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( 57 ) ABSTRACT 
One embodiment is a system including a data collector 
located in a cable network for capturing multi - tone signals 
traversing the cable network ; a data repository located in a 
cloud network and having an interface for communicating 
with the data collector and for storing the multi - tone signals 
captured by the data collector and network data associated 
with the cable network ; and a central server including a 
memory element storing Predictive Services Management 
( PSM ) algorithms comprising instructions and associated 
data and a processor operable to execute the PSM algo 
rithms . The central server is configured for detecting a fault 
in the cable network and identifying a segment associated 
with the fault ; determining a maximum tap magnitude for 
the fault ; calculating an aggregate tap magnitude for the 
fault ; and classifying a severity of the fault based at least in 
part on the maximum tap magnitude and the aggregate tap 
magnitude . 
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HYBRID FIBRE COAXIAL FAULT 
CLASSIFICATION IN CABLE NETWORK 

ENVIRONMENTS 

CROSS - REFERENCE TO RELATED 
APPLICATION 

[ 0001 ] This application claims the benefit of priority under 
35 U . S . C . $ 119 ( e ) to U . S . Provisional Application Ser . No . 
62 / 327 , 159 , entitled “ PREDICTIVE SERVICES MAN 
AGEMENT IN CABLE NETWORKS , ” filed on Apr . 25 , 
2016 , which is hereby incorporated by reference in its 
entirety . 

TECHNICAL FIELD 
[ 0002 ] This disclosure relates in general to the field of 
communications and , more particularly , to hybrid fibre 
coaxial ( “ HFC ” ) fault classification in cable network envi 
ronments . 

BACKGROUND 
[ 0003 ] Consumer appetite for bandwidth continues to 
grow exponentially , challenging competition in the cable 
network market . Cable operators are constantly seeking 
ways to boost profits and free cash flow in part by lowering 
costs . Costs can be reduced in various ways , for example , by 
proactively responding to network problems using predic 
tive solutions such as monitoring to relieve a problem before 
an outage occurs and by improving efficiencies in mainte 
nance , for example by accurately deploying the right 
resources at the right time in the right place . Monitoring may 
be implemented in cable networks employing Data Over 
Cable Service Interface Specification ( “ DOCSIS ” ) standards 
for operation by using DOCSIS devices equipped with 
monitoring tools for plant monitoring purposes . By using 
these devices as network probes , cable operators can collect 
device and network parameters . Combining the analysis of 
the collected data along with network topology and device 
location from a geographical information system ( “ GIS " ) , it 
may be possible to isolate the source of any potential 
problem before they negatively impact operations . However , 
currently existing mechanisms for proactively responding to 
failures in cable networks are limited in various ways . 

[ 0009 ] FIG . 5 is a simplified block diagram illustrating yet 
other example details of embodiments of the communication 
system ; 
10010 ] . FIG . 6 is a simplified block diagram illustrating yet 
other example details of embodiments of the communication 
system ; 
[ 0011 ] FIG . 7 is a simplified block diagram illustrating yet 
other example details of embodiments of the communication 
system ; 
[ 0012 ] FIG . 8 is a simplified block diagram illustrating yet 
other example details of embodiments of the communication 
system ; 
[ 0013 ] FIG . 9 is a simplified flow diagram illustrating 
example operations that may be associated with embodi 
ments of the communication system ; 
[ 0014 ] FIG . 10 is a simplified block diagram illustrating 
yet other example details of embodiments of the communi 
cation system ; 
[ 0015 ] . FIG . 11 is a simplified block diagram illustrating 
yet other example details of embodiments of the communi 
cation system ; 
[ 0016 ] . FIG . 12 is a simplified diagram illustrating yet 
other example details of embodiments of the communication 
system ; 
[ 0017 ] FIG . 13 is a simplified diagram illustrating yet 
other example details of embodiments of the communication 
system ; 
[ 0018 ] FIG . 14 is a simplified diagram illustrating yet 
other example details of embodiments of the communication 
system ; 
[ 0019 ] FIG . 15 is a simplified block diagram illustrating 
yet other example details of embodiments of the communi 
cation system ; 
[ 0020 ] FIG . 16 is a simplified diagram illustrating yet 
other example details of embodiments of the communication 
system ; 
0021 ] FIG . 17 is a simplified block diagram illustrating 
yet other example details of embodiments of the communi 
cation system ; 
[ 0022 ] FIG . 18 is a simplified diagram illustrating yet 
other example details of embodiments of the communication 
system ; 
[ 0023 ] FIG . 19 is a simplified diagram illustrating yet 
other example details of embodiments of the communication 
system ; 
[ 0024 ] FIG . 20 is a simplified diagram illustrating yet 
other example details of embodiments of the communication 
system ; 
[ 0025 ] FIG . 21 is a simplified block diagram illustrating 
yet other example details of embodiments of the communi 
cation system 
[ 0026 ] FIG . 22 is a simplified diagram illustrating yet 
other example details of embodiments of the communication 
system ; 
[ 0027 ] FIG . 23 is a simplified diagram illustrating yet 
other example details of embodiments of the communication 
system ; 
[ 0028 ] FIG . 24 is a simplified diagram illustrating yet 
other example details of embodiments of the communication 
system ; 
[ 0029 ] FIG . 25 is a simplified flow diagram illustrating 
example operations that may be associated with embodi 
ments of the communication system ; 

BRIEF DESCRIPTION OF THE DRAWINGS 
[ 0004 ] To provide a more complete understanding of the 
present disclosure and features and advantages thereof , 
reference is made to the following description , taken in 
conjunction with the accompanying figures , wherein like 
reference numerals represent like parts , in which : 
[ 0005 ] FIG . 1 is a simplified block diagram illustrating a 
communication system supporting a network architecture 
for predictive services management in cable network envi - 
ronments ; 
[ 0006 ] FIG . 2 is a simplified block diagram illustrating 
other example details of embodiments of the communication 
system ; 
[ 0007 ] FIG . 3 is a simplified block diagram illustrating yet 
other example details of embodiments of the communication 
system ; 
[ 0008 ] FIG . 4 is a simplified block diagram illustrating yet 
other example details of embodiments of the communication 
system ; 
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[ 0030 ] FIG . 26 is a simplified diagram illustrating yet 
other example details of embodiments of the communication 
system ; 
[ 0031 ] FIG . 27 is a simplified block diagram illustrating 
yet other example details of embodiments of the communi 
cation system ; and 
[ 0032 ] FIG . 28 is a simplified diagram illustrating yet 
other example details of embodiments of the communication 
system . 

DETAILED DESCRIPTION OF EXAMPLE 
EMBODIMENTS 

Overview 
[ 0033 ] One embodiment is a system including a data 
collector located in a cable network for capturing multi - tone 
signals traversing the cable network ; a data repository 
located in a cloud network and having an interface for 
communicating with the data collector and for storing the 
multi - tone signals captured by the data collector and net 
work data associated with the cable network , and a central 
server including a memory element storing Predictive Ser 
vices Management ( PSM ) algorithms comprising instruc 
tions and associated data and a processor operable to execute 
the PSM algorithms . The central server is configured for 
detecting a fault in the cable network and identifying a 
segment associated with the fault ; determining a maximum 
tap magnitude for the fault ; calculating an aggregate tap 
magnitude for the fault ; and classifying a severity of the fault 
based at least in part on the maximum tap magnitude and the 
aggregate tap magnitude . 

the nodes may be connected to multiple terminal devices . In 
various embodiments , the nodes connect to the headend , and 
the headend contains a plurality of CMTS units . Each CMTS 
contains a plurality of transceivers , which communicate 
with the plurality of terminal devices . For example , each 
CMTS may have eight or more receivers , and each receiver 
may communicate with hundreds of terminal devices . 
0036 A Predictive Service Management ( “ PSM ” ) mod 
ule 24 is provisioned in one or more locations in commu 
nication system 10 to facilitate efficient and proactive main 
tenance of cable network 12 . PSM module 24 automatically 
identifies impending and current network connectivity prob 
lems , including failed nodes , degraded nodes , loss of band 
width , etc . , in cable network 12 before they escalate to affect 
service . PSM module 24 can also be used to identify any 
corrective actions to be performed to prevent or correct 
those problems and / or to eliminate / minimize their impact on 
customer services . PSM module 24 further enables autho 
rized users to obtain a deeper understanding of network 
behavior on a granular level , for example , to a single serving 
group and even to an individual customer . PSM module 24 
can provide intelligence and massive data interpretation 
capabilities , thereby pinpointing the source ( s ) of network 
problems and providing recommended actions to correct the 
problem ( s ) . On a technical level , PSM module 24 can be 
capable of managing tens of terabytes of historical network 
device operating information , while simultaneously provid 
ing real - time inquiry and access to the most recent infor 
mation from network devices and customer premises equip 
ment ( CPE ) , such as cable modems and other terminal 
devices 16 . 
( 0037 ] PSM module 24 uses pre - equalization coefficients 
as a metric to determine and identify faults in cable network 
12 . In one embodiment , PSM module 24 identifies a fault 
signature , and the identified fault signature triggers further 
operational maintenance of cable network 12 . For example , 
the identified fault signature triggers fault locationing and 
fault classification operations in PSM module 24 ; in another 
example , the identified fault signature triggers a call to a 
field technician or network operator . In various embodi 
ments , adverse effects of group delay are eased through 
algorithmic methods , for example , to improve accuracy of 
the signal fault signature identification . 
[ 0038 ] In a general sense , HFC components , such as 
amplifiers 20 , passive devices 22 and terminal devices 16 
cause signal impairment in cable network 12 including by 
return loss , isolation , mixing , and combining . For instance , 
reflections ( including micro - reflections ) may be caused by a 
length of cable connecting two devices with poor return loss , 
acting as signal reflectors . Any HFC component has the 
potential to reflect signals . Typical CMs are configured for 
a design limit of 6 dB return loss whereas other components 
typically reflect a lower percentage of incident power . 
[ 0039 ] To mitigate such signal losses , pre - equalization is 
generally implemented in cable network 12 . For each chan 
nel of the signal ( e . g . , comprising data signals carried on a 
carrier of a particular frequency ) , an equalizer ( comprising 
an electrical circuit ) generates coefficients used in a digital 
equalizing filter that processes incoming signals with the 
coefficients for an inverse channel response , canceling dis 
tortions in the channel from the upstream channel impair 
ments . In effect , the electrical circuit creates a digital filter 
that has approximately the opposite complex frequency 
response of the channel through which the signal is to be 

Example Embodiments 
[ 0034 ] Turning to FIG . 1 , FIG . 1 is a simplified block 
diagram illustrating a communication system 10 for signal 
fault signature isolation in cable network environments in 
accordance with one example embodiment . FIG . 1 illustrates 
a cable network 12 ( indicated generally by an arrow ) facili 
tating communication between a cable modem termination 
system ( “ CMTS " ) 14 and one or more DOCSIS terminal 
devices 16 such as cable modems ( “ CMs ” ) . Note that in 
various embodiments , the terminal devices can comprise 
any one of modem terminal adapters , multimedia terminal 
adapters , voice - over - IP ( " VoIP ” ) terminal adapters , embed 
ded cable modems of DOCSIS set - top gateways or like 
devices . Terminal devices 16 are connected to a headend 
( comprising one or more transceiver 18 and CMTS 14 ) of 
cable network 12 via nodes such as HFC radio frequency 
( “ RF ’ ) amplifiers 20 and passive devices 22 including 
cabling , taps , splitters , and in - line equalizers . Cable network 
12 includes various other components that are not shown in 
detail in the figure and facilitates communication of multi 
tone signals between transceiver 18 and terminal devices 16 . 
[ 0035 ] In some embodiments , CMTS 14 is geographically 
remote from transceiver 18 and connected thereto across a 
Converged Interconnect Network ( “ CIN ” ) , which comprises 
an IP network facilitating communication according to cer 
tain specific DOCSIS ( and other ) protocols . The headend 
connects to an IP ( Internet Protocol ) and / or PSTN ( Public 
Switched Telephone Network ) network . Data , such as TV 
programs , audio , video and other data is sent from the 
headend to the terminal devices . In addition , terminal 
devices 16 send data upstream towards the headend . Each of 
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do GD = LATES 
transmitted . DOCSIS 2 . 0 and DOCSIS 3 . 0 specify twenty 
four symbol - spaced complex coefficients , also referred to as 
taps . The pre - equalization coefficients are used for ampli 
tude and phase correction over a twenty - four symbol period 
time window . 
[ 0040 ] Cable modems and other such terminal devices 16 
typically implement pre - equalization to mitigate upstream 
channel impairments ( e . g . , for signals transmitted from CMS 
towards CMTS 14 ) . The upstream pre - equalization mecha 
nism relies on interactions of DOCSIS ranging processes for 
determining and adjusting the pre - equalization coefficients . 
In various systems , CMTS 14 computes the pre - equalization 
coefficients for each of terminal devices 16 , and provide 
them to the respective ones of terminal devices 16 . Appro 
priate digital filters at terminal devices 16 use their respec 
tive pre - equalization coefficients to pre - distort upstream 
signals to compensate for known ( e . g . , expected and / or 
pre - measured ) upstream path distortions ( e . g . , linear impair 
ments ) , so that as the pre - distorted upstream signal travels 
through cable network 12 it is corrected and arrives free of 
distortion at CMTS 14 . 
[ 0041 ] CableLabs® Proactive Network Maintenance 
( “ PNM ” ) system discloses a method for fault identification 
and isolation using pre - equalization coefficients . According 
to PNM , CMs and CMTSs are polled to obtain pre - equal 
ization coefficient data from all configured upstream chan 
nels . The gathered data is verified for format integrity and is 
normalized to be useful for comparison . For scalability 
purposes , the data collection process is conducted using a 
more frequent polling cycle for CMs that exhibited apparent 
distortion above a pre - determined level and a less frequent 
cycle for other CMs . The distortion is determined based on 
non - main tap to total energy ( “ NMTER ” ) ratio . A detailed 
analysis is conducted including calibration and determina 
tion of distortion signatures from frequency domain and 
time domain analysis . 
10042 ] With pre equalization coefficients , the approximate 
distance between two reflection points can be determined . 
Each one of the taps of the pre - equalization coefficients 
represents energy in the signal during a period of time . Taps 
of the pre - equalization coefficients that indicate more energy 
represent a reflection point . In other words , each of the taps 
relates to a time period based on the symbol rate of the 
channel . When a tap is elevated in power level amplitude , it 
indicates an impedance mismatch at that time period . Thus , 
comparing the tap energy of the signal with an expected 
value of the tap energy indicates an anomaly in the signal , 
possibly caused by a fault . The separation of the faulty tap 
from the main tap in time domain indicates a corresponding 
distance of the reflection point . 
[ 0043 ] However , the distortion signatures detected by 
PNM include group delay and micro - reflections . In other 
words , PNM does not isolate or remove the effect of group 
delay for distortion signature determination . However , 
group delay can smear and smooth taps , making it difficult 
to isolate relevant ( e . g . , distinctive ) taps indicative of faults 
in the network at accuracies of 10 feet . Therefore , the PNM 
technique is not sufficiently accurate to detect faults in the 
presence of significant group delay . 
[ 0044 ] Group delay is the negative derivative of radian 
phase with respect to radian frequency ( according to the 
Institute of Electrical and Electronics Engineers ( “ IEEE ” ) 
Standard Dictionary of Electrical and Electronics Terms ) . 
Group delay is expressed mathematically as : 

where GD is group delay in seconds , is phase in radians 
and 2 is frequency in radians per second . Group delay is a 
measure of different frequencies traveling through the same 
medium at different speeds . If phase - versus - frequency 
response does not change in proportion to frequency , group 
delay exists . In a network with no group delay variation or 
group delay distortion , all frequencies are transmitted 
through the network in the same amount of time — that is , 
with equal time delay . If group delay distortion exists , 
signals at some frequencies travel faster than signals at other 
frequencies . Common sources of group delay in a cable 
network 12 include : power coils , diplex filters , band edges 
and roll off areas , high - pass filters , data - only filters , step 
attenuators , in - line equalizers with filters , impedance mis 
match - related micro reflections , etc . 
[ 0045 ] Group delay can affect fault signature identification 
in algorithms that use pre - equalization coefficients for 
detecting faults . A - 25 dB tap is generally not detectable in 
the presence of group delay because side taps can swamp 
close - in echoes with levels up to - 10 dB . Thus , group delay 
can lead to faulty tap detection or poor accuracy of tap 
locations ( in time ) . Unlike PNM , PSM module 24 , in various 
embodiments , identifies a fault signature from captured 
signals in cable network 12 using phase domain analysis 
( rather than , or in addition to , frequency domain and / or time 
domain analysis ) and compensation for group delay . 
[ 0046 ] For purposes of description , the term “ fault signa 
ture ” comprises an observation of a performance metric that 
is out of its expected value or range . There can be two 
aspects in such expected value or range : ( 1 ) an absolute 
threshold : for example , a signal is deemed not norm if its 
signal level is below - 20 dBmV / 6 MHz , or micro - reflections 
in the pre - equalization coefficients are - 25 dB or above with 
respect to the main tap ; and ( 2 ) a relative threshold : for 
example , the observations are examined for consistence , 
which may be specified with respect to time , frequency , 
and / or peer ( group of CMs ) . Time consistence may be 
indicated , for example , if a signal level varies by xdB within 
N seconds ( ms to ms ) . Frequency consistence may be 
indicated , for example , if the signal level varies by ydB over 
a [ short ] frequency spectrum . Peer consistence may be 
indicated , for example , if the signal level is zdB below its 
neighboring CMs . 
[ 0047 ] In a general sense , the absolute threshold norm can 
be used for downstream ( “ DS ” ) and upstream ( “ US ” ) signal 
level , modulation error ratio ( “ MER ” ) , signal to noise ratio 
( “ SNR ” ) , forward error correction ( “ FEC ” ) statistics and 
pre - equalization coefficients . The relative threshold norm 
can be used with the same metrics as for the absolute 
threshold , with the difference being that their respective 
consistence is evaluated , rather than the absolute values . For 
example , changes within a short period of time ( change 
within two data polls ) ( note that slow changes ( for example 
changes due to corrosion ) may not be detected ) ; change 
from carrier to carrier cross spectrum ( e . g . , with granularity 
of 6 MHz / 6 . 4 MHz ) ; and change from one group of CMs to 
others ( e . g . , based on HFC and CM geo - locations from GIS 
database ) . Potentially available metrics include US full band 
capture , DS full band capture and DS pre - equalization 
coefficients ( if available ) . 
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[ 0048 ] The decision to choose a particular metric for fault 
signature identification may rely on availability of the met - 
ric , its objective nature , and its sensitivity . For example , 
while it may be desirable to leverage as many metrics as 
possible , an effective PSM algorithm may be built on 
metrics that are available currently ( and not in the future , for 
example ) , and available from most terminal devices 16 , if 
not all . The selection of the metric may be objective , that is , 
not subject to change by CMTS 14 or HFC dependent . 
Further , to enable PSM module 24 to detect fault signatures 
before the fault escalates and affect customer service , the 
selected metric should have high sensitivity to faults . 
( 0049 ] In an example embodiment , PSM module 24 uses 
pre - equalization coefficients as primary metrics , and FEC 
statistics , signal level and MER as secondary metrics for 
fault signature identification . Taps in the pre - equalization 
coefficients are static and self - referred ( e . g . , uses the main 
tap ) , and thus can be a good metric in terms of availability . 
Among SNR , FEC , MER and pre - equalization coefficients , 
pre - equalization coefficients provide the most reliable and 
sensitive fault signature . The taps of pre - equalization coef 
ficients can indicate faults ( and location of the faults when 
combined with additional information ) before they escalate 
and affect network performances . Moreover , the pre - equal 
ization coefficients may be suitably retrieved from various 
components of cable network 12 using existing mechanisms 
( e . g . , from periodic polls of coefficient values and other 
relevant physical layer ( “ PHY ” ) metrics ) . 
[ 0050 ] In various embodiments , PSM module 24 provides 
improvements over existing signal fault identification tech 
nologies in cable networks by deriving a channel response 
from pre - equalization coefficients using known techniques , 
such as reverse minimum mean squared error ( “ MMSE ” ) or 
zero forcing ( “ ZF ” ) equalization algorithms , then starting 
with the main tap ( e . g . , tap index 8 ) of the channel response , 
searching for an echo in the phase domain for the selected 
tap in the channel response , finding a specific phase with the 
echo ( e . g . , corresponding to a correlation peak ) , dephasing 
the channel response , for example , by rotating the channel 
response with the specific phase , computing a tap amplitude 
from the dephased channel response , and subtracting the 
computed tap amplitude from the channel response , thereby 
removing the effects of group delay . The operations continue 
to the next tap location . 
[ 0051 ] As used herein , the term " channel response ” com 
prises a mathematical characterization ( e . g . , model , simula 
tion , quantitative estimation , etc . ) of a communication chan 
nel ( e . g . , signal pathway for signals having one or more 
frequencies or a specific frequency allocation ( e . g . , in the RF 
spectrum ) ) . In other words , the channel response models 
channel behavior ( or effect of the channel ) on a time - varying 
signal as it traverses the channel . It is typically a measure of 
amplitude and phase of the output signal ( e . g . , as a function 
of frequency ) relative to the input signal . 
[ 0052 ] Group delay cannot be removed from estimation of 
faults using CableLabs PNM technology . Group delay 
causes large side taps around the main tap , which can swamp 
the actual echoes ( taps ) up to - 10 dB ( first a few taps ) . 
Moreover , the group delays of each individual echoes will 
smear and smooth the taps , resulting in failed taps detections 
and poor tap locations . To make the pre - equalization coef 
ficients useful , PSM module 24 removes the effect of the 
group delays . Thus , PSM module 24 can detect distinctive 
taps after the effect of group delay is removed and the 

detection can be performed reliably with magnitude of - 25 
dB below the main tap and 20 ns accuracy , or approximately 
10 ft . of cable length , thereby providing better accuracy than 
currently existing techniques such as PNM . 
[ 0053 ] Turning to channel response , assume H ( t , T ) is the 
channel output at time t to an impulse applied at time t - t , t 
representing channel delay . In general , the output r ( t ) to an 
input signal s ( t ) for a linear time variant ( LTV ) channel is 
given as : 

r ( t ) = L _ . " s ( t – t ) H ( t , t ) dt 
In a general sense , the channel response simulates ( e . g . , 
models , estimates , approximates ) errors introduced into the 
input signal s ( t ) by the channel . In embodiments of com 
munication system 10 , the derived channel response using 
the pre - equalization coefficients includes substantially all 
errors in the channel , including group delay . In various 
embodiments , PSM module 24 includes algorithms for 
removing the effect of group delay from the estimated 
channel response ( e . g . , thereby accounting for group delay 
in the received signal ; estimating contribution of group 
delay to the received signal ; etc . ) using phase domain 
analysis . 
100541 PSM module 24 builds on CableLabs PNM to 
create a service that uses a combination of spectrum infor 
mation ( pre - equalization coefficients ) from terminal devices 
16 , upstream modem data through DOCSIS Management 
Information Bases ( “ MIBs ” ) in near real time ) , and data 
analytics . PSM module 24 uses this information to collect 
and correlate network geodesign and topology data , cus 
tomer service data , and operating data while accounting for 
channel effects such as group delay to increase accuracy . The 
result is a custom developed algorithm that can detect and 
localize issues before they affect operation and customer 
satisfaction . 
10055 ) According to an example embodiment , PSM mod 
ule 24 uses DOCSIS terminal devices 16 as continuous 
probes ( e . g . , sensors , measurement devices ) throughout 
cable network 12 to identify and locate plant and subscriber 
drop problems . PSM module 24 performs trend analysis to 
predict future faults before they happen . PSM module 24 
improves network performance to higher levels for DOCSIS 
3 . 1 , by for example , deriving fault signatures from pre 
equalization coefficients , searching for responses indicative 
of the presence of linear distortions , and overlaying terminal 
device location information on digitized plant maps . 
[ 0056 ] Turning to the infrastructure of communication 
system 10 , the network topology can include any number of 
cable modems , customer premises equipment , servers , 
switches ( including distributed virtual switches ) , routers , 
amplifiers , taps , splitters , combiners and other nodes inter 
connected to form a large and complex network . Network 12 
represents a series of points or nodes of interconnected 
communication pathways for receiving and transmitting 
packets and / or frames of information that are delivered to 
communication system 10 . Note that cable network 12 may 
also be referred to as a cable plant , and / or HFC network . A 
node may be any electronic device , computer , printer , hard 
disk drive , client , server , peer , service , application , or other 
object capable of sending , receiving , amplifying , splitting , 
or forwarding signals over communications channels in a 
network . Elements of FIG . 1 may be coupled to one another 
through one or more interfaces employing any suitable 
connection ( wired or wireless ) , which provides a viable 
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pathway for electronic communications . Additionally , any 
one or more of these elements may be combined or removed 
from the architecture based on particular configuration 
needs . 
[ 0057 ] Cable network 12 offers a communicative interface 
between cable network components , and may include any 
appropriate architecture or system that facilitates communi 
cations in a network environment according to DOCSIS 
protocols and any other suitable communication protocol for 
transmitting and receiving data packets within communica 
tion system 10 . The architecture of the present disclosure 
may include a configuration capable of DOCSIS , TCP / IP , 
TDMA , and / or other communications for the electronic 
transmission or reception of signals in the networks includ 
ing cable network 12 . The architecture of the present dis 
closure may also operate in conjunction with any suitable 
protocol , where appropriate and based on particular needs . 
In addition , gateways , routers , switches , and any other 
suitable nodes ( physical or virtual ) may be used to facilitate 
electronic communication between various nodes in the 
network . 
[ 0058 ] In some embodiments , a communication link may 
represent any electronic link supporting a network environ 
ment such as , for example , cable , Ethernet , wireless tech 
nologies ( e . g . , IEEE 802 . 11x ) , ATM , fiber optics , etc . or any 
suitable combination thereof . In other embodiments , com 
munication links may represent a remote connection through 
any appropriate medium ( e . g . , digital subscriber lines 
( " DSL ” ) , coaxial fiber , telephone lines , T1 lines , T3 lines , 
wireless , satellite , fiber optics , cable , Ethernet , etc . or any 
combination thereof ) and / or through any additional net 
works such as a wide area networks ( e . g . , the Internet ) . 
[ 0059 ] Note that the numerical and letter designations 
assigned to the elements of the FIGUREs do not connote any 
type of hierarchy ; the designations are arbitrary and have 
been used for purposes of teaching only . Such designations 
should not be construed in any way to limit their capabilities , 
functionalities , or applications in the potential environments 
that may benefit from the features of communication system 
10 . It should be understood that communication system 10 
shown in FIG . 1 is simplified for ease of illustration . 
[ 0060 ] In particular embodiments , CMTS 14 may com 
prise a hardware appliance with appropriate ports , proces 
sors , memory elements , interfaces , and other electrical and 
electronic components that facilitate the functions described 
herein , including providing high speed data services , such as 
cable Internet or voice over Internet Protocol ( e . g . , in the 
form of digital , RF , or other suitable signals ) to cable 
subscribers , such as cable modems 16 . In various embodi 
ments , CMTS 14 comprises a Universal Broadband Router 
( " BR " ) with features that enable it to communicate with the 
HFC cable network via a suitable cable modem card , which 
provides an interface between the uBR protocol control 
information ( PCI ) bus and RF signals on the DOCSIS HFC 
cable network . 
[ 0061 ] In some embodiments , CMTS 14 may comprise a 
converged cable access platform ( “ CCAP " ) core that trans 
mits and receives digital signals in IP protocols , coupled 
with one or more physical interface ( “ PHY ” ) transceiver ( s ) , 
such as transceiver 18 that convert the digital IP signals into 
RF signals , and vice versa . The PHY transceivers , such as 
transceiver 18 , may be co - located with the CCAP core at a 
common location , or may be located remote from the CCAP 
core and connected over a converged interconnect network 

( “ CIN ” ) . In some embodiments , CMTS 14 may comprise a 
single CCAP core and a plurality of PHY transceivers , such 
as transceiver 18 . CMTS 14 is connected ( e . g . , communi 
catively coupled , for example , through wired communica 
tion channels ) to terminal devices 16 , transceiver 18 , and 
other network elements in cable network 12 . 
[ 0062 ] Transceivers 18 may comprise suitable hardware 
components and interfaces for facilitating the operations 
described herein . In some embodiments , transceivers 18 
may be embedded in or be part of another hardware com 
ponent , such as a broadband processing engine comprising 
a motherboard , microprocessors and other hardware com 
ponents . In some embodiments , transceivers 18 comprise 
downstream and upstream PHY modules , deployed in a 
Coaxial Media Converter ( “ CMC ” ) that supports RF func 
tions at the PHY layer . Transceivers 18 may comprise 
pluggable modules ( e . g . , small form - factor pluggable 
( “ SFP " ) ) that may be plugged into a network element 
chassis , or embedded modules that attach to cables directly . 
In addition to optical and electrical interfaces , transceivers 
18 include a PHY chip , appropriate digital signal processors 
( “ DSPs ” ) and application specific integrated circuits 
( “ ASICs ” ) according to particular needs . 
[ 0063 ] Amplifiers 20 comprise RF amplifiers suitable for 
use in cable network 12 . Amplifiers 20 are typically used at 
intervals in network 12 to overcome cable attenuation and 
passive losses of electrical signals caused by various factors 
( e . g . , splitting or tapping the coaxial cable ) . Amplifiers 20 
may include trunk amplifiers , distribution amplifiers , line 
extenders , house amplifier and any other suitable type of 
amplifier used in cable networks . 
[ 0064 ] In various embodiments , PSM module 24 com 
prises electrical circuits fabricated on integrated circuits 
( e . g . , digital signal processors ( “ DSPs ” ) , field program 
mable gate arrays ( “ FPGAs " ) , application specific integrated 
circuit ( “ ASICs ” ) ) , printed circuit boards , or other suitable 
platforms with appropriate transistors , conductors , resistors 
and other electrical components for facilitating various 
operations as described herein . In some embodiments , PSM 
module 24 is incorporated into CMTS 14 ; in some other 
embodiments , PSM module 24 is incorporated into a com 
puting device , such as a server connected to cable network 
12 ; in yet other embodiments , PSM module 24 comprises a 
stand - alone dedicated device , for example , usable by a cable 
technician in the field . 
[ 0065 ] Turning to FIG . 2 , FIG . 2 is a simplified diagram 
illustrating example details of PSM module 24 according to 
an embodiment of communication system 10 . Device data 
32 , customer services updates 34 , network design data 36 
( and other data not shown in the figure ) are collected and 
stored as network data 38 . Device data 32 comprises device 
type , device characteristics and other information pertaining 
to the operation of the respective device in cable network 12 . 
For example , device data 32 includes amplifier make , type , 
manufacturer number , specifications , etc . of a specific 
amplifier in cable network 12 . Customer services updates 34 
includes subscriber information , such as authorized network 
services , subscribed services , subscribed bandwidth , sub 
scriber quality of service , and other information relevant to 
network services at individual customer sites in cable net 
work 12 . Network design data 36 comprises GIS data , 
associating devices in cable network 12 with specific geo 
graphic information . 
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[ 0066 ] PSM algorithms 40 execute on network data 38 to 
troubleshoot cable network 12 and determine causative 
problems therein . As used herein , the term “ algorithm ” 
refers to a self - contained process comprised of a set of 
conditional rules and step - by - step operations to be followed 
in problem - solving analysis . PSM algorithms 40 facilitate 
computations that , when executed , proceeds through a finite 
number of well - defined successive deterministic ( e . g . , non 
random ) states , eventually producing an output and termi 
nating at a final ending state . In other words , PSM algo 
rithms 40 take as input network data 38 , perform 
computations thereon , and produce one or more outputs that 
affect network diagnostics operations of cable network 12 . 
In an example embodiment , PSM algorithms 40 comprise 
instructions executable by a processor and data associated 
therewith . 
[ 0067 ] Work orders 42 , fault location information 44 and 
diagnostic details 46 are generated based on the results of 
execution of PSM algorithms 40 . A key aspect of PSM 
module 24 is detecting pending network problems before 
they negatively affect customers . PSM module 24 provides 
a supportive platform intended to advice network operators 
and field technicians on faults in cable network 12 and 
potential resolutions thereto . 
[ 0068 ] Turning to FIG . 3 , FIG . 3 is a simplified diagram 
illustrating example details of PSM module 24 according to 
an embodiment of communication system 10 . A processor 
48 and a memory element 49 for storing instructions and 
data associated with PSM algorithm 40 are included in PSM 
module 24 . In various embodiments , processor 48 operates 
in conjunction with memory element 49 to execute PSM 
algorithm 40 . In an example embodiment , PSM module 24 
is fabricated on an integrated circuit , for example , an appli 
cation specific integrated circuit ( ASIC ) . 
[ 0069 ] Network data 38 includes Key Performance Indi 
cators ( KPI ) 50 , comprising signal levels , signal - to - noise 
ratio ( SNR ) , forward error correction ( FEC ) , and pre - equal 
ization coefficients and PSM data 51 , comprising all other 
information relevant to fault detection , isolation , and main 
tenance , including device data , geographical information 
system ( GIS ) data , customer subscriber information , etc . 
KPI 50 and PSM data 51 are provided to PSM algorithm 40 . 
In various embodiments , pre - equalization coefficients are 
used as primary indicators of faults , and SNR , FEC and 
signal levels are used as secondary indicators of faults . In 
various embodiments , the pre - equalization coefficients may 
be obtained by periodic polling of terminal devices 16 , 
whereas the secondary indicators may be obtained from a 
full spectrum capture of signals traversing cable network 12 
in real time . 
[ 0070 ] GIS data may be provided as PSM data 51 from 
GIS databases ( e . g . , storing geospatial data ( e . g . , data 
defined spatially ( in location ) by four dimensions ( geometry 
( e . g . , latitude , longitude , depth ) and time ) related to the 
Earth ) , network information and GPS maps for various 
uses ) . In some embodiments , monitoring and signal leakage 
information in cable network 12 are collected and linked in 
the GIS database to tie together relevant network informa - 
tion , trouble , leakage , weather events , traffic congestion , etc . 
For example , power supplies , optical nodes , amplifiers and 
other active devices with a DOCSIS based transponder 
provide performance data back to the CMTS 14 . The tran 
sponder uses DOCSIS standards for fiber node and power 
supply monitoring . Automatic signal leakage detection cap 

tures radio frequency leakage outbreaks and records with a 
time / date stamp and GPS location and sends the captured 
data back to the central GIS database . 
[ 0071 ] In various embodiments , PSM module 24 retrieves 
KPI 50 from signals traversing cable network 12 . A signal 
fault signature identification algorithm 52 in PSM module 
24 uses KPI 50 to identify one or more faults in cable 
network 12 . In an example embodiment , the fault signature 
is identified based on pre - equalization coefficients and phase 
domain analysis of a channel response . The fault signature 
indicates a distance of the fault from a known reflection 
point in cable network 12 . For example , signal fault signa 
ture identification algorithm 52 outputs a fault signature 
indicating that the second tap from the main tap is above a 
predetermined threshold . The timing of the tap can be used 
to identify the location of the corresponding fault , for 
example , that the fault is located 10 ft . from the vicinity of 
a specific data collector device ( e . g . , test meter ) . To explain 
further , assume that a broken bridge amplifier and a broken 
coupler , 400 ft apart , cause 10 dB and 7 dB return losses , 
respectively . The fault will appear as a tap at 920 ns with a 
level of - 24 dB in the channel response ( assume 800 ft cable 
causes extra 7 dB loss and 920 ns delay ) . 
[ 0072 ] In some embodiments , signal / noise levels and FEC 
ratio can be used as secondary metrics for fault signature 
identification and locationing , for example , to increase accu 
racy . FEC statistics are typically more sensitive than MER 
( noise ) for fault signature identification . Also , FEC has a 
well - defined boundary ( e . g . , < 10 - 4 ) . However , FEC statis 
tics is not 100 % objective , as it depends on the user profile 
( e . g . , QAM order ) . Moreover , FEC statistics is a long term 
average , and not a snap - shot of performance at a particular 
time . In an example embodiment , un - correctable codewords 
to the total received codewords is used as the metrics for 
fault signature identification . A determination is made 
whether the signal / noise and FEC indicate any fault signa 
ture . For example , inconsistence across frequency , or time , 
or peers can indicate faults . 
[ 0073 ] Signal / noise levels can be good indications of 
signal fault signature when they are evaluated for their 
consistence . FEC ratio can be evaluated based on an abso 
lute threshold ( e . g . , 10 - 4 or 10 - s should be an appropriate 
threshold for triggering fault signature identification . ) Nev 
ertheless , due to large naturally occurring variations in 
signal / noise levels , and the system self - correcting on FEC 
ratio , it is hard to use them to identify " potential ” issues ; 
they are more a binary indication of “ working ” or “ not 
working ” . The location accuracy may be improved by 
jointly applying the two approaches ( e . g . , determine the 
location via pre - equalization coefficients and via signal / 
noise levels and FEC ratio ) . This can be particularly useful 
in the cases where multiple faults occur at the same times , 
and some of the faults are active devices ( clipping ) , and 
some are passive ( impedance mismatch ) . 
[ 0074 ] PSM module 24 accesses a data repository for 
geographical information associated with cable network 12 , 
and determines a location of a fault in cable network 12 
based on the fault signature and the geographical informa 
tion . Fault locationing algorithm 56 uses PSM data 51 , 
including GIS data to correlate the identified fault signature 
with a fault location ( e . g . , based on signal timing and other 
considerations ) . For example , fault locationing algorithm 56 
identifies 1 or 2 twenty specific devices in the 10 ft . zone that 
could be potential fault generators . In some embodiments , 
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GIS data is retrieved from GIS databases ( e . g . , storing 
geospatial data ( e . g . , data defined spatially in location ) by 
four dimensions ( geometry ( e . g . , latitude , longitude , depth ) 
and time ) related to the Earth ) , network information and 
GPS maps ) . In some embodiments , monitoring and signal 
leakage information in cable network 12 are collected and 
linked in the GIS database to tie together relevant network 
information , trouble , leakage , weather events , traffic con 
gestion , etc . For example , power supplies , optical nodes , 
amplifiers and other active devices with a DOCSIS based 
transponder provide performance data back to the CMTS 14 . 
The transponder uses DOCSIS standards for fiber node and 
power supply monitoring . Automatic signal leakage detec 
tion captures radio frequency leakage outbreaks and records 
with a time / date stamp and GPS location and sends the 
captured data back to the central GIS database , from where 
it is extracted and provided to PSM algorithm 40 . 
[ 0075 ] According to an example embodiment , multiple 
faults can be located through the procedure of 3D clustering 
and affected CM threshold . According to 3D clustering , taps 
and associated tap magnitudes and times are located for the 
CMs through the fault signature identification algorithm . 
Valid taps with tap magnitudes greater than a predetermined 
threshold ( e . g . , - 30 dB ) are selected . The selected taps are 
grouped into multiple sub - groups in a 3D space comprising 
magnitude , time , and phase . The mean timing for each 
sub - group is calculated . For each point ( e . g . , terminal device 
16 ) in the cluster , the mean timing is used to search the GIS 
database to find relevant segments with a length that best fits 
the mean timing . Both ends of the segment are tagged as 
potential fault locations . 
[ 0076 ] In some embodiments , an aggregation point in 
cable network 12 is identified for terminal devices 16 that 
show the same fault signature ; the aggregation point indi 
cates the fault location . In an example embodiment , a 
number of affected CMs is determined based on detected 
taps . An affected CM is one whose detected taps lead to the 
device being tagged as faulty . Legitimate fault locations 
have at least a certain preconfigured threshold N affected 
CMs . For example , merely one CM in a specific geographic 
area malfunctioning may not indicate a network fault ; 
whereas hundred CMs in the specific geographic area mal 
functioning may indicate a network fault . The preconfigured 
threshold can vary for trunk cables and drop cables . For 
example , fault locationing may be triggered if 8 devices are 
found to be reporting faults on a trunk cable ; fault location 
ing may be triggered if 1 device is found to be reporting 
faults on a drop cable . The potential legitimate fault loca 
tions are sorted according to the number of the affected 
CMs . A preconfigured number of M legitimate fault loca 
tions are identified and reported according to the number of 
the affected CMs . 
[ 0077 ] PSM module 24 accesses the data repository for 
device information associated with cable network 12 and 
determines a type of fault based on the location of the fault 
and the device information . A fault classification algorithm 
58 provides additional troubleshooting capabilities by speci 
fying possible fault types associated with the fault signature 
in the fault location output by fault locationing algorithm 56 . 
For example , fault classification algorithm 58 indicates that 
the fault signature is associated with an amplifier rather than 
a passive tap / splitter or a cable , thereby narrowing the fault 
generator choices to two or three devices . 

[ 0078 ] For fault classification , two aspects may be con 
sidered : ( 1 ) fault severity ; and ( 2 ) faulty device type . PSM 
module 24 outputs three variables as severity indications : ( 1 ) 
maximum tap magnitude : a faulty device may be tagged 
multiple times , and the maximum tap magnitude may be 
recorded and outputted for this faulty device ; ( 2 ) aggregated 
tap magnitude : a faulty device may be tagged multiple times , 
and the tap magnitudes are added up and then divided by the 
number of terminal devices 16 that generate those tagging ; 
the quotient is outputted as the aggregated tap magnitude for 
the faulty device ; and ( 3 ) number of affected terminal 
devices 16 . In an example embodiment , the detected fault is 
classified according to its severity and type . In one example , 
the severity is indicated with tap magnitudes ( max and 
aggregated ) and number of affected terminal devices 16 . The 
device type is retrieved from the GIS database based on its 
location . 
[ 0079 ] PSM module 24 activates repair and maintenance 
activities based on the type of fault , location of the fault and 
the fault signature . A fault management and notification 
algorithm 60 notifies a network operator about the problem ; 
in some embodiments , fault management and notification 
algorithm 60 facilitates deploying a field technician to the 
affected device location to repair the fault before it is a 
problem for customers . 
[ 0080 ] Turning to FIG . 4 , FIG . 4 is a simplified diagram 
illustrating example details of high level architecture 70 of 
PSM module 24 according to an embodiment of communi 
cation system 10 . Faults 72 ( e . g . , micro - reflections , end - of 
line issues , coaxial cable lift , corroded connector , in - home 
issues , etc . ) occur in cable network 12 . An example PSM 
information flow 74 for identifying faults 72 , pinpointing 
respective locations , and providing repair and maintenance 
recommendations and other relevant information is illus 
trated in the figure . Various data 76 , including CMTS data 
( e . g . , network configuration , DOCSIS MIBs , etc . ) , cable 
modem data ( e . g . , pre - equalization coefficients ) , and full 
spectrum capture ( e . g . , signal levels , SNR , FEC , etc . ) are 
obtained from cable network 12 through ( e . g . , using ) one or 
more data collector 78 . In some embodiments , full spectrum 
capture may be facilitated through a technician portal 80 
rather than through data collector 78 . 
10081 ] In some embodiments , data collector 78 includes a 
stand - alone box configured with electrical circuitry to per 
form data collection operations , and having ports to connect 
to cables in cable network 12 and access signals traversing 
the cables . Data collector 78 may include data ports , signal 
ports , and other suitable interface to enable it to be con 
nected to the cables and to other devices , such as a smart 
phone or computer . In other embodiments , data collector 78 
comprises electrical circuitry co - located or integrated with 
cable modems and other DOCSIS terminal devices 16 in 
cable network 12 . In yet other embodiments , data collector 
78 comprises electrical circuitry integrated into hand - held or 
desktop test meters to enable capturing signals in cable 
network 12 . In yet other embodiments , data collector 78 
comprises a suitable wireless device , such as a smartphone , 
configured with special purpose software ( e . g . , application 
software ) enabling the smartphone to be connected to cables 
in cable network 12 and capture signals traversing therein . 
[ 0082 ] Captured data 76 , along with subscriber informa 
tion from a subscriber database 82 is fed to a PSM portal 84 . 
PSM portal 84 provides results of failure scenarios analysis , 
optimization levers to facilitate varying analysis metrics and 
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algorithms ( e . g . , choosing between reverse ZFE and MMSE 
algorithms for fault signature identification ; choosing a 
specific type of map from a variety of map types ; choosing 
a specific network service from among various services ; 
etc . ) , and provides recommendations on open cases , tracked 
issues , resources for field technicians , and optimization 
service delivery options . PSM portal 84 enables a network 
operator to view operations by PSM module 24 . PSM 
analysis module 86 executes PSM algorithms 40 and charts 
pre - equalization coefficients , channel response , phase 
response , group delay , and QAM constellations , and various 
network services ( e . g . , news , sports , VOD , DOCSIS ) based 
on results of PSM algorithms 40 to enable a network 
operator , network engineer and other relevant human opera 
tor to visualize and comprehend results of analysis by PSM 
module 24 . Results of PSM analysis module 86 , including 
recommendations for field technicians , maintenance opera 
tions , etc . are returned to cable network 12 , to enable 
preventive measures pro - actively before customer service is 
disrupted . 
[ 0083 ] Turning to FIG . 5 , FIG . 5 is a simplified diagram 
illustrating example details according to an embodiment of 
communication system 10 . Cable network 12 includes a 
fault 72 , for example , caused by a malfunctioning device 
( including cables ) that presents unwanted signal reflections . 
A meter 88 is connected ( e . g . , by a field technician , network 
operator , etc . ) to cable network 12 . In an example embodi 
ment , meter 88 comprises a wireless device , including a 
wireless phone configured with a special purpose application 
for performing the operations described herein . In another 
example embodiment , meter 88 comprises a network test 
equipment plugged into cable network 12 . In an example 
embodiment , meter 88 is configured with a portion of PSM 
module 24 , for example , 24 ( A ) comprising portion A . In 
some embodiments , portion 24 ( A ) includes technician portal 
80 configured for full spectrum capture from cable network 
12 . 

[ 0086 ] In some embodiments , PSM module portion 24 ( A ) 
may be provisioned with a presentation layer that displays 
network topology , services , device data and pending issues 
on standard mapping systems ( e . g . Google Maps or equiva 
lent ) and as data table overlays capable of being rendered by 
any user IP devices ( Smartphones , tablets , computers , etc . ) 
that support a standard browser ( Explorer , Firefox , Opera , 
etc . ) using HTML5 and Java . The presentation layer ( e . g . , 
included in technician portal 80 ) includes the ability to 
display the geography and customer locations affected by 
the problem , the location ( s ) where corrective actions are 
recommended , and the ability to drill down to review the 
current and historical values for parameters on any device 
selected . In some embodiments , the presentation layer also 
includes an ability to focus only on relevant parameters 
triggering fault 72 , whether on one or across multiple 
devices . 
[ 0087 ] Turning to FIG . 6 , FIG . 6 is a simplified diagram 
illustrating example details of technician portal 80 according 
to embodiments of communication system 10 . Technician 
portal 80 ( A ) shows a view of identified faults and respective 
locations in cable network 12 overlaid on a map , such as 
Google Maps in a suitable test meter 88 , which comprises a 
Smartphone in the example shown . One of the identified 
faults ( indicated merely for example purposes as a large 
circle ) is highlighted for the technician ' s field support activi 
ties . PSM module 24 executing in server 92 may suggest a 
recommended fix , which is displayed in technician portal 
80 ( B ) . The technician may implement the fix manually , and 
meter 88 may validate the fix thereafter , for example , by 
obtaining a set of signals from cable network 12 at the fault 
location . Meter 88 may transmit the set of signals to server 
92 in appropriate data packets or other communication 
means . PSM module 24 executing in server 92 analyzes the 
set of signals and determines that the fault is no longer 
present . A “ fix successful ” message may be transmitted from 
server 92 to meter 88 and displayed on technician portal 
80 ( C ) . 
10088 ] Turning to FIG . 7 , FIG . 7 is a simplified diagram 
illustrating example details of PSM module 24 according to 
an embodiment of communication system 10 . In various 
embodiments , PSM module 24 may be implemented using 
one or more data collector 78 deployed in cable network 12 , 
a data repository 96 deployed in a cloud network 98 and a 
central server 100 in communication with data repository 96 
over interface 102 in cloud network 98 . Data collector 78 
( and associated software to enable functionalities as 
described herein ) may be located at a main network location , 
or deployed in several locations within cable network 12 . 
Data collector 78 makes queries , collects operations data , 
including network data 38 , and forwards the collected data 
from network devices in cable network 12 to data repository 
96 over interface 102 . For example , pre - equalization coef 
ficients are obtained in one embodiment , by periodic polling 
of cable network 12 by one or more data collector 78 . In 
some embodiments , data collector 78 is invisible and unde 
tectable to non - authorized users . 
[ 0089 ] Data may be collected according to any suitable 
data format , including Simple Network Management Pro 
tocol ( SNMP ) , In - Plant Reliability Data ( IPRD ) , TR69 , 
DOCSIS MIBs , and others . In some embodiments , data 
collector 78 may poll network devices , network signals , etc . , 
on a periodic basis ; in other embodiments , data collector 78 
may be triggered upon occurrence of any unusual event 

[ 0084 ] Meter 88 is connected over a network 90 , for 
example , a wireless network , to a server 92 , which is 
configured with the remaining portion B of PSM module 24 , 
namely 24 ( B ) . In many embodiments , portion 24 ( B ) 
includes PSM portal 84 , subscriber database 82 , and PSM 
analysis module 86 . Cable network 12 may be connected 
separately to server 92 , for example , over network 90 . 
[ 0085 ] During operation , data 76 from cable network 12 is 
retrieved and stored in server 92 . Data 76 may include 
CMTS data , cable modem data , network updates , pre 
equalization coefficients , thresholds , etc . Pre - equalization 
coefficients are obtained and stored at server 92 , in one 
embodiment , by periodic polling of cable network 12 . A 
field technician connects meter 88 to cable network 12 , for 
example , inserting it into a cable , or to an amplifier , etc . In 
some embodiments , meter 88 receives signals from cable 
network 12 for full spectrum capture ; meter 88 sends the full 
spectrum capture over network 90 to server 92 . PSM module 
portion 24 ( B ) analyzes data 76 , including the full spectrum 
capture , and data from subscriber database 82 and provides 
recommendations 94 to PSM module portion 24 ( A ) execut 
ing in meter 88 . Recommendations 94 can include , by way 
of examples and not as limitations , instructions for addi 
tional checks or signal captures , repair procedures , correc 
tive actions , preventive measures , etc . that enable a field 
technician to troubleshoot and repair fault 72 . 
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( e . g . , signal level deviating from predetermined threshold , 
etc . ) . In addition to periodic data collection , data collector 78 
also accessed real - time device information in response to 
specific secure inquiries for specific areas of cable network 
12 or specific service flows across cable network 12 . Each 
data collector 78 has a secure means of transferring data to 
data repository 96 . 
[ 0090 ] Data repository 96 provides long - term storage of 
network data 38 , including historical data received from data 
collector 78 . In an example embodiment , data repository 96 
comprises a relational database capable of storing multiple 
terabytes of data and rapidly accessing the data in response 
to requests from PSM algorithms 40 executing at central 
server 100 . Data repository 96 comprises a physical non 
volatile storage memory element , such as a magnetic disk 
drive , magnetic tapes , solid state drives , shared disk drives , 
etc . Data may be stored in data repository 96 in any suitable 
array , table , or other data structure according to particular 
needs . Data repository 96 links to data collector 78 with a 
short - term data buffer that enables fast , real - time inquiries of 
cable network 12 to determine the current status of one or 
more network elements therein . Data Repository 96 is 
capable of managing tens of terabytes of information , stored 
hierarchically for example , with the most recent information 
being available to inquiries on virtually a real - time basis . 
[ 0091 ] Interface 102 couples with the cable network ' s 
business support system / operations support systems ( BSS / 
OSS ) to obtain periodic updates on customer services , 
addresses and information attributes of network elements , 
including terminal devices 16 , amplifiers 18 , etc . at each 
location ( such as type , model number , serial number , IP 
address , etc . ) , in addition to information from the operator ' s 
network design data base on the “ as - built " attributes of cable 
network 12 ( including topology of node , amplifier , tap 
locations and signal levels at each location ) 
[ 0092 ] In various embodiments , PSM algorithms 40 
execute on central server 100 . Note that the term “ central ” 
refers to a logical center rather than a geographical center . In 
other words , central server 100 may be operated in a 
centralized manner , for example , with PSM algorithms 40 
consolidated and executed under a single application ( e . g . , 
software ) umbrella . In some embodiments , central server 
100 may be operated by an entity independent of cloud 
network 98 and cable network 12 , and communicating with 
data repository 96 irrespective of its actual geographical 
location relative to cloud network 98 or cable network 12 . In 
some embodiments , central server 100 , data repository 96 
and cable network 12 may be controlled and operated by the 
same organization . 
[ 0093 ] Central server 100 includes a processor ( e . g . , inte 
grated circuit ) and a memory element storing PSM algo 
rithms 40 . In some embodiments the processor may itself be 
physically composed of distributed processors rather than a 
single processor . In various embodiments , execution of PSM 
algorithms 40 may be triggered manually ( e . g . , by a network 
operator ) . In other embodiments , PSM algorithms 40 may 
execute automatically substantially continually . In yet other 
embodiments , execution of PSM algorithms 40 may be 
triggered by specific types of data , for example , signal levels 
falling below a pre - determined threshold . 
[ 0094 ] In a general sense , PSM algorithms 40 examine 
recent network data 38 and compare it to expected values . 
Authorized users can view the network topology and status 
at any time . When one or more variations is discovered , 

PSM algorithms 40 examine related data , logically deter 
mines the location and cause of the change , and recommends 
corrective action . In some embodiments , the calculated , 
recommended and corrective information is graphically dis 
played including the location of the problem , the customer 
locations ( if any ) affected by the problem and the underlying 
data triggering the recommendation . A user , such as a field 
technician , can drill down on information , including current 
values , thresholds and historical trend line value for each 
identified fault signature and other parameters ) . In some 
embodiments , the information is presented on a suitable 
device , for example , meter 88 , via a web - based browser 
supporting HTML5 and Java , or another appropriate plat 
form . 
[ 0095 ] PSM algorithms 40 may include but are not be 
limited to the following functions : ( 1 ) analyze health of a 
portion of cable network 12 , for example the access net 
work , home network , content distribution network , etc . ; ( 2 ) 
analyze health of a service delivered to customers , for 
example , high - speed data service , broadcast video delivery , 
network based DVR , IP Video Delivery , voice services , etc . ; 
( 3 ) capable of interpreting queries and reporting on particu 
lar network attributes or behaviors , for example service take 
rates across specific service groups or geographies , theft of 
service detection , CPE and Network device inventory man 
agement , network capacity forecasting and management , 
etc . ; ( 4 ) data / file transfer / translation to enable transfer of 
information on a periodic basis such as network system 
designs from third party design / mapping systems , network 
and customer premises device types and locations , customer 
addresses for each service type from BSS / OSS system ; ( 5 ) 
authorization and authentication of data collector 78 and / or 
users of PSM module 24 . 
100961 . In some embodiments , PSM module 24 may tie in 
the various functionalities of data collector 78 , data reposi 
tory 96 , and PSM algorithms 40 using a suitable presentation 
layer . The presentation layer is capable of providing views 
of cable network 12 from the highest level ( e . g . , network 
level ) down to the individual household ( e . g . , node level ) , 
and be capable of supporting views that segment cable 
network 12 . The presentation layer displays cable network 
12 overlaid on a standard mapping system such as Google 
Maps or equivalent . In some embodiments , the presentation 
layer uses colors and highlights to show any current or 
impending network issues for which action is required . 
Using any standard mapping function , the user ( e . g . , field 
technician ) can zoom in on the location of faults . The 
presentation layer is capable of displaying substantially all 
customer locations that are impacted by a particular prob 
lem . 
[ 0097 ] The presentation layer provides views of various 
device parameters in cable network 12 . Selecting an indi 
vidual device enables the authorized user to examine the 
data from that device , and to look at historic trend lines for 
data parameters as well as data thresholds . The presentation 
layer displays end - to - end context of an individual service to 
substantially all customers , and specific end - to - end paths of 
a service for a single customer or a logically connected 
group of customers . In some embodiments , any user ' s 
access to PSM module 24 is limited according to the user ' s 
individual authorization levels . 
[ 0098 ] Turning to FIG . 8 , FIG . 8 is a simplified diagram 
illustrating example details according to an example 
embodiment of communication system 10 . DOCSIS termi 
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nal devices 16 communicate with CMTS 14 in cable net - 
work 12 over two different planes : a control plane 104 , and 
a data plane 106 . In various embodiments , DOCSIS terminal 
devices 16 communicate with PSM module 24 over a 
separate plane , namely PSM plane 108 . In various embodi 
ments , PSM module 24 may be located outside cable net 
work 12 . Control plane 104 facilitates communication of 
network configuration and management messages , for 
example , comprised in DOCSIS MIB messages , between 
CMTS 14 and DOCSIS terminal devices 16 . Data plane 106 
facilitates communication of data , for example , comprised in 
a plurality of channels , between CMTS 14 and DOCSIS 
terminal devices 16 . The data can include cable television 
content , such as news and sports television signals , as well 
as upstream content for example , user requests for data from 
DOCSIS terminal devices 16 to CMTS 14 . 
[ 0099 ] In various embodiments , signals communicated 
over data plane 106 may be affected by faults in cable 
network 12 . KPI 50 may be retrieved from such signals and 
provided over PSM plane 108 to PSM module 24 . Further 
PSM data 51 may be retrieved from signals traversing 
control plane 104 and provided over PSM plane 108 to PSM 
module 24 . In an example embodiment , the data communi 
cated over PSM plane 108 may be according to proprietary 
protocols , and may not be subject to DOCSIS specifications , 
in some embodiments . KPI 50 and PSM data 51 may be 
packaged into appropriate packets and sent over an IP 
network , in some embodiments . Various other communica 
tion means may be used for communicating data over PSM 
plane 108 . 
[ 0100 ] Turning to FIG . 9 , FIG . 9 is a simplified flow 
diagram illustrating example operations 110 that may be 
associated with PSM algorithms 40 of PSM module 24 . At 
112 , data collector 78 collects network data 38 . At 114 , a 
determination is made from network data 38 whether a fault 
signature is identified , as described in greater detail below . 
If a fault signature is not identified , the operations revert 
back to 112 , with continued real - time collection of network 
data , including KPI 50 and PSM data 51 . If a fault signature 
is identified ( e . g . , indicative of fault 72 in cable network 12 ) , 
at 116 , a GIS database is accessed . At 118 , a fault location 
is determined based on the identified fault signature and GIS 
data , as described in greater detail below . At 120 , a fault type 
is estimated based on the fault location and fault signature , 
as described in greater detail below . At 122 , fault repair 
actions are activated based on the fault signature , estimated 
fault type and fault location . 
[ 0101 ] Turning to FIG . 10 , FIG . 10 is a simplified diagram 
illustrating example details of signal fault signature identi 
fication algorithm 52 according to an embodiment of com 
munication system 10 . KPIs 50 , including captured RF 
metrics , are provided as input to signal fault signature 
identification algorithm 52 . An absolute boundaries module 
62 checks captured RF metrics 48 against one or more 
relevant absolute threshold 63 . For example , SNR may be 
checked against an SNR threshold . If the checked metric 
violates threshold 63 , a fault is indicated and fault location 
ing algorithm 56 and fault classification algorithm 58 may 
be invoked . 
10102 ] If absolute boundaries module 62 does not detect a 
fault , a time inconsistence module 64 may compare captured 
RF metrics 48 against one or more relevant relative time 
threshold 65 . For example , if expected synchronicity of 
signals is not met , the finding may indicate a fault ; in other 
words , if cable modem A at a distance of X ft . from a testing 
station can send a signal in m seconds ; and another cable 
modem B at the same distance X ft . from the testing station 
takes longer than m seconds to send the signal , a fault may 

be indicated between cable modem B and the testing station . 
If a fault is indicated , fault locationing algorithm 56 and 
fault classification algorithm 58 may be invoked . 
[ 0103 ] If time inconsistence module 64 does not detect a 
fault , a frequency inconsistence module 66 may compare 
captured RF metrics 48 against one or more relevant relative 
frequency threshold 67 . For example , if the expected fre 
quency of a signal is x , and its measured frequency is y , a 
fault is indicated . If a fault is indicated , fault locationing 
algorithm 56 and fault classification algorithm 58 may be 
invoked . 
10104 ] If frequency inconsistence module 66 does not 
detect a fault , a peer inconsistence module 66 may compare 
captured RF metrics 48 against one or more relevant relative 
peer threshold 69 . For example , if two cable modems are 
unexpected to send signals within x seconds of each other , 
a finding of a difference from the expected peer threshold 
may indicate a fault . If a fault is indicated , fault locationing 
algorithm 56 and fault classification algorithm 58 may be 
invoked . 
[ 0105 ] Turning to FIG . 11 , FIG . 11 is a simplified diagram 
illustrating example details of signal fault signature identi 
fication algorithm 52 according to an embodiment of com 
munication system 10 . Signal fault signature identification 
algorithm 52 receives a multi - tone signal 170 from cable 
network 12 . In an example embodiment , multi - tone input 
signal 170 comprises data ( e . g . , comprising digital electrical 
pulses ) carried over electromagnetic waves of discrete fre 
quencies ( e . g . , carrier waves ) . In an example embodiment , 
input signal 170 comprises electromagnetic signals having 
multiple frequencies in the radio frequency spectrum carried 
in a tangible medium , such as optical fiber or electrical wire . 
In another example embodiment , wherein signal fault sig 
nature identification algorithm 52 is used in oil pipeline 
networks , input signal 170 comprises audio waves carried in 
pipes ( e . g . , metal pipes , concrete pipes , etc . ) . An equalizer 
unit 172 receives signal 170 . 
f0106 ] In some embodiments , signal 170 comprises pre 
equalization coefficients and downstream full spectrum cap 
ture . Terminal devices 16 may report their respective pre 
equalization coefficients and provide the full spectrum 
capture when queried by signal fault signature identification 
algorithm 52 . In some embodiments , pre - equalization coef 
ficients are obtained from DOCSIS MIBs and stored at 
signal fault signature identification algorithm 52 before 
signal 170 is received . The pre - equalization coefficients are 
obtained , in one embodiment , by periodic polling of cable 
network 12 and stored suitably ( e . g . , in a database , table , 
array , etc . ) . In some embodiments , pre - equalization coeffi 
cients may be provided through KPIs including captured RF 
metrics 50 . 
[ 0107 ] Equalizer unit 172 includes a channel response 
derivator 174 and a storage ( e . g . , database , table , etc . ) of 
stored pre - equalization coefficients 176 . In a general sense , 
an equalization system calculates and applies an inverse 
filter to a signal that removes distortions to the signal . 
Equalization estimates the inverse H ( f ) of a channel 
response H ( f ) and applies it to an incoming signal s ( t ) . 
Mathematically , the equalization transfer function can be 
expressed as : 

HES ) = HD - The Beans 
where O ( f ) is the phase of the channel response , j = v - 1 and 
He ( f ) is a function of pre - equalization coefficients . In 
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reverse , knowing the pre - equalization coefficients , H ( f ) can 
be derived , the inverse of which provides the channel 
response H ( f ) . 
[ 0108 ] One computationally efficient method of forming 
an inverse filter is the zero - forcing technique , using a zero 
forcing equalizer ( ZFE ) . In ZFE , the combination of channel 
and equalizer gives a flat frequency response and linear 
phase . Another known technique for equalization is by using 
an MMSE equalizer , which minimizes the mean square error 
( MSE ) in the received signal . The MMSE equalizer adapts 
the pre - equalization coefficients of the filter to minimize the 
mean - square error due to noise , interference and intersym 
bol interference ( ISI ) . The adaptation of the MMSE equal 
izer is driven by an error signal which indicates to the 
equalizer the direction that the coefficients should be moved 
for better accuracy . 
[ 0109 ] If the pre - equalization coefficients are known a 
priori , channel response 178 can be derived from inverse 
calculations of the equalization filter , for example , by the 
inverse of the ZFE or MMSE equalizer . Pre - equalization 
coefficients 176 comprises twenty - four taps ; the main tap 
( tap index 8 ) is indicative of the channel without any 
impairments ; in other words , the input signal 170 is perfectly 
replicated at the output of the channel . Additional taps are 
indicative of channel impairments . In various embodiments , 
channel response derivator 174 derives channel response 
178 using pre - equalization coefficients 176 . Signal fault 
signature identification algorithm 52 includes a processor 
180 and a memory element 182 for facilitating the opera 
tions described herein . 
[ 0110 ] Channel response 178 is fed to a phase domain 
echo searcher 184 , comprising a phase domain analyzer 186 
and a correlation peak finder 188 . Phase domain analyzer 
186 analyzes channel response 178 in the phase domain . 
Phase domain analysis uses phase domain signals ( r , 0 ) 
rather than classical Cartesian quadrature components ( I , Q ) 
for analysis . The phase of channel response 178 comprises 
the argument of the complex tap values . The impulse 
response ( which is the channel response for an impulse input 
signal ) appears randomized between - and , except for the 
main tap , whose phase correction is 0 radians . In various 
embodiments , calculation of phase is based on FFT of the 
pre - equalization coefficients . The phase response , as a func 
tion of frequency and the FFT analysis , can be indicated as : 

ing the phase - shifted channel response with original ( i . e . , 
non - phase - shifted ) channel response 178 . 
[ 0112 ] Phase 190 corresponding to the found peak is 
determined and provided to group delay calculator 192 . A 
channel response rotator 94 therein rotates channel response 
178 with phase 190 , and dephased channel response is 
calculated . A tap amplitude calculator 196 computes the tap 
indicative of group delay from the de - phased channel 
response . A corrected signal calculator 198 calculates cor 
rected signal 200 , comprising channel response 178 from 
which the calculated tap amplitude is subtracted . A fault 
identifier 204 compares corrected signal 200 to thresholds 
102 to determine if any unexpected taps are present in signal 
170 . The operations are continued for each tap of channel 
response 178 . A fault signature 206 is output if a fault is 
found . Fault signature 206 comprises an observation of a 
performance metric , for example , one or more taps , that is 
out of its expected value or range , for example , a threshold 
for that tap . In an example embodiment , fault signature 206 
comprises a tap index ( e . g . , third tap from the main tap ; 5th 
tap from the main tap ; etc . ) ; in another example embodi 
ment , fault signature 206 comprises a time index ( e . g . , 10 us 
from meter . Note that any suitable metric indicative of faults 
in cable network may be provided in fault signature 206 . 
[ 0113 ] Turning to FIG . 12 , FIG . 12 is a simplified diagram 
illustrating example details of a sensitivity comparison 
between SNR and pre - equalization coefficients in relation to 
fault detection using an attenuation to return - loss curve 210 . 
The decision to choose a particular metric for fault signature 
identification may rely on availability of the metric , its 
objective nature , and its sensitivity . For example , while it 
may be desirable to leverage as many metrics as possible , 
PSM algorithm 40 may be built on metrics that are available 
currently ( e . g . , as of the time of analysis ) and available from 
most of CMs 16 , if not all . The selection of the metric may 
be objective , that is , not subject to change by CMTS 14 or 
HFC dependent ( e . g . , dependent on topology or network 
updates in cable network 12 , etc . ) . Further , to enable PSM 
algorithm 40 to detect fault signatures before the fault 
escalates and affects customer service , the selected metric 
should have relatively high sensitivity to faults . In an 
example embodiment , PSM algorithm 40 uses pre - equaliza 
tion coefficients as primary metrics , and FEC statistics , 
signal level and MER as secondary metrics for fault signa 
ture identification . 
( 0114 ) In a general sense , PER is far more sensitive for 
fault detection than MER . FEC statistics may be also used 
as a metric . Advantages of using FEC statistics include : ( 1 ) 
FEC statistics is more sensitive than MER ( noise ) for fault 
signature identification ; ( 2 ) FEC has a well - defined bound 
ary ( say , < 10 - 4 ) . However , disadvantages include : ( 1 ) FEC 
statistics is not 100 % objective , as it depends on the user 
profile ( QAM order ) ; and ( 2 ) FEC statistics is a long term 
average ( no snap shot of performance ) . In some embodi 
ments , the ratio of un - correctable CWs to the total received 
CWs may be used as the metrics for fault signature identi 
fication . FEC statistics depends on QAM order selection . If 
MER degradation exists , say of the order of 3 dB reduction , 
CMTS 14 may downgrade the QAM order by 1 level , which 
will neutralize the adverse effect of the reduced MER . 
Nevertheless , FEC can be used as the secondary metric . 
[ 0115 ] From attenuation to return - loss curve 210 , it may 
be concluded that pre - equalization coefficients are more 
sensitive for fault detection than signal level , assuming that 

0 ( f ) = arg [ ht ) FFT ( o ) 

where H ( f ) is the equalization transfer function ( which is the 
inverse of the channel response ) and h ( t ) is the equalizer ' s 
impulse response . 
[ 0111 ] In an example embodiment , an array of possible 
phase shifts is estimated and channel response 178 is phase 
shifted according to the estimated array . Correlation peak 
finder 188 determines whether a peak is found , and the 
specific phase in which the peak occurs . In a general sense , 
cross - correlation is a measure of similarity of two series as 
a function of the lag of one relative to the other . It is 
commonly used for searching a long signal for a shorter , 
known feature , such as a peak . Cross - correlation is similar 
in nature to convolution of two functions . In various 
embodiments , IFFT is applied to the phase - shifted channel 
response 178 and a correlation peak determined by compar 
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fault detection with signal level / SNR uses a 3 dB threshold . 
Taps with - 25 dB can be readily detected ( e . g . , 25 dB may 
correspond to 7 . 5 dB return loss at each end , and extra 10 dB 
cable loss in between ) using pre - equalization coefficients , 
whereas the same is not possible with signal level or SNR . 
In a general sense , taps in the pre - equalization coefficients 
are static and self - referred ( e . g . , uses the main tap ) , and thus 
can be a good metric in terms of availability . Among all the 
performance metrics mentioned above , pre - equalization 
coefficients provide the most reliable and sensitive fault 
signature for purposes discussed herein . The taps of pre 
equalization coefficients can indicate faults ( and location of 
the faults when combined with additional information ) 
before they escalate and affect network performances . More 
over , the pre - equalization coefficients may be suitably 
retrieved from various components of the cable network 
using existing mechanisms ( e . g . , from periodic polls of 
coefficient values and other relevant PHY metrics ) . 
[ 0116 ] Turning to FIG . 13 , FIG . 13 is a simplified diagram 
illustrating example details of graph 212 showing signal 
power levels as a function of tap index for a specific signal 
in the absence of group delay . The main tap , with maximum 
power , occurs at tap index 8 , followed by the second tap at 
index 9 with approximately 19 dB attenuation , followed by 
the third tap at index 11 with approximately 25 dB attenu 
ation . Further attenuation or taps may not be detectable 
using the algorithms disclosed herein , as they could be 
artefacts of calculations , approximations , modeling and 
other mathematical analysis techniques used by signal fault 
signature identification algorithm 52 . 
[ 0117 ] Turning to FIG . 14 , FIG . 14 is a simplified diagram 
illustrating example details showing the effect of group 
delay through graphs 214 and 216 of signal power levels as 
a function of tap index for a specific signal . An example 
PSM algorithm for fault signature is used for tap detection 
from the channel response . The channel response is derived 
from the pre - equalization coefficients with the effect of 
group delays removed through a DSP algorithm . After the 
effect of group delays is removed , the taps can be detected 
reliably ( note ) : Magnitude : - 25 dB below the main tap ; 
Time : 20 ns accuracy , resulting in 10 ft . accuracy . The taps 
in the channel response directly link to the echoes of HFC . 
The tap timing can be used to locate the fault location . 
[ 0118 ] In the presence of group delays , as indicated by 
graph 214 , echoes from faults are swamped by side taps of 
the main taps , such that it is not possible to differentiate 
group delay from echoes caused by faults . In the example 
shown ( based on simulations ) , taps with attenuation of 10 
dB can be from group delays rather than faults . Moreover , 
group delay tends to smear and smooth the taps , resulting in 
failed taps detections and poor tap locations . Group delay is 
normal , and cannot be removed from cable network 12 . To 
make the pre - equalization coefficients useful , the effect of 
the group delays should be removed . 
[ 0119 ] On the other hand , graph 216 indicates distinctive 
taps from reflections when the effect of group delay is 
removed . A threshold 218 for valid taps may be compared 
against the distinctive taps of graph 216 to determine 
anomalies . For example , any power level greater than 
threshold 218 indicates a fault ; thus taps 3 and 5 to the right 
of the main tap at 0 may be indicative of faults in cable 
network 12 . Removing group delay effects can thereby 
improve accuracy of fault prediction . 

[ 0120 ] Turning to FIG . 15 , FIG . 15 is a simplified flow 
diagram illustrating example operations 250 that may be 
associated with embodiments of signal fault signature iden 
tification algorithm 52 of communication system 10 . At 252 , 
channel response derivator 174 derives channel response 
178 from pre - equalization coefficients 176 ( which may be 
derived from multi - tone signal 170 ) . At 254 , the first itera 
tion begins by selecting the main tap ( e . g . , tap index 8 ) for 
further analysis . At 256 , phase domain echo searcher 184 
searches for an echo in phase domain for the selected tap . At 
258 , a determination is made whether a correlation peak is 
found . If a correlation peak is found , at 260 , the phase 
corresponding to the correlation peak is set to found phase 
190 . At 262 , channel response 178 is rotated by found phase 
190 and de - phased channel response is calculated . At 264 , 
the tap amplitude is determined from the de - phased channel 
response . At 266 , the computed tap amplitude is subtracted 
from the channel response to remove group delay . At 268 , a 
determination is made whether all relevant taps have been 
considered . If not , the operations proceed to 270 , at which 
the selected tap is set to the next tap . The operations continue 
to 256 , and proceed thereafter . Turning back to 258 , if no 
correlation peak is found for the selected tap , the operations 
step to 268 , and proceed thereafter . At 268 , if all the relevant 
taps have been considered , the operations end . 
[ 0121 ] Fault locationing and fault classification may 
depend heavily on fault signature identification and its 
accuracy . For example , tap timing ( position ) may be used as 
a primary metric for location determination . Aggregation 
point estimation may be based on peer consistence locations . 
Noise ( active device vs . passive devices ) may be used as a 
secondary metric . GIS data ( device geo - locations , work with 
tap locations ) may be used to accurately locate the problem 
in the cable network . 
[ 0122 ] In accordance with features of embodiments 
described herein , the timing ( position with respect to the 
main tap ) of the tap in the channel response may be used to 
identify the location of a fault , as illustrated in FIG . 16 . 
Referring to FIG . 16 , illustrated therein is a portion 280 of 
a cable network including a first network device 282 and a 
second network device 284 interconnected by a length of 
cable L . It will be assumed for the sake of example that both 
devices 282 , 284 , are defective , resulting in an echo tap 286 , 
the timing of which with respect to a main tap 288 is related 
to the distance L between the devices 282 , 284 ( which 
distance corresponds to the length of a “ fault cavity ” 
between the devices ) . In particular , the timing of the echo tap 
386 with respect to the main tap 288 is described by the 
equation : 

L ( ft . ) = Vf * At / 2 

where At is the difference between the main tap and the echo 
tap in nanoseconds ( ns ) and Vf is the velocity factor of the 
cable connecting the devices 282 , 284 ( Vf = 0 . 87 ) . 
[ 0123 ] This concept is further illustrated in FIG . 17 . In 
particular , FIG . 17 illustrates a cable network 300 compris 
ing a first network device 302 , which in the illustrated 
embodiment comprises a bridge amplifier , and a second 
network device 304 , which in the illustrated embodiment 
comprises a coupler , which devices are connected by 400 
feet of cable . It will be assumed for the sake of example that 
both devices 302 and 304 are broken , causing 10 dB and 7 
dB return losses , respectively . It will be assumed that 800 
feet of cable results in an extra 7 dB loss and a 920 ns delay ; 
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therefore , the fault will appear as an echo tap at 920 ns with 
a level of - 24 dB in the channel . 
10124 ] Turning to FIG . 18 , illustrated therein are graphs 
310 , 312 , of signal power levels as a function of tap index 
for the network 300 ( FIG . 17 ) before and after the effect of 
group delay is removed using a DSP algorithm . As described 
in detail above , a PSM algorithm such as described herein is 
used for tap detection from the channel response , which is 
derived from the pre - equalization coefficients with the effect 
of group delays removed through a DSP algorithm . In 
particular , in a graph 310 , which illustrates the tap index for 
the network 300 before the effect of group delay is removed , 
the echo tap is not detectable . In contrast , in a graph 312 , 
after the effect of group delay is removed , the echo tap 
( represented in FIG . 18 by a line 314 ) of - 24 dB is 
detectable 920 seconds after the main tap ( represented in 
FIG . 18 by a line 316 ) . 
[ 0125 ] Referring now to FIG . 19 , illustrated therein are 
multiple graphs 320 , 322 , 324 , illustrating use of 3D clus 
tering to locate multiple faults in a network . In 3D cluster 
ing , taps and associated tap magnitudes and times are 
located for the CMs using the fault signature identification 
algorithm described herein . An example 3D plot of detected 
taps is illustrated in graph 320 . Valid taps with tap magni 
tudes greater than a predetermined threshold ( e . g . , - 30 dB ) 
are selected . As best shown in graph 322 , two clusters of taps 
326A , 326B , have magnitudes greater than a threshold , 
indicated by a line 328 . The selected taps are grouped into 
multiple sub - groups in a 3D space comprising magnitude , 
time , and phase . The mean timing for each sub - group is 
calculated . For each point ( CM ) in the cluster , the mean 
timing is used to search the GIS data base to find relevant 
segments with a length that best fits the mean timing . Both 
ends of the segment are tagged as potential fault locations . 
As best shown in graph 324 , in the example illustrated in 
FIG . 19 , the mean timing for each point in each of the 
clusters 326A , 326B , will be used to search the GIS database 
to find the relevant segments with a length that best fits the 
mean timing , with both ends of each such segment being 
tagged as a potential fault location . 
[ 0126 ] In certain embodiments , a number of affected CM 
threshold N is preconfigured based on detected taps . An 
affected CM is a CM whose detected taps lead to the CM 
being tagged as defective or faulty . Legitimate fault loca 
tions have at least N affected CMs . The preconfigured 
threshold can vary for trunk cables and drop cables . For 
example , fault locationing may be triggered if N1 ( e . g . , 8 ) 
devices are found to be reporting faults on a trunk cable , 
while fault locationing may be triggered if N2 ( e . g . , 1 ) 
devices are found to be reporting faults on a drop cable . The 
potential legitimate fault locations are sorted according to 
the number of the affected CMs . A preconfigured number of 
M ( e . 3 . , 3 ) legitimate fault locations are identified and 
reported according to the number of the affected CMs . 
[ 0127 ] To facilitate the fault locationing , a segment table 
is derived from GIS in a format such as illustrated in FIG . 
20 . A segment is a part of HFC that is continuously inter 
connected and terminated at each end by an active or passive 
end device . The terminating devices also belong to , or form 
part of , the segment , which is a point - to - point connection . A 
segment table indexes all the segments and the relevant CMS 
in a single section of a cable network . For each segment 
( identified by a segment index number ) in a section , the 
segment table indicates the length of the segment ( in feet ) , 

the terminating devices ( by device index number and type ) , 
and the CMs relevant to the segment . 
[ 0128 ] The concepts of segments , sections , and relevant 
CMs are further shown in FIG . 21 , which illustrates an 
example cable network 340 comprising multiple segments , 
such as segments 342A , 345B , each of which is respectively 
terminated at each end by devices 344A , 344B , and 344C , 
344D . In the illustrated embodiment , the network 340 
includes two isolation points 346A , 346B ; a section 348 of 
the network consists of the segments that are enclosed 
between the two isolation points 346A , 346B , including 
segments 344A and 344B . In HFC , an amplifier or a load 
( termination ) acts as an isolation point . A CM is relevant to 
a segment , and vice versa , if at least one device in that 
segment is on the CM signal path . CMs 350 are relevant to 
segment 344A ; however , they are not relevant to segment 
344B . 
[ 0129 ] As previously noted , according to an example PSM 
algorithm , detected taps are clustered in 3D ( magnitude , 
time , phase ) space . Valid taps are selected and the mean time 
of each cluster used to select an appropriate segment from a 
segment table and to tag the potential fault locations . The 
potential fault locations are the ones that have N affected 
CMS ( N depends on the location of the device ) . Top fault 
locations can be identified based on the number of the 
affected CMs and tap magnitudes . 
[ 0130 ] The PSM algorithm described herein enables group 
signature detection . In particular , clustering in 3D space 
fully utilizes all of the information contained in the taps 
( magnitude , timing , and phase ) ; as a result , reliability and 
usability are improved . This is possible with the PSM , where 
the taps can be extracted from the actual channel response , 
and not the pre - equalization coefficients , which is the inver 
sion of the actual channel response . Combined with the 
accurate tap calculations , the PSM algorithm can identify 
faults before they escalate and affect the network . 
0131 The PSM algorithm further enables detect fault 
location jointly with multiple taps . In particular , the PSM 
algorithm enables accurate detection of multiple adjacent 
taps and joint detection helps correctly locate faults . Addi 
tionally , the PSM algorithm enables multiple fault detection . 
IN particular , the PSM algorithm is capable of detecting 
multiple taps ( adjacent or not ) reliably and accurately and 
effectively detect multiple group signatures ( clusters ) . 
[ 0132 ] Turning to fault classification , two aspects may be 
considered : ( 1 ) fault severity ; and ( 2 ) faulty device type . An 
example PSM algorithm outputs three variables as severity 
indications : 

[ 0133 ] 1 . maximum tap magnitude : a faulty device may 
be tagged multiple times , and the maximum tap mag 
nitude may be recorded and outputted for this faulty 
device ; 

[ 0134 ] 2 . aggregated tap magnitude : a faulty device 
may be tagged multiple times , and the tap magnitudes 
are added up and then divided by the number of CMS 
that generate those tagging ; the quotient is outputted as 
the aggregated tap magnitude for the faulty device ; and 

[ 0135 ] 3 . number of affected CMs . 
[ 0136 ] To determine the faulty device type , various device 
types come from GIS database are incorporated in the 
segment tables . After the location of the fault device is 
identified , its type may be retrieved from the segment table . 
Consider , merely for the sake of argument and not by way 
of limitation , an example to illustrate fault severity as 
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indicated in FIGS . 23 and 24 . As illustrated in the FIGURES , 
the aggregated tap magnitude depends on the tap selection 
threshold ( e . g . , - 25 dB ) . The effect of the value of the tap 
selection threshold is illustrated by the example shown in 
FIG . 25 . As illustrated in FIG . 23 , assuming the tap selection 
threshold is set to - 35 dB , then a maximum tap magnitude 
for a device 360 is - 19 dB ( 2nd tap ) , an aggregated tap 
magnitude for the device 360 is - 18 . 8 dB ( 0 dB + ( - 19 
dB ) + ( - 31 . 5 dB ) ) , and the number of affected CMs is 100 . As 
illustrated in FIG . 24 , assuming the tap selection threshold 
is set to - 25 dB , then both the maximum tap magnitude and 
the aggregated tap magnitude for the device 360 is - 19 dB 
and the number of affected CMs is 100 . These values , along 
with an indication of the device type for device 360 , may be 
used to determine a “ fault severity ” for the device , which 
may be reported to enable corrective measures to be taken . 
Fault severity may be represented in any number of man 
ners , including a number corresponding to the severity of the 
fault relative to other potential faults or a classification ( e . g . , 
mild , moderate , severe ) indicating the relative severity of the 
fault . Such an indication enables an entity receiving the 
report to determine how quickly and at what expense the 
fault should be addressed . 
[ 0137 ] As previously noted , faults are classified according 
to their severity and type . In one example , the severity is 
indicated with tap magnitudes ( maximum and aggregated ) 
and number of affected CMs . The device type is retrieved 
from the GIS segment table , for example , based on its 
location . The fine severity granularity of the example PSM 
algorithm results from at least two factors : ( 1 ) high sensi 
tivity of the fault detection algorithm ( the fault can be 
detected before it escalates and affects network ( - 25 dB taps 
can be detected for all the cases ) ) ; ( 2 ) number of the affected 
CMs . 
[ 0138 ] Turning to FIG . 25 , illustrated therein is a simpli 
fied flow diagram illustrating example operations 370 that 
may be associated with a fault classification algorithm 58 of 
PSM module 24 . At 372 , once a faulty device has been 
identified and located , a maximum tap magnitude is deter 
mined for the device . At 374 , an aggregated tap magnitude 
is calculated for the device . It will be recognized that only 
those tap magnitudes that exceed a tap selection threshold 
are used in calculating the aggregated tap magnitude . At 
376 , a number of CMs affected by the fault is determined . At 
step 378 , a device type of the faulty device is determined , 
e . g . , with reference to a segment table , such as shown in 
FIG . 20 . At 380 , the severity of the fault is classified in 
accordance with the values of maximum tap magnitude , 
aggregated tap magnitude , number of affected CMs , and 
device type . As previously noted , the classification may take 
one of any number of forms , including but not limited to a 
number on a numerical scale or a relative text descriptor . At 
382 , the fault severity information is communicated to one 
or more designated entities , who / which take appropriate 
action to repair the fault based on the information . A fault 
that causes – 20 dB or less return loss can be considered 
mild . A fault that impacts a few users can be considered as 
mild as well . Operators may choose not to repair mild faults 
or delay the repairment . A fault that impacts a large group of 
users , say 10 - 20 users , will be considered as moderate or 
severe and needs be repaired in the earliest convenience . A 
fault that impacts the whole community is considered as 
severe and need be repaired right away . 

( 0139 ] In some embodiments , signal and noise levels and 
other parameters may be used as secondary considerations in 
determining fault signatures and locations . An example 
signal and noise waveform is illustrated in FIG . 26 . 
[ 0140 ] An aggregation point in the cable network is iden 
tified for all the CMs that show the same fault signature ; the 
aggregation point indicates the fault locate on , as illustrated 
in FIG . 27 . Once the fault signals are identified , the location 
of the faulty device can be sorted out by identifying the 
aggregation points of the CM that show the common faulty 
signatures . A device relevant table , as shown in FIG . 28 , may 
be used for each device to find the number ( N ) of its relevant 
CMs that show the common faulty signatures . The faulty 
device is the one that has the highest N ( i . e . , the highest 
number of affected CMs ) . Multiple faults can be identified 
by selecting top N faulty devices according to the number of 
affected CMs . 
[ 0141 ] In particular embodiments , the various components 
may comprise a software application executing on a spe 
cialized hardware appliance ( e . g . , suitably configured 
server ) with appropriate ports , processors , memory ele 
ments , interfaces , and other electrical and electronic com 
ponents that facilitate the functions described herein . In 
some embodiments , the various components may execute on 
separate hardware devices and / or comprise software appli 
cations or combination thereof that perform the operations 
described herein . 
[ 0142 ] Note that although the operations and systems are 
described herein with respect to a cable network architec 
ture , the operations and systems may be used with any 
appropriate related network function , including load balanc 
ers , firewalls , WAN accelerators , etc . , and the appliances 
that are associated therewith ( e . g . , customer premises equip 
ment ( CPE ) , cable modem ( CM ) , etc . ) 
[ 0143 ] Note that in this Specification , references to vari 
ous features ( e . g . , elements , structures , modules , compo 
nents , steps , operations , characteristics , etc . ) included in 
" one embodiment " , " example embodiment ” , “ an embodi 
ment ” , “ another embodiment ” , “ some embodiments ” , “ vari 
ous embodiments ” , “ other embodiments ” , “ alternative 
embodiment ” , and the like are intended to mean that any 
such features are included in one or more embodiments of 
the present disclosure , but may or may not necessarily be 
combined in the same embodiments . Furthermore , the words 
" optimize , " " optimization , ” and related terms are terms of 
art that refer to improvements in speed and / or efficiency of 
a specified outcome and do not purport to indicate that a 
process for achieving the specified outcome has achieved , or 
is capable of achieving , an “ optimal ” or perfectly speedy / 
perfectly efficient state . 
[ 0144 ] In example implementations , at least some portions 
of the activities outlined herein may be implemented in 
software in , for example , PSM module 24 . In some embodi 
ments , one or more of these features may be implemented in 
hardware , provided external to these elements , or consoli 
dated in any appropriate manner to achieve the intended 
functionality . The various components may include software 
( or reciprocating software ) that can coordinate in order to 
achieve the operations as outlined herein . In still other 
embodiments , these elements may include any suitable 
algorithms , hardware , software , components , modules , 
interfaces , or objects that facilitate the operations thereof . 
[ 0145 ] Furthermore , PSM module 24 described and shown 
herein ( and / or their associated structures ) may also include 



US 2017 / 0310541 A1 Oct . 26 , 2017 
15 

us 

suitable interfaces for receiving , transmitting , and / or other 
wise communicating data or information in a network envi - 
ronment . Additionally , some of the processors and memory 
elements associated with the various nodes may be removed , 
or otherwise consolidated such that a single processor and a 
single memory element are responsible for certain activities . 
In a general sense , the arrangements depicted in the FIG 
URES may be more logical in their representations , whereas 
a physical architecture may include various permutations , 
combinations , and / or hybrids of these elements . It is impera 
tive to note that countless possible design configurations can 
be used to achieve the operational objectives outlined here . 
Accordingly , the associated infrastructure has a myriad of 
substitute arrangements , design choices , device possibilities , 
hardware configurations , software implementations , equip 
ment options , etc . 
101461 In some of example embodiments , one or more 
memory elements ( e . g . , memory element 49 ) can store data 
used for the operations described herein . This includes the 
memory element being able to store instructions ( e . g . , soft m 

ware , logic , code , etc . ) in non - transitory media , such that the 
instructions are executed to carry out the activities described 
in this Specification . A processor can execute any type of 
instructions associated with the data to achieve the opera 
tions detailed herein in this Specification . In one example , 
processors ( e . g . , processor 48 ) could transform an element 
or an article ( e . g . , data , or electrical signals ) from one state 
or thing to another state or thing . In another example , the 
activities outlined herein may be implemented with fixed 
logic or programmable logic ( e . g . , software / computer 
instructions executed by a processor ) and the elements 
identified herein could be some type of a programmable 
processor , programmable digital logic ( e . g . , a field program 
mable gate array ( FPGA ) , an erasable programmable read 
only memory ( EPROM ) , an electrically erasable program 
mable read only memory ( EEPROM ) ) , an ASIC that 
includes digital logic , software , code , electronic instruc 
tions , flash memory , optical disks , CD - ROMs , DVD ROMs , 
magnetic or optical cards , other types of machine - readable 
mediums suitable for storing electronic instructions , or any 
suitable combination thereof . 
[ 0147 ] These devices may further keep information in any 
suitable type of non - transitory storage medium ( e . g . , random 
access memory ( RAM ) , read only memory ( ROM ) , field 
programmable gate array ( FPGA ) , erasable programmable 
read only memory ( EPROM ) , electrically erasable program 
mable ROM ( EEPROM ) , etc . ) , software , hardware , or in 
any other suitable component , device , element , or object 
where appropriate and based on particular needs . The infor 
mation being tracked , sent , received , or stored in commu 
nication system 10 could be provided in any database , 
register , table , cache , queue , control list , or storage structure , 
based on particular needs and implementations , all of which 
could be referenced in any suitable timeframe . Any of the 
memory items discussed herein should be construed as being 
encompassed within the broad term “ memory element . " 
Similarly , any of the potential processing elements , mod 
ules , and machines described in this Specification should be 
construed as being encompassed within the broad term 
" processor . " 
[ 0148 ] It is also important to note that the operations and 
steps described with reference to the preceding FIGURES 
illustrate only some of the possible scenarios that may be 
executed by , or within , the system . Some of these operations 
may be deleted or removed where appropriate , or these steps 
may be modified or changed considerably without departing 
from the scope of the discussed concepts . In addition , the 
timing of these operations may be altered considerably and 

still achieve the results taught in this disclosure . The pre 
ceding operational flows have been offered for purposes of 
example and discussion . Substantial flexibility is provided 
by the system in that any suitable arrangements , chronolo 
gies , configurations , and timing mechanisms may be pro 
vided without departing from the teachings of the discussed 
concepts . 
[ 0149 ] Although the present disclosure has been described 
in detail with reference to particular arrangements and 
configurations , these example configurations and arrange 
ments may be changed significantly without departing from 
the scope of the present disclosure . For example , although 
the present disclosure has been described with reference to 
particular communication exchanges involving certain net 
work access and protocols , communication system 10 may 
be applicable to other exchanges or routing protocols . More 
over , although communication system 10 has been illus 
trated with reference to particular elements and operations 
that facilitate the communication process , these elements , 
and operations may be replaced by any suitable architecture 
or process that achieves the intended functionality of com 
munication system 10 . 
[ 0150 ] Numerous other changes , substitutions , variations , 
alterations , and modifications may be ascertained to one 
skilled in the art and it is intended that the present disclosure 
encompass all such changes , substitutions , variations , altera 
tions , and modifications as falling within the scope of the 
appended claims . In order to assist the United States Patent 
and Trademark Office ( USPTO ) and , additionally , any read 
ers of any patent issued on this application in interpreting the 
claims appended hereto , Applicant wishes to note that the 
Applicant : ( a ) does not intend any of the appended claims to 
invoke paragraph six ( 6 ) of 35 U . S . C . section 112 as it exists 
on the date of the filing hereof unless the words “ means for " 
or " step for ” are specifically used in the particular claims ; 
and ( b ) does not intend , by any statement in the specifica 
tion , to limit this disclosure in any way that is not otherwise 
reflected in the appended claims . 
What is claimed is : 
1 . A system , comprising : 
a data collector located in a cable network , wherein the 

data collector captures multi - tone signals traversing the 
cable network ; 

a data repository located in a cloud network and having an 
interface for communicating with the data collector , 
wherein the data repository stores the multi - tone sig 
nals captured by the data collector and network data 
associated with the cable network ; and 

a central server comprising : 
a memory element storing Predictive Services Man 
agement ( PSM ) algorithms comprising instructions 
and associated data ; and 
processor operable to execute the PSM algorithms , 
wherein the processor and the memory element 
cooperate , such that the central server is configured 
for : 
detecting a fault in the cable network and identifying 

a segment associated with the fault ; 
determining a maximum tap magnitude for the fault ; 
calculating an aggregate tap magnitude for the fault ; 

and 
classifying a severity of the fault based at least in part 

on the maximum tap magnitude and the aggregate 
tap magnitude . 

2 . The system of claim 1 , wherein the central server is 
further configured for determining a number of cable 



US 2017 / 0310541 A1 Oct . 26 , 2017 
16 

modems affected by the fault and wherein the classifying the 
severity of the fault is based at least in part on the determined 
number of cable modems . 

3 . The system of claim 2 , wherein the determining the 
number of cable modems affected by the fault comprises 
searching a segment table comprising data regarding each of 
a plurality of segments comprising the cable network . 

4 . The system of claim 1 , wherein the central server is 
further configured for determining a type of device associ 
ated with the fault and wherein the classifying the severity 
of the fault is based at least in part on the determined device 
type . 

5 . The system of claim 4 , wherein the determining the 
type of device associated with the fault comprises searching 
a segment table comprising data regarding each of a plural 
ity of segments comprising the cable network . 

6 . The system of claim 1 , wherein the central server is 
further configured for communicating fault severity infor 
mation to a designated entity . 

7 . The system of claim 1 , wherein the channel response is 
derived from pre - equalization coefficients , wherein the pre 
equalization coefficients are obtained by periodic polling of 
the cable network by the data collector . 

8 . A method executed at an integrated circuit , the method 
comprising : 

detecting a fault in the cable network ; 
identifying a segment associated with the fault ; 
determining a maximum tap magnitude for the fault ; 
calculating an aggregate tap magnitude for the fault ; and 
classifying a severity of the fault based at least in part on 

the maximum tap magnitude and the aggregate tap 
magnitude . 

9 . The method of claim 8 further comprising determining 
a number of cable modems affected by the fault and wherein 
the classifying the severity of the fault is based at least in 
part on the determined number of cable modems . 

10 . The method of claim 9 , wherein the determining the 
number of cable modems affected by the fault comprises 
searching a segment table comprising data regarding each of 
a plurality of segments comprising the cable network . 

11 . The method of claim 8 further comprising determining 
a type of device associated with the fault and wherein the 
classifying the severity of the fault is based at least in part 
on the determined device type . 

12 . The method of claim 11 , wherein the determining the 
type of device associated with the fault comprises searching 
a segment table comprising data regarding each of a plural 
ity of segments comprising the cable network . 

13 . The method of claim 8 further comprising communi 
cating fault severity information to a designated entity . 

14 . The method of claim 8 , wherein the channel response 
is derived from pre - equalization coefficients , wherein the 
pre - equalization coefficients are obtained by periodic poll 
ing of the cable network by the data collector . 

15 . Non - transitory tangible computer - readable media that 
includes instructions for execution , which when executed by 
an integrated circuit , is operable to perform operations 
comprising : 

detecting a fault in the cable network and identifying a 
segment associated with the fault ; 

determining a maximum tap magnitude for the ; 
calculating an aggregate tap magnitude for the fault ; and 
classifying a severity of the fault based at least in part on 

the maximum tap magnitude and the aggregate tap 
magnitude . 

16 . The media of claim 15 , wherein the operations further 
comprise determining a number of cable modems affected 
by the fault and wherein the classifying the severity of the 
fault is based at least in part on the determined number of 
cable modems . 

17 . The media of claim 16 , wherein the determining the 
number of cable modems affected by the fault comprises 
searching a segment table comprising data regarding each of 
a plurality of segments comprising the cable network . 

18 . The media of claim 15 , wherein the operations further 
comprise determining a type of device associated with the 
fault and wherein the classifying the severity of the fault is 
based at least in part on the determined device type . 

19 . The media of claim 18 , wherein the determining the 
type of device associated with the fault comprises searching 
a segment table comprising data regarding each of a plural 
ity of segments comprising the cable network . 

20 . The media of claim 16 , wherein the operations further 
comprise communicating fault severity information to a 
designated entity . 

* * * * * 


