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MAGNETIC RESONANCE 2D 
RELAXOMETRY RECONSTRUCTION USING 

PARTIAL DATA 

PRIORITY CLAIM 

[ 0001 ] This application is a continuation of U.S. patent 
application Ser . No. 15 / 312,162 , filed Nov. 17 , 2016 , which 
is the U.S. National Stage of International Application No. 
PCT / US2015 / 026533 , filed Apr. 17 , 2015 , which was pub 
lished in English under PCT Article 21 ( 2 ) , which in turn 
claims the benefit of U.S. Provisional Application No. 
62 / 000,316 , filed on May 19 , 2014. These applications are 
hereby incorporated by reference in their entireties . 

GOVERNMENT SUPPORT 

[ 0002 ] This invention was made jointly with the National 
Institutes of Health . The government has certain rights in the 
invention . 

BACKGROUND 

[ 0003 ] The power of magnetic resonance ( MR ) tech 
niques , including nuclear magnetic resonance ( NMR ) and 
electron spin resonance ( ESR ) has been significantly 
increased in recent years by the inclusion of added dimen 
sions in the Fourier domain , expanding the ability to deter 
mine molecule structure , dynamics , and kinetics . MR tech 
niques have also been advanced by the development of 
multi - dimensional diffusion / relaxation pulse sequences 
through the use of robust and accurate two - dimensional ( 2D ) 
inverse Laplace transform ( ILT ) algorithms and data analy 
sis methods . However , the amount of 2D MR relaxation data 
and the time required to acquire this data makes 2D relax 
ometry infeasible and / or impractical . This limitation is par 
ticularly severe if one attempts to combine MR relaxometry 
methods with magnetic resonance imaging ( MRI ) . 

[ 0007 ] FIG . 3 illustrates an example method of determin 
ing a compressed data matrix representing a complete set of 
magnetic resonance ( MR ) data based on a partial set of MR 
data . 
[ 0008 ] FIG . 4 illustrates image reconstruction simulation 
results for a model in which F ( x , y ) is a small variance 
Gaussian distribution with a signal - to - noise ratio ( SNR ) of 
30 dB . 
[ 0009 ] FIG . 5 illustrates image reconstruction simulation 
results for a model in which F ( x , y ) is a small variance 
Gaussian distribution with an SNR of 15 dB . 
[ 0010 ] FIG . 6 illustrates image reconstruction simulation 
results for a model in which F ( x , y ) is a positively correlated 
density function with an SNR of 30 dB . 
[ 0011 ] FIG . 7 illustrates image reconstruction simulation 
results for a model in which F ( x , y ) is a positively correlated 
density function with an SNR of 20 dB . 
[ 0012 ] FIG . 8 illustrates image reconstruction simulation 
results for a model in which F ( x , y ) is a two - peak density 
function with an SNR of 30 dB . 
[ 0013 ] FIG . 9 is an example magnetic resonance system 
configured to reconstruct image data from partial MR data . 
[ 0014 ] FIG . 10 illustrates three MR pulse sequences used 
to validate the example approaches . 
[ 0015 ] FIG . 11 illustrates a data analysis flowchart used to 
validate and test the example approaches . 
[ 0016 ] FIG . 12 shows T2 - T2 relaxometry data produced 
from a simulation of an example approach with MR imag 
ing . 
[ 0017 ] FIG . 13 shows T1 - T2 relaxometry data produced 
from a simulation of an example approach with various 
signal - to - noise ratios . 
[ 0018 ] FIG . 14 shows experimentally derived T -T2 spec 
tra of a urea / water phantom from a full data set and example 
approaches using partial data . 
[ 0019 ] FIG . 15 shows experimentally derived T2 - T2 spec 
tra of a urea / water phantom from a full data set and example 
approaches using partial data with a mixing time of 1000 ms . 
[ 0020 ] FIG . 16 shows experimentally derived T2 - T2 spec 
tra of a urea / water phantom from a full data set and example 
approaches using partial data with a mixing time of 50 ms . 
[ 0021 ] FIG . 17 shows the T2 - T , spectra reconstructed in a 
porcine spinal cord experiment . 
[ 0022 ] FIG . 18 is a diagram illustrating a generalized 
implementation environment in which some described 
examples can be implemented . 

SUMMARY 

1 

DETAILED DESCRIPTION 

[ 0004 ] An approach is presented to solve the two - dimen 
sional Fredholm integral of the first kind with tensor product 
structure from a limited number of MR measurements . The 
method can be used to dramatically speed up MR relaxom 
etry by allowing image reconstruction from a vastly reduced 
number of data points . This can be done by incorporating 
compressive sensing to fill in missing measurements , using 
a priori knowledge of the structure of the data . A compressed 
data matrix can be recovered from measurements that form 
a tight frame , and it can be established that these measure 
ments satisfy the restricted isometry property ( RIP ) . Recov 
ery can be done from , for example , as few as 10 % of the total 
measurements . The zeroth - order regularization minimiza 
tion problem can then be solved , for example , using a 2D 
ILT approach based on the Venkataramanan - Song - Hürli 
mann algorithm . 

1. Introduction 

[ 0023 ] An approach is presented for solving the 2D Fred 
holm integral of the first kind from a limited number of 
measurements . This is particularly useful in MR applica 
tions such as those producing 2D diffusion / relaxation spec 
tral maps , where making a sufficient number of measure 
ments to reconstruct a 2D spectral image through 
conventional approaches takes several hours . As used 
herein , an “ image ” is a reconstructed representation of MR 
measurements , including , for example , 2D relaxometry 
maps obtained within a single or multiple pixels or voxels . 
[ 0024 ] Throughout this document , a distinction is made 
between “ partial ” MR data , that can be used to reconstruct 
images of an object under study using the described novel 
approaches , and complete ” data that is sufficient to allow 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0005 ] FIG . 1 illustrates an example method of recon 
structing image data from partial magnetic resonance data . 
[ 0006 ] FIG . 2 illustrates an example method of recon 
structing image data from partial 2D magnetic resonance 
data . 
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[ 0032 ] Because of the discrete nature of the measurements 
obtained through MR , the discretized version of the 2D 
Fredholm integral is used in the described examples : 

M = K , FK2 + E , ( 3 ) 

[ 0033 ] where a complete set of data is arranged as the 
matrix MER N1XN2 , matrices K , ER NixNx and K ER N2XNy 
are discretized versions of the smooth kernels k , and k2 , and 
the matrix FER NXN , is the discretized version of the prob 
ability density function F ( x , y ) that is being recovered . 
R is the set of real numbers . It is also assumed that each 
element of the Gaussian noise matrix E is zero mean and 
constant variance . Since it is assumed assumed that R ( x , y ) 
is a joint probability distribution function , each element of 
F is non - negative . 
[ 0034 ] Venkataramanan , Song , and Hürlimann proposed 
an efficient strategy for solving this problem given knowl 
edge of the complete data matrix M. The approach centers 
around finding an intelligent way to solve the Tikhonov 
regularization problem , 

Ê = argmin || M - K? FK2 , ||| + a || F | 1 , ( 4 ) 
F20 

reconstruction of images of an object through conventional 
approaches . “ Partial ” MR data is also referred to as “ limited 
data , ” “ a limited number of measurements , ” “ a reduced 
amount of data , ” etc. Similarly , “ complete ” data is also 
referred to as " a full set ” of data , “ a full set of measure 
ments , ” etc. Complete data does not necessarily require all 
possible or available data points , but rather refers to the 
amount of data conventionally required to reconstruct an 
image . There are a smaller number of data points or mea 
surements in partial data than in complete data , resulting in 
the acquisition time for partial data being lower than for 
complete data . 
[ 0025 ] MR data can be acquired with and without imaging 
i.e. , for a single voxel or for multiple voxels . In an example 
without imaging , MR data can be acquired for a single voxel 
( volume element ) , which can be the whole object or a 
defined volume of the object . In an example with imaging , 
an imaging volume of an object can comprise a plurality of 
voxels of a uniform size , and data ( e.g. 2D relaxation data ) 
can be collected on a voxel - by - voxel basis . 
[ 0026 ] A complete set of MR data representing an object 
can comprise , for example , data for each of the plurality of 
voxels of a volume . A partial set of MR data can comprise , 
for example , at least some data for each voxel but less 
overall data ( e.g. , data or measurements for 75 % , 50 % , 25 % , 
10 % , or 5 % of data points in a data space corresponding to 
the complete set of MR data representing an object ) . In some 
examples , a partial set of MR data can include data for a 
subset of the voxels of a volume . 
[ 0027 ] A two - dimensional Fredholm integral of the first 
kind is written as 

g ( x , y ) = f?ki ( x , s ) kz ( yt ) f ( s , t ) dsdt , ( 1 ) 

[ 0028 ] where k and k2 are continuous Hilbert - Schmidt 
kernel functions and f , gEL ? ( R2 ) . Two dimensional Fou 
rier , Laplace , and Hankel transforms are examples of Fred 
holm integral equations . Applications of these transforma 
tions arise in any number of fields , including methods for 
solving partial differential equations ( PDEs ) , image deblur 
ring , and moment generating functions . The examples 
described in this document focus on Laplace type trans 
forms , where the kernel singular values decay quickly to 
zero , but other transforms can also be used . 
[ 0029 ] In a conventional approach , a complete set of data 
Mis measured over sampling times ti and T2 , and is related 
to the object of interest F ( x , y ) by a 2D Fredholm integral 
of the first kind with a tensor product kernel , 

M ( 11,12 ) = Pk1 ( x , T1 ) kz ( y , t » ) F ( x , y ) dxdy + € ( T1,72 ) , 
[ 0030 ] where ? ( T1 , T2 ) is assumed to be Gaussian white 
noise . In most applications , including NMR , the kernels k? 
and k are explicit functions that are known to be smooth and 
continuous a priori . Solving a Fredholm integral with 
smooth kernels is an ill - conditioned problem , since the 
kernel's singular values decay quickly to zero . In such a 
situation , small variations in the data can lead to large 
fluctuations in the solution . 
[ 0031 ] For MR applications , F ( x , y ) represents the joint 
probability density function of the variable x and y . Spe 
cifically in NMR , x and y can be the measurements of the 
two combination of the longitudinal relaxation time T1 , 
transverse relaxation time T2 , diffusion coefficient ( s ) D and 
other dynamic properties . Knowledge of the correlation of 
these properties of a sample is used to identify its micro 
structure properties and dynamics . 

1 

[ 0035 ] where I'lg is the Frobenius norm . More details 
regarding the Venkataramanan , Song , and Hürlimann 
approach ( VSH approach ) can be found in Venkataramanan , 
L. , Song , Y. & Hürlimann , M. D. “ Solving Fredholm Inte 
grals of the First Kind With Tensor Product Structure in 2 
and 2.5 Dimensions , ” IEEE Transactions on Signal Pro 
cessing , 50 , 1017-1026 ( 2002 ) . According to the VSH 
approach , there are three steps to solving Equation 4 . 
[ 0036 ] Step 1. Compress the Data : Let the singular value 
decomposition ( SVD ) of K ; be 

K ; = U ; S ; V ; , iE { 1,2 } . ( 5 ) 

[ 0037 ] Because K , and K , are sampled from smooth 
functions k , and k2 , the singular values decay quickly to 0 . 
Let s , be the number of non - zero singular values of K? and 
S2 number of non - zero singular values of K2 . Then UE 
RNXS and S , ER 3 * $ for i = 1 , 2 , as well as V , ER N ; * s ; and 
V ER N * 

1 

[ 0038 ] The complete data matrix M can be projected onto 
the column space of K , and the row space of K2 by 
U , U , ' MU U ,. This is denoted as Ñ = U , ' MU ,. The Tik 
honov regularization problem in Equation 4 is now rewritten 
as 

( 6 ) + 
F > 0 F = argmin || U1 ÑU2 – U. U { K , FK U2U2 || 2 

|| M ||| - || U MU1 | + a1 || FL | 1 } 
argmin | M - ( S1V ) F ( S2V2 | 1 + qe || F | 1 } , = 

[ 0039 ] where Equation 7 results from U , and U , having 
orthogonal columns , and the second and third terms in 
Equation 6 being independent of F. Because MER $ 1x92 , the 
complexity of the computations is significantly reduced . 
[ 0040 ] Step 2. Optimization : As used herein , " optimiza 
tion ” does not necessarily mean determining a " best " value 
and includes improvements that are not the theoretical best 
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recovered from , for example , as little as 10 % of the mea 
surements . Section 3 covers the practical considerations of 
the problem and discusses reconstruction error . Section 4 
covers the described approach that solves the low - rank 
minimization problem and inverts the 2D Fredholm integral 
to obtain F. Section 5 shows the effectiveness of this 
reconstruction on simulated data . Section 6 provides 
detailed simulation and experimental results . 

2. Data Recovery Using Matrix Completion 
[ 0047 ] 2.1 Matrix Completion Overview 
[ 0048 ] Matrix completion deals with trying to recover a 
matrix X , ER Xn2 from only a fraction of the N * N mea 
surements required to observe each element of a complete 
data matrix M. Without any additional assumptions , this is 
an ill - posed problem . An assumption to attempt to make the 
problem well - posed is to assume that X , is low rank . 
[ 0049 ] Let X , be rank r . Consider a linear operator A : 
R > R " . Then observations take the form 

y = A ( Xo ) + z , | - || .SE , ( 8 ) 

[ 0050 ] where z represents a noise vector that is typically 
white noise , though not necessarily . 
[ 0051 ] The naive way to proceed would be to solve the 
non - linear optimization problem 

nixn2 . 

min rank ( Z ) ( 9 ) 

such that || A ( Z ) – yll2 < € . 

that can be obtained . For a given value of a , Equation 7 has 
a unique solution due to the second term being quadratic . An 
approach to finding this solution is detailed below . 
[ 0041 ] Step 3. Choosing a : Once Equation 7 has been 
solved for a specific a , an update for a is chosen based on 
the characteristics of the solution in Step 2. Repeat Steps 2 
and 3 until convergence . This is also detailed below . 
[ 0042 ] The VSH approach assumes knowledge of the 
complete data matrix , M. However , in applications with 
NMR , there is a high cost associated with collecting all the 
elements of M ( e.g. data corresponding to each voxel in a 
volume ) , which is a long data acquisition time . With the 
microstructure - related information contained in the multidi 
mensional diffusion - relaxation correlation spectra of the 
biological sample and high - resolution spatial information 
that MRI can provide , there is a need to combine the 
multidimensional correlation spectra NMR with 2D / 3D 
MRI for pre - clinical and clinical applications . Acquisition of 
this data , however , can take several days using the VSH 
method along with conventional MRI . 
[ 0043 ] In practice , the potential pulse sequences for the 
combined multidimensional diffusion - relaxation MRI are 
often single spin echo ( 90 ° -180º - acquisition and spatial 
localization ) with saturation , inversion recovery , driven 
equilibrium preparation to measure T -T , correlation and 
diffusion weighting preparation for D - T2 measurements . 
With these MRI pulse sequences , a single point in the two 
dimensional T1 - T2 or D - T2 space is acquired for each “ shot ” , 
and the total time for the sampling of the T1 - T2 or D - T2 
space is determined directly by the number of measurements 
required to recover F from Equation 6. Together with rapid 
MRI acquisition techniques , which can include , e.g. , parallel 
imaging , echo planar imaging , gradient - recalled echo , 
sparse sampling with compressed sensing , along with a 
vastly reduced number of sample points in M , could reduce 
the total experiment time sufficiently to make the novel 
approach described herein practicable for pre - clinical and 
clinical in vivo studies . 
[ 0044 ] Notice that , despite collecting all N , N , data 
points in M , Step 1 of the VSH approach immediately 
throws away a large amount of that information , reducing 
the number of data points to a matrix of size s , XS2 . Ñ is 
effectively a compressed version of the original M , contain 
ing the same information in a smaller number of entries . Use 
of a compressive sensing type approach , as is described 
herein , enables determination of M without collecting all of 
M. To accomplish this , signals that are “ compressible , ” 
meaning that the signal is sparse in some basis representa 
tion , are undersampled . The problem of recovering M falls 
into a subset of this field known as low - rank matrix comple 
tion . 
[ 0045 ] An nxn matrix X that is rank r requires approxi 
mately nr parameters to be completely specified . If r << n , 
then X is seen as being compressible , as the number of 
parameters needed to specify it is much less than its n ? 
entries . It is less clear how to recover X from a limited 
number of coefficients efficiently . But it is possible to 
recover X from , up to a constant , nr log ( n ) measurements by 
employing a simple optimization problem . 
[ 0046 ] The approaches described herein incorporate 
matrix completion in order to recover Ñ from significantly 
fewer measurements than the VSH approach . Section 2 , 
below , examines how recovery of Ñ fits into existing theory 
and shows that data from the 2D Fredholm integral can be 

[ 0052 ] However , the objective function rank ( Z ) makes the 
problem NP - hard . So instead the convex envelope of the 
rank function is defined . 
[ 0053 ] Let 0 , ( X ) be the ith singular value of a rank r matrix 
X. Then the nuclear norm of X is 

||||| * : = X ; = 1'0 ; ( X ) . ( 10 ) 

[ 0054 ] An attempt is then made to solve the convex 
relaxation of Equation 9 , 

min || ( Z ) | I * ( 11 ) 

such that || A ( Z ) – yll2 SE . 

[ 0055 ] As with traditional compressive sensing , there 
exists a restricted isometry property ( RIP ) over the set 
matrices of rank r . A linear operator A : R " ] XN2 > R " satis 
fies the RIP of rank r with isometry constant 8 , if , for all rank 
r matrices X , 

( 1-8 ) || $ || A ( X ) || 2s ( 1 + 8 ) ||||| R . ( 12 ) 

[ 0056 ] The RIP has been shown to be a sufficient condition 
to solve Equation 11. Theorem 2.3 . Let Xo be an arbitrary 
matrix in C * . Assume 05 , < 1/10 . Then the X obtained from 
solving Equation 11 obeys 

|| X0 - X0 , r || || ÊT – Xolle < Co + Cie , ( 13 ) 
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[ 0057 ] where X . ,, is the best r rank approximation to Xo , 
and Co , C? are small constants depending only on the 
isometry constant . 
[ 0058 ] This means that , if the measurement operator A is 
RIP , then reconstruction via convex optimization behaves 
stably in the presence of noise . This result is useful in the 
context of the 2D Fredholm problem , as inversion of the 
Fredholm integral is very sensitive to noise . Equation 13 
helps to ensure that reconstructed data behaves stably and 
will not create excess noise that would cause issues in the 
inversion process . 
[ 0059 ] 2.2 Matrix Completion Applied to NMR 
[ 0060 ] For an example NMR problem : 

[ 0070 ] This definition is very closely related to the idea of 
an orthonormal basis . In fact , if | JI = d , then { Q } } jes would be 
an orthonormal basis . This definition can be thought of as a 
generalization . Frames have the benefit of giving overcom 
plete representations of the function f , making them much 
more robust to errors and erasures than orthonormal bases . 
This redundancy is taken advantage of below in Theorem 
2.6 . 
[ 0071 ] Also , a bounded norm Parseval tight frame with 
incoherence u is a Parseval tight frame { d ; } je , on C dxd that 
also satisfies 

d ( 23 ) || 0j | l ? su Vjev . 11 
M = K FK + E ( 14 ) 

= U MU + E , [ 0072 ] Note that , in the case of { 0 ; } je , being an orthonor 
mal basis , IJI = d ?, reducing the bound in Equation 23 to 
lle ; ] [ su / d . 
[ 0073 ] Now notice that for an NMR problem , ignoring 
noise , each observation can be written as 

[ 0061 ] where U , ER N ; * S , MER Sixs2 , and EER N1XN2 . This 
means that 

Mjk ( ul ) Mo ( ) ( 24 ) 

MES , V , ' FV S ( 15 ) 

[ 0062 ] To subsample the data matrix M , it is observed on 
random entries . Let 22_ { 1 , ... N1 } x { 1 ,. N2 } be the set 
of indices where M is observed . For 1921 = m , let the indices 
be ordered as Q = { ( izjx ) } K = 1 " . Then a masking operator A 
is defined as 

A .R NIXN2Rm ( 16 ) 

= { ( ) ( u ) , M. ) , ( 25 ) 
? 

? : 

= 

1 

? : 
12 

( 17 ) 

[ 0063 ] Recall that the goal is to recover Ñ .. This means 
that the actual sampling operator is 
RR sixs2_ , Rm ( 18 ) 

R ( X ) = A ( U XU2 ) ( 19 ) 

[ 0064 ] Now the problem of speeding up NMR can be 
written as an attempt to recover M , from measurements 

y = R2 ( ) + e , | le || 2s . ( 20 ) 

[ 0065 ] Note that the VSH approach assumes Q = { 1 , 
N , } x { 1 , ... N2 , making the sampling operator R ( M ) 
= U , MU , 
[ 0066 ] Then in the notation of this NMR problem , our 
recovery step takes the form 

[ 0074 ] where u ' ( resp . u , ) is the j'h row of U , ( resp . U ) . 
Noting that U , and U , are left orthogonal ( ie . U? , U = Id , ) , it 
can be shown that { ( u ( uk ) ] x 2x , xzx? forms a Parseval tight 
frame for R s?x $ 2 . Also , because K , and K , are discretized 
versions of smooth continuous function , { ( u , ' ' ( u , ) } are a 
bounded norm frame for a reasonable constant u ( u is 
discussed further in Section 3.2 below ) . Thus , R , is 
generated by randomly selecting measurements from a 
bounded norm Parseval tight frame . 
[ 0075 ] The above provides the necessary notation to state 
a theorem , which establishes bounds on the quality of 
reconstruction from Equation 21 in the presence of noise . 
The theorem and proof assume the measurements to be 
orthonormal basis elements . 
[ 0076 ] It is interesting to note that , because the measure 
ments are overcomplete ( 1JI > s $ 2 ) , the system of equations 
is not necessarily underdetermined . However , Equation 15 
still gives guarantees on how the reconstruction scales with 
the noise , regardless of this detail . In conventional compres 
sive sensing , the goal is show that an underdetermined 
system still has a solution , which is stable . In the approaches 
described herein , it is shown that , regardless of whether or 
not the system is underdetermined , reconstruction is stable 
in the presence of noise , and the reconstruction error 
decreases monotonically with the number of measurements . 
[ 0077 ] Theorem 2.6 : 
[ 0078 ] Let { Q ; } jer C SixS2 be a bounded norm Parseval 
tight frame , with incoherence parameter u . Let n = max ( s? , 
S2 ) , and let the number of measurements m satisfy a 

mzCurn log? n loglji , ( 26 ) 

[ 0079 ] where C is a constant . Let the sampling operator 
R be defined for 22 CJ , with Q = { i1 , . im } as 

R. CS1x32 Cm ( 27 ) 

( R2 ( X ) = ( ( x ) , j = 1 , ... , m . ( 28 ) 

min || ( Z ) || ( 21 ) 

such that || R ( Z ) - yll2 SE . 

? [ 0067 ] Now the question becomes whether R satisfies 
RIP . As discussed above , RIP is a sufficient condition for an 
operator to satisfy the noise bounds used in Equation 13 . 
These noise bounds ensure that solving Equation 21 yields 
an accurate prediction of Ñ . For this reason , the rest of this 
section focuses on proving that R is an RIP operator . 
[ 0068 ] First , the notion of a Parseval tight frame is 
defined . A Parseval tight frame for a d - dimensional Hilbert 
space H is a collection of elements { P ; } jes H for an 
index set J such that 

Ljes ( 8,0 ; ) 12 = || $ | P , VFEH . ( 22 ) 

[ 0069 ] This automatically forces [ J / zd . 

? 
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[ 0080 ] Let measurements y satisfy Equation 20. Then with 
probability greater than 1 - e - c over the choice of 2 , the 
solution M to Equation 21 satisfies 

( 33 ) min || ( Z ) IH 
such that || p = 1 / 2R ( Z ) - p - 1 / 2 yll2 s p = 1 / 2 € . 

( 29 ) || Mo - Mo- || . || – Mole sco Vr + C1p = 1 / 2 € , [ 0088 ] While scaling by a constant does not affect the 
result of the minimization problem , it does provide a better 
understanding of the error in the reconstruction . 
[ 0089 ] Theorem 2.3 provides that reconstruction error is 
bounded by a constant multiple of the error bound . But 
Equation 33 means the error bound can be rewritten as 

[ 0081 ] where 

m 
p = 

( 34 ) 
|| M - MOLF Co || M , - M 0,1 || . + Cip - 1 / 2 € , 

[ 0082 ] To prove this result , a lemma is needed that estab 
lishes that the measurements satisfy RIP . Lemma 2.7 : let 
{ P ; } je , C Sixs2 be a bounded norm Parseval tight frame , 
with incoherence parameter u . Fix some 0 < d < 1 . Let n = max 
( $ 1 , sz ) , and let the number of measurements m satisfy 

mzCurn log? n.log | JI , ( 30 ) 

[ 0083 ] where C « 1/82 . Let the sampling operator R 
defined for 2 CJ , with 22 = { i1 , ... , im } as 

R 2 : Csjxs2 > Cm ( 31 ) 

( R2 ( 1 ) , = 10 ; 2x ) , j = 1 , ... , m . ( 32 ) 

[ 0084 ] Then with probability greater than 1 - e - C8 ? over the 
choice of ? , 

be ? 

[ 0090 ] thus attaining the desired inequality . 
[ 0091 ] Examination of the proof of Lemma 2.7 shows that 
the bound on m in Equation 30 is actually not sharp . Rather , 
m is actually bounded below by a factor of log m . This term 
is overestimated with log | JI for simplicity . However , in 
reality the bound is 

mzChurn log? n'log m . ( 35 ) 

[ 0092 ] Let N = Câurn log > n . This would give the bound 
mze - W - 1 ( -1 / N ) , where W_ , is the lower branch of the Lambert 
W function . Taking the first three terms of a series approxi 
mation of W_1 in terms of log ( 1 / N ) and log ( log ( N ) ) provides 

log ( log ( N ) ) m > e - log ( 1 / N ) elog ( log ( M ) e log ( 1 / N ) ( 36 ) 
| 
m log ( log ( N ) ) 

- Nlog ( N ) e log ( 1 / N ) 
= 

? 

= Ciurnlog?n - log ( Ciurnlog?n ) . 
log ( log ( Clunnlogon ) ) 

e log ( Crumlog5n ) 
R satisfies the RIP of rank r with isometry constant d . 

[ 0085 ] The idea here is to generalize the measurements to 
a bounded norm Parseval tight frame . 
[ 0086 ] Proof of Theorem 2.6 : Assume that Lemma 2.7 is 
true . Lemma 2.7 states that [ 0093 ] Note that taking three terms is sufficient as each 

subsequent term is asymptotically small compared to the 
previous . The bound in Equation 36 is more intricate than 
simply bounding by mzC?urn logo n log | JI , but for typical 
sizes of J / in the Fredholm integral setting , this results in m 
decreasing by less than 5 % from its original size . 

131 
m 

3. Numerical Considerations 
only R 
R satisfies the RIP . However , Equation 21 is stated using 

as the measurement operator . 
[ 0087 ] This means that a scaling factor of 

? 

131 
m 2 : 

is included to understand the noise bound . Let 

[ 0094 ] Section 2 gives theoretical guarantees about error 
in estimating Ñ , with the recovered Ñ . This section 
addresses implementation issues . Let Ñ , be the original 
compressed data matrix for which recovery is attempted , and 
let M be the approximation obtained by solving Equation 21 
for the sampling operator R We consider the guarantee 
given in Equation 13 term by term . 
[ 0095 ] For the examples discussed herein , the kernels K , 
and Ky are assumed to be Laplace type kernels with quickly 
decaying singular values . The kernels k ( T? , x ) = 1 - e - Tilx and 
kz ( +2 , y ) = e = " zly can be used to represent the general data 
structure of most multi - exponential NMR spectroscopy 
measurements , where x and y are one of T1 , T2 , D , or other 
MR parameters , and t , and T2 are mixing times , although 
other kernels are also possible . Here it is assumed that ti is 
logarithmically sampled between 0.0005 and 4 and Tz is 

m 
P = - 

121 NiN2 

be the percentage of elements observed . Then , to utilize RIP , 
a solution to the following problem is attempted 
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1 [ 0104 ] Using the K? and K , discussed above , it can be 
shown that u does not make reconstruction prohibitive . 
[ 0105 ] The 

JI || $ ; II ? n 

can be calculated for each measurement { u ; , V ; } from the 
above description , making u = max 

i 11011111 : 89.9 . 

signing 

US 2020/0233051 A1 

linearly sampled between 0.0002 and 0.4 , as these are 
typical values in practice . Also for this section , F is taken to 
be a two peak distribution , namely Model 3 from Section 5 . 
[ 0096 ] When needed , it is set that s , = sz = 20 . This choice is 
determined by the discrete Picard Condition ( DPC ) . For 
ill - conditioned kernel problems Kf = g , with { u } denoting 
left singular vectors of K and { 0 ; } the corresponding sin 
gular values , the DPC guarantees the best reconstruction of 
f is given by keeping all 0 : +0 such that 

| u8 | 

on average decays to zero as o ; decrease . For the kernels 
with tensor product structure in Equation 3 , the s , = sz = 20 
rectangle provides a close estimate for what fits inside this 
curve of the relevant singular values and vectors to keep . 
implying that at a minimum set si - sz = 20 could be set to 
satisfy DPC for a stable inversion . DPC provides a stronger 
condition than simply keeping the largest singular values , or 
attempting to preserve some large percentage of the energy . 
[ 0097 ] 3.1 Noise Bound in Practice 
[ 0098 ] Theorem 2.3 incorporates the assumption that 
857 < 1/10 , where d ,, is the isometry constant for rank r . This 
puts a constraint on the maximum size of r . The maximal 
rank is denoted by ro . If it were known a priori that Ñ , were 
at most rank ro , then this term of 

|| M , - Mo. || 
Vr 

would have zero contribution , as Ñ = Mr . However , 
because of Equation 15 , Ñ , could theoretically be full rank , 
since S , and S , are decaying but not necessarily 0 . 
[ 0099 ] This problem can be rectified by utilizing the 
knowledge that K and K , have rapidly decaying singular 
values . This means Ñ , from Equation 15 has even more 
rapidly decaying singular values , as V , ' FV , is multiplied by 
both S , and S2 . The singular values of Mo drop to zero 
almost immediately for a typical compressed data matrix . 
[ 0100 ] This means that even for small ro , 

|| M . – 0,1 || . 

While this bound on u is not ideal , as it makes m > n > , there 
are two notes to consider . First , as was mentioned in Section 
2.2 , Theorem 2.3 ensures strong error bounds regardless of 
whether the system is underdetermined . Second , the esti 
mated M is still significantly better than a simple least 
squares minimization ( that could also be used ) , which in 
theory applies as the system isn't underdetermined . 
[ 0106 ] Also note that mean 

( 10,12 n 
and median 

( 10,12 ) 
differ greatly from max 

1 

( 110 ; 172 
1 

This implies that , while a small number of the entries are 
somewhat problematic and coherent with the elementary 
basis , the vast majority of terms are perfectly incoherent . 
This implies that Theorem 2.3 is a non - optimal lower bound 
on m . 

is very close to zero , as the tail singular values of Ñ , are 
almost exactly zero . 
[ 0101 ] FIG . 4 shows how the relative error decays for 
larger percentages of measurement , and how that curve 
matches the predicted curve of p - 1 / 2 |||| 2 . One can see from 
this curve that the rank r error does not play any significant 
role in the reconstruction error . 
[ 0102 ] 3.2 Incoherence 
[ 0103 ] The incoherence parameter u to bound the number 
of measurements in Equation 30 plays is used in determining 
m in practice . It determines whether the measurements 
{ u , V ; } are viable for reconstruction from significantly 
reduced m , even though they form a Parseval tight frame . 

4. Example Approaches 
[ 0107 ] The approaches described here solve for F in 
Equation 3 from partial MR data . FIG . 1 illustrates a 
computer - implemented magnetic resonance method 100. In 
process block 102 , a partial set of magnetic resonance data 
representing an object is received . The MR data can be , for 
example , relaxometry data . In process block 104 , based on 
the partial set of magnetic resonance data , a compressed data 
matrix is determined that represents a complete set of 
magnetic resonance data representing the object . The com 
pressed data matrix is determined without knowledge of the 
complete set of magnetic resonance data . In process block 
106 , image data for the object is reconstructed using the 
compressed data matrix . In some examples , reconstructing 
image data for the object comprises performing a two 
dimensional inverse transform , such as an inverse Laplace 
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transform , on the compressed data matrix . Image data can be 
any data that can be processed through image processing or 
other techniques to generate an image . Image data can also 
include , for example , 2D spectra data . Method 100 can also 
comprise generating an image , for example a 2D spectral 
map ( e.g. , a 2D relaxometry map ) , representing the object 
using the image data reconstructed from process block 106 . 
Although 2D Laplace transforms ( and 2D inverse Laplace 
transforms ) are discussed in this document , other transforms 
such as 2D Hankel transforms and 3D and higher dimen 
sional transforms can also be used . 
[ 0108 ] The complete set of magnetic resonance data com 
prises a first amount of data , and the partial set of magnetic 
resonance data comprises a second amount of data . In some 
examples , the second amount is less than half of the first 
amount . The second amount can also be , for example , 25 % , 
10 % , 5 % , etc. of the first amount . A volume of the object can 
comprise a plurality of voxels ( volume elements ) . The 
plurality of voxels can be of a uniform size . In some 
examples , the partial set of MR data comprises at least some 
data for each of the plurality of voxels . 
[ 0109 ] As an example , in a 2D relaxometry acquisition 
process , an inversion time and an echo time can be set , and 
data can be acquired for each voxel . This process can be 
repeated for additional inversion times and echo times . The 
data for the different inversion times and echo times for each 
voxel is complete MR data ( i.e. 2D relaxometry data ) for an 
object . The data points ( i.e. voxel and an echo time / inversion 
time combinations for which data can be acquired ) that 
correspond to complete MR data can be thought of as 
forming a data space . That is , the data space represents all 
of the individual data points for which MR data can be 
acquired . In some examples , data points corresponding to 
the partial set of MR data can be selected as data points for 
which data is collected by randomly sampling the data 
space . 
[ 0110 ] In some examples , the complete set of magnetic 
resonance data representing the object comprises data for a 
first number of the plurality of voxels of the volume , and the 
partial set of magnetic resonance data representing the 
object comprises data for a second number of the plurality 
of voxels of the volume . In some examples , the second 
number is less than half of the first number . The second 
number can also be , for example , less than one fourth of the 
first number . Other examples are also possible ( e.g. , the 
second number can be approximately 10 % of the first 
number , etc. ) . In some examples , the voxels of the second 
number of voxels , corresponding to the partial set of mag 
netic resonance data , are selected as voxels for which data 
is gathered by randomly sampling the plurality of voxels of 
the volume of the object . 
[ 0111 ] In some examples , method 100 comprises selecting 
a subset of voxels of a volume of an object for magnetic 
resonance data acquisition . The partial set of magnetic 
resonance data received in process block 102 can correspond 
to acquired data for the selected subset of voxels . The subset 
of voxels can be selected by randomly sampling the voxels 
of the volume of the object . 
[ 0112 ] The magnetic resonance data can be , for example , 
two - dimensional magnetic resonance relaxometry data , 
including T , -T2 , Tz - T2 , D - T2 , D - D , D - T2 , or T. - T , data , or 
2D data that includes other MR parameters . Determining the 
compressed data matrix can comprise minimizing both ( i ) a 
nuclear norm of a minimization matrix having a same rank 

as the compressed data matrix and ( ii ) a norm of a term 
relating the received partial set of magnetic resonance data 
to the minimization matrix . The minimizing can be accom 
plished through singular value thresholding . 
[ 0113 ] FIG . 2 illustrates an approach 200 for processing 
magnetic resonance data . In process block 201 , an MR 
system is instructed to acquire a partial set of data compris 
ing at least some data for each voxel of a volume or the 
whole volume occupied by an object . The data can be , for 
example , 2D spectra data ( e.g. T2 - T2 correlation data ) . In 
some examples , data points corresponding to the partial set 
of magnetic resonance data are selected as data points for 
which data is collected by randomly sampling a data space 
representing a complete set of magnetic resonance data for 
the object . In process block 202 , a partial set of 2D MR data 
for the object is received . 
[ 0114 ] Based on the partial set of 2D MR data , matrix 
completion is performed in process block 204 to determine 
a compressed data matrix that represents a complete set of 
2D magnetic resonance data for . Matrix completion can 
comprise determining a compressed data matrix that repre 
sents the complete set of 2D MR data for by minimizing 
both ( i ) a nuclear norm of a minimization matrix having a 
same rank as the compressed data matrix and ( ii ) a norm of 
a term relating a measurement operator to the received 
partial set of 2D magnetic resonance data . In process block 
206 , image data , such as 2D spectra , for the object is 
reconstructed by performing a 2D inverse transform , such as 
an inverse Laplace transform , on the compressed data 
matrix . The partial set of 2D MR data can be related to the 
image data by a 2D Fredholm integral expression , the 2D 
Fredholm integral expression including kernel functions that 
reflect the physical relaxation of excited nuclei . 
[ 0115 ] 4.1 Example Detailed Approach 
[ 0116 ] Determining a compressed data matrix , Ñ , from 
given measurements , y : Let y = RM . ) + e be the set of 
observed measurements , as in Equation 20. Even though 
Section 2 makes guarantees for solving Equation 21 , the 
relaxed Lagrangian form can instead be solved 

Min ( u ||||||| R2 ( X ) -1 | 122 ) . ( 37 ) 

[ 0117 ] In Equation 37 , the first portion , uX . , is the 
nuclear norm of a minimization matrix X having a same rank 
as the compressed data matrix Ñ . The second portion is the 
norm ( L2 norm ) of a term relating the received partial set of 
MR data y to the minimzation matrix X. As discussed 
previously , u is incoherence . Regarding the second portion 
of Equation 37 , R is a measurement operator , which is 
defined in Section 2.2 as being based on a masking operator 
F applied to the projection of a complete data matrix M 
based on a singular value decomposition ( SVD ) of the 
kernel functions K , and K , as shown , for example , in 
Equations 14 and 15 of Section 2.2 . Equation 19 of Section 
2.2 shows that R ( X ) = FQU XU2 ' ) . Because it is based 
on kernel functions K , and K2 , the measurement operator 
R reflects the physics of MR . 
[ 0118 ] The approach of Equation 37 is illustrated in FIG . 
3 as method 300. In process block 302 , a 2D Fredholm 
integral expression is discretized . The expression is based on 
kernel functions that reflect the physics of MR . In process 
block 304 , a projection of a complete data matrix is deter 
mined . The projection is based on a SVD of the kernel 
functions . A measurement operator is defined in process 
block 306 based on a masking operator applied to the 

12 

1 

? 
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( 43 ) min ( 1 / 2c ' [ G ( C ) + al ] c - c'm ) , 
[ 0129 ] where 

H ( K1 , C ) 0 0 ( 44 ) 
0 

projection of the complete data matrix . A compressed data 
matrix that represents the complete set of MR data for an 
object is then determined in process block 308 by minimiz 
ing both ( i ) a nuclear norm of a minimization matrix having 
a same rank as the compressed data matrix and ( ii ) a norm 
of a term relating the measurement operator to the received 
data . 
[ 0119 ] The minimization to solve Equation 37 can be 
accomplished through a singular value thresholding 
approach . An example singular value thresholding approach 
is illustrated in Equations 38-40 , below . 
[ 0120 ] Let the matrix derivative of the L2 norm term be 
written as 

H ( KC ) 0 
G ( C ) = K K ' , ... 

H ( KNXy , C ) 

8 ( X ) = R , ( R0 ( X ) - y ) ( 38 ) 

[ 0130 ] and H ( x ) is the Heaviside function . Also , Ki ,, 
denotes the ith row of K. The optimization problem in 
Equation 43 can be solved using a simple gradient descent 
approach . 
[ 0131 ] Choosing a : 
[ 0132 ] There are several methods for choosing the optimal 
value of a . 

[ 0133 ] BRD Method : Once an iteration of the optimi 
zation above has been completed , a better value of a 
can be calculated by 

= U1 , ( AA ( U XU2 ) - y ) ) U2 . 

[ 0121 ] The singular value threshholding operators 
reduces each singular value of some matrix X by v . In other 
words , if the SVD of X = UEV ' , then 

VS1 S2 ( 45 ) 
a opt 

max ( Ej , i – v , 0 ) ( 39 ) || 0 || 
S. ( X ) = UŽV " , Linj = { ? = j , 

otherwise . 0 

[ 0122 ] Using this notation , a two step iterative process can 
be used . Choose a T > 0 . Then , for any initial condition , solve 
the iterative process 

Yk = X ̂ – Tg ( ) ( 40 ) 
Xk + 1 = Stue ( YK ) 

[ 0134 ] If one iterates between Step 2 and the BRD 
method , the value of a converges to an optimal value . This 
method is very fast , however it can have convergence issues 
in the presence of large amounts of noise , as well as on real 
data . 

[ 0135 ] S - Curve : Let Fa be the value returned from the 
optimization for a fixed a . The choice of a should be 
large enough that Fq is not being overfitted and unstable 
to noise , yet small enough that Fa actually matches 
reality . This is done by examining the “ fit - error " 
x ( a ) = \ M - K FQKzF . ( 46 ) 

[ 0136 ] This is effectively calculating the standard devia 
tion the resulting reconstruction . Plotting x ( a ) for various 
values of a generates an S - curve . The interesting value of a 
occurs at the bottom “ heel " of the curve 

[ 0123 ] This approach converges to the correct solution . 
Certain values of t and u can be selected to accelerate 
convergence . 
[ 0124 ] This means that , given partial observations y , the 
iteration approach in Equation 40 converges to a matrix Ñ , 
which is a good approximation of Ñ + 0 . Once Ñ has been 
generated , F can be recovered by solving 

( ie . dlogx ( a ) 2.1 dloga 
argmin || ? – ( S1 V1 ) F ( S2V2,7 114 + ca || F | ? . ( 41 ) 

F > 0 

Cheel 

This is because , at dheet , the fit error is no longer demon 
strating overfitting as it is to the left of Cheets yet is still 
matching the original data , unlike to the right of This 
method is slower than the BRD method , however it is 
usually more stable in the presence of noise . For many of the 
examples described herein , the S - curve method is used for 
choosing a . 

[ 0125 ] Optimization : 
[ 0126 ] For a given value of a regularization parameter a , 
Equation 41 has a unique solution due to the second term 
being quadratic . This constrained optimization problem can 
then be mapped onto an unconstrained optimization problem 
for estimating a vector c . 
[ 0127 ] Let f be the vectorized version of F and m be a 
vectorized version of Ñ . Then the vector e can be defined 
from f implicitly by 

f = max ( 0 , KC ) , where K = ( SV1® ( S2V2 ) . ( 42 ) 

[ 0128 ] Here , denotes the Kronecker ( outer ) product of 
two matrices . This definition of c comes from the constraint 
that F20 in Equation 41 , which can now be reformed as the 
unconstrained minimization problem 

5. Example Simulations 
[ 0137 ] In example simulations , the kernels k , ( t , x ) = 1 
e - Tilx and kz ( t2 , y ) = e - T2 \ are used and sample T , logarith 
mically and Tz linearly , as described in Section 3. The 
simulations involve inverting subsampled simulated data to 
recover the density function F ( x , y ) . Three models of F ( x , y ) 
are tested . In model 1 , F ( x , y ) is a small variance Gaussian . 
In model 2 , F ( x , y ) is a positively correlated density func 
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tion . In model 3 , F ( x , y ) is a two peak density , one peak 
being a small circular Gaussian and the other being a ridge 
with positive correlation . 
[ 0138 ] The data is generated for a model of F ( x , y ) by 
discretizing F and computing M = K , FK2 . + E ( Equation 3 ) 
where E is Gaussian noise . That data is then randomly 
subsampled by only keeping à fraction of the entries . 
[ 0139 ] Each true model density F ( x , y ) is sampled loga 
rithmically in x and y . Ty is logarithmically sampled Ni = 30 
times , and t2 is linearly sampled N2 = 4000 times . Each 
model is examined for various SNR and values of 2 , and a 
is chosen using the S - curve approach for each trial . 
[ 0140 ] The signal - to - noise ratio ( SNR ) for the data is 
defined to be 

( 47 ) SNR = 10logio || M | 12 dB . || E || 2 

[ 0141 ] These simulation examples focus on the differ 
ences between the F generated from full knowledge of the 
data and the F generated from partial subsampled data . For 
this reason , Ffull refers to the correlation spectra generated 
from full knowledge of the data using the VSH approach , 
and Fa refers to the correlation spectra generated from only 
à fraction of the measurements using the described novel 
approaches . 
[ 0142 ] 5.1 Model 1 
[ 0143 ] In this model , F ( x , y ) is a small variance Gaussian . 
This is the simplest example of a correlation spectra , given 
that the dimensions are uncorrelated . F ( x , y ) is centered at 
( x , y ) = ( 0.1 , 0.1 ) and have standard deviation 0.02 . The 
maximum signal amplitude is normalized to 1. This model 
of F ( x , y ) is a base case for any algorithm . In other words , 
approaches to invert the 2D Fredholm integral will be 
successful in this case . 
[ 0144 ] FIG . 4 shows the quality of reconstruction of a 
simple spectra with an SNR of 30 dB . FIG . 5 shows the same 
spectra , but with an SNR of 15 dB . Almost nothing is lost in 
either reconstruction , implying that both the VSH approach 
and the example novel approaches of reconstruction from 
partial data are very robust to noise for this simple spectra . 
Plot 402 in FIG . 4 illustrates the true spectra ; plot 404 
illustrates F plot 406 illustrates reconstruction from 30 % 
of measurements , and plot 408 illustrates reconstruction 
from 10 % of measurements . In FIG . 5 , plot 502 illustrates 
the true spectra ; plot 504 illustrates F plot 506 illustrates 
reconstruction from 30 % of measurements , and plot 508 
illustrates reconstruction from 10 % of measurements . 
[ 0145 ] 5.2 Model 2 
[ 0146 ] In this model , F ( x , y ) is a positively correlated 
density function . The spectrum has a positive correlation , 
thus creating a ridge through the space . F ( x , y ) is centered 
at ( x , y ) = ( 0.1 , 0.1 ) , with the variance in x + y direction being 
7 times greater than the variance in the x - y direction . The 
maximum signal amplitude is normalized to 1. This is an 
example of a spectra where considering the two dimensional 
image provides more information . A projection onto one 
dimension would yield an incomplete understanding of the 
spectra , as neither projection would convey that the ridge is 
very thin . This is a more practical test of the novel 
approaches described herein . 

[ 0147 ] FIG . 6 shows the quality of reconstruction of a 
correlated spectra with an SNR of 30 dB . FIG . 7 shows the 
same spectra , but with an SNR of 20 dB . There is slight 
degradation in the 10 % reconstruction , but the reconstructed 
spectrum is still incredibly close to Ffuit . Overall , both of 
these figures show the quality of reconstruction according to 
the novel examples relative to using the full data . Plot 602 
in FIG . 6 illustrates the true spectra ; plot 604 illustrates Ffully 
plot 606 illustrates reconstruction from 30 % of measure 
ments , and plot 608 illustrates reconstruction from 10 % of 
measurements . In FIG . 7 , plot 702 illustrates the true spec 
tra ; plot 704 illustrates FM fully plot 706 illustrates reconstruc 
tion from 30 % of measurements , and plot 708 illustrates 
reconstruction from 10 % of measurements . 
[ 0148 ] 5.3 Model 3 
[ 0149 ] In this model , F ( x , y ) is a two peak density , with 
one peak being a small circular Gaussian and the other being 
a ridge with positive correlation . The ridge is centered at ( x , 
y ) = ( 0.1 , 0.1 ) , with the variance in x + y direction being 7 
times greater than the variance in the x - y direction . The 
circular part is centered at ( x , y ) = ( 0.05 , 0.4 ) . The maximum 
signal amplitude is normalized to 1. This is an example of a 
common , complicated spectra that occurs during experimen 
tation . 
[ 0150 ] FIG . 8 shows the quality of reconstruction of a two 
peak spectra with an SNR of 35 dB . In this instance , there 
is some degradation from F Ffull to any of the reconstructed 
data sets . Once again , there is slight degradation in the 10 % 
model , but the reconstructions from partial data are still very 
close matches to Ffull . Plot 802 in FIG . 8 illustrates the true 
spectra ; plot 804 illustrates Ffuli plot 806 illustrates recon 
struction from 30 % of measurements , and plot 808 illus 
trates reconstruction from 10 % of measurements . 
[ 0151 ] The novel approaches described herein provide a 
matrix completion framework for solving 2D Fredholm 
integrals . This method allows inversion of the discretized 
transformation via Tikhonov regularization using far fewer 
measurements than previous approaches . It has been shown 
that nuclear norm minimization reconstruction of the mea 
surements is stable and computationally efficient , and the 
resulting estimate of F ( x , y ) is consistent with using the full 
set of measurements . This allows , for example , a reduction 
in the number of measurements needed to be obtained by a 
factor of 5 or more . 
[ 0152 ] Although the examples discussed herein refer to 
2D NMR spectroscopy , the novel approaches can also be 
used with larger dimensional measurements , for example 
allowing for accelerated acquisition of 3D correlation maps 
that would otherwise take days to collect . 

full 

full 

6. Example Experiments 
[ 0153 ] The novel approaches to reconstructing image data 
based on partial MR data ( also referred to herein as com 
pressed sensing ( CS ) approaches ) have been validated 
through multiple experiments , including the use of synthetic 
data , MR data acquired in a well - characterized urea / water 
phantom , and on a fixed porcine spinal cord . The CS 
reconstructed spectra exhibited comparable quality as con 
ventional 2D relaxation spectra as assessed using global 
correlation , the local contrast between peaks , the peak 
amplitude and relaxation parameters , etc. bringing this 
important type of contrast closer to being realized in pre 
clinical and clinical applications . 
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[ 0154 ] FIG . 9 illustrates an example system 900 config 
ured to reconstruct image data from partial MR measure 
ments . System 900 comprises magnetic resonance ( MR ) 
system 902 and MR data processing system 904. MR system 
902 is operable to detect electromagnetic signals associated 
with nuclei excited by application of one or more magnetic 
fields . MR system 902 includes various hardware compo 
nents ( not shown ) including coils for exciting and / or polar 
izing nuclei as well as various sensors . MR data processing 
system 904 is in communication with MR system 902 either 
locally and / or over a network ( not shown ) . MR data pro 
cessing system 904 can be implemented , for example , on 
one or more server computers or other computing devices . 
[ 0155 ] A data component 906 is configured to receive a 
partial set of two - dimensional ( 2D ) magnetic resonance data 
for the object , the partial set of 2D magnetic resonance data 
generated using MR system 902. The partial set of MR data 
can comprise at least some measurements corresponding to 
each of the voxels forming the volume of the object . A 
matrix determination component 908 is configured to deter 
mine a compressed data matrix that represents a complete 
set of 2D magnetic resonance data for each voxel of the 
object based on the partial set of 2D magnetic resonance data 
received by data component 906. A reconstruction compo 
nent 910 is configured to reconstruct image data , such as 2D 
spectra , for the object by performing a 2D inverse transform , 
such as a 2D inverse Laplace transform , on the compressed 
data matrix . 
[ 0156 ] An image generation engine 912 is configured to 
generate an image , such as a 2D spectral map , representing 
the object using the reconstructed image data . MR data 
processing system 904 also includes a data store 914 , which 
can store data received from MR system 902 as well as 
intermediate data created by MR data processing system 
904 , reconstructed image data , and / or images , such as spec 
tral maps , generated from the reconstructed image data . The 
various components of MR data processing system 904 can 
be in communication with data store 914 . 
[ 0157 ] 6.1 Overview 
[ 0158 ] The described approaches to reconstructing image 
data based on partial MR data were verified using MR data 
obtained on a 7T vertical wide - bore Bruker MRI scanner 
similar to those used in preclinical imaging applications . 
Both T2 - T2 and T2 - T2 relaxometry NMR data were acquired 
on a well - characterized urea / water phantom , which shows 
two exchanging components . T -T2 MRI relaxometry was 
performed on a fixed porcine spinal cord . In addition , 
numerical simulations of the 2D relaxation spectra were also 
used to assess the effects of noise on the CS - based recon 
struction of the 2D - ILT . 
[ 0159 ] 6.2 Materials and Methods 
( 0160 ] 6.2.1 Experiments 
[ 0161 ] 6.2.1.1 Urea / Water Phantom 
[ 0162 ] An aqueous urea model system has been chosen for 
this study since it has two distinguishable types of protons 
in the transverse relaxation time ( urea proton has a shorter 
T2 than water proton ) and urea is highly soluble in water . A 
7M - urea solution was made by dissolving urea powder 
( Sigma - Aldrich , Inc. , USA ) into phosphate buffered saline 
( PBS , pH = 7.4 ) resulting in an urea / water proton ratio of 
20 % / 80 % . Then , 0.2 mM Gd - DTPA ( Magnevist® ; Berlex , 
Inc. ) and 0.025 uM MnCl , were added to the urea solution 
to reduce relaxation times . The pH of the urea solution was 
titrated to 8.1 with NaOH . 80 uL solution was then trans 

ferred to the 5 mm susceptibility - matching Shigemi tube 
( Shigemi Inc. , Japan ) for NMR experiments . All the NMR 
experiments were completed within 24 hours after the 
solution was made to ensure stability of the phantom . 
[ 0163 ] 6.2.1.2 Porcine Spinal Cord 
[ 0164 ] Porcine spinal cord was excised after necropsy and 
immediately immersion fixed in a 4 % formalin solution . 
Prior to the MRI experiments , the spinal cord was fully 
rehydrated with PBS and then placed within a 10 mm 
susceptibility - matching Shigemi NMR tube ( Shigemi Inc. , 
Japan ) with Fluorinert ( 3M , St. Paul , Minn . ) filling the 
unoccupied spaces during the MRI experiments . 
[ 0165 ] 6.2.1.3 NMR and MRI Measurements 
[ 0166 ] Both the NMR measurements of the urea phantom 
and the MRI experiments on the fixed spinal cord were 
performed on a 71 Bruker vertical - bore microimaging MR 
scanner equipped with an Avance III console , and micro2.5 
microimaging gradient system ( Bruker BioSpin , Billerica , 
Mass . ) . The specimens were kept at a bore temperature 
( -17 ° C. ) during scanning . 
[ 0167 ] 6.2.1.4 2D NMR of Urea / Water Phantom 
[ 0168 ] Two different 2D NMR relaxometry pulse 
sequences were performed on the urea phantom : ( a ) T -T2 
correlation relaxometry was performed using an inversion 
recovery ( IR ) preparation “ filter ” following by Carr - Purcell 
Meiboom - Gill ( CPMG ) pulse trains . This IR - CPMG pulse 
sequence is shown as pulse sequence 1002 in FIG . 10 ; ( b ) 
T2 - T , exchange relaxometry was performed using relaxation 
exchange spectroscopy ( pulse sequence 1004 in FIG . 10 ) , 
which consists of two CPMG pulse trains separated by a 
mixing time , Tm , during which the magnetization is stored 
back along the longitudinal axis . A gradient spoiler was 
placed after the IR pulse in the IR - CPMG pulse sequence 
and the mixing period in the REXSY pulse sequence to 
" crush ” any remaining magnetization in the transverse 
plane . 
[ 0169 ] In the IR - CPMG pulse sequence , 50 IR points were 
sampled logarithmically from 50 ms to 5 s ; 250 echoes were 
acquired in the CPMG pulse trains with a time spacing of 
T = 2 ms . The pre - scan delay is 15 s to ensure full inversion 
recovery . A two - step phase cycling scheme was used ( shown 
in pulse sequence 1004 in FIG . 10 ) and only one repetition 
was acquired . An equilibrium CPMG echo train was also 
acquired with an inversion delay of 15 s and 4 repetitions . 
In the REXSY experiments , the same CPMG parameters 
were used as in the IR - CPMG with the mixing time tm 
starting from 50 ms , and then 100 ms with a 100 ms step 
until to 1000 ms . The repetition time ( TR ) is 8 s . 
[ 0170 ] 6.2.1.5 T -T , MRI of Porcine Spinal Cord 
[ 0171 ] T -T2 correlation relaxometry was performed by an 
IR - preparation multiple spin echo sequence ( pulse sequence 
1006 in FIG . 10 ) with 36 inversion - delays ( t1 ) logarithmi 
cally distributed from 260 ms to 5000 ms and 50 spin echoes 
starting 5 ms and continuing to 250 ms in 5 ms increments . 
The other acquisition parameters were : TR = inversion - de 
lays + 12 s , matrix size = 64x64 , slice thickness = 1 mm , 
FOV = 10 mmx10 mm with two - step phase cycling . Hermite 
pulse shapes were applied for both excitation and refocusing 
pulses with bandwidth ( 5400 Hz ) matching and propoer 
gradient crasher , and a 5 ms hyperbolic secant inversion 
pulse was used for uniform inversion of the sample . A 
magnetization equilibrium scan was also acquired with an 
inversion - delay equal to 12 s with four repetitions . 

1 





US 2020/0233051 A1 Jul . 23 , 2020 
12 

1 

[ 0192 ] The median of the 1000 2D relaxation spectrum 
data from all sub - samples at each R was displayed , and the 
variance of the results was characterized by interquartile 
range ( IQR ) . The contrast between the two peaks is defined 
by the ratio of the smallest amplitude between the two 
components over the smaller component's amplitude in the 
T , projection of the displayed 2D relaxometry . 
[ 0193 ] 6.2.3 Simulations 
[ 0194 ] To further test and validate the efficiency of the 
proposed CS reconstruction , the T2 - T , relaxometry experi 
ments were simulated by a Monte Carlo method . An iden 
tical data acquisition protocol as we used in the T2 - T2 MRI 
of spinal cord was applied . Two broad peaks without 
exchange in the 2D T , -T , relaxogram with similar positions 
and patterns similar to those obtained from spinal cord white 
matter were used as the joint probability function F to 
generate the data following Equation 48 with Gaussian noise 
at various SNRs . Here the SNR was redefined as the ratio 
between M ( t1 = 0 , T2 = 0 ) and the standard deviation of the 
noise . To obtain stable estimates , 1000 realizations were 
achieved for the full data and one random sampling was 
performed for each acceleration factor in each realization . 
[ 0195 ] Furthermore , the potential artifacts caused by 
Rician noise were also simulated . An ROI consisting of 100 
voxels with IR - ME sequence was synthesized . Within each 
voxel , the data MR was generated by changing the distribu 
tion of the signal in Equation 48 from Gaussian to Rician at 
SNR = 200 : 

( 53 ) 
+ 

MR ( T1 , T2 ) = 
IN F ( Tm , In ) exp ( -T1 / Tm ) exp 

( -T2 / Tn ) + € 1 ( T1 , T2 ) 
E2 ( T1 , T22 

are merged indistinguishably into one in both the T , and T2 
dimensions . The application of the signal transformation 
correction successfully removes the spurious peaks and 
makes the ground - truth peaks distinguishable ( plot 1208 and 
plot 1216 ) with the recovery of the correlation coefficient 
from 0.85 to 0.90 ( plot 1214 ) . 
[ 0202 ] Sub - sampling was performed both on the data with 
Gaussian noise and on the data with the transformed data . 
The statistical results were shown in plot 1218 , where only 
the median was plotted for the data with Gaussian noise for 
display . Within the transformed data , the CS reconstruction 
successfully achieves a high correlation coefficient C - 0.90 
with a small variance until R reaches 5 , which is signifi 
cantly higher than the results of the control ( p < 1x10-9 ) . 
Except for the higher correlation coefficients , better contrast 
is also observed with CS reconstruction . For example , at 
R = 5 , the contrast between the two peaks is 69 % with the CS 
reconstruction , but 89 % in the control , where the ground 
truth is 34 % . 

[ 0203 ] 6.3.1.2 Noise Amplitude 
[ 0204 ] FIG . 13 illustrates , in plots 1300 , ( a - i ) T -T2 relax 
ometry from the stimulated data with Gaussian noise at three 
SNR levels ( SNR = 2000 , 800 and 200 ) and three accelera 
tion factors : R = 1 , 3 and 5. ( i ) The normalized T2 projections 
of ( ac ) and the ground truth . ( k ) The boxplots of the 
correlation coefficients of the CS reconstruction ( red ) and 
the control ( blue ) from the simulated data with Gaussian 
noise at SNR = 800 at various acceleration factors , R , and the 
broader lines and dots are the median of the data at each R. 
( 1 ) The boxplots of the correlation coefficients of the full 
data ( red ) , CS reconstruction at R = 3 ( blue ) and R = 5 ( green ) 
at various SNR . For the display purpose , the outliers were 
not shown . 

[ 0205 ] The quality of the T -T2 spectra from the full data 
itself decreases as the SNR in the simulations with Gaussian 
noise decreases as shown in FIG . 13. For example , the 
correlation coefficients drop from 0.94 to 0.84 when the 
SNR decreases from 10000 to 200 ( plot 1 ) . Except for the 
decrease in the correlation coefficient , the contrast between 
the two peaks is also artificially reduced owing to the larger 
noise amplitude , which can be seen by comparing the T1 - T2 
spectrum with different noise amplitudes ( plots a - c , FIG . 
13 ) . The contrast in the 1D T2 projection is changed from 
60 % to 85 % when the SNR drops from 2000 to 800 , where 
the two peaks are indistinguishable at SNR = 200 . 
[ 0206 ] The CS reconstruction from subsamples success 
fully maintains the quality of T2 - T2 spectra at similar levels 
as the results from the full data when the SNR decreases . At 
R = 3 , the correlation coefficients from the subsample with 
CS reconstruction shows almost identical distributions as 
the results from the full data with slightly larger variance 
( 51.5 times higher IQR ) until the SNR drops below 800. At 
R = 5 , the correlation coefficients drops a little with larger 
variance , especially at lower SNR ( < 2000 ) . Comparing to 
the control , the results from CS reconstruction shows much 
better quality at certain acceleration factors . For example , at 
SNR = 800 , the correlation coefficients from the CS recon 
struction results are significantly higher than the control 
( p < 5x10-9 ) until R25.5 ( plot k , FIG . 13 ) . At higher R , the 
sample size is not large enough to generate good - quality 
T / -T2 spectra via either the CS reconstruction or the con 
ventional 2D ILT . 

1 

[ 0196 ] The averaged data in the ROI was taken as the 
complete data set ( SNR = 2000 ) with 1000 repetitions . The 
following sub - sampling and data analysis was the same as 
described in Section 6.2.2 and the simulations with Gaussian 
noise . 
[ 0197 ] 6.3 . Results 
[ 0198 ] 6.3.1 Simulations 
[ 0199 ] 6.3.1.1 Noise Type 
[ 0200 ] FIG . 12 shows the T2 - T2 relaxometry of ( a ) the 
simulated ground truth ( plot 1202 ) , ( b ) full data with Gauss 
ian noise ( plot 1204 ) , ( c ) full data with magnitude signal and 
rectified Rician noise ( plot 1206 ) , ( d ) full data with trans 
formed ( Rician noise corrected ) signal ( plot 1108 ) , ( e ) CS 
reconstruction from the transformed data at R = 5 ( plot 1210 ) , 
and ( f ) the corresponding control ( plot 1212 ) . Plot 1214 , ( g ) , 
shows the statistical results of the correlation coefficients of 
( b - d ) . Plot 1116 , ( h ) , shows the normalized T2 projections of 
( a - f ) . The statistical results of the correlation coefficients of 
the CS reconstruction from the data with Gaussian noise 
( black ) , the transformed signals from magnitude data ( red ) 
and its corresponding control ( blue ) at various acceleration 
factors R are illustrated in plot 1218 ( i ) . 
[ 0201 ] For the full data with Gaussian noise , the 2D ILT 
algorithm yields a close estimate ( plot 1104 ) of the ground 
truth ( plot 1202 ) with a correlation coefficient C = 0.92 ( plot 
1214 ) . Uncorrected Rician noise introduces spurious peaks 
in the long T? regime , which were visible in both the T2 - T2 
relaxometry ( arrow in plot 1206 ) and its 1D projection onto 
the T2 axis ( arrow in plot 1216 ) . In addition , the two peaks 
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1504 and 1508 are the statistical results of ( plot 1504 ) the 
correlation coefficients and ( d ) , plot 1508 , the biases of the 
off - diagonal peaks ' relative volume fractions as a function 
of the acceleration factor R , where the red ( top ) is the CS 
reconstruction and the blue ( bottom ) is the corresponding 
control . 

[ 0214 ] FIG . 16 illustrates T2 - T2 spectra of the urea / water 
phantom at mixing time tm = 50 ms from ( a ) the full data ( plot 
1602 ) and ( b ) the CS reconstruction at R = 12 ( plot 1604 ) . 
Plot 1606 , ( c ) , shows correlation coefficients as a function of 
the acceleration factor R , where the red ( top ) is the CS 
reconstruction and the blue ( bottom ) is the corresponding 
control . 

bb , 

[ 0207 ] 6.3.2 Urea / Water T4 - T2 Spectra 
[ 0208 ] Here only the fourth echoes of the 250 CPMG echo 
trains were used , which result in the matrix size of the 
full - data acquisition to be 50x62 with SNR25000 . FIG . 14 
illustrates the T -T2 spectra of the urea / water phantom from 
( a ) the full data ( plot 1402 ) and ( 2 ) the CS reconstruction at 
R = 8 ( plot 1404 ) , where the curves along the axes are the 1D 
projections on each dimension . Plots 1406 , 1408 , 1410 , and 
1412 ( c - f ) are the box plots of the statistical results from the 
1000 realizations in each acceleration factor R , which 
includes ( plot 1406 ) the correlation coefficients , the percent 
age of the biases of the urea's relative volume fraction ( plot 
1408 ) , ( e ) gmT2 ( plot 1410 ) and ( f ) the water's gmT2 ( plot 
1412 ) . 
[ 0209 ] The T -T2 spectrum from the full data set is shown 
in plot 1402 , where two peaks are clearly observed : urea 
with gmT2 = 30.9 ms , gmT , = 618 ms and its relative volume 
fraction f = 18.9 % and the water with gmT2 = 156 ms , 
gmT , -614 ms and its relative volume fraction f = 81.1 % . 
The small bias of the relative volume fractions from 20 % / 
80 % is the result of exchange between the protons on the 
urea molecules and the ones on the water molecules . Along 
the axes shown in plots 1402 and 1404 are the projections of 
the T , -T2 distribution onto the T and T2 axes . A single peak 
is observed in the projected 1DT , spectrum with gmT1 = 614 
ms for both the full data and CS reconstruction at R = 8 . Two 
peaks are observed in the projected 1D T , spectra using the 
full data set with f = 18.9 % and gmT2 = 30.9 ms for the urea , 
f = 81.1 % and gmT2 = 156 ms for the water . The correspond 
ing values at R = 8 with CS reconstruction are f = 18.6 % and 
gmT2 = 30.9 ms for the urea , f = 81.4 % and gmTz = 156 ms for 
the water . 
[ 0210 ] In plot 1404 , the T -T , spectrum with acceleration 
factor R = 8 is presented , which has a very high correlation 
coefficient C > 0.999 . In contrast , the corresponding value of 
1000 simulations in the control at R = 8 drops to 0.895 as 
shown in plot 1406 , which is significantly smaller than the 
CS reconstruction ( p < 1x10-9 ) . With CS reconstruction at 
Rs8 , the biases of the urea parameters are : s0.1 % for the 
relative volume fraction , s0.1 % for the gmT , and s1 % for 
the gmT2 . The corresponding values for the water are : 
50.02 % , 50.02 % , s0.01 % . In contrast , the corresponding 
biases in the control at R = 8 can be -3.1 % , -0.2 % and -3.2 % 
for the urea and 0.73 % , 0.09 % and 0.80 % . In addition , the 
variance of the results obtained with 1000 random samples 
is much smaller than the control at Rs6 , and comparable to 
the control at R = 7 and 8. At higher acceleration factors 
( R29 ) , very large variance and growing bias are observed . 
[ 0211 ] 6.3.3 Urea / Water T2 - T2 Spectra 
( 0212 ] T2 - T2 spectra of the urea / water phantom at differ 
ent mixing times are shown in FIG . 15 and FIG . 16. As the 
mixing time becomes longer , the total signal intensity goes 
down while the relative fraction of the off - diagonal peaks 
increases . A two - site exchange model was used to fit the 
amplitudes of the peaks with the estimate of the urea proton 
fraction being 19.6 % and the exchange rate 0.35 s - 1 . Two 
peaks at tm = 50 ms and Tm = 1000 ms were chosen to test the 
performance of the CS reconstruction , which have a 
SNR - 5000 and 1000. The statistical results of the CS 
reconstruction at Tm = 50 ms and Tm = 1000 ms are illustrated 
in FIGS . 15 and 16 . 
[ 0213 ] FIG . 15 illustrates T2 - T2 spectra of the urea / water 
phantom at mixing time tm = 1000 ms from ( a ) the full data 
( plot 1502 ) and ( c ) the CS reconstruction at R = 9 ( plot 1506 ) . 

[ 0215 ] At Tm = 1000 ms , the off - diagonal peaks ( Pab and 
Pba ) appear with the total relative volume fraction 15.1 % , 
where the relative volume fractions of the unchanged urea 
( Paa ) and the water ( Pbb ) are 11.3 % and 73.6 % . At Rs9 , the 
correlation coefficients between the CS reconstructed T2 - T2 
spectra and the one from full data can be maintained as high 
as 0.989 , which are significantly higher than the control 
( p < 1x10- ) ; this coefficient begins to fall quickly with larger 
variance at R210 . In the control , there is a strong underes 
timation of the relative fraction of the off - diagonal peaks , 
Pab + P ba , and an overestimation of the water peaks Pbb 
which can be as large as 14.5 % and 1.8 % at R = 9 . CS 
reconstruction successfully corrects the biases back ( e.g. , 
1.1 % ( overestimation ) and 0.36 % ( overestimation ) at R = 9 ) , 
with almost the same variance at low R and a slightly larger 
variance at high R ( e.g. , ~ 1.8 times higher in IQR than the 
control at R = 9 ) . Except for the precise reconstruction of the 
each peak's relative fraction , the other relaxation parameters 
are also more accurate . For example , the gmT2 of the peak 
Pab is underestimated by 8.2 % and 3.1 % at the first and 
second dimension in the control case at R = 9 , while biases in 
the CS reconstruction are only 1.6 % and 0.24 % overesti 
mation in these peaks . 
[ 0216 ] At mixing time tm = 50 ms , good CS reconstruction 
can be obtained until R = 12 . Here the 125x125 data matrix 
was evenly sub - sampled into a 62x62 matrix ( R = 4 ) at first , 
and then the further sub - sampling was performed randomly 
on the 62x62 data matrix . In plot 1604 of FIG . 16 , the 
statistical median of the 1000 T2 - T2 spectra at R = 12 was 
shown , which has a correlation coefficient C = 0.962 , very 
close to the corresponding value ( 0.964 ) at R = 4 . At Rs12 , 
the statistical estimations of the other relaxation and ampli 
tude parameters are also accurate and precise : such as the 
median biases of the relative volume fraction , gmT2,1 and 
gmT2,2 of the urea peak are only s0.87 % , s0.74 % , and 
50.45 % comparing to the corresponding results from the full 
data . 

[ 0217 ] 6.3.4 Porcine Spinal Cord ROI Analysis 
[ 0218 ] The results of the ROI analysis on the dorsal white 
matter are shown in FIG . 17. FIG . 17 illustrates the T -T2 
spectra of ( d ) the original data at the dorsal white matter 
( plot 1708 ) , ( a ) full data with transformed signal ( plot 1702 ) , 
( b ) CS reconstruction from the transformed data at R = 2.5 
( plot 1704 ) and ( c ) at R = 4.0 ( plot 1706 ) , ( e ) the control ( plot 
1710 ) corresponding to plot 1704 and ( f ) the control ( plot 
1712 ) corresponding to plot 1706. Plot 1714 shows the 
normalized 1D T2 projections of plots 1702 , 1704 , 1706 , 
1708 , 1710 , and 1712. Plot 1716 shows the statistical results 
of ( h ) the correlation coefficients and plot 1718 shows ( i ) the 
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MW fraction as a function of the acceleration factor R , 
where the red are the CS reconstruction and the blue are the 
corresponding controls . 
[ 0219 ] The SNR in the white matter is around 200. Two 
broad peaks are observed in the T2 - T2 spectra from the full 
data ( pre - processed ) with the myelin water ( MW ) : f = 46.1 % , 
gmT2 = 23.8 ms and gmT , = 837 ms ; and the intracellular / 
extracellular water ( IEW ) : f = 53.9 % , gmT2 = 62.3 ms and 
gmT1 = 993 ms . Here T2 = 35 ms was taken as the separation 
line between MW and IEW . 
[ 0220 ) Similar to the simulations , the noisy Rician signals 
introduce spurious peaks in the long T , regime ( arrow in plot 
1708 and plot 1714 ) but the signal transformation scheme 
we use successfully corrects this artifact . CS performs 
adequately at R = 2.5 , for which the correlation coefficient is 
0.97 ( significantly higher than the control , p < 1x10-4 ) and 
the contrast between the two peaks is preserved ( 93 % for the 
CS , 93 % for the full data , and a single peak in the control ) . 
At R = 4.0 , the two peaks are still visible although the 
correlation coefficient ( 0.91 ) is lower than the control ( 0.93 ) 
now . Interestingly , the CS reconstruction does well at pre 
serving the MW relative fraction ( biases s0.41 % ) , though 
with larger variance , for which the underestimation can be as 
large as 1.8 % in the control at R = 4.0 . The “ paired student's 
t - test ” was performed on the results of MW relative fraction 
from both the CS reconstruction and the control with the null 
hypothesis that their means are equal to the result from full 
data . The hypothesis is accepted by the results from CS 
reconstruction ( p > 0.15 ) expect for R = 4.0 ( p = 0.02 ) , while it 
is rejected by the results from the control ( p < 1x10-7 ) . 
[ 0221 ] 6.4 Discussion 
[ 0222 ] A pipeline designed to accelerate the acquisition of 
2D relaxation spectra using compressed sensing , was tested 
and validated with respect to its efficiency in maintaining the 
quality of the 2D distributions with both simulations and real 
NMR and MRI experiments . 
[ 0223 ] Compared to 1D relaxation spectra , clearly more 
information can be obtained from the 2D relaxation spectra , 
even in simple well - defined systems , like the urea / water 
mixture studied here . The 2D spectra can uncover and 
distinguish different relaxation components that may not be 
visible in the 1D spectra . For example , only one peak can be 
observed in the T , spectrum of the urea phantom , whereas 
two peaks are well defined in the T -T2 relaxation spectra 
Furthermore , exchange information between different com 
ponents can also be extracted from 2D relaxation spectra 
whereas this is not possible in the 1D case . In T2 - T2 
relaxometry of the urea phantom , the off - diagonal peaks 
provide direct evidence of exchange between the protons on 
the urea molecules and water molecules , whose rates of 
exchange can be then be quantitatively characterized by 
modeling and fitting the peaks ' intensities . However , this is 
not obtained from 1D T2 spectra alone . 
[ 0224 ] The VSH approach discussed previously is very 
sensitive to the SNR and the type of noise . For example , in 
the simulations , either the change of noise type from Gauss 
ian to Rician or the decreasing of SNR from 10000 to 200 
will significantly affect the quality of the 2D relaxometry . 
Normally , a high SNR with Gaussian noise is required for 
good performance . This can be easily achieved for most 
NMR experiments with large sample sizes at high fields . As 
for MRI applications , typically the SNR is lower and the 
noisy amplitude signal should be transformed from a Rician 

distribution to a Gaussian distribution . To achieve higher 
SNR in MRI , ROI analysis can be applied in homogeneous 
regions . 
[ 0225 ] In both simulations and the MRI experiments on 
the spinal cord , the presence of Rician noise introduces 
spurious peaks in the long T2 regime because the rectifica 
tion of the complex MR signal produces a " noise floor ” 
which , uncorrected , is fit by the 2D - ILT routine in both 
dimensions . This baseline signal biases the signal decay , 
suggesting the presence of artifactually long T2 components . 
This leads to the new peaks and decreases the contrast 
among existing ones , which is quite similar to the phenom 
enon observed previously in the T2 spectra from noisy MRI 
magnitude data . A signal transformation framework for 1D 
T2 spectra in multi - echo MRI is successfully applied here to 
the 2D relaxation spectra obtained from MRI data to remedy 
biases caused by Rician noise . While not perfect , these 
biases are significantly reduced . 
[ 0226 ] CS reconstruction has been successfully applied to 
the simulated 2D relaxation spectrum data , experimental 
NMR data on a well - characterized urea / water phantom , and 
on the IR - ME MRI data from the porcine spinal cord . With 
the CS reconstruction , the size of the data matrix can be 
reduced significantly without compromising the quality of 
the final 2D relaxation spectrum . Comparing to controls , 2D 
relaxation spectra obtained from sub - samples using CS 
reconstruction shows a better approximation to the ground 
truth or to the results from full data , as demonstrated by the 
higher global correlation coefficient , better contrast among 
local peaks and more accurate volume fraction parameters . 
CS reconstruction can admit more outliers at higher R , 
where the noise in some specific sub - samples can cause the 
CS reconstruction to fail . 
[ 0227 ] The maximum acceleration factor R can be 
achieved using CS reconstruction depends on the noise 
amplitude , noise type , the experimental design of the MR 
data acquisition protocol and the underlying ground truth . In 
the simulation , better T | -T2 spectra are obtained at high SNR 
( 2000 ) compared to the low SNR ( 800 ) at the same accel 
eration factor . In the T2 - T2 spectra of the urea / water phan 
tom , R = 12 can be achieved at a mixing time tm = 50 ms , but 
the maximum Rat a mixing time tm = 1000 ms is 9 , where the 
SNR is 5 times lower and the relaxometry spectra appear 
more complex . As for the simulations of the 2D relaxation 
spectra with MRI , the maximum R is around 5 even after the 
noise correction , since CS is performed using an already 
small data matrix . 
[ 0228 ] Two distinguishable peaks were observed in the 
T2 - T2 spectra of the white matter from the porcine spinal 
cord , which were assigned to be myelin water ( shorter 
relaxation times ) and intracellular / extracellular water ( lon 
ger relaxation times ) . These results were consistent with 
previous 1D T2 spectra measures in the white matter in vivo 
or ex vivo . Here the maximum R that can be achieved is 
equal to or less than 4.0 , which is smaller than in the 
simulations . Several reasons may contribute to this reduc 
tion : ( 1 ) the SNR is lower in the experiments since the 
number of voxels in the ROI is less than 100 ; ( 2 ) the noise 
is still not Gaussian even after preprocessing since there 
might be some systematic artifacts ; ( 3 ) heterogeneities may 
exist among voxels and ROI - type analysis might not be the 
best way ; ( 4 ) the underlying ground truth of the T -T2 
relaxation spectra of the biological tissue is still poorly 
known , thus there might be biases in the T7 - T2 relaxation 



US 2020/0233051 A1 Jul . 23 , 2020 
15 

spectra when the complete data set is used . Interestingly , 
even with a decreased correlation coefficient , CS reconstruc 
tion corrects the bias in estimating the MW and IEW fraction 
with the conventional 2D ILT method , though with larger 
variance . 
[ 0229 ] The biggest obstacle to migrating 2D relaxation 
spectra measurement to in vivo preclinical and clinical MRI 
applications is the long acquisition time . For example , the 
total acquisition time for the IR - ME experiments in this 
experiment is ~ 21 hours . In these experiments , the time can 
be reduced to ~ 6 hours by an acceleration factor R = 3.5 . 
Further reduction in time can be made to enable in vivo 
applications . For example , the parameters chosen in the 
time - consuming IR pulse sequences applied here were con 
servative , leading to a long pre - scan delay . There are other 
pulse sequences with shorter acquisition time , such as the 
saturation - recovery prepared multi - echo ( SR - ME ) with 
echo - planer ( EPI ) acquisition pulse sequences whose total 
acquisition time is about 1 hour . If the same acceleration 
factor R = 3.5 can be achieved there , the total acquisition time 
can now be reduced to 17 minutes . In addition , even a higher 
acceleration factor can be achieved as SNR increases with 
improvements in scanner hardware . 
[ 0230 ] One practical concern of the CS reconstruction is 
the random sampling , which might be limited by the natural 
structure of the CPMG or multi - echo pulse trains , i.e. , the 
reduction of the scan time is achievable in the first dimen 
sion of the three pulse sequences used here ( shown in FIG . 
10 ) . However , in high - field MRI scanners , safety concerns , 
primarily power deposition in tissue owing to a high specific 
absorption rate ( SAR ) limits the total number of 180 ° pulses 
that can be applied per unit time . So a practical alternative 
would be using a single echo or a few echoes with a fast MRI 
acquisition , such as EPI , parallel imaging , multi - band exci 
tation , etc. In these cases , acceleration provided by using a 
CS reconstruction could play an important role to reduce the 
acquisition time further and make 2D relaxation spectrum 
measurement faster . 
[ 0231 ] Only 2D T1 - T2 and T2 - T2 MR relaxometry are 
validated here but this pipeline can be easily adapted to other 
2D spectra , such as D - T2 , D - D , T2 - T1 , etc. provided that the 
application of the successive “ filters ” result in a relationship 
between the measured magnetization and the relaxation 
parameters that is given by a 2D Fredholm equation . More 
over , there is nothing to preclude performing higher dimen 
sional ( nD ) relaxometry since compression efficiency can 
increase in CS with increased dimensionality particularly 
when data is sparse and compactly supported , as it appears 
to be the case with relaxation spectra . In addition , further 
data compression can be achieved if CS is used both in the 
Laplace space , as is done here , and in the Fourier space to 
reduce the number of MRI acquisitions required for spatial 
localization . 

computer , laptop computer , server computer , tablet com 
puter , media player , gaming system , mobile device , etc. ) 
[ 0233 ] With reference to FIG . 18 , the computing environ 
ment 1800 includes one or more processing units 1810 , 1815 
and memory 2020 , 2025. In FIG . 18 , this basic configuration 
1830 is included within a dashed line . The processing units 
1810 , 1815 execute computer - executable instructions . A 
processing unit can be a general - purpose central processing 
unit ( CPU ) , processor in an application - specific integrated 
circuit ( ASIC ) or any other type of processor . In a multi 
processing system , multiple processing units execute com 
puter - executable instructions to increase processing power . 
[ 0234 ] For example , FIG . 18 shows a central processing 
unit 1810 as well as a graphics processing unit or co 
processing unit 1815. The tangible memory 1820 , 1825 may 
be volatile memory ( e.g. , registers , cache , RAM ) , non 
volatile memory ( e.g. , ROM , EEPROM , flash memory , etc. ) , 
or some combination of the two , accessible by the process 
ing unit ( s ) . The memory 1820 , 1825 stores software imple 
menting one or more innovations described herein , in the 
form of computer - executable instructions suitable for execu 
tion by the processing unit ( s ) . For example , memory 1820 
can store a data acquisition control 1880 that instructs an 
MR system to select a subset of voxels of a volume 
representing an object . MR data is acquired for the subset of 
voxels ( partial MR data ) . Memory 1825 can store , for 
example , MR data processing components 1882 , which can 
include data component 906 , matrix determination compo 
nent 908 , reconstruction component 910 , image generation 
engine 912 , and data store 914 of FIG . 9 . 
[ 0235 ] A computing system may have additional features . 
For example , the computing environment 1800 includes 
storage 1840 , one or more input devices 1850 , one or more 
output devices 1860 , and one or more communication con 
nections 1870. An interconnection mechanism ( not shown ) 
such as a bus , controller , or network interconnects the 
components of the computing environment 1800. Typically , 
operating system software ( not shown ) provides an operat 
ing environment for other software executing in the com 
puting environment 1800 , and coordinates activities of the 
components of the computing environment 1800 . 
[ 0236 ] The tangible storage 1840 may be removable or 
non - removable , and includes magnetic disks , magnetic tapes 
or cassettes , CD - ROMs , DVDs , or any other medium which 
can be used to store information and which can be accessed 
within the computing environment 1800. Storage 1840 can 
store instructions for software implementing one or more 
innovations described herein . Storage 1840 can also store 
data such as partial MR data 2084 . 
[ 0237 ] The input device ( s ) 1850 may be a touch input 
device such as a keyboard , mouse , pen , or trackball , a voice 
input device , a scanning device , or another device that 
provides input to the computing environment 1800. For 
video encoding , the input device ( s ) 1850 may be a camera , 
video card , TV tuner card , or similar device that accepts 
video input in analog or digital form , or a CD - ROM or 
CD - RW that reads video samples into the computing envi 
ronment 1800. The output device ( s ) 1860 may be a display , 
printer , speaker , CD - writer , or another device that provides 
output from the computing environment 1800 . 
[ 0238 ] The communication connection ( s ) 1870 enable 
communication over a communication medium to another 
computing entity . The communication medium conveys 
information such as computer - executable instructions , audio 

7. Examples of Computing Environments 

[ 0232 ] FIG . 18 depicts a generalized example of a suitable 
computing environment 1800 in which the described inno 
vations may be implemented . The computing environment 
1800 is not intended to suggest any limitation as to scope of 
use or functionality , as the innovations may be implemented 
in diverse general - purpose or special - purpose computing 
systems . For example , the computing environment 1800 can 
be any of a variety of computing devices ( e.g. , desktop 
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[ 0243 ] Furthermore , any of the software - based embodi 
ments ( comprising , for example , computer - executable 
instructions for causing a computer to perform any of the 
disclosed methods ) can be uploaded , downloaded , or 
remotely accessed through a suitable communication means . 
Such suitable communication means include , for example , 
the Internet , the World Wide Web , an intranet , software 
applications , cable ( including fiber optic cable ) , magnetic 
communications , electromagnetic communications includ 
ing RF , microwave , and infrared communications ) , elec 
tronic communications , or other such communication 
means . 

or video input or output , or other data in a modulated data 
signal . A modulated data signal is a signal that has one or 
more of its characteristics set or changed in such a manner 
as to encode information in the signal . By way of example , 
and not limitation , communication media can use an elec 
trical , optical , RF , or other carrier . 
[ 0239 ] Although the operations of some of the disclosed 
methods are described in a particular , sequential order for 
convenient presentation , it should be understood that this 
manner of description encompasses rearrangement , unless a 
particular ordering is required by specific language set forth 
below . For example , operations described sequentially may 
in some cases be rearranged or performed concurrently . 
Moreover , for the sake of simplicity , the attached figures 
may not show the various ways in which the disclosed 
methods can be used in conjunction with other methods . 
[ 0240 ] Any of the disclosed methods can be implemented 
as computer - executable instructions stored on one or more 
computer - readable storage media ( e.g. , one or more optical 
media discs , volatile memory components ( such as DRAM 
or SRAM ) , or nonvolatile memory components ( such as 
flash memory or hard drives ) ) and executed on a computer 
( e.g. , any commercially available computer , including smart 
phones or other mobile devices that include computing 
hardware ) . The term computer - readable storage media does 
not include communication connections , such as signals and 
carrier waves . Any of the computer - executable instructions 
for implementing the disclosed techniques as well as any 
data created and used during implementation of the dis 
closed embodiments can be stored on one or more computer 
readable storage media . The computer - executable instruc 
tions can be part of , for example , a dedicated software 
application or a software application that is accessed or 
downloaded via a web browser or other software application 
( such as a remote computing application ) . Such software can 
be executed , for example , on a single local computer ( e.g. , 
any suitable commercially available computer ) or in a 
network environment ( e.g. , via the Internet , a wide - area 
network , a local - area network , a client - server network ( such 
as a cloud computing network ) , or other such network ) using 
one or more network computers . 
[ 0241 ] For clarity , only certain selected aspects of the 
software - based implementations are described . Other details 
that are well known in the art are omitted . For example , it 
should be understood that the disclosed technology is not 
limited to any specific computer language or program . For 
instance , the disclosed technology can be implemented by 
software written in C ++ , Java , Perl , JavaScript , Adobe Flash , 
or any other suitable programming language . Likewise , the 
disclosed technology is not limited to any particular com 
puter or type of hardware . Certain details of suitable com 
puters and hardware are well known and need not be set 
forth in detail in this disclosure . 

[ 0242 ] It should also be well understood that any func 
tionality described herein can be performed , at least in part , 
by one or more hardware logic components , instead of 
software . For example , and without limitation , illustrative 
types of hardware logic components that can be used include 
Field - programmable Gate Arrays ( FPGAs ) , Application 
specific Integrated Circuits ( ASICs ) , Application - specific 
Standard Products ( ASSPs ) , System - on - a - chip systems 
( SOCs ) , Complex Programmable Logic Devices ( CPLDs ) , 
etc. 

[ 0244 ] The disclosed methods , apparatus , and systems 
should not be construed as limiting in any way . Instead , the 
present disclosure is directed toward all novel and nonob 
vious features and aspects of the various disclosed embodi 
ments , alone and in various combinations and subcombina 
tions with one another . The disclosed methods , apparatus , 
and systems are not limited to any specific aspect or feature 
or combination thereof , nor do the disclosed embodiments 
require that any one or more specific advantages be present 
or problems be solved . 
[ 0245 ] In view of the many possible embodiments to 
which the principles of the disclosed invention may be 
applied , it should be recognized that the illustrated embodi 
ments are only preferred examples of the invention and 
should not be taken as limiting the scope of the invention . 
Rather , the scope of the invention is defined by the following 
claims . We therefore claim as our invention all that comes 
within the scope of these claims . 

What is claimed is : 
1. A magnetic resonance system , comprising : 
a controller configured to select a partial set of multidi 
mensional magnetic resonance data to be acquired for 
at least one voxel of an object ; 

a magnetic resonance system coupled to the controller and 
operable to acquire the selected partial set of multidi 
mensional magnetic resonance data ; and 

wherein the controller is further configured to receive the 
acquired partial set of multidimensional magnetic reso 
nance data from the magnetic resonance system and 
reconstruct a complete set of multidimensional mag 
netic resonance data for the at least one voxel of the 
object based on the acquired partial set of multidimen 
sional magnetic resonance data . 

2. The magnetic resonance system of claim 1 , wherein the 
controller is operable to determine a compressed data matrix 
that represents the complete set of multidimensional mag 
netic resonance data for the at least one voxel of the object 
based on the acquired partial set of multidimensional mag 
netic resonance data . 

3. The magnetic resonance system of claim 2 , wherein the 
controller is operable to reconstruct data for the at least one 
voxel of the object by performing an inverse transform on 
the compressed data matrix . 
4. The magnetic resonance system of claim 3 , wherein the 

at least one voxel includes a plurality of voxels and the 
controller is operable to generate an image representing the 
object using the reconstructed data . 

5. The magnetic resonance system of 4 , wherein , the 
multidimensional magnetic resonance data includes data in 
at least two dimensions for the each of the plurality of 
voxels . 
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6. The magnetic resonance system of claim 4 , wherein the 
voxels of the plurality of voxels have a uniform size , and the 
selected partial set of multidimensional magnetic resonance 
data comprises at least some measurements corresponding to 
each of the plurality of voxels . 

7. The magnetic resonance system of claim 1 , wherein the 
partial set of multidimensional magnetic resonance data to 
be acquired is selected by randomly sampling a multidimen 
sional data space corresponding to the complete set of 
multidimensional magnetic resonance data representing the 
object . 

8. The magnetic resonance system of claim 1 , wherein the 
multidimensional magnetic resonance data is T1 - T2 or 
T2 - T2 relaxometry data . 

9. The magnetic resonance system of claim 1 , wherein the 
partial set of multidimensional magnetic resonance data to 
be acquired is selected as a fraction of a complete set of 
multidimensional magnetic resonance based on an accelera 
tion factor . 

10. The magnetic resonance system of claim 9 , wherein 
the resonance factor is at least 5 . 

11. A computer - implemented magnetic 
method , comprising : 

selecting a partial set of multidimensional magnetic reso 
nance data representing at least one voxel of an object 
for acquisition by a magnetic resonance system , the 
selected partial set of multidimensional magnetic reso 
nance data including magnetic resonance data in at 
least two dimensions for the at least one voxel ; 

acquiring the selected partial set of multidimensional 
magnetic resonance data representing the at least one 
voxel ; and 

reconstructing data for the at least one voxel based on the 
acquired selected partial set of multidimensional mag 
netic resonance data . 

12. The computer - implemented magnetic resonance 
method of claim 11 , further comprising : 

determining a compressed data matrix for the at least one 
voxel based on the acquired selected partial set of 
multidimensional magnetic resonance data , wherein 
the reconstructing data for the at least one voxel is 
based on the compressed data matrix . 

13. The computer - implemented magnetic resonance 
method of claim 11 , wherein the partial set of multidimen 
sional magnetic resonance data representing at least one 
voxel of an object is selected based on an acceleration factor . 

14. The computer - implemented magnetic resonance 
method of claim 13 , wherein the acceleration factor is at 
least 5 . 

15. The computer - implemented magnetic resonance 
method of claim 14 , wherein the at least one voxel com 
prises a plurality of voxels of a uniform size . 

16. The computer - implemented magnetic resonance 
method of claim 15 , wherein the selected partial set of 
multidimensional magnetic resonance data comprises at 
least some multidimensional data for each of the plurality of 
voxels . 

17. The computer - implemented magnetic resonance 
method of claim 11 , wherein the partial set of multidimen 
sional magnetic resonance data is selected by randomly 
sampling a data space representing the complete set of 
multidimensional magnetic resonance data . 

18. The computer - implemented magnetic resonance 
method of claim 11 , wherein the multidimensional magnetic 
resonance data is two - dimensional diffusion / relaxation spec 
tral data , and wherein reconstructing data for the object 
comprises performing a two - dimensional inverse Laplace 
transform on a compressed data matrix . 

19. The computer - implemented magnetic resonance 
method of claim 18 , wherein the two - dimensional spectra 
data comprises at least one of T1 - T2 , T2 - T2 , D - T2 , D - D , 
D - T1 , or T1 - T1 data . 

20. The computer - implemented magnetic resonance 
method of claim 12 , wherein determining the compressed 
data matrix comprises minimizing both ( i ) a nuclear norm of 
a minimization matrix having a same rank the compressed 
data matrix and ( ii ) a norm of a term relating the received 
partial set of magnetic resonance data to the minimization 
matrix . 

21. The computer - implemented magnetic resonance 
method of claim 21 , wherein the minimizing is accom 
plished through singular value thresholding . 

resonance 
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