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SYSTEM AND METHOD FOR
FREQUENCY-DOMAIN WEIGHTED LEAST
SQUARES

PRIORITY

[0001] This application claims priority under 35 U.S.C.
§119(e) to U.S. Provisional Patent Application No. 62/328,
862 which was filed in the U.S. Patent and Trademark Office
on Apr. 28, 2016, the content of which is incorporated herein
by reference.

FIELD

[0002] The present disclosure generally relates to a
method and apparatus for wireless communication, and
more particularly, to a system and method for frequency-
domain weighted least squares.

BACKGROUND

[0003] Users of electronic devices require increasing func-
tionality in the applications and services provided by the
electronic devices and communication networks used to
connect those devices. Increasing the bandwidth and reli-
ability of such communication networks is of increasing
importance for user satisfaction. One of the challenges faced
by wireless communication transmitters is lowering the
power consumption used by the power amplifier (PA) of the
transmitter while maintaining adequate performance of the
transmitter. The power efficiency of a PA normally has an
inverse relationship to the linearity of the output of the PA.
Achieving higher PA power consumption efficiency may
result in an increased error vector magnitude (EVM) which
in turn may result in increased data transmission error rates
and lower bandwidth to the user. Higher PA power con-
sumption efficiency may also result in increased adjacent
channel leakage ratio (ACLR) causing spectral regrowth of
unwanted radio frequency (RF) emissions into adjacent
frequency bands causing interference with signals in those
adjacent bands.

SUMMARY

[0004] According to an aspect of the present disclosure, a
method and apparatus is provided for non-linear compen-
sation of a PA using a frequency-domain weighted least
squares regression that balances the requirements of both the
EVM and the ACLR of the PA.

[0005] According to an aspect of the present disclosure, a
method is provided which includes, but is not limited to,
determining a training data set comprising input and output
data of'a power amplifier, determining compensation data by
regressing the training data set using a frequency-domain
weighting function, storing the compensation data, and
linearizing an output of the power amplifier using the stored
compensation data.

[0006] According to an aspect of the present disclosure, an
electronic device is provided which includes, but is not
limited to, a power amplifier, a storage, and a processor
configured to determine a training data set comprising input
and output data of the power amplifier, determine compen-
sation data by regressing the training data set using a
frequency-domain weighting function, store the compensa-
tion data in the storage, and linearize an output of the power
amplifier using the stored compensation data.
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[0007] According to an aspect of the present disclosure, a
chipset for controlling a user equipment (UE) in a mobile
communication system is provided, the chipset configured to
determine a training data set comprising input and output
data of a power amplifier, determine compensation data by
regressing the training data set using a frequency-domain
weighting function, store the compensation data in a storage,
and linearize an output of the power amplifier using the
stored compensation data.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] The above and other aspects, features and advan-
tages of the present disclosure will become more apparent
from the following detailed description, when taken in
conjunction with the accompanying drawings, in which:
[0009] FIG. 1 is a block diagram of an electronic device in
a network environment, according to an embodiment of the
present disclosure;

[0010] FIG. 2 is a block diagram of a portion of a radio
frequency transceiver, according to an embodiment of the
present disclosure;

[0011] FIG. 3 is a flowchart illustrating an operation of a
frequency-domain weighted least squares regression analy-
sis method, according to an embodiment of the present
disclosure;

[0012] FIG. 4 illustrates a power spectral density plot of a
window function, according to an embodiment of the pres-
ent disclosure;

[0013] FIG. 5 illustrates a plot of amplitude-amplitude
(AM)-(AM) curves for PA characterization, according to an
embodiment of the present disclosure;

[0014] FIG. 6 illustrates a plot of power spectral density
(PSD) of PA input, PA output, and compensated PA output,
according to an embodiment of the present disclosure;
[0015] FIG. 7 illustrates plots of memory polynomial
order versus ACLR determined by mean squares error
(MSE) for a test data set and a training data set, according
to an embodiment of the present disclosure;

[0016] FIG. 8 illustrates plots of memory polynomial
order versus ACLR determined by ACLR for a test data set
and a training data set, according to an embodiment of the
present disclosure;

[0017] FIG. 9 illustrates plots of memory polynomial
order versus MSE determined by MSE for a test data set and
a training data set, according to an embodiment of the
present disclosure; and

[0018] FIG. 10 illustrates plots of memory polynomial
order versus MSE determined by ACLR for a test data set
and a training data set, according to an embodiment of the
present disclosure;

DETAILED DESCRIPTION

[0019] The present disclosure will now be described more
fully hereinafter with reference to the accompanying draw-
ings, in which embodiments of the present disclosure are
shown. This disclosure may, however, be embodied in many
different forms and should not be construed as limited to the
embodiments set forth herein. Rather, these embodiments
are provided so that this disclosure will be thorough and
complete, and will fully convey the scope of the device and
method to those skilled in the art. In the drawings, the size
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and relative sizes of layers and regions may be exaggerated
for clarity. Like reference numbers refer to like elements
throughout.

[0020] It will be understood that when an element is
referred to as being “connected” or “coupled” to another
element, it may be directly connected or coupled to the other
element or intervening elements may be present. In contrast,
when an element is referred to as being “directly connected”
or “directly coupled” to another element, there are no
intervening elements present. As used herein, the term
“and/or” includes, but is not limited to, any and all combi-
nations of one or more of the associated listed items.
[0021] It will be understood that, although the terms first,
second, and other terms may be used herein to describe
various elements, these elements should not be limited by
these terms. These terms are only used to distinguish one
element from another. For example, a first signal may be
referred to as a second signal, and, similarly, a second signal
may be referred to as a first signal without departing from
the teachings of the disclosure.

[0022] The terminology used herein is for the purpose of
describing particular embodiments only and is not intended
to be limiting of the present device and method. As used
herein, the singular forms “a”, “an” and “the” are intended
to include the plural forms as well, unless the context clearly
indicates otherwise. It will be further understood that the
terms “comprises” and/or “comprising,” or “includes, but is
not limited to” and/or “including, but not limited to” when
used in this specification, specify the presence of stated
features, regions, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, regions, integers, steps,
operations, elements, components, and/or groups thereof.
[0023] Unless otherwise defined, all terms (including, but
not limited to technical and scientific terms) used herein
have the same meanings as commonly understood by one of
ordinary skill in the art to which the present device and
method belongs. It will be further understood that terms,
such as those defined in commonly used dictionaries, should
be interpreted as having meanings that are consistent with
their meaning in the context of the relevant art and/or the
present description, and will not be interpreted in an ideal-
ized or overly formal sense unless expressly so defined
herein.

[0024] FIG. 1 is a schematic block diagram of an elec-
tronic device in a network environment, according to an
embodiment of the present disclosure.

[0025] In FIG. 1, an electronic device 100 in a network
environment, according to an embodiment of the present
disclosure, includes, but is not limited to, a communication
block 110, a processor 120, a memory 130, a display 150, an
input/output block 160, an audio block 170 and a transceiver
180.

[0026] The communication block 110 connects the device
100 to another electronic device or a network for commu-
nication of voice and data. The communication block 110
provides wide area, local area, personal area, near field,
device to device (D2D), machine to machine (M2M) and
short range communications. The functions of the commu-
nication block 110, or a portion thereof, may be imple-
mented by a chipset. In particular, the cellular communica-
tions block 112 provides a wide area network connection
through terrestrial base transceiver stations or directly to
other electronic devices, using technologies such as D2D,
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M2M, long term evolution (LTE), 5% generation (5G), long
term evolution advanced (LTE-A), code division multiple
access (CDMA), wideband code division multiple access
(WCDMA), universal mobile telecommunications system
(UMTS), wireless broadband (WiBro), and global system
for mobile communication (GSM). The cellular communi-
cations block 112 includes, but is not limited to, a chipset
and a transceiver 113. The transceivers 113 and 180 may
include at least one of a processor, a transmitter, a receiver,
a low noise amplifier, a demodulator, a detector, a descram-
bler, a deinterleaver, a digital predistortion lookup table, a
radio frequency integrated circuit (RFIC), a capture
memory, a digital to analog converter (DAC), an analog to
digital converter (ADC), a power supply modulator and a
power amplifier (PA). The wireless fidelity (WiFi) commu-
nications block 114 provides a local area network connec-
tion through network access points using technologies such
as IEEE 802.11. The Bluetooth communications block 116
provides personal area direct and networked communica-
tions using technologies such as IEEE 802.15. The near field
communications (NFC) block 118 provides point to point
short range communications using standards such as ISO/
IEC 14443. The communication block 110 also includes, but
is not limited to, a GPS satellite signal receiver 119. The
GPS receiver 119 provides for receiving Global Positioning
System signals in order to compute the device’s absolute
position, velocity, acceleration and time. The electronic
device 100 may receive electrical power for operating the
functional blocks from a power supply, including, but not
limited to, a battery. The transceiver 180 may be a part of a
terrestrial base transceiver station (such as a cellular base
station (BTS)) and may include a radio frequency transmit-
ter and receiver conforming to cellular standards.

[0027] The processor 120 provides application layer pro-
cessing functions required by the user of the electronic
device 100. The processor 120 also provides command and
control functionality for the various blocks in the electronic
device 100. The processor 120 provides for updating control
functions required by the functional blocks. The processor
120 may provide for coordination of resources required by
the transceiver 113 including, but not limited to, communi-
cation control between the functional blocks. The processor
120 may also update the firmware, databases, lookup tables
and libraries associated with the transceiver 113. The cel-
Iular communications block 112 may also have a local
processor or a chipset which dedicates computing resources
to the transceiver 113 and other functional blocks required
for cellular communication.

[0028] The memory 130 provides storage for device con-
trol program code, user data storage, application code and
data storage. The memory 130 may provide data storage for
the firmware, libraries, databases, lookup tables and calibra-
tion data required by the transceiver 113. The databases also
may include look up tables, and the like. The program code
and databases required by the transceiver 113 may be loaded
into local storage within the transceiver 113 from the
memory 130 upon device boot up. The transceiver 113 may
also have local non-volatile memory for storing the program
code, libraries, databases and lookup table data.

[0029] The display 150 may include a liquid crystal dis-
play (LCD), a light emitting diode (LED) display, an organic
light emitting diode (OLED) display, a microelectrome-
chanical system (MEMS) display, or an electronic paper
display, and display various content, such as text, image,
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video, icon, or a symbol to the user. The display 150 may
include a touch screen that receives a touch input, a gesture
input, a proximity input, or a hovering input that is made
using an electronic pen or a part of the user’s body. The
input/output block 160 controls the interface to the user of
the electronic device 100. The audio block 170 provides for
audio input and output to/from the electronic device 100.

[0030] FIG. 2 is a block diagram of a portion of a radio
frequency transceiver, according to an embodiment of the
present disclosure.

[0031] Referring to FIG. 2, the radio frequency transceiver
200 may be a part of a terrestrial base transceiver station
180, or a part of the electronic device 100. The radio
frequency transceiver 200 includes a shaping function (SF)
lookup table (LUT) 202, an envelope tracking (ET) digital
to analog converter (DAC) 204, a power supply modulator
206, an average power tracking (APT) supply input 208, a
digital pre-distortion (DPD) look up table (LUT) 210, a
transmit (TX) direct current (DC) compensation unit 212, a
digital to analog converter 214, a radio frequency integrated
circuit (RFIC) 216, a power amplifier (PA) 218, a capture
memory 220, an analog to digital converter (ADC) 222, and
a radio frequency integrated circuit (RFIC) 224. According
to an embodiment of the present disclosure, some or all of
the components 202 to 224 of the radio frequency trans-
ceiver 200 may be integrated into a single integrated circuit
or package.

[0032] According to an embodiment of the present disclo-
sure, the SF look up table (LUT) 202 may provide a
sequence of digital data to the ET DAC 204. The SF LUT
202 may be a memory storage device. The envelope tracking
(ET) digital to analog converter (DAC) 204 receives the
sequence of digital data from the SF LUT 202 and provides
a programmable time varying voltage to the power supply
modulator 206. The power supply modulator 206 supplies
power to the power amplifier 218. The ET DAC 204 and the
supply modulator 206 supply a power supply voltage to the
PA 218 that is continuously adjusted to ensure that the
amplifier is operating at peak efficiency for the power
required at each instant of RF transmission to enable enve-
lope tracking of the PA 218. Envelope tracking adjusts the
voltage applied to an RF power amplifier to deliver the
power needed at that instant minimizing the effects of
waveforms that have a high peak to average ratio. Envelope
information is derived from a baseband modem and pro-
vided to the SF LUT 202. The APT supply input 208 may
also supply power to the PA 218. The APT supply input 208
operates in a similar manner to the power supply modulator
206 by supplying a time varying power supply to the PA 218
to increase the efficiency of the PA 218 as compared to a
non-time varying constant voltage supply. However, the
APT supply input 208 operates at a slower time variation
compared to the dynamic modulation of the power supply
modulator 206.

[0033] Digital predistortion is a method used to improve
the linearity of a radio frequency (RF) transmitter PA. An RF
PA is required to operate in an effectively linear manner in
order to accurately reproduce the signal present at the PA
input. A PA that compresses its input, or has a non-linear
input/output relationship, causes the output signal to be
emitted onto adjacent radio frequencies causing spectral
re-growth and interference on other radio channels. The
digital predistortion method effectively linearizes the output
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by compensating for the non-linearity of the PA by predict-
ing the magnitude of errors caused by the non-linearity of
the PA.

[0034] The digital pre-distortion (DPD) lookup table
(LUT) 210 may provide the compensating factors which
when applied to the signals to be transmitted by the PA
effectively create a linear output from the PA 218. The DPD
LUT 210 may be a memory storage device. According to an
embodiment of the present disclosure, the compensating
factors stored in the DPD LUT 210 are determined by the
frequency-domain weighted least squares regression method
described below. Signals from the baseband modem, which
are designated for transmission over the air, are provided to
the DPD LUT 210. The DPD LUT 210 outputs signals
compensated for PA 218 non linearity which are then
provided to the TX DC compensation unit 212. A DC offset
may occur in the transmission path caused by the DAC 214
or other components in the direct conversion process from
baseband to radio frequency. Without proper compensation,
DC offset may cause the receiver of the transmitted RF
signals to obtain biased estimates of important parameters
for signal demodulation and detection. Since the constella-
tion of high order modulation (such as the modulation of
LTE and LTE-A) is denser than that of modulation such as
binary phase shift keying (BPSK) modulation, the perfor-
mance loss due to DC offset in 16-ary or 64-ary quadrature
amplitude modulation is worse than that in BPSK modula-
tion. The TX DC compensation unit 212 compensates for
this DC offset by biasing the signal level provided to the
DAC 214 with a value that effectively cancels the DC offset
in the transmission path. The DAC 214 converts the DC
offset compensated signal from the TX DC compensation
unit 212 into an analog signal. The RFIC 216 receives the
analog signal from the DAC 214 and converts the baseband
signal into an RF signal. The RFIC 216 modulates the analog
signal according to the requirements of the wireless com-
munication method desired to be transmitted and provides
the modulated RF signal to the PA 218. The PA 218 may be
an RF PA that converts a low-power radio-frequency signal
into a higher power signal. The output of the PA 218 is
provided (fed back) to the RFIC 224 and may also drive an
antenna directly for transmission of the RF signal over the
air, or may be provided to other components such as filters
or switches before driving the antenna.

[0035] The non-linearity of the PA 218 may be compen-
sated for by the methods disclosed below. The RFIC 224
converts the output of the PA 218 or a signal received by an
antenna from an RF signal into a baseband signal. The RFIC
224 may be the same as, or similar to, the RFIC 216. The
ADC 222 converts the analog signal from the RFIC 224 into
a digital signal. The capture memory 220 may be a data
storage device that captures data from the ADC 222. Certain
data from the capture memory 220 may also be stored in the
DPD LUT 210. The capture memory 220, the DPD LUT 210
and the SF LUT 202 may be embodied in a single memory
device or multiple memory devices. The capture memory
220 may store test set data, training set data, validation set
data, PA 218 output samples converted by the ADC 222 into
digital data, or any combination thereof.

[0036] The PA 218 may have a non-linearity with respect
to the relationship between the input and output signals of
the PA 218. According to an embodiment of the present
disclosure, compensating for the non-linear relationship
includes determining a model for the input and output signal
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relationship, determining the inverse function of the input
and output signal relationship and applying that inverse
function to input signals before transmission through the PA
218. Compensation for the PA 218 non-linearity enhances
the EVM and ACLR parameters of the transceiver 200. The
model for determining the input and output signal relation-
ship may include a memory polynomial (MP) generated
using a least squares regression analysis method. The
method of least squares regression analysis generates an
approximate solution of the overdetermined system. The
least squares regression method seeks to minimize the sum
of the squares of the errors made in the results of every
equation that models the input and output signal relationship
of the PA 218.

[0037] Equation (1) below is a memory polynomial which
may be used for PA 218 forward or inverse modeling
estimation:

Pt Z " Ath(1=3,,) lt(1=,)IF (6]

[0038] where u(t) is a baseband PA input signal and y, »(t)
is a PA output signal. A standard least squares regression
method may be used to estimate coefficients (a,,,) of the
memory polynomial of Equation (1).

[0039] The PA 218 may operate close to its saturation
region in which its input and output signal relationship is
highly non-linear. In this case, the MP based on the least
squares regression analysis method may be of a higher order
to compensate for the increased non-linearity in the near
saturated operating region. However, a higher order MP
generated using least squares regression analysis may result
in overfitting and an overly complex, less accurate model
with poor predictive performance. Overfitting may occur
when a model begins to “memorize” the training data rather
than “learning” to generalize from the trending of the data.
Improving (lowering) EVM may also lower ACLR but they
are not always correlated in a least squares regression
analysis method. The least squares regression analysis
method may undesirably degrade the ACLR while improv-
ing the EVM. According to an embodiment of the present
disclosure, a frequency-domain weighted least squares
regression analysis method may determine a digital predis-
tortion model which compensates for the non-linearity of PA
218 while balancing the requirements of both EVM and
ACLR values. In particular, the present method improves
(lowers) ACLR while minimizing the impact on EVM. The
present method also exhibits less overfitting error using a
higher order MP as compared to a standard least squares
regression method.

[0040] FIG. 3 is a flowchart illustrating an operation of a
frequency-domain weighted least squares regression analy-
sis method, according to an embodiment of the present
disclosure.

[0041] The flowchart of FIG. 3 illustrates the steps of an
operation for generating a digital predistortion model which
compensates for the non-linearity of PA 218 using a fre-
quency-domain weighted least squares regression analysis
method. Referring to FIG. 3, at 300, the transceiver 200 as
described in FIG. 2 is initialized. The initialization of the
transceiver 200 may include the processor 120 executing
program code stored in the memory 130 which initializes
registers in transceiver 200 components 202 through 220 to
prepare the transceiver 200 for executing the steps required
for generating a digital predistortion model.
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[0042] At 302, input and output data samples are gener-
ated and stored in the capture memory 220. Input data
samples are provided to the TX DC compensation unit 212
which then provides DC offset compensated input data
samples to the DAC 214, which converts the data samples
to a continuous analog signal and provides the analog signal
to the RFIC 216 which mixes and upconverts the analog
signal with a carrier frequency to create an RF signal, which
is provided to the PA 218, which amplifies the signal. The
amplified RF signal is provided (fed back) to the RFIC 224
which downconverts the RF signal to an analog signal,
which is then converted to a digital data output sample by
the ADC 222. The data output sample is then stored in
capture memory 220 along with the data input samples. Each
data input sample is correlated to the corresponding data
output sample.

[0043] In 304, the input and output data samples are
divided into categories of a training data set, a validation
data set and a test data set. The training data set is used to
determine the input and output signal relationship of the PA
218. The validation data set is a set of data which is different
from the training data set and is used to validate the
performance of the model developed using the training data
set. The validation data set may also be used to further refine
the performance of the model. The test data set is different
from both the training and validation data sets and is used to
test the predictive performance and accuracy of the model.
[0044] In 306, parameters are selected as candidates for
the weighting pattern. The parameters may include ACLR/
noise boundaries, boosting factor for ACLR/noise area, and
boosting shape.

[0045] In 308, a weighted least squares regression analysis
method is also performed for the parameter(s) selected in
306 using the training data set. Digital predistortion com-
pensation is then performed on the validation data set using
the estimated polynomial coefficients based on the weighted
least squares regression analysis for each of the selected
parameters.

[0046] In 310, the EVM and ACLR are measured and the
values are compared to the set criteria for acceptable EVM
and ACLR values for each parameter of weighting factor,
and a desired final weighting according to the EVM and
ACLR comparisons is selected.

[0047] In 316, EVM and ACLR are measured and evalu-
ated using the test data set and the polynomial coefficients
based on the selected weighting factors determined in 310.
[0048] In 312, a determination is made whether the final
EVM and ACLR values satisfy the set target requirements
for these parameters. If the final values do not satisty the set
target, the operation returns to 306 to select different param-
eters to use for selecting the weighting pattern. If the final
EVM and ACLR values satisfy the set target requirements,
the operation proceeds to 314.

[0049] In 314, the DPD LUT data is generated using the
polynomial and coeflicients determined to satisfy the set
target requirements for EVM and ACLR in 312.

[0050] FIG. 4 illustrates a power spectral density plot of a
window function, according to an embodiment of the pres-
ent disclosure.

[0051] Referring to FIG. 4, the horizontal axis represents
the offset frequency in MHz from the center of the carrier
frequency at which the PA 218 transmits. The in-band region
corresponds to a bandwidth of 5 MHz. The ACLR regions to
the left and right of the in-band region are adjacent fre-
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quency regions with the same bandwidth as the in-band. The
regions outside the in-band and ACLR regions are consid-
ered to be noise regions. The out of band regions are a
combination of the ACLR and noise regions. The boundaries
between the in-band region, the ACLR regions, the noise
regions and the out of band regions may be adjusted accord-
ing to system level requirements.

[0052] According to an embodiment of the present disclo-
sure, the frequency weighting functions may boost ACLR
regions or out of band regions. A boosting function in
regression analysis is a technique that increases the predic-
tive accuracy of models that include a boosting function.
Weighting functions that may boost the ACLR regions or out
of band regions include boosting functions with a rectan-
gular, triangular, Hamming, bell or other shaped function.
The boosting function may be designed to target optimiza-
tion of ACLR, EVM or a balance between the two. The
present method searches for one or more window functions
that maximize ACLR while ensuring an upper bound on
EVM is not exceeded. The present method may also search
for a window function that minimizes EVM while main-
taining a given ACLR. The noise region may further be
boosted as the ACLR region in order to utilize nonlinear
components mixed in the noise region. The noise region may
also be de-boosted to avoid noisy estimation of the model.
The present system may also combine any weighting factor
on the noise region while boosting the ACLR region.
[0053] The present method parameterizes the window
function based on different parameters including, but not
limited to, ACLR region boundaries, noise region boundar-
ies, ACLR boosting factor, and noise region boosting factor.
The boosting region shape may be parametrized by different
shapes such as rectangular, Hamming, triangular, sinusoidal
or sigmoid. The parameterized window function may be
swept to select the optimal window parameters that maxi-
mize ACLR, minimize EVM, or provide a desired balance
between the two.

[0054] According to an embodiment of the present disclo-
sure, the present method improves ACLR over a standard
least squares regression method. The EVM loss from boost-
ing an out of band portion or the ACLR portion may be
controlled by the boosting factor. The present method
reduces the potential problem of overfitting a higher-order
MP by boosting an out of band or ACLR region.

[0055] According to an embodiment of the present disclo-
sure, for frequency-domain optimization of the predictive
model of the PA 218, the present method requires additional
operations corresponding to the fast Fourier transform (FFT)
of the time-domain signal, i.e., O(n log n), where O is the
number of FFT operations, and n is the number of data
samples used for estimation. For a time-domain optimiza-
tion, the present method requires O(n?) additional operations
for a convolutional matrix multiplication. Frequency-do-
main optimization may be more efficient in terms of com-
putational complexity unless a shortened time-domain
weighting pattern is used.

[0056] FIG. 5 illustrates a plot of amplitude-amplitude
(AM)-(AM) curves for PA characterization, according to an
embodiment of the present disclosure.

[0057] Referring to FIG. 5, the dots in region E represent
AM-AM scatter plots of PA input/output data sample pairs
and may be modelled as shown in Equation (2) below:

yiflx) ()]
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[0058] where, X, is a PA 218 input data sample and vy, is a
PA 218 output data sample.

[0059] The inverse function of Equation (2) above may be
estimated by a least squares regression analysis method and
may generate curve D of FIG. 5 which may be modelled as
shown in Equation (3) below:

%=g(:) 3

[0060] The least squares regression method minimizes the
following mean squares error (MSE) cost function as shown
in Equation (4) below:

= , 1 N-1 R [C))]
MSE = NZ; I = %" = NZ; Il = g G

[0061] The MSE is the same as EVM squares which is
defined in Equation (5) as:

151 8]
¥ Eb llx: = fg eI

EVM = = VMSE if max||x] =1
max||x|| i
[0062] where each (x,,g(f(x;))) pair is illustrated as dots in

FIG. 5 represented by region C representing the compen-
sated linear input/output data samples of the PA 218 and
(x,,X,) corresponds to a target linear curve (curve B).

[0063] Equation (1) may be represented as vector multi-
plication as shown in Equations (6) and (7) below:

X=Aa (6)
1 1 7
MSE = ﬁ(x—fc)*T(x—fc) = ﬁ(x—Aa)*T(x—Aa) ™
X0 5‘0
Xy X
where x = X=
AN-1 Ay-1

yoyollyoll® -.. yollyoll® ap
: a=1|:
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[0064] and where a is a coefficients vector for polynomial,
A is an input matrix for memory polynomial model, and
2p+1 is the order of polynomial.

[0065] Using Parseval’s identity, Equation (1) may be
expressed as a frequency-domain summation as shown in
Equation (8) below:

= L, o (8)
MSE= NZ; llx; = &1 = m% [l - 2]l
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-continued
where,
N-1 n
X, = oIy
n=0
N-1 n
X =) Xe W
n=0
[0066] Equation (8) may be simplified by vector repre-

sentation as shown in Equations (9) and (10) below:

1 . . 1 i T - 9
MSE = #(x=2) Tx—%) = m(X—X) x-%)

1 T 1 T (10)
MSE = ﬁ(x—Aa) (x—Aa) = W(Fx— FAa)"” (Fx— FAa)

Xo Xo
X1 X X
where, X = . BX=
Xy 5
N-1 b

and F is a discrete Fourier transform (DFT) matrix.

[0067] FIG. 6 illustrates a plot of power spectral density
(PSD) of PA 218 input (x,), PA 218 output (g(x,)), and
compensated PA 218 output (f(g(x,))), according to an
embodiment of the present disclosure. Equation (8) suggests
that MSE (or EVM) is .2 norm (where L2 norm of a vector
is the square root of the sum of the absolute values squared)
of the spectrum difference between the PA 218 input and
digital predistortion compensated PA 218 output. In other
words, the least squares regression analysis method tries to
minimize the spectrum difference between the PA 218 input
and the PA 218 output, which corresponds to minimization
of the EVM.

[0068] Therefore, minimizing the EVM may reduce the
ACLR value because the ACLR region is a part of the
frequency spectrum targeted for optimization, which
improves the ACLR value. However, the amount of ACLR
improvement depends on the power ratio between the in-
band signal region and the ACLR regions. Since the in-band
signal is usually much stronger than the ACLR region, the
least squares regression analysis method focuses on reduc-
ing distortion in the in-band region. Therefore, the standard
least squares regression analysis method may overlook an
out of band distortion due to the high power difference
between the in band and out of band regions.

[0069] Although nonlinear harmonics of the center fre-
quency have the highest power concentration within the
in-band region, they are mixed with a strong in-band linear
signal. The present method boosts the power of the ACLR
region or the out of band region to avoid overlooking the out
of band distortion in the least squares regression estimation.
The main benefit of boosting the ACLR region or out of
band region is that estimation of higher order terms in the
MP may be improved by properly balancing between the
in-band and ACLR regions. Therefore, frequency-domain
weighting that boosts the out of band or ACLR regions may
improve the ACLR.

[0070] According to an embodiment of the present disclo-
sure, a weighted least squares regression analysis method
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may improve the ACLR and EVM performance of the PA
218. In Equation (11), weights are multiplied on each
summation term of Equation (8), as shown below:

R o 1Nt o (1D
MSEyeighted s = WZ W,?”Xk - Xk” = WZ ||Wka - Wka||
k=0 =

[0071] where W, may be considered a spectrum window
function.
[0072] A vector representation of Equation (11) is shown

in Equation (12) below:

MSEeighted Ls = %(WX - W)A()*T(WX - W)A() = 12

1
2 (WFx— WFAQ)T (WFx— WFAa)

[0073] where, W=diag(W,, W,,..., W, )andFisaDFT
matrix.
[0074] Therefore, the frequency-domain solution for

weighted least squares regression becomes Equation (13) as
shown below:

Apoquency-Weightea Ls—A el N o e S 4 (13)

[0075] An equivalent time-domain expression of Equation
(13) is shown below in Equation (14):

MSE = (14)

1 1
A (WFx— WFAQ)T(WFx— WFAa) = 7 (Cx= )T (Cx - C)
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where C = .
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and w, is time-domain coefficient of frequency-domain
weights W,.

[0076] The time-domain least squares regression analysis
method may be represented by Equation (15) below:

@ ime-Weighted L5—(A eIy tarTer ey (15)

[0077] The time-domain solution represented by Equation
(13) is equivalent to the frequency-domain solution repre-
sented by Equation (15). The choice of a time-domain
solution or a frequency-domain solution may depend on
computational complexity of the solution and the computing
resources available. The computational complexity of Equa-
tion (15) depends on the length of time-domain coefficients
M. M is a design parameter chosen by truncating time-
domain coefficients of the weighting pattern. If M is much
smaller than N, Equation (15) may be more computationally
efficient than Equation (13) due to the sparsity of the matrix.
However, M may not be arbitrarily small because it may
distort the original weighting pattern, which may degrade
estimation performance.

[0078] FIG. 7 illustrates plots of memory polynomial
order versus ACLR determined by MSE for a test data set
and a training data set for a PA input power/RFIC gain of 4
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and a power supply voltage of 1.5V, according to an embodi-
ment of the present disclosure. FIG. 8 illustrates plots of
memory polynomial order versus ACLR, for a test data set
and a training data set for a PA input power/RFIC gain of 4
and a power supply voltage of 1.5V.

[0079] FIG. 9 illustrates plots of memory polynomial
order versus 10 log MSE determined by MSE for a test data
set and a training data set for an RFIC gain of 5 and a supply
voltage of 1.5V. FIG. 10 illustrates plots of memory poly-
nomial order versus 10 log MSE for a test data set and a
training data set for an RFIC gain of 5 and a power supply
voltage of 1.5 V.

[0080] For each plot in FIGS. 7-10, three boosting factors
are used: 2x, 4x, and 8x. The training data set is only used
for estimation of polynomial coeflicients. A separate test
data set is used to evaluate the generalization performance of
the predictive model. The frequency weighted least squares
regression is performed only for coefficient estimation. MSE
and ACLR results for test and training data sets are calcu-
lated based on their original definition without any weight-
ing.

[0081] The plots of FIG. 7 and FIG. 9 show that the MSE
difference between standard and weighted least squares
regression becomes smaller for the test data set and the
difference is less than 0.05 dB. In particular, FIG. 9 shows
the inversion of MSE performance for the test data set.
Therefore, the degradation of MSE from weighted least
squares regression is not significant. Furthermore, by adjust-
ing the boosting factor, the impact on MSE may be con-
trolled.

[0082] The plots of FIG. 8 and FIG. 10 show a comparison
of ACLR performance for the test data set and the training
data set. The weighted least squares regression consistently
shows better ACLR over standard least squares regression
for all polynomial orders tested using the test data set and the
training data set. The polynomial order of 7 for weighted
least squares regression shows improved ACLR but standard
least squares regression shows predictive performance deg-
radation (due to overfitting of the model). For a polynomial
order of 9, predictive performance degradation resulting
from the weighted least squares regression is much smaller
than that from standard least squares regression.

[0083] While the present disclosure has been particularly
shown and described with reference to certain embodiments
thereof, it will be understood by those of ordinary skill in the
art that various changes in form and details may be made
therein without departing from the spirit and scope of the
present disclosure as defined by the following claims and
their equivalents.

1. A method, comprising:

determining a training data set comprising input and

output data of a power amplifier;

determining compensation data by regressing the training

data set using a frequency-domain weighting function,
wherein the frequency-domain weighting function is
adjusted according to a target value of an error vector
magnitude (EVM);

storing the compensation data; and

linearizing an output of the power amplifier using the

stored compensation data.

2. The method of claim 1, wherein the frequency-domain
weighting function boosts at least one of an adjacent channel
leakage ratio (ACLR) region, an out of band region, and a
noise region.
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3. The method of claim 2, wherein the frequency-domain
weighting function includes a window in a shape of at least
one of rectangular, hamming, triangular, bell, sinusoid, and
sigmoid.

4. The method of claim 1, wherein the frequency-domain
weighting function is adjusted according to a target value of
an adjacent channel leakage ratio (ACLR).

5. The method of claim 3, wherein the window is param-
eterized by at least one of an ACLR region boundary, a noise
region boundary, an ACLR boosting factor, and a noise
region boosting factor.

6. The method of claim 1, wherein power is supplied to
the power amplifier by at least one of envelope tracking (ET)
or average power tracking (APT).

7. The method of claim 1, wherein the compensation data
is stored in a look up table (LUT).

8. The method of claim 1, wherein regressing the training
data comprises determining coefficients of a memory poly-
nomial using a least squares regression analysis.

9. The method of claim 2, wherein a power spectral
density of the power amplifier output is less than a power
spectral density of a non-compensated power amplifier
output in the ACLR region.

10. The method of claim 1, wherein the output of the
power amplifier comprises a wireless signal associated with
at least one of device to device (D2D), machine type
communications (MTC), fifth generation (5G), long term
evolution (LTE), long term evolution advanced (LTE-A),
code division multiple access (CDMA), wideband code
division multiple access (WCDMA), universal mobile tele-
communications system (UMTS), wireless broadband (Wi-
Bro), global system for mobile communications (GSM),
wireless fidelity (Wi-Fi), Bluetooth, and near field commu-
nications (NFC).

11. An electronic device, comprising:

a power amplifier;

a storage; and

a processor configured to:

determine a training data set comprising input and output

data of the power amplifier,

determine compensation data by regressing the training

data set using a frequency-domain weighting function,
wherein the frequency-domain weighting function is
adjusted according to a target value of an error vector
magnitude (EVM),

store the compensation data in the storage, and

linearize an output of the power amplifier using the stored

compensation data.

12. The device of claim 11, wherein the frequency-
domain weighting function boosts at least one of an adjacent
channel leakage ratio (ACLR) region, an out of band region,
and a noise region.

13. The device of claim 12, wherein the frequency-
domain weighting function includes a window in a shape of
at least one of rectangular, Hamming, triangular, bell, sinu-
soid, and sigmoid.

14. The device of claim 11, wherein the frequency-
domain weighting function is adjusted according to a target
value of an adjacent channel leakage ratio (ACLR).

15. The device of claim 13, wherein the window is
parameterized by at least one of an ACLR region boundary,
a noise region boundary, an ACLR boosting factor, and a
noise region boosting factor.
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16. The device of claim 11, wherein power is supplied to
the power amplifier by at least one of envelope tracking (ET)
or average power tracking (APT).

17. The device of claim 11, wherein the compensation
data is stored in a look up table (LUT).

18. The device of claim 11, wherein regressing the train-
ing data comprises determining coefficients of a memory
polynomial using a least squares regression analysis.

19. The device of claim 11, wherein the output of the
power amplifier comprises a wireless signal associated with
at least one of device to device (D2D), machine type
communications (MTC), fifth generation (5G), long term
evolution (LTE), long term evolution advanced (LTE-A),
code division multiple access (CDMA), wideband code
division multiple access (WCDMA), universal mobile tele-
communications system (UMTS), wireless broadband (Wi-
Bro), global system for mobile communications (GSM),
wireless fidelity (Wi-Fi), Bluetooth, and near field commu-
nications (NFC).

20. A chipset, the chipset configured to:

determine a training data set comprising input and output

data of a power amplifier,

determine compensation data by regressing the training

data set using a frequency-domain weighting function,
wherein the frequency-domain weighting function is
adjusted according to a target value of an error vector
magnitude (EVM),

store the compensation data in a storage, and

linearize an output of the power amplifier using the stored

compensation data.
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