

<
o
=l

Patent Application Publication Oct. 3,2019 Sheet 7 of 12 US 2019/0305927 A1

o | Book A |] il L -
& | Ray ECEH o8 HCBH clB HCBH c18 HCBH ci8 HOBH ClB HOBH DSP | |S3
SBE 5B SB SB S8 53
& | 2 e cus OB cis FCBH cie OB cie FCBH cs [o | |2
ol | Biock |- ! T [T T —
B | pay HCEH ciB HCBH cls HCBH cte FCBH owe HCBR ci8 HCBH o | 1B
o 5 S8 58 8 5
S %ﬁ;ﬁ LB o8 HC ols Hoa o HCBH OB (B OB B 0s? =
:fElOBi e [l [eed | [l el | s

tnput/Output Block Suiteh box Comection box

FIG. 7

Patent Application Publication Oct. 3,2019 Sheet 8 of 12 US 2019/0305927 A1

LT - nversion ¢ nvg—e;;@n
- W fogic 6 /
R2 -
R1
Ck i
Ry 7 57 Ks
i
51 8
LUT inputs
Routing channel
Config
Frames | R
span the N

height of
a clock \\
region NN

{OB+NT CLBANT DSP+NT BRAMHNT
Column Column Column Column

FIG 10

{Hlea [owe -

Patent Application Publication Oct. 3,2019 Sheet 9 of 12 US 2019/0305927 A1

Developer

.,q.mw;;'_-‘.';....uw_

ce

End User Devi

PUF Generated Keys

FIG. 11

Patent Application Publication Oct. 3,2019 Sheet 10 of 12 US 2019/0305927 A1l

Compii-’-“r }
key 2 key N
10010... Lﬁ@g/r___\i
Logical

Arch. N

AT
LI LXK LN IHSLR,
XX KX KX R X,

US 2019/0305927 A1

Oct. 3,2019 Sheet 11 of 12

Patent Application Publication

€l 9old

Weansyg

S

i

Aguiessy

t

fuiddeyy Abojouyos)

i

sisayulg g sisfieuy

l!!!i\»\}il

A 2i08s

t

Buiddeyy aiemy-A1unosg

fln'i\\s\»'\\ni}/

g ubisap

i

SISBYIUAS 3 Sishieuy

li!Fll\\\H‘\...]‘ii/

1" ubisap

ONYdSO ¢

Patent Application Publication Oct. 3,2019 Sheet 12 of 12 US 2019/0305927 A1l

BUIF File

Analysis
Partifioning

LUT Obfuscation

¥

Opfimization

;

(Output Generation j

L ¥ l

Structural Verilog LUT Primitives Report Files

FIG. 14

US 2019/0305927 Al

BITSTREAM SECURITY BASED ON NODE
LOCKING

RELATED APPLICATIONS

[0001] This application claims priority to and the benefit
of U.S. Provisional Patent Application No. 62/310,543,
entitled “BITSTREAM SECURITY BASED ON NODE
LOCKING,” filed Mar. 18, 2016. The entire contents of the
foregoing are hereby incorporated herein by reference.

BACKGROUND OF INVENTION

[0002] Embedded and wearable computing devices have
proliferated in recent years in a large diversity of form
factors, performing cooperative computation to provide the
new regime of Internet-of-Things (IoT). This proliferation
trend is expected to continue, with an estimated 50 billion
smart, connected devices by 2020. A key feature in such
devices is the need for in-field reconfigurability to adapt to
changing requirements in energy-efficiency, functionality,
and security. Field Programmable Gate Arrays (FPGAs)
have emerged as a popular architecture for addressing this
reconfigurability demand. FPGAs provide a high flexibility
compared to custom Application-Specific Integrated Circuit
(ASIC), while consuming less energy than designs based on
firmware running in microcontrollers. Furthermore, FPGA-
based designs are known to be more secure than both ASIC
and microcontrollers against supply-chain attacks, e.g.,
design details are not exposed to foundries or entrusted
outsourcing.

[0003] Bitstreams contain configuration information for
programming a programmable device, such as an FPGA.
FPGA bitstreams are susceptible to a variety of attacks,
including unauthorized reprogramming, reverse-engineer-
ing, and cloning/piracy. Therefore there is a need to provide
protection of FPGA bitstreams, both during wireless recon-
figuration and after in-field deployment in FPGA-based
designs.

BRIEF SUMMARY

[0004] Disclosed herein is an approach to FPGA security
that provides protection against in-field bitstream repro-
gramming as well as Intellectual Property (IP) piracy, while
permitting wireless reconfiguration without encryption.
[0005] The inventors have recognized and appreciated that
traditional countermeasures against FPGA bitstream attacks,
such as shielding, noise injection, etc., use more energy than
desired for most modern embedded and IoT devices that
have aggressive energy constraints. The present disclosure
details aspects of an approach to FPGA security, which can
prevent unauthorized in-field reprogramming as well as
FPGA IP piracy without encryption. In some embodiments,
a node-locked bitstream approach, where the device-to-
bitstream association is changed from device to device, is
employed.

[0006] According to some embodiments, a programmable
device is provided. The programmable device may include
an external interface, a first circuit configured to generate an
identifier and a second circuit configured to transmit through
the external interface at least one response to one or more
messages received through the external interface. At least a
portion of the at least one response may be based at least in
part on the identifier. The programmable device may further
include a third circuit configured to perform a de-obfuscat-

Oct. 3,2019

ing function on a bitstream. The de-obfuscating function
may be based at least in part on the identifier. According to
some embodiments, the programmable device may be a field
programmable gate array (FPGA). The at least a portion of
the identifier generated by the first circuit may be based on
a plurality of selectively blown fuses in the programmable
device. At least a portion of the identifier may have a value
that varies over time. The third circuit may include at least
one sub-circuit configured to selectively permutate the bit-
stream such that a position within the bitstream of at least a
portion of the bitstream is changed based at least in part on
the identifier. The third circuit may include a plurality of
sub-circuits, connected in series, wherein each of the plu-
rality of sub-circuits is configured to selectively permutate
the bitstream such that a position within the bitstream of at
least a portion of the bitstream is changed based at least in
part on the identifier.

[0007] According to some embodiments, a method of
securely programming a programmable device is provided.
The method may include obtaining an identifier from the
programmable device; obfuscating a bitstream based at least
in part on the identifier; and sending the obfuscated bit-
stream to the programmable device. Obtaining the identifier
may include sending a sequence of challenges to the pro-
grammable device; receiving a sequence of responses to the
sequence of challenges from the programmable device; and
determining, based on the sequence of responses, the iden-
tifier for the programmable device. The method of securely
programming a programmable device may further include
authenticating the programmable device based on the iden-
tifier in relation with an authorized identifier list. Authenti-
cating the programmable device based on the identifier in
relation with an authorized identifier list may include obtain-
ing the authorized identifier list from an external source.
Obtaining the authorized identifier list from an external
source may include communicating with the external source
using secure communications. Obfuscating the bitstream
may include permutating the bitstream. Obfuscating the
bitstream may also include iteratively permutating the bit-
stream such that a position within the bitstream of at least a
portion of the bitstream is changed based at least in part on
the identifier. Obfuscating the bitstream further may include
generating a key based on the identifier and obfuscating the
bitstream by performing a plurality of obfuscation functions.
Each of the plurality of obfuscation functions may be based
on the key. Performing a plurality of obfuscation functions
may include iteratively permutating the bitstream such that
a position within the bitstream of at least a portion of the
bitstream is changed based at least in part on the key.
Obfuscating the bitstream based on the at least one identifier
may include applying a plurality of permutation levels. The
plurality of permutation levels may have a first level, a
second level and a third level. The first level may include
permutation of portions of the bitstream that specify an input
ordering of a look up table (LUT); the second level may
include permutation of the portion of the bitstream that
specifies a content of the LUT and the third level may
include a block based permutation of the entire bitstream.

[0008] According to some embodiments, a method of
securely operating a programmable device that receives a
programming bitstream is provided. The method may
include generating a pseudo-random identifier and transmit-
ting a sequence of responses based on the identifier in
response to receiving a sequence of challenges. At least a

US 2019/0305927 Al

portion of the sequence of responses may be based at least
in part on the identifier. The method may also include
deobfuscating a received bitstream based on the identifier;
and programming programmable circuitry within the pro-
grammable device based on the de-obfuscated bitstream.
De-obfuscating the bitstream based on the identifier may
include permutating the bitstream based on the identifier.
De-obfuscating the bitstream based on the identifier may
include transforming the bitstream based on a plurality of
fuses in the programmable device that are selectively blown.
De-obfuscating the bitstream based on the identifier may
further include applying a plurality of permutation levels.
The plurality of permutation levels further may include a
first de-obfuscation level, a second de-obfuscation level and
a third de-obfuscation level. The first de-obfuscation level
may include permutating the bitstream on a first portion of
the programmable device; the second de-obfuscation level
may include permutating the bitstream on a second portion
of the programmable device; the third de-obfuscation level
may include permutating the bitstream on a third portion of
the programmable device.

[0009] The foregoing is a non-limiting summary of the
invention, which is defined by the appended claims.

BRIEF DESCRIPTION OF DRAWINGS

[0010] Various aspects and embodiments will be described
with reference to the following figures. It should be appre-
ciated that the figures are not necessarily drawn to scale. In
the drawings, each identical or nearly identical component
that is illustrated in various figures may be represented by a
like numeral. For purposes of clarity, not every component
may be labeled in every drawing.

[0011] FIG. 1 is a schematic diagram for an exemplary
flow for FPGA bitstream encryption and authentication;
[0012] FIG. 2 is a schematic diagram for an exemplary
Challenge/Response-based ~ Communication Protocol
(CRCP) in some embodiments;

[0013] FIG. 3a is a schematic diagram showing an exem-
plary system flow when the Challenge/Response Commu-
nication Protocol (CRCP) identifies and authenticates a
device in some embodiments;

[0014] FIG. 35 is a schematic diagram showing an exem-
plary system flow of the node locked bitstream approach in
some embodiments;

[0015] FIG. 4 is a schematic diagram of an exemplary
mapping flow in some embodiments;

[0016] FIG. 5a is a schematic diagram showing an exem-
plary bitstream transform key generation process, according
to some embodiments;

[0017] FIG. 54 is a schematic diagram for an exemplary
three level transformation scheme;

[0018] FIG. 6a is a schematic diagram for an exemplary
three level transformation scheme showing three levels of
transformation by the Vendor tool and three levels of
inverse-transformation in the FPGA;

[0019] FIG. 65 is a schematic diagram showing an exem-
plary inverse transformation in some embodiments;

[0020] FIG. 6c¢ is a schematic diagram for an example
Level 1 inverse transform network operating on 16 bits of
input, using 4 bits of key to transform data;

[0021] FIG. 7 is a schematic diagram showing a simplified
exemplary architecture of an FPGA fabric containing CL.Bs,
Block RAMs, DSP blocks, routing resources, and 10 Blocks
in some embodiments;

Oct. 3,2019

[0022] FIG. 8 is a schematic diagram of an example LUT
structure containing SRAM cell and MUX with peripheral
logics such as Flip Flops and MUX according to one
embodiment. Various inversion and transformation logic is
applied to implement permutation and selective inversion
based security;

[0023] FIG. 9 is a schematic diagram showing an example
of routing resources such as a switch box and gate level
design of switch points;

[0024] FIG. 10 is a schematic diagram showing an exem-
plary structure of a bitstream frame containing bits for JOB,
CLB, BRAM, DSP, and their interconnects according to
prior art [Ref. 19]. A single frame may represent a tiny
portion of the physical FPGA layout. The whole design may
be implemented through a large number of such frames;
[0025] FIG. 11 is a schematic diagram of an exemplary
protocol for PUF-based application security using a trusted
cloud server;

[0026] FIG. 12 is a schematic diagram showing an exem-
plary scheme of key-based bitstream obfuscation;

[0027] FIG. 13 is a schematic diagram showing an exem-
plary security-aware mapping for FPGA bitstreams;

[0028] FIG. 14 is a schematic flow diagram of an exem-
plary software flow leveraging FPGA dark silicon for design
security through key-based obfuscation.

DETAILED DESCRIPTION OF INVENTION

[0029] The inventors have recognized and appreciated
security techniques for programmable devices that amelio-
rate limitations of existing security techniques, improving
the usefulness of programmable devices for low cost, widely
used devices, such as those that can be used to implement the
IoT. For example, on-board encryption technologies used in
modern FPGA-based devices incur large area and power
overhead, particularly for area/energy-constrained applica-
tions. Furthermore, since the attacker typically has physical
access to the device, most on-board encryption techniques
are susceptible to side-channel attacks, e.g., by key extrac-
tion through power profile signatures [Ref. 1]. Moreover,
they are still vulnerable to piracy and malicious alteration
during in-field upgrade.

[0030] Therefore, there exists a need for a secure program-
mable device and programming method to safeguard against
bitstream attacks, without incurring large area and energy
overhead. Techniques that provide one or more of these
characteristics are described herein. The inventors have
recognized that two primary attack models exist for pro-
grammable devices: unauthorized reprogramming and
reverse engineering. Unauthorized reprogramming using a
bitstream maliciously modified by insertion of a Trojan may
alter system functionality, leak information, or cause a
failure. A reverse-engineered design can be sold as original,
leading to Intellectual Property (IP) piracy.

[0031] To combat unauthorized reprogramming in the first
attack model, the inventors have recognized that bitstream
encryption may be used. FIG. 1 shows an example of such
an encryption process 100. Bitstream encryption using a
symmetric cypher such as Triple DES (3DES) or AES, is
typically used for protecting the configuration files in the
bitstream. An decryption engine inside the FPGA is used to
decrypt the configuration bits before it is mapped to FPGA
resources. In many cases, these keys are generated by a
vendor’s mapping tool and are transmitted along with the

US 2019/0305927 Al

bitstream itself. If transmitted over a network, this can
greatly compromise system security.

[0032] The use of FPGA-specific keys has also been
investigated. For example, a public key cryptography
scheme which uses a trusted third party for key transporta-
tion and installation has been proposed [Ref. 2]. However,
this scheme relies on the assumption that the FPGA has
built-in fault tolerance and tamper resistance countermea-
sures, including multiple instances of identical crypto-
graphic blocks for detecting operational faults, which would
not be viable for area- and power-limited systems.

[0033] FPGAs like the Xilinx Zyng-7000 [Ref. 3] inte-
grate an SoC and FPGA in a single system, and use public
key cryptography for authentication during a secure boot
process. The public key used to decrypt configuration files is
stored in the device’s nonvolatile memory, and its integrity
is checked before every use [Ref. 4]. These security mea-
sures rely on a CPU to control the secure boot process, and
are therefore viable only in such hybrid systems. A common
feature among these encryption-based techniques is that key
storage is resilient to physical attacks; however, this feature
is often lacking in practice [Ref. 5].

[0034] Mathematically, the encryption algorithms are
known to be highly secure against brute force attacks.
However, successful Side-Channel Attacks (SCA) have
been mounted against these systems, enabling decryption of
the IP [Refs. 6-8]. The inventors have recognized that unless
additional countermeasures are in place (e.g. obfuscation),
an adversary can easily convert the bitstream to a netlist
[Ref. 9], making malicious modifications possible. There-
fore, even state-of-the-art methods for FPGA bitstream
encryption cannot ensure IP security.

[0035] On the other hand, to counter the second model of
bitstream attack such as bitstream tampering, hashed codes
are often used as authentication, similar to checksums on
software. While this can help prevent malicious modifica-
tion, it cannot prevent reverse engineering of the IP. This
method also provides key storage in nonvolatile memory, for
which successful differential power analysis (DPA) attacks
have been demonstrated [Ref. 10].

[0036] As discussed above, the inventors have recognized
that neither encryption nor authentication alone is capable of
protecting bitstreams against a motivated attacker. To miti-
gate this, it is desirable to design an IP protection scheme
that has the following properties:

[0037] Resilient to brute force, side channel, and destruc-
tive reverse engineering attacks;

[0038] Independent of non-volatile storage, which is
known to be vulnerable;

[0039] Economical in terms of production and recurring
costs;
[0040] Low area and power overhead, and viable for use

in IoT and other embedded devices;

[0041] Capable of restricting reconfiguration to authorized
parties.
[0042] The inventors have appreciated and recognized the

need to provide bitstream security against both primary
bitstream attack modes. An aspect of the present disclosure
provides a device and method based on changing the under-
lying architectural configuration of FPGA from device to
device such that a bitstream can only work in a specific
FPGA device. In some embodiments, an application map-
ping tool, such as may be used in initially programming or
reprogramming an FPGA, queries a device to learn about its

Oct. 3,2019

architecture and then generates an appropriate node-locked
bitstream (NLB) for a specific device. The query may be
clone using a Challenge/Response (CR) device authentica-
tion approach. The tool then uses device-specific keys to
generate a bitstream. To be effective, the NLB is unique to
each device according to aspects of an embodiment. In other
words, a bitstream compiled for one device may not physi-
cally map the same functions on a second. Furthermore, in
some embodiments architectural changes may be achieved
post-silicon, making the device and method compatible with
existing processes while requesting minor adjustments to
software tool flow. In some embodiments, device authenti-
cation does not rely on a key stored in a nonvolatile memory
(NVM). Rather, in some embodiments, a device may use a
pseudo-random function to generate an identifier for itself
that may be time varying, but revealed in the CR protocol.
[0043] Example embodiments of such a programmable
device with protocols for device identification, authentica-
tion, reconfiguration and secure transmission of bitstreams
to remote devices during field upgrade are discussed in
detail below.

[0044] Furthermore, details of a security analysis are pro-
vided below demonstrating protection in some embodiments
against key extraction from a bitstream and bitstream
reverse-engineering with significantly decreased area and
power overhead compared with area-optimized encryption
blocks.

[0045] The inventors have recognized that for devices that
support in-field upgrades, preventing unauthorized repro-
gramming of a device and ensuring unauthorized or coun-
terfeit devices do not receive valuable upgrades are impor-
tant security goals, and additional steps may be taken instead
of or in addition to a Challenge Response Communication
Protocol (CRCP). In one embodiment, through the use of
Challenge/Response (CR)-based device authentication and
device-specific keys for IP antipiracy, a solution may be
provided to render FPGAs more secure against [P piracy and
unauthorized reprogramming. According to an aspect, the
authentication protocol involves communication between
the FPGA Vendor and the Original Equipment Manufacturer
(OEM), which produces the bitstream.

[0046] In one non-limiting example, CRCP is an authen-
tication mechanism transmitting through an external inter-
face a sequence of 64 bit Challenges as inputs to a circuit
such as a Physically Unclonable Function (PUF) on the
FPGA. In some embodiments, the circuit may be a MECCA
PUF. Although 64 bit Challenges are used as input, any other
suitable bit length may be used as the sequence of Chal-
lenges to increase the difficulty for brute force attacks to
deduce the sequence. A circuit on the FPGA may be used to
generate a sequence of Responses to the sequence of Chal-
lenges. The sequence of Responses is unique to the particu-
lar device and in some embodiments may be based on a
unique identifier to the particular device. The unique iden-
tifier may include physical modifications performed by the
FPGA manufacturer; the identifier may also include time-
variant modifications based on a logical-key as described in
further detail in the sections below.

[0047] FIG. 2 shows an illustrative example of the CRCP-
based authentication process 200, while FIGS. 3a and 35
show another exemplary CRCP-based authentication pro-
cess 300. To authenticate a device, the OEM 210 sends a
predetermined number of challenges 212 through an exter-
nal interface 250, and the device 230 responds in turn, as

US 2019/0305927 Al

shown in the illustrative examples in FIG. 2 and FIG. 3 by
transmitting a sequence of responses 232 through the exter-
nal interface. In some embodiments, the number of chal-
lenges may be variable over time. CR pairs may be batched
and sent to the Vendor server, which returns a set of
device-specific identifiers. In some embodiments, the Ven-
dor/OEM communication may be through secure channels,
for example via encrypted communication using industry
standard methods. According to one aspect, the authentica-
tion scheme may comprise two important components: 1)
the Vendor precharacterizes the devices after fabrication
through an enrollment process, which ensures that only
legitimate devices will receive in-field upgrades; 2) the
software tools used by the OEM have access to the Vendor
database containing an authorized identifier list.

[0048] In some embodiments, once the device has been
authenticated, an upgrade procedure using a bitstream may
begin. Because the bitstream may be wirelessly transmitted
to the device and stored in NVM, it is important to transform
it in some way to prevent reverse engineering. According to
an aspect of some embodiments, Node Locking a bitstream
is provided to an individual FPGA using a two-layer obfus-
cation scheme which uses both physical and logical key-
based architectural modifications to provide a unique iden-
tifier to ensure a unique bitstream-to-device mapping.
Example techniques to implement the two-layer obfuscation
scheme are provided herein.

[0049] According to an aspect, the first of two obfuscation
layers is based on physical architectural modifications to the
underlying FPGA fabric. This layer is comprised of a
network of fuses programmed by the FPGA manufacturer
after fabrication. The selectively blown fuses may represent
a portion of the unique identifier to the FPGA device as
manufactured in order to enable bitstream node-locking. In
some embodiments, the programming of the network of
fuses may be pseudo-random. Devices which do not need
reprogramming during their lifetimes (e.g. a printer) may
use only the physical obfuscation layer and retain a high
degree of security through architectural diversity. Further-
more, in some embodiments because each FPGA is pro-
grammed with its vendor’s specific toolset, the physical
modification may prevent the fabrication facility from over-
producing and selling functional devices.

[0050] In some embodiments, once the device has been
authenticated, the bitstream may be modified by the vendor
tool prior to FPGA programming. Based on the configura-
tion of the physical modifications, LUT content bits, pro-
grammable interconnect switches, or other configuration bits
may be inverted, permuted, or otherwise transformed to fit
the target architecture. In some embodiments, no additional
hardware cores (e.g. decryption modules) are provided when
using just the physical obfuscation layer because these are
physical changes made to the FPGA, and the customized
bitstream will work only with that particular FPGA. Addi-
tionally as will be discussed in relation to some embodi-
ments below, at least one hardware core in the FPGA may
be provided in combination with a logical key-based time-
variant obfuscation layer.

[0051] Insome embodiments, logical key-based and time-
variant modifications are also made to the architecture. The
modifications may be realized through the addition of per-
mutation networks which modify the functions mapped to
the FPGA. The time-variant logical-key may represent a
portion of the unique identifier to the FPGA device in order

Oct. 3,2019

to enable bitstream node-locking. In some embodiments, the
time-variant logical-key may be pseudo-randomly gener-
ated. The time-variant logical-key effectively evolves the
architecture of the programmable device with time during,
for example, each time a device such as an FPGA is
reprogrammed. Similar to physical-obfuscation, the vendor
tool may make modifications to the bitstream at the end of
the tool flow to implement the time-variant layer of obfus-
cation. For example, the tool will perform a series of
obfuscation functions or transformations (e.g. permutations)
on the configuration bits based on the unique logical key.
[0052] FIG. 4 is an illustrative diagram showing the map-
ping flow according to some embodiments. As shown in
FIG. 4, a device key K, 401 is generated based on two
portions 402 and 403 of the identifier 410 representing the
physical and logical obfuscation layer, respectively. Each
portion of the identifier 410 controls some aspect of the
bitstream-to-device mapping via the device key 401 to
generate a secure bitstream 404. The secure bitstream 404 is
mapped into the FPGA fabric 405, including programmable
interconnects 406 and lookup tables (LUTs) 407. LUTs
contain physical (fuse 408-based) and time-variant (logical)
selective inversion logic.

[0053] According to a non-limiting example, a multilayer
transformation may be provided which operates on different
portions of the bitstream in a serial fashion, such as 1) the
LUT input ordering, 2) the LUT content ordering, and 3)
block based transformation of the entire bitstream. FIG. 554
shows an illustrative example of a three level transformation
scheme. A fourth level, which performs selective (key-
based) inversion of the LUT contents, may be added after
Level 2. In some embodiments, inclusion of the key-based
inversion stage helps reduce the risk that functions like and
with a truth table of 0001 may be used to deduce the
transform key by observing the position of the “1”. In some
embodiments, these modifications to the bitstream are made
in addition to, and with full knowledge of, the particular
physical architectural changes already made to the device.
[0054] In some embodiments, the obfuscated and node-
locked bitstream based on the unique device identifier is
transmitted through an external interface to the authenticated
FPGA.

[0055] In some embodiments, unlike the physical layer,
additional hardware blocks are provided for the logical layer
to perform the inverse transform. In one non-limiting
example, for a multilayer transform structure, a set of three
hardware cores perform serially the transform operations in
reverse order of those performed by the Vendor tool. In this
example, Levels 1 and 2 are both localized; that is, there are
individual hardware modules which perform the inverse
transform. Further according to the example, Level 3 is
distributed along every row of the FPGA fabric; however,
only some of these modules actually operate on data; the
others may be “dummy” units which serve to further obfus-
cate the nature of the transform network. In this example, a
successful Level 1 inverse transform may result in a valid
bitstream; however, it may not function as expected unless
the proper Level 2 and 3 inverse transform keys are applied.
[0056] FIG. 6a shows an illustrative example of a three
level transformation scheme in the embodiments discussed
above. In FIG. 64, the Vendor tool transforms the bitstream
using the three device-specific keys. Level 1 reorders the
LUT inputs; Level 2 permutes the LUT content; and Level
3 performs a bit-level key-based bitstream permutation. In

US 2019/0305927 Al

the example in FIG. 6b, inverse-transforming occurs in
reverse order using the appropriate inverse transform keys to
recover the original bitstream. FIG. 6c shows an example
Level 1 inverse transform network, operating on 16 bits of
input, using 4 bits of key to transform data. Although three
transformation levels and three inverse transform keys are
shown in the example in FIG. 64, any number of transform
levels and any number of transform/inverse transform keys
may be used to apply transformation to any of the FPGA
resources. In some examples, a transformation level may
apply selective inversion of a portion of LUT content bits
based on the key, or selective inversion of a portion of LUT
outputs based on the key, where the key can be physical or
logical, or a combination of each.

[0057] Thus, with the combination of physical and logical
architectural changes, the embodiments discussed above
allow a unique bitstream-to-device mapping to be obtained.
Though both physical and logical layers depend on a key, the
physical changes may be accomplished using fuses, which
cannot be changed at a later time. However, the logical
key-based modifications may be time variant, which means
that the architecture may effectively change with every
reprogram cycle, making it impractical for an adversary to
mount a known design attack.

[0058] FIG. 5a provides an illustrative diagram showing
an embodiment of a device key management protocol.
Responses from the PUF that are not retransmitted for
authentication purposes may be used instead to generate the
key, as shown in FIG. 5. Furthermore, the responses used to
generate the keys are selected by a decoder in the generation
module; as an added measure of security, select bits may be
randomly disconnected from the supply circuit using a series
of fuses during enrollment.

[0059] A complete bitstream generation flow according to
some embodiments is shown in the illustrative diagram in
FIG. 3(b). Each time the FPGA is upgraded, a different set
of challenges may be issued, from which a different set of
transform keys are generated. Such a moving target defense
may help further secure the IP and prevent unauthorized
reprogramming with previously used transform keys. There-
fore, only after the device is authenticated and identified can
the transformed bitstream be generated and sent to the
device.

[0060] Having thus described several aspects of some
embodiments of this invention, the following provides
exemplary security analysis and overhead analysis of the
device and method in the aforementioned embodiments
comparing power, performance, and area overhead to com-
modity AES encryption cores.

[0061] Security Analysis

[0062] In some embodiments, a security analysis is pro-
vided for three attack scenarios, namely 1) brute force, 2)
side channel attacks, and 3) destructive reverse engineering.
The attacker may intend to reverse engineer the design either
for monetary gain, or perform malicious modification and
reprogram the device.

[0063]

[0064] A brute force attack represents the most challeng-
ing and time consuming attack on the system. Four attack
stages are analyzed; for each stage, the attacker begins with
incrementally more information.

Brute Force Attack

Oct. 3,2019

Example Case 1.1.1

[0065] The attacker has, by some means, obtained a copy
of the transformed bitstream.

[0066] Result: Without knowledge of the bitstream struc-
ture (e.g. fixed header contents), the attacker cannot identify
the correct inverse transform key, even for Level 1. Thus, a
brute force attack cannot be properly mounted, and the IP
remains secure.

Example Case 1.1.2

[0067] The attacker has a copy of the transformed bit-
stream and knows the bitstream structure (e.g. typical con-
tents of the header).

[0068] Result: The attacker can mount a brute force attack
and attempt to deduce the Level 1 transform key. In this
example, a 128 bit key may operate on 16 bit blocks, each
of which is permuted using 4 bits. Thus, the number of
possible permutations for each of the (128/4=32) blocks is
162=2'2%, This provides the first level of defense. Even if
this is broken, Levels 2 and 3 are intact and the IF remains
secure.

Example Case 1.1.3

[0069] The attacker begins with a Level 1 inverse trans-
formed bitstream, and intends to break Levels 2 and 3.
[0070] Result: A Level 1 inverse transformed bitstream
may be mapped to an FPGA or simulated using a bitstream-
to-netlist tool. For each possible combination of the LUT
inputs and outputs, the attacker performs the conversion,
provides the proper stimuli, and observes 1/O patterns.
Without detailed knowledge of the intended functionality, or
a sufficiently large set of test vectors, the process cannot be
automated. Even with sufficient test vectors, brute force is
not feasible: in an example of a set of 4x1 LUTs with four
content bits and the possibility that some of the content bits
may be inverted, the LUT can take 1 of L!xI possible states,
where L is the LUT size, and I is the number of possible
inversions.

[0071] Tiscomputed as =, ,**C,, which for L=4 gives 15
inversions; thus, each LUT can take 1 of 4!x15=360 com-
binations. Transforming the 4 bit LUT requires 2 bits of the
key; thus, the 128 bit key operates on 64 blocks a search
space of 360%*=2°*>>_ When considering the Level 3 trans-
form, 2 transform bits may be provided, requiring 1 key bit,
giving us up to 128 Level 3 inverse transformers. Depending
on the size of the FPGA, only a portion of these may be used.
With all 128 inverse transformers, this yields 212 possibili-
ties.

Example Case 1.1.4

[0072] The attacker has obtained all three transform keys,
and has applied the Level 1 and 2 inverse transformers,
leaving only the Level 3 transform intact.

[0073] Result: Without the architectural knowledge of
which rows in the FPGA fabric have an active transformer,
the attacker cannot know to which bits the Level 3 inverse
transformer should be applied. Let R represent the number
of rows in the FPGA fabric, and D the number of active
inverse transformers. The possible permutations is repre-
sented by “P,,. For a small FPGA (e.g. Xilinx XC3S50) with
R=16 and D=12, we have '°P,,~23°7 possible inverse
transform networks. On a larger FPGA, with R=512 and

US 2019/0305927 Al

D=128, this would increase to *'?P,,,~2'"*" possible net-
works. If D is unknown, these values represent the lower
bound of attempts in a brute force attack.

[0074] Thus, in the example brute force attack scenarios
discussed above, by itself, the Level 1 inverse transform
presents a challenge to a brute force attacker; in the example
case where the Level 1 inverse transform is compromised,
Level 2, including the key-based inversion, and Level 3,
including both the key-based input transform and the
“dummy” inverse transformers make a brute force attack
impractical.

[0075] Side Channel Attack (SCA)

[0076] Compared with brute force, a SCA is a more
refined attack. Two example scenarios are presented herein
in which one or more of the keys have been discovered in
this manner.

Example Case 1.2.1

[0077] The attacker uses power analysis (e.g. DPA) to
discover the challenge vectors stored in NVM.

[0078] Result: Responses are generated on-the-fly using a
PUF, so leaking the challenge bits is not useful without an
accurate PUF model. The generation procedure is purely
combinational, using no latches of flip flops, and therefore is
less vulnerable to power analysis.

Example Case 1.2.2

[0079] The attacker has discovered one or more of the CR
pairs, for example through the use of wireless packet analy-
sis.

[0080] Result: With sufficient CR pairs, the attacker may
be able to refine a model of some kinds of PUFs (e.g. arbiter
or ring oscillator PUF), making the choice of PUF crucial to
system security. In some embodiments MECCA PUF may
be a good choice because it is resistant to these attacks. In
any case, very few pairs are sent each upgrade, limiting the
attacker’s potential knowledge of the system.

[0081] SCA attacks may be used to leak the Challenge
vectors or isolate CR pairs from packet analysis. However,
as discussed above in Example case 1.4 under the Brute
Force Attack scenario, knowledge of the Level 3 key is
insufficient to fully inverse transform the design. Thus, in the
example SCA scenarios discussed above even if modeling
attacks are successful, the IP remains secure.

[0082] Destructive Reverse Engineering (DRE)

[0083] DRE is an expensive and time consuming process,
but it can reveal the inner workings of the device. Two
example scenarios of using DRE attacks are discussed.

Example Case 1.3.1

[0084] DRE is used to reveal the structure of the Level 3
transform network, including which rows contain deacti-
vated inverse transformers.

[0085] Result: This reduces the number of possible bit-
stream permutations. However, without further analysis (e.g.
successful PUF modeling), the IP remains secure.

Example Case 1.3.2

[0086] DRE is used to reveal the PUF structure, poten-
tially making the device vulnerable to these attacks and
reducing the search space for the correct transform key.

[0087] Result: Modeling attacks have been proposed and
successfully executed for certain PUFs (e.g. Arbiter PUF

Oct. 3,2019

[Ref. 12]). Nevertheless, there is inherent uncertainty in the
probabilistic approach employed by the attack models, and
some PUFs have been proposed [Ref. 13, 14] which are
resistant to these attacks. Even if the transform key is
revealed, knowledge of the Level 3 transform network,
which may demand further DRE, is desired to make use of
it.

[0088] Therefore, from the above analysis of three types of
example attack scenarios, it is clear that even with a com-
bination of SCA and DRE attacks, some level of brute force
is still necessary to inverse transform a single bitstream for
a single device. Of all the attacks presented above, the only
one with wide-ranging consequences is the discovery of the
Level 3 transform network. By itself, this does not fully
compromise the system; significant analysis, and some brute
force, may still be required. Furthermore, the device-specific
keys and CRCP disclosed in some embodiments also ensure
that unauthorized reprogramming on other IoT connected
devices will not be possible, since only one specific device
can acquire the targeted upgrade, making malicious modi-
fication and reprogramming infeasible. This approach
reduces, and perhaps entirely mitigates, the economic moti-
vation for an attacker.

[0089] 2) Overhead Analysis

[0090] In this section, the power, performance, and area
overhead incurred using the bitstream security system dis-
closed in some embodiments are analyzed. Components are
implemented in Verilog, simulated to verify functionality,
and synthesized with Synopsys Design Compiler using a 90
nm cell library. Results for Area, Power, Delay, and Energy
of the various modules are listed in Table 1. Results repre-
sent an FPGA with one Device Key Module (DKM), three
Response Generator Modules (RGM), one Level 1 and one
Level 2 Inverse transform Logic Module (DLM1 and
DLM2), and 32 DLM3 modules.

TABLE 1

Synthesis results at 90 nm. “Num Inst.” is
the number of instances considered in the results.
Delay and Energy are for a 512 kB bitstream.

Mod. Num Area Area Pow. Delay En.
Name Inst. (nm2) (Gates) (mW) (ns) ()]
DKM 1 9398 827 1.08 1.38 1.49
RGM 1 145 34 0.02 1.18 0.02
DLM1 1 1063 115 0.18 6200 1120
DLM2 1 4273 406 0.77 33.0 25.4
DLM3 32 4328 460 0.67 0.17 3.64
Total 19207 1842 2.72 6236 1150
[0091] 2.1) Device Key Modules

[0092] In this example, the DKM is a purely combina-
tional circuit with no memory elements. The input selects 2
of 8 PUF-generated responses, each 64 bits in length.
[0093] 2.2) Response Generator Modules (RGMs)
[0094] In this example, the RGMs are based on the
MECCA PUF [Ref. 13], which uses an existing SRAM
memory array to generate a response. A programmable pulse
generator using a tapped inverter chain interfaces with
existing SRAM peripheral logic; very little extra hardware
may be needed.

[0095] 2.3) Inverse Transform Logic Modules

[0096] Insome embodiments, inverse-transformation may
occur in three separate stages, each controlled by a separate

US 2019/0305927 Al

128 hit key. Note that timing is reported for each module
independent of external factors, such as serial to parallel (or
parallel to serial) conversion in and out of the modules.

[0097] 2.3.1) Example with Level 1: In this example, a 16
input Banyan switch network implements the Level 1
inverse-transformation logic. Four bits of the transform key
are used as inputs to each column of switches.

[0098] 2.3.2) Example with Level 2: The second level
inverse transforms the LUT content Like Level 1, the key
determines the mapping from input to output ordering. In
this example, LUT responses are defined by 4 bits; thus, the
network operates on 16 inputs, each a 4 bit vector. Selective
inversion of the transform bits is determined by the trans-
form key.

[0099] 2.3.3) Example with Level 3: The third level
inverse transforms the LUT inputs, and inverse transformers
are distributed among the rows in the FPGA fabric. An
immense FPGA fabric is provided in this example with 1024
rows, and therefore 1024 transform networks (some are
deactivated). All LUTs are 4x1 in this example, and thus
have two select inputs.

[0100]

[0101] The total area, power, and latency overhead may be
analyzed in the embodiments disclosed above as the sum of
the respective parameters for each module. Table 2 com-
pares the analysis results with several AES cores (from both
IP vendors and literature).

3) Comparative Analysis

TABLE 2

Comparing the Node Locked Bitstream (NLB) with
AES ASIC cores. Delay and Energy are calculated
from throughput for a 512 kB bitstream.

Mod. Tech Area Pow. Delay EDP
Name (nm) (Gates) (mW) (1)) (J*s)
NLB 90 1.8k 2.72 6.2 1.07e-13
[Ref. 15] 180 <3k — 64000

[Ref. 16] 130 3.1k 5.62 33850 6.44e-6
Tiny [Ref. 17] 130 <5k - 40960

Std. [Ref 18] 90 8.8k — 2800

Std. [Ref 17] 130 <9.5k — 630

[0102] Table 2 shows that in some embodiments, even

after scaling power and throughput to the 90 nm node, the
Node Locked Bitstream method is faster than the area- and
power-optimized crypto cores, and incurs a lower area and
power overhead, making it ideal for power- and area-
constrained systems. Furthermore, like the crypto cores, it
offers excellent security against brute force attacks. In
addition, it is more resilient to SCA and even DRE attacks.

[0103] The NLB system disclosed herein is capable of
protecting FPGA bitstreams against a number of attacks,
including brute force, side channel, known design attacks
and destructive reverse engineering, effectively preventing
IP piracy and malicious modification. Having thus described
several aspects of some embodiments of this invention, it is
to be appreciated that various alterations, modifications, and
improvements will readily occur to those skilled in the art.

[0104] For example, the NLLB concept may be extended,
first by adding additional layers of security beyond those
previously listed for FPGA, and by applying these concepts

Oct. 3,2019

to the domain of software security for microcontrollers
(firmware) and more complex processors (full software
applications, including those compiled to machine language
or interpreted code, for example Java). These extensions are
attractive for a number of reasons:

[0105] Additional security makes it less likely for an
attacker to successfully pirate, reverse engineer, or mali-
ciously modify the IP by including terms which exhibit
factorial growth.

[0106] It allows for the consideration of additional FPGA
hardware structures, and presents opportunities to identify
more cost effective modifications, providing equivalent-or-
better security using the same or fewer key bits; this in turn
provides an empirical means to optimize security versus
area/power/delay overhead in different FPGA implementa-
tions.

[0107] The inventors have recognized that microcon-
trollers (and their various application domains, including
automotive, communication, consumer electronics, among
others) present an even larger market than FPGA, and
receive firmware upgrades at least as frequently as an
FPGA-based device from trusted vendors (e.g. Original
Equipment Manufacturers, OEM). Ensuring the integrity of
these firmware upgrades, especially those transmitted Over
the Air (OTA) is essential to maintaining device security.

[0108] A discussion of microcontroller firmware security
further leads to methods which can improve security for
systems with more complex General Purposes Processors
(GPPs), including desktop and laptop computers. Users of
these systems can download software from a plethora of
online sources, many of which can be counterfeit or mali-
cious, resulting in malware which can wreak havoc on a
system or leak personal information to an attacker. Control-
ling the sources of these applications and judiciously
restricting the ability of a target architecture to execute them
can help curb both the distribution of malicious software, as
well as the unauthorized distribution of proprietary software,
thus doubling as an alternative to software node-locking.

[0109] The following three sections describe additional
embodiments providing extensions to the NLB framework
discussed above for the application in (1) FPGA bitstream
security. (2) microcontroller firmware security, and (3) gen-
eral purpose processor security.

[0110] Extensions of NLB for FPGA

[0111] In some embodiments, FPGA security can be
extended using additional permutation and selective inver-
sion networks, operating not only on the LUT content, LUT
input, and the bitstream as a whole, but on any amenable
hardware structure on the FPGA. These resources include,
but are not limited to, the following: configurable logic
blocks (CLBs), routing/programmable interconnects, block
RAM/embedded memories, DSP blocks, 10 blocks and
clocks/PLLs.

[0112] A simplified example of the FPGA architecture
combining the mentioned resources is shown in FIG. 7.
Tables 3, 4 and 5 summarize different aspects of implement-
ing the obfuscation model on different resources according
to some embodiments. The NLB model may be imple-
mented on individual resources, or on multiple resources in
parallel to increase the level of security.

US 2019/0305927 Al Oct. 3,2019

TABLE 3

Various aspects of implementing permute and selective inversion networks on CLB resources.

Sub- Architectural change required to
Resource resource Resource Description map the IP from obfuscated bits Required Key bits Resultant Diversity
CLB LUT Lookup Tables (LUTs) The actual content bits to the Assume number of LUT For LUT with®,
content Content contain SRAM cells configuration bitstream will be inputs is 1 and number @the number of different
(FIG. 8) which @old permuted using the compilation of Content bit® = XD. possibilities would be I®.
function responses tool. In the FPGA, a harware The required key to Example: Let®@ = 4,
(“Current™) block within the LUT undoes this shuffle L bits is log,(L). there are 42 (24) possible
required for the operation. Forward and inverse Example: for 4 input LUT combinations. In practice,
design. transforms are done using a key. ~ with 16 content the key D=@or @
size is log,(16) = 4. are More common.
LUT Certain content bits will be To invert, one key bit is For a certain LUT. the number
Content inverted inside the tool based on a required per content bit. of content bits to be @ is
Selective Key. Symmetric inverse transform Key size equals LUT size. equivalent to the number of
Inversion @ recovery of original key logic ®’s in the subkey,
bits. given @ r. Attackers must
The inversion logic take the key search all possible values of @,
and inverts based on ®@. The requiring 3@ £(®
resultant bits in the SRAM cell Example: Let L = 4. This
maps the original design. gives 1@ possible
combinations. LUTs where
L=®or @
are common in®,
@ large search spaces.
Funtion LUT function One hardware block performs the Requires® = log,(L) key For a LUT of @ inputs,
Input evaluation results inverse transform on the function bits to permute the inputs there can be® possible
Multiplier from the selection of input, resulting in correct function for®@ LUT with@ funtion orderings.
certain content bits output from the LUT. responses. Example: for@ 4 input LUT,
being selected by a an attacker @ to consider
multiplexor (mux). the 4D = 24 different
mux inputs represent possibilities.

function inputs. These
can be selectively

modified.
CLB FF-Mux Content bits in LUTs A single bit in the configuration The selection of FF is For each LUT, 2 different
content bit only implement bitstream is responsible for the FF done by a 2:1 MUX which probability. Either the LUT goes
inversion combinational logic. selection via MUX. The select bit has one select bit. The to the FF, or bypasses the FF.
To map sequential of the MUX that @bypasses key size is therefore 1
logic, Flip Flops the FF can be® for each @.

(FF) are needed. A mux
selects if the LUT
output will be
connected with the FE.

CLB LUT The final LUT output For a single LUT, one inversion 1 Key bit required for a For any LUT, 2 different
content output ® with or without logic is required with the output. single output. probabilities are present.
inversion FF) can be inverted. Based on the key, the output will However, this effects other
This outpu®@ be inverted. LUTs that take this output as
connect to the inputs an input. Therefore the search
of multiple LUTs. space increases. If the output

Y is input to some other LUT;
while® each possible

@ of the connected LUT,

the adversary has to consider

both Y and Y®,
CLB Carry Carry logic is Carry logic of LUT is selectec® Only 1 Key bit is required for each LUT the design can
content logic available inside CLBs MUX. For 2:1 MUX the selection per LUT. either have or not have £?
Mux bits with each LUT fof® bit is a single @. This single logic based on the key bit.
inversion propagation of carry configuration bit can be altered/ For N number of LUTs the
bits while® long inverted using one inversion logic. chances are 2V
digits.
CLB Inter- @ channels To our knowledge the low level Refer to the analysis of Refer to the analysis of the
content connect (wires) go inside the architecture of the interconnect the Switch Box. Switch Box.
matrix CLB and connect to LUTs. matrix is not revealed by the
inside LUT outputs also @. However, it should be
CLB connect to the input similar to Switch @ architecture
of adjacent LUTs of which is known. Therefore we can
the same CLB or refer to the analysis of the Switch

feedback to itself. Such Box.
connections are done

by an interconnect

matrix inside the CLB.

@ indicates text missing or illegible when filed

US 2019/0305927 Al

TABLE 4

Oct. 3,2019

Various aspects of implementing permute and selective inversion networks on routing resources.

Sub- Architectural change required to
Resource resource Resource Description map the IP from obfuscated bits Required Key bits Resultant Diversity
Routing Connection Connection boxes connect Refer to the analysis of the Switch Refer to the analysis Refer to the analysis
resources box wires to and from CLBs Box. of the Switch Box. of the Switch Box.
outside with the main channel
CLB outside the CLB.
(FIG. 9)
Switch The Switch boxes connect There are 12 configuration bits for For a single switch For shuffling, the
Box horizontal and vertical each switch point. If the bits are point with B possible search space

routing channels. Each
Switch Box is composed
of a number of switch
points which can connect
certain wires. The

low level design is
shown in the ®.

Based on the
configuration bits the
switch point routes
certain wires to
different directions.
Inside the switch
points, SRAM cells
connect with the MUXs
and tristate buffers

that control the

routing. These cells
hold the configuration
bits for the switch
points.

shuffled, 12 bits would require a
deshuffler block controlled by 4 key
bits.

If the bits are inverted inside the
tool, the inverted configuration bits
have to pass through the inversion
logic before programming the switch
point.

As there are multiple switch

point per switch box, and a large
number of switch boxes inside the
FPGA, we may obscure only a selected
number of switch boxes. It will keep
the key size limited and improve the
difficulty of deobfuscation.

configuration bits,
N switch points in
a switch box, and
the S different
switches to consider,
then total key bits
required for
shuffling would be,
N * S * Log,(B).
For inversion. If r
bits are inverted
the required key for
whole FPGA would
add a factor of r
bits to the key.

is F® for switch
point.

If r bits are inverted
among B, the search
space is = 3,2 2C,
If both®@ and
inversion are done,
the search space
increases to E@

3 BBC,

for a single point.
Therefore, for the
whole FPGA it is
N+S+BD

> B5C,.

@ indicates text missing or illegible when filed

TABLE 5

Various aspects of implementing permute and selective inversion networks on BRAM & DSP

Sub- Architectural change required to Required Resultant
Resource resource Resource Description map the IP from obfuscated bits Key bits Diversity
Block RAM Embedded block RAM are actually If the initial contents of the RAM are shuffled or Valid assumption
RAM Content kilobytes of SRAM for storing data. inverted inside the tool, the inverse transform can depends on details of
These RAMs are hard blocks and can be applied internally using shuffle blocks and the bitstream used for
be initialized in different sizes inversion logic. However, if the content bits of configuring Block
and operational modes which is the SRAM are readable while the FPGA is operating, RAMs.
defined in the bit stream. The the adversary may be able to exploit this to
block RAM content, the programmable determine the shuffling pattern. Therefore, it
interconnects, and the specifications may be more secure to not modify the memory
are defined by specific groups of configuration if there is also an external memory
bits in the bitstream frame. A interface.
RAM Size sample frame is shown in FIG. 10. Operational mode and RAM size are defined while
(8 KB, writing the HDL code of the IP which turns into
36 KB etc.) configuration bits. These bits are placed into
Data width specific frames. The exact frame structure which
and address shows exactly which bits are responsible for
width certain specification is not open to the public.
@ made But as the vendors have the information, they
@/Single) can shuffle those bits and later deshuffle them
Multi-RAM using a centralized deshuffler inside the FPGA
Interconnect
Logic
Read/Write
Operation
Sequence
Specification
Interconnects
DSP Bits specifying Dedicated hard DSPs in the FPGA are In some of the Xilinx DSP block, various Valid assumption
Blocks the function available. For example,® Cyclond® combination of control inputs prepare the DSP depends on details of

to be performed
Interconnects

and Xilinx Virtex® Pro devices
contain embedded 18 x 18-bit
multipliers, which can be split into
9 x 9 bit multipliers. Xilinx

slice to perform certain operations such as
addition, subtraction, and multiplication.
Similar to block RAM the various operational
mode and interconnects of the block that is

the bitstream used for
configuring DSP
blocks.

US 2019/0305927 Al

Oct. 3,2019

TABLE 5-continued

Various aspects of implementing permute and selective inversion networks on BRAM & DSP

Sub- Architectural change required to Required Resultant
Resource resource Resource Description map the IP from obfuscated bits Key bits Diversity
Vitrex-5' XirameDSP slices contain a written in the HDL is defined in the bitstream
dedicated 18 x 18-bit XDs complement and the exact locations of the bits are vendor
signed multiplier,® logic, 48-bit specific secrets. But vendors can utilize our
accumulator, and pipeline registers. obfuscation model as the bitstream format
details for any resource are available to them.
Clocks Not implemented. Clocking can be easily measured through side channels, /O direction can be directly measured,
and and improper I/O can result in physical damage to the board.
o

@ Resultant diversity refers to the number of possible@ introduced by the®@.@ is a practical im@, the®@ of®@ will be significantly greater than the examples given here (due to
exponential and fac®@ growth). Furthermore, these techniques are applied design-wide, and will therefore effect hundreds or thousands of different® depending on the size of the design.

@ indicates text missing or illegible when filed

[0113]

[0114] Based on analysis from Tables 3, 4 and 5 the
combination of LUT content transformation and LUT con-
tent random inversion is a preferred means of obfuscation
that is very effective. This can also be an effective way to
prevent bitstream tampering in some embodiments as an
attacker would be unable to figure out the functionality of
the bitstream by observing how the bits get stored into the
SRAM cells. Only the proper key can reveal how the bits
finally execute in a running FPGA. In some embodiments,
transformation or inversion of switch box resources can also
obfuscate the original IP to a great extent because routing
resources cover a major portion of the programmable fabric.
However, only altering routing bits might not be sufficient as
the LUT bits can contain significant information about the
IP. Therefore, an adversary might be able to partially reverse
the IP even though the routing is obfuscated. A powerful
solution would be randomized transformation and inversion
of both routing resources and LUT contents. Obfuscation of
embedded BRAM and DSP can be explored further if more
information about the bitstream variations for different
resource settings are available (e.g. by the FPGA vendor).

[0115]

[0116] In one embodiment, a software demonstration of
the NLB techniques is provided using VPR, an academic
tool which performs Verilog-to-FPGA mapping for test
FPGA frameworks. The tool can take as input either a
Verilog HDL circuit, or a circuit described in the Berkeley
Logic Interchange Format (BLIF), as well as runtime param-
eters defining the key length and how the key is partitioned
among the different hardware structures. In a non-limiting
example, the tool outputs the following:

[0117] A “gold standard” structural Verilog file for func-
tional simulation of the mapped design. This design uses the
original primitives (e.g. 4, 5, or 6 input LUTs) to realize the
circuit functionality.

[0118] A Verilog file that uses the modified primitives
implementing key-based permutation and selective inver-
sion used to realize the secure FPGA. Subkeys are passed as
parameters to individual LUTs. This file can be used to
functionally verify the design against the gold standard.

[0119] Two bitstream files, comprised of the LUT contents
of the design. These are used to compare the similarity
between the two bitstreams using the Hamming Distance
metric.

Resource Ranking:

Demonstration on Test Framework:

[0120] A Key file stores all subkeys used in the secure
design. The size of this key is used to compute the overhead
in bitstream size.

[0121] A security metric based on the theoretical formu-
lation

L

=3 (o

=

representing an empirical measure of security for LUT-only
obfuscation. This enables design space exploration of
tradeoffs between key length, key partition methodology,
and relative security, as well as optimization of these param-
eters for different designs and FPGA platforms.

[0122] The output Verilog files can be simulated using
ModelSim, VCS, or similar Verilog simulation application.
In one embodiment, a testbench can be written to compare
outputs between two modules (e.g. gold+secure (with cor-
rect key) or gold+secure (with incorrect key), demonstrating
the architectural specificity of the respective bitstreams.

[0123] (2) Extensions of NLB for Microcontroller Secu-
rity
[0124] A bitstream may generally refer to a stream of

binary bits, such as those in a binary file used for program-
ming the firmware of a microcontroller. For microcon-
trollers, the firmware-securing protocol is nearly identical to
that of the FPGA bitstream security. This is because the
firmware source (e.g. the device vendor) is inherently
trusted, and the firmware will generally be compiled (rather
than interpreted via virtual machine, for example). Just as in
the FPGA Node Locking framework, the combination of
key-based permutation and selective inversion may be used
to provide effective architectural diversification in some
embodiments. According to an aspect, the framework simi-
larly relies on a set of challenge vectors sent by the OEM to
the device, and uses the responses (generated by PUF) to
identify the device. The binary is permuted individual bits
are selectively inverted using multiple key-based hardware
networks, affecting the instruction decoding, the program
counter/control flow, functional units (e.g. barrel shifter/
multiplier/floating point, etc.), and potentially any other
available structures. At the hardware level, the reverse
operations may be performed using the internally-generated
key(s) just-in-time for execution. Therefore, in some

US 2019/0305927 Al

embodiments this method incurs a small, one time overhead
when the firmware loads, and a small overhead during
execution in the decode stage.

[0125] (3) Extensions of NLB for CPU Security

[0126] For general software application security, a differ-
ent protocol may be used because the myriad software
sources are not necessarily trusted, and many programming
languages do not rely on compilation to machine code (e.g.
Java bytecode). Therefore, in some embodiments a system
may be provided whereby applications are hosted in a
trusted source, which modifies the executable/bytecode/
intermediate language/etc. in such a way that only one
system will be capable of properly executing the code. An
exemplary system flow for general application software is
pictured in FIG. 11. In one embodiment, the user is only able
to download programs from a set of one or more trusted
servers. Applications which are hosted in this trusted space
may be vetted, scanned, and verified to be safe.

[0127] In some embodiments, users wishing to download
a program may simply request to download the application
from the server as usual. Over a secure channel the server
transmits challenge keys, which are generated locally using
a hardware PUF and secured prior to transmission. Once
identified, a random key is selected from the user’s set of
keys (stored on the cloud) and uses it to modify the appli-
cation binary, which renders it unexecutable for any system
except the system making the download request. The appli-
cation may then be downloaded from the server and installed
on the user’s machine as usual. In some embodiments, the
application files are stored in their modified format, so that
the application cannot be transferred to another system, thus
effectively node-locking the program without relying on
other authentication methods (e.g. USB drive with key file,
MAC address authentication, licensing server, etc.). Accord-
ing to an aspect, the cost introduced for the software supplier
and the user is relative low compared to the level of security
offered and potential for more secure node-locking of pro-
prietary software made possible by this method. Addition-
ally, use of the trusted cloud server and trusted developer
tools may provide interoperability and backwards compat-
ibility with existing code bases.

[0128] In some embodiments, independent software
development (e.g. for hobbyist developers, students, etc.)
may be facilitated by this framework. When developing an
application, a user may compile the binary for their particu-
lar system using typical methods (e.g. GCC); the application
binary will be transformed using a temporary key, which is
generated for each application and allows that application to
run on that system alone. Cloud development tools and
platforms (e.g. Microsoft Azure) can potentially integrate
these capabilities according to some embodiments.

Additional Example

[0129] In this example, a low-overhead FPGA bitstream
obfuscation solution is presented that can maintain math-
ematically provable robustness against major attacks. The
solution exploits the identification of FPGA dark silicon, i.e.,
unused LUT memory already available in design mapped to
FPGAs, to achieve bitstream security. It helps to drastically
reduce the overhead of the obfuscation mechanism. The
approach does not introduce additional complexity in design
verification and incurs a low performance and negligible
power penalty. In particular, the mechanism described here
permits the creation of logically varying architectures for an

Oct. 3,2019

FPGA, so that there is a unique correspondence between a
bitstream and the target FPGA. FIG. 12 shows a high-level
overview of this approach. Compared to existing logic
obfuscation techniques, no design-time changes to the
FPGA architecture or expensive on-chip public key cryp-
tography is required. In addition to obfuscation of design
functionality, our approach also enables locking a particular
bitstream to a specific FPGA device, helping to prevent
piracy of the valuable IP blocks incorporated in a design.
Therefore, it goes well beyond standard bitstream encryp-
tion in FPGA security. Furthermore, it is targeted to the
protection of FPGA bitstreams, rather than hardware meter-
ing of integrated circuits. Finally, the procedure seamlessly
integrates into existing CAD tool flows for programming
FPGA devices

[0130] The typical island-style FPGA architecture consists
of an array of multi-input, single-output lookup tables
(LUTs). Generally, LUTs of size ii can be configured to
implement any function of n variables, and require 2” bits of
storage for function responses. Programmable Interconnects
(PIs) can be configured to connect LUTs to realize a given
hardware design. Additional resources, including embedded
memories, multipliers/DSP blocks, or hardened IP blocks
can be reached through the PI network and used in the
design.

[0131] The nature of FPGA architecture requires that
sufficient resources be available for the worst case. For
example, some newer FPGAs may support 6 input functions,
requiring 64 bits of storage for the LUT content. However,
typical designs are more likely to use 5 or fewer inputs,
while less frequently utilizing all 6. Note that each unused
input results in a 50% decrease in the utilization of the
available content bits. This leads to an effect that resembles
dark silicon in multicore processors, where only a limited
amount of silicon real estate and parallel processing can be
used at a given time. To make this analogy explicit, we refer
to the unused space in FPGA as “FPGA dark silicon”. Note
that in spite of the nomenclature the causes behind dark
silicon in the two cases are different. For multicore proces-
sors, it is typically due to physical limitations or limited
parallelism; for FPGAs, it is the reality of having sufficient
resources available for the worst-case which may occur
infrequently, if at all.

[0132] Our approach depends on the presence of FPGA
dark silicon to be exploited for obfuscation needs. Conse-
quently, we made a comprehensive evaluation of this phe-
nomenon to identify the scope and scale of this phenom-
enon. Table 6 shows the result of this evaluation. Note that
the evaluation uses benchmark designs of diverse scale and
complexity, taken from three publicly available benchmarks,
e.g., EPFL Arithmetic Benchmark Suite (http:/Isi.epfl.ch/
benchmarks), Opencores (http://opencores.org), and Github
(http://github.org). All benchmarks were mapped to an
Altera Cyclone V device [1]. The Cyclone V contains two
6-input Adaptive LUTs (ALUTs) per Adaptive Logic Mod-
ule (ALM), and 10 such ALMs per Logic Array Block
(LAB).

[0133] Our evaluation shows the availability of significant
unused space across the diversity of benchmarks. Even for
small combinational circuits (less than 2000 LUTs), roughly
50% of the LUTs mapped use 4 inputs or fewer, while 82%
of'the LUTs mapped use 5 inputs or fewer. The effect is more
pronounced for large sequential benchmarks, where 69% of
LUTs are 4 inputs or fewer, and 82% use 5 inputs or fewer.

US 2019/0305927 Al

TABLE 6

CUMULATIVE PERCENTAGE OF 1-7 INPUT LUTs

Circuit Cumulative % of LUTs with Inputs n Total
Name <2 3 4 5 6 7 LUTs
alud 10.6 26.1 48.4 77.7 97.9 100 188
apex2 11.4 26.0 523 91.0 99.1 100 669
apex4 16.7 27.4 50.3 89.4 97.6 100 574
ex5p 41.0 42.1 58.7 84.5 98.4 100 373
ex 1010 16.9 24.2 46.4 84.8 98.3 100 711
misex 14.0 27.7 46.9 84.0 97.5 100 480
pde 16.3 28.5 51.9 77.7 98.4 100 1588
seq 16.6 51.9 51.9 89.1 99.0 100 727
spla 17.8 53.1 53.1 79.9 98.7 100 1509
Avg. 17.9 29.0 51.1 84.2 98.3 100 758
div 7.8 13.1 32.7 60.1 100 — 124k
hyp 0.9 28.8 42.6 64.0 100 — 453k
log2 7.0 17.2 39.5 59.7 99.0 100 7894
mult 25 25.0 50.5 59.0 99.0 100 5553
sqrt 5.8 5.0 43.5 84.5 100 — 3685
square 5.6 55.9 60.2 74.6 100 — 4066
Avg. 4.5 24.2 44.8 67.0 99.7 100 13.1k
AES 39.7 64.2 71.0 100 — — 4112
AOR32 20.7 22.9 31.5 46.8 97.8 100 2299
BTCM 325 95.3 99.8 100 100 — 410k
JPEGE 45.2 37.6 48.4 67.0 99.4 100 5154
Salsa20 59.9 57.4 93.8 93.9 100 — 2836
Avg. 39.2 55.5 69.1 81.5 994 100 111k
[0134] To quantify the role of dark silicon, we define a

metric, the Occupancy of the FPGA, as the percentage of
content bits used per LUT, divided by the total number of
available bits in the LUTs which are used. We use the
Cyclone V device architecture as a case study. In Eqn. 1, the
number of n-input LUTs (# (LUTn)) is multiplied by the
content bits used for that LUT (2"); this value is divided by
the LUT capacity 2' times the number of LUTs used in total;
the variable p indicates the maximum power of the LUT,
which in this case is 6. This yields the ALUT Occupancy.
Next, ALM Occupancy is computed in Eqn. 2 as the average
number of ALUTs per ALM; in this case, the ALM_MAX_
CAP is 2. Finally, the LAB Occupancy is computed in Eqn.
3 as the average number of ALMs per LAB; LAB_MAX_
CAP is 10 for the Cyclone V. Finally, the product of these
three terms gives the overall occupancy (Eqn. 4), indicating
the true percentage of fine-grained resource utilization at the
content bit level for the given FPGA architecture.

P (Eqn. 1)
Z #HLUTn) x 2"
n=1
Oarur = #LUT) X 2P
o _ #ALUT) (Eqn. 2)
AL = ATM_MAX_CAP x#(ALM)
o _ #ALM) (Eqn. 3)
LAB = LAB_MAX CAPx#(IAB)
OToat = Oarur X Oary X Orap (Egn. 4)

[0135] We computed O,,; for a set of 9 combinational
benchmark circuits and found the average occupancy to be
26%=4%, leaving nearly % of the available content bits
within the used LUTs empty. This same phenomenon may
extend to designs that require more resources, e.g. large
arithmetic circuits for which the occupancy is slightly higher

Oct. 3,2019

(31%=4) and the previously listed IP cores, for which the
occupancy is significantly lower with higher variance
(12%=8).

[0136] A. Bitstream Protection Methodology

[0137] In this section, we describe a bitstream protection
methodology in accordance with an embodiment and its
integration into the design flow.

[0138] A.1 Design Obfuscation

[0139] As described above, most of the LUTs used to
implement a given design do not require full utilization of
the available memory bits. This leaves open spaces where
additional function responses can be inserted to obfuscate
the true functionality of the design, which in turn makes it
more difficult for an adversary to make a Targeted Malicious
Modification.

[0140] For example, consider a 3-input LUT, which con-
tains 8 content bits, used to implement a 2 input function,
7=XVY. A third input K can be added at either position 1,
2, or 3, leaving the original function in either the top or
bottom half of the truth table, or interleaved with the
obfuscation function. An example of this is shown in the 4
LUT design of FIG. 13, as well as in Table 7. In this case,
the correct output is selected when K=0; if K=1, a response
from the incorrect function (Z=X AY) is selected. However,
if it is not known that this truth table is obfuscated, the
function could possibly be Z=XYK v XYK v XYK, Z=XYK
vXYKvXYK, or Z=XYK vXYK+XYK—three functions
with distinctly different responses.

TABLE 7

EXAMPLE LUTs WITH 2 PRIMARY INPUTS AND
1 KEY INPUT, THE TRUE FUNCTION IS Z =X &
Y. WHICH IS ONLY SELECTED WHEN K = 0.

b
<
~
N
b
~
<
N
~
b
<
N

0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 1 0 0 1 1
0o 1 0 1 0 1 0 00 1 0 1
0o 1 1 0 0 1 1 00 1 1 0
1 0 0 1 1 0 0 1 1 0 0 0
1 0 1 0 1 0 1 01 0 1 0
11 0 0 1 1 0 0 1 1 0 0
11 1 1 1 1 1 11 1 1 1
(@ () ©
[0141] The security of this approach depends on the

number of LUTs that are mapped for a given design; with
more LUTs obfuscated in this manner, the security increases
dramatically. For real-world designs, this is not likely to be
a limitation, since designs will typically implement several
hundred to several thousand device resources. Further analy-
sis of this security is presented in Section B.3.

[0142] A.2 Key Generation

[0143] The first step for the secure bitstream mapping is a
low-overhead key generator, such as a nonlinear feedback
shift resister (NLFSR), which is resistant to cryptanalysis. A
Physical Unclonable Function can also be used; though this
requires an additional enrollment stage for each device, it
has the added benefit of not requiring key storage. Various
PUF-based key generators have been proposed, including
PUFKY, which are amenable to FPGA implementation.
Furthermore, using a PUF-based key generator requires that
FPGA vendor tools provide floorplanning and/or enable
assignment to specific device resources for reproducibility.
In general, we refer to the key generator as the system’s

US 2019/0305927 Al

CSPRNG, or cryptographically secure pseudorandom num-
ber generator. The specific CSPRNG used depends on the
application requirements.

[0144] A.3 Initial Design Mapping

[0145] The second step is the synthesis of the HDL design
into LUTs. In some embodiments, this can be performed by
freely available tools such as ODIN II; it is also possible to
configure commercial tools, e.g. Altera Quartus II, by
including specific commands into the project settings file
(*.gsf) before compilation; this generates a Berkeley Logic
Interchange Format (BLIF) file with technology-mapped
LUTs. It should be appreciated that the implantation of the
second step is not limited to the above mentioned methods
and any suitable tool and/or file format may be used.
[0146] A.4 Security-Aware Mapping

[0147] The security-aware mapping leverages FPGA dark
silicon (Section A.1) for key-based design obfuscation. The
software flow is shown in FIG. 14. The following is a brief
description of the processing stages:

[0148] 1. Analysis: Inputs to this stage include the BLIF
design, as well as the maximum size of LUT supported by
the target technology. The circuit is parsed, analyzed, and
assembled into a hypergraph data structure. The analysis
also determines the current occupancy.

[0149] 2. Partitioning: Inputs to this stage include the
hypergraph data structure, as well as the key length. The
hypergraph is partitioned into a set of subgraphs which share
common inputs/outputs using a breadth-first traversal.
Nodes are marked as belonging to a particular subgraph such
that those with the greatest commonality are grouped into
partitions. The number of partitions is directly proportional
to the size of the key.

[0150] 3. Obfuscation: For a device supporting k-input
LUTs, every LUT with at most (k—1)-inputs is obfuscated by
implementing a second function using the unoccupied LUT
content bits. One additional input is added to the LUT which
corresponds to the key bit used to select the correct half of
the LUT during operation. The second function can be either
template-derived, such as basic logic operations (nand, nor,
xor, etc.), or functions implemented in other LUTs in the
same design.

[0151] 4. Optimization: In this stage, individual LUTs are
optimized using the Espresso Logic Minimizer. The opti-
mized Espresso output is converted back into the internal
representation. This process significantly reduces both the
output file size, as well as eventual compilation time in the
FPGA mapping tool.

[0152] 5. Output Generation: The output file generation
can take one of two formats: (a) structural Verilog, which
implements the circuit as a series of assignment statements,
or (b) using device-specific LUT primitive functions. The
second option is preferred because using low-level primi-
tives ensures that the design will be mapped with the
specified LUTs.

[0153] The number of LUTs per partition is an especially
important metric, as it has a direct impact on both the
overhead and the level of security. Furthermore, the parti-
tioning and sharing of key bits need to be done judiciously,
as a random assignment can potentially dramatically
increase area overhead (see Section B.2). Thus, key sharing,
when paired with the LUT output generation, is intended to
(a) reduce overhead, and (b) strongly suggest to the physical
placement and routing algorithms used by the commercial
mapping tool to group certain LUTs in a given ALM and/or

Oct. 3,2019

LAB, and thus minimize area overhead. Ideally, this process
could be integrated into a commercial tool itself to enable
technology-dependent optimizations.

[0154] A.5 Communication Protocol and Usage Model
[0155] The security-aware mapping procedure creates a
one-to-one association between the hardware design and a
specific FPGA device, since selection of the correct LUT
function responses depends on the CSPRNG output. This
means that OEMs must have one unique bitstream for each
key in their device database. Therefore, it is critical that the
correct bitstream is used with the correct device. Modern
FPGAs contain device IDs which can be used for this
purpose; alternatively, if a PUF is used as the CSPRNG, the
ID can be based on the PUF response. Using existing FPGA
mapping software, generating a large number of bitstreams
will take considerable time; however, with modifications to
the CAD tools, the security-aware mapping can be done just
prior to bitstream generation, so that the design does not
need to be rerouted.

[0156] The initial device programming, prior to distribu-
tion in-field, may be done by a (potentially untrusted) third
party. The third party is able to read the device ID, but does
not require access to the key database. Similarly, device
testers do not need access to the key, merely the ability to
read the ID. This allows OEMs to keep the ID/key relation
secret. Once the device is in field, the remote upgrade
procedure differs slightly from the initial in-house program-
ming. The typical upgrade flow is shown in FIG. 4. After
finalizing the updated hardware design, it is synthesized
using the security-aware mapping procedure. Target devices
are queried to retrieve the FPGA ID; if the device supports
encryption, the bitstream can be encrypted. Next, the bit-
stream 1is transmitted to the device, and the device recon-
figures itself using its built-in reconfiguration logic.

[0157] Having thus described several aspects of at least
one embodiment of this invention, it is to be appreciated that
various alterations, modifications, and improvements will
readily occur to those skilled in the art.

[0158] Such alterations, modifications, and improvements
are intended to be part of this disclosure, and are intended to
be within the spirit and scope of the invention. Further,
though advantages of the present invention are indicated, it
should be appreciated that not every embodiment of the
technology described herein will include every described
advantage. Some embodiments may not implement any
features described as advantageous herein and in some
instances one or more of the described features may be
implemented to achieve further embodiments. Accordingly,
the foregoing description and drawings are by way of
example only.

[0159] Various aspects of the present invention may be
used alone, in combination, or in a variety of arrangements
not specifically discussed in the embodiments described in
the foregoing and is therefore not limited in its application
to the details and arrangement of components set forth in the
foregoing description or illustrated in the drawings. For
example, aspects described in one embodiment may be
combined in any manner with aspects described in other
embodiments.

[0160] Also, the invention may be embodied as a method,
of which an example has been provided. The acts performed
as part of the method may be ordered in any suitable way.
Accordingly, embodiments may be constructed in which
acts are performed in an order different than illustrated,

US 2019/0305927 Al

which may include performing some acts simultaneously,
even though shown as sequential acts in illustrative embodi-
ments.

[0161] Such alterations, modifications, and improvements
are intended to be part of this disclosure, and are intended to
be within the spirit and scope of the invention. Further,
though advantages of the present invention are indicated, it
should be appreciated that not every embodiment of the
invention will include every described advantage. Some
embodiments may not implement any features described as
advantageous herein and in some instances. Accordingly, the
foregoing description and drawings are by way of example
only.

[0162] All definitions, as defined and used herein, should
be understood to control over dictionary definitions, defini-
tions in documents incorporated by reference, and/or ordi-
nary meanings of the defined terms.

[0163] The indefinite articles “a” and “an,” as used herein
in the specification and in the claims, unless clearly indi-
cated to the contrary, should be understood to mean “at least
one.”

[0164] The phrase “and/or,” as used herein in the speci-
fication and in the claims, should be understood to mean
“either or both” of the elements so conjoined, i.e., elements
that are conjunctively present in some cases and disjunc-
tively present in other cases. Multiple elements listed with
“and/or” should be construed in the same fashion, i.e., “one
or more” of the elements so conjoined. Other elements may
optionally be present other than the elements specifically
identified by the “and/or” clause, whether related or unre-
lated to those elements specifically identified. Thus, as a
non-limiting example, a reference to “A and/or B”, when
used in conjunction with open-ended language such as
“comprising” can refer, in one embodiment, to A only
(optionally including elements other than B); in another
embodiment, to B only (optionally including elements other
than A); in yet another embodiment, to both A and B
(optionally including other elements); etc.

[0165] As used herein in the specification and in the
claims, the phrase “at least one,” in reference to a list of one
or more elements, should be understood to mean at least one
element selected from any one or more of the elements in the
list of elements, but not necessarily including at least one of
each and every element specifically listed within the list of
elements and not excluding any combinations of elements in
the list of elements. This definition also allows that elements
may optionally be present other than the elements specifi-
cally identified within the list of elements to which the
phrase “at least one” refers, whether related or unrelated to
those elements specifically identified. Thus, as a non-limit-
ing example, “at least one of A and B” (or, equivalently, “at
least one of A or B,” or, equivalently “at least one of A and/or
B”) can refer, in one embodiment, to at least one, optionally
including more than one, A, with no B present (and option-
ally including elements other than B); in another embodi-
ment, to at least one, optionally including more than one, B,
with no A present (and optionally including elements other
than A); in yet another embodiment, to at least one, option-
ally including more than one, A, and at least one, optionally
including more than one, B (and optionally including other
elements); etc.

[0166] Use of ordinal terms such as “first,” “second,”
“third,” etc., in the claims to modify a claim element does
not by itself connote any priority, precedence, or order of

2 <

Oct. 3,2019

one claim element over another or the temporal order in
which acts of a method are performed, but are used merely
as labels to distinguish one claim element having a certain
name from another element having a same name (hut for use
of the ordinal term) to distinguish the claim elements.
[0167] Also, the phraseology and terminology used herein
is for the purpose of description and should not be regarded
as limiting. The use of “including,” “comprising,” or “hav-
ing,” “containing,” “involving,” and wvariations thereof
herein, is meant to encompass the items listed thereafter and
equivalents thereof as well as additional items.

LIST OF REFERENCES

[0168] The following references are hereby incorporated

by reference in their entireties:

[0169] [Ref. 1] Mehrdad Majzoobi, Farinaz Koushanfar,
and Miodrag Potkonjak. FPGA-oriented Security. Intro-
duction to Hardware Security and Trust/eds. M. Tehrani-
poor and C. Wang. Springer, pages 195-231, 2011.

[0170] [Ref. 2] Tim Guneysu et al. Dynamic intellectual
property protection for reconfigurable devices. In ICFPT,
pages 169-176. IEEE, 2007.

[0171] [Ref. 3] Ed Peterson. Developing Tamper Resistant
Designs with Xilinx Virtex-6 and 7 Series FPGAs. Tech-
nical report, Xilinx, 2011.

[0172] [Ref. 4] Altera. Protecting the FPGA design from
common threats. Technical report, Altera, 2009.

[0173] [Ref. 5] Sergei Skorobogatov and Christopher
Woods. Breakthrough silicon scanning discovers back-
door in militarychip. Springer, 2012.

[0174] [Ref. 6] Amir Moradi et al. On the vulnerability of
FPGA bitstream encryption against power analysis
attacks: extracting keys from xilinx Virtcx-1I FPGAs. In
CCS, pages 111-124, 2011.

[0175] [Ref. 7] Siddika Berna O"rs et al. Power-analysis
attacks on an FPGA—first experimental results. In CHES,
pages 35-50. Springer, 2003.

[0176] [Ref. 8] Francois-Xavier Standaert et al. Power
analysis attacks against FPGA implementations of the
DES. In FPLA, pages 84-94. Springer, 2004.

[0177] [Ref. 9] E'ric Rannaud. From the bitstream to the
netlist. In ACM/SIGDA symposium on Field program-
mable gate arrays, pages 264-264. ACM, 2008.

[0178] [Ref. 10] Robert McEvoy et al. Differential power
analysis of HMAC based on SHA-2, and countermea-
sures. In Information security applications, pages 317-
332. Springer, 2007.

[0179] [Ref. 11] P-Y Chen et al. Interconnection networks
using shuffles. Computer, (12):55-64, 1981.

[0180] [Ref. 12] Ulrich Ruhrmair et al. PUF modeling
attacks on simulated and silicon data. IEEE TIFS, 8(11):
1876-1891. 2013.

[0181] [Ref. 13] Aswin Raghav Krishna et al. MECCA: a
robust low-overhead PUF using embedded memory array.
In CHES, pages 407-420. 2011.

[0182] [Ref. 14] A. Vijayakumar and S. Kundu. A novel
modeling attack resistant PUF design based on non-linear
voltage transfer characteristics. In DATE, pages 653-658,
March 2015.

[0183] [Ref. 15] IP Cores. UCore-Compact Advanced
Encryption Standard (AES) Core. Online, 2006.

US 2019/0305927 Al

[0184] [Ref. 16] Panu H"am"al"ainen et al. Design and
implementation of low-area and low-power AES encryp-
tion hardware core. In DSD (EUROMICRO), pages 577-
583. IEEE, 2006.

[0185] [Ref. 17] Helion. AES Cores. Online. 2014.

[0186] [Ref. 18] CAST. AES-C: AES Optimized Encryp-
tion/Decryption Core. Online.

[0187] [Ref. 19] R. K. Soni, “Open Source Bitstream
Generation for FPGAs (Doctoral dissertation, Virginia
Tech), 2013.

What is claimed is:

1. A programmable device, comprising:

an external interface;

a first circuit configured to generate an identifier;

a second circuit configured to transmit through the exter-
nal interface at least one response to one or more
messages received through the external interface,
wherein at least a portion of the at least one response is
based at least in part on the identifier;

a third circuit configured to perform a de-obfuscating
function on a bitstream, wherein the de-obfuscating
function is based at least in part on the identifier.

2. The programmable device of claim 1, wherein the
programmable device is a field programmable gate array
(FPGA).

3. The programmable device of claim 1, wherein:

at least a portion of the identifier is based on a plurality of
selectively blown fuses in the programmable device.

4. The programmable device of claim 1, wherein:

at least a portion of the identifier has a value that varies
over time.

5. The programmable device of claim 1, wherein:

the third circuit comprises at least one sub-circuit config-
ured to selectively permutate the bitstream such that a
position within the bitstream of at least a portion of the
bitstream is changed based at least in part on the
identifier.

6. The programmable device of claim 5, wherein:

the third circuit comprises a plurality of sub-circuits,
connected in series, wherein each of the plurality of
sub-circuits is configured to selectively permutate the
bitstream such that a position within the bitstream of at
least a portion of the bitstream is changed based at least
in part on the identifier.

7. A method of securely programming a programmable

device, the method comprising:

obtaining an identifier from the programmable device;

obfuscating a bitstream based at least in part on the
identifier; and

sending the obfuscated bitstream to the programmable
device.

8. The method of claim 7, wherein obtaining the identifier

comprises:

sending a sequence of challenges to the programmable
device;

receiving a sequence of responses to the sequence of
challenges from the programmable device; and

determining, based on the sequence of responses, the
identifier for the programmable device.

9. The method of claim 7, further comprising:

authenticating the programmable device based on the
identifier in relation with an authorized identifier list.

Oct. 3,2019

10. The method of claim 9, wherein authenticating the
programmable device based on the identifier in relation with
an authorized identifier list comprises:

obtaining the authorized identifier list from an external

source.

11. The method of claim 10, wherein obtaining the
authorized identifier list from an external source comprises:

communicating with the external source using secure

communications.

12. The method of claim 7, wherein obfuscating the
bitstream comprises:

permutating the bitstream.

13. The method of claim 7, wherein obfuscating the
bitstream comprises:

iteratively permutating the bitstream such that a position

within the bitstream of at least a portion of the bitstream
is changed based at least in part on the identifier.

14. The method of claim 7, wherein obfuscating the
bitstream further comprises:

generating a key based on the identifier;

obfuscating the bitstream by performing a plurality of

obfuscation functions, each of the plurality of obfus-
cation functions being based on the key.

15. The method of claim 14, wherein performing a
plurality of obfuscation functions comprises:

iteratively permutating the bitstream such that a position

within the bitstream of at least a portion of the bitstream
is changed based at least in part on the key.
16. The method of claim 7, wherein obfuscating the
bitstream based on the at least one identifier comprises:
applying a plurality of permutation levels, the plurality of
permutation levels further comprising a first level, a
second level and a third level, wherein:
the first level comprises permutation of portions of the
bitstream that specify an input ordering of a look up
table (LUT);
the second level comprises permutation of the portion
of the bitstream that specifies a content of the LUT;
the third level comprises a block based permutation of
the entire bitstream.
17. A method of securely operating a programmable
device that receives a programming bitstream, the method
comprising:
generating a pseudo-random identifier;
transmitting a sequence of responses based on the iden-
tifier in response to receiving a sequence of challenges,
wherein at least a portion of the sequence of responses
is based at least in part on the identifier;

de-obfuscating a received bitstream based on the identi-
fier; and

programming programmable circuitry within the pro-

grammable device based on the de-obfuscated bit-
stream.

18. The method of claim 17, wherein de-obfuscating the
bitstream based on the identifier comprises:

permutating the bitstream based on the identifier.

19. The method of claim 17, wherein de-obfuscating the
bitstream based on the identifier comprises:

transforming the bitstream based on a plurality of fuses in

the programmable device that are selectively blown.

20. The method of claim 17, wherein de-obfuscating the
bitstream based on the identifier comprises:

applying a plurality of permutation levels, the plurality of

permutation levels further comprising a first de-obfus-

US 2019/0305927 Al Oct. 3,2019
16

cation level, a second de-obfuscation level and a third

de-obfuscation level, wherein:

the first de-obfuscation level comprises permutating the
bitstream on a first portion of the programmable
device;

the second de-obfuscation level comprises permutating
the bitstream on a second portion of the program-
mable device;

the third de-obfuscation level comprises permutating
the bitstream on a third portion of the programmable
device.

