wo 2023/018497 A1 |0 0000 AP0 0 00 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
16 February 2023 (16.02.2023)

(10) International Publication Number

WO 2023/018497 Al

WIPO I PCT

1)

@n

22)

@5
(26)
30)

(71)

(72)

International Patent Classification:
GO6F 9/455 (2018.01)

International Application Number:
PCT/US2022/036048

International Filing Date:
03 July 2022 (03.07.2022)

Filing Language: English
Publication Language: English
Priority Data:

17/401,236 12 August 2021 (12.08.2021) UsS
Applicant: MICROSOFT TECHNOLOGY LI-

CENSING, LLC [US/US], One Microsoft Way, Redmond,
Washington 98052-6399 (US).

Inventors: FAIRFAX, Ryan James, MICROSOFT
TECHNOLOGY LICENSING, LLC, One Microsoft Way,
Redmond, Washington 98052-6399 (US). HUNT, Galen
Clyde;, MICROSOFT TECHNOLOGY LICENSING,
LLC, One Microsoft Way, Redmond, Washington

(74)

@81)

98052-6399 (US). BOND, Barry Clayton; MICROSOFT
TECHNOLOGY LICENSING, LLC, One Microsoft Way,
Redmond, Washington 98052-6399 (US). WESTON,
Kevin Thomas, JR.; MICROSOFT TECHNOLOGY LI-
CENSING, LLC, One Microsoft Way, Redmond, Washing-
ton 98052-6399 (US).

Agent: CHATTERJEE, Aaron C. et al.; MICROSOFT
TECHNOLOGY LICENSING, LLC, One Microsoft Way,
Redmond, Washington 98052-6399 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ,DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR,HU, ID,IL, IN, IQ, IR, IS, IT, JM, JO, JP, KE, KG, KH,
KN, KP, KR, KW, KZ, LA, LC,LK, LR, LS, LU, LY, MA,
MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM,

(54) Title: ISOLATING OPERATING SYSTEM ENVIRONMENTS IN EMBEDDED DEVICES

100
116 114 2
System Firmware 502 Application Container 322 Real-Time Container 324
System OS 124 Aop Servi Aop Servi Aop Senvi
! ervice ervice ervice
igatewayd 514 H networkd 520 \ pp53za\” pp532bVI pp5320 :
| updates516 || vmM 312
i crash 518 H appman 422% { Shared libs (glibc, libgee, libstde++) 320 P—- -
Application
I Shared libs 524 } systemd | | systemd-| | systemd-| | systemd E‘ Code
[o— T (init) networkd | timesyncd | journald p 122
[(System 0S) Kemel 526][DTB 528 534 536 538 540 |o
S~
(=%
E Security Monitor 306 E 1 (App OS) Kernel modules 542 I <
; Security Runtime 530 | [(App OS) Kernel 544 || (App 0S) DTB 546 |
. \ Primary | . .
PSecunty 1 Flash Networking _Network Flash | I_"‘erlpherals (e.g. Peripherals (e.g.
rocessor|| 114 Adapter interface 114 | display, USB host, SPL, 12C)
302 || 114] SPI)510 512
i 314
System attached hardware 110b Paravirtualized hiw 504 }iIHL-app attached hiw 5061 { RT-app attached hiw 508
|

FIG. 4

110a

(57) Abstract: A unique embedded system is disclosed that locally operates an application virtual machine (VM) and a system VM

in isolation from each other. The application VM executes application-specific code for a given purpose of the embedded system.
The system VM executes a host operating system (OS) and various security, compatibility, and updating functions independent of the
application VM. Each VM is connected to its own unique hardware on the embedded system to ensure that changes to the application
code or the system code do not impact the other.

[Continued on next page]

WO 2023/018497 A | [IN 1]} 00 0000000 0TS0 0O

TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM,
ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— as to applicant's entitlement to apply for and be granted a
patent (Rule 4.17(ii))

— as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:
— with international search report (Art. 21(3))

10

15

20

25

30

35

WO 2023/018497 PCT/US2022/036048
ISOLATING OPERATING SYSTEM ENVIRONMENTS IN EMBEDDED DEVICES

BACKGROUND
Operating systems (OSes) control virtually all of today’s networked devices. Everything from
personal computers to virtual reality (VR) headsets to Internet of Things (IoT) devices run an OS
to provide a software environment in which application-specific code may be deployed. Yet,
devices in the area of embedded systems typically run on a system on a chip (SoC), controller, or
other processing chip with a limited amount of memory and other hardware. With memory and
processing resources constrained, the OSes running on embedded systems must be efficient.
Purpose-built embedded systems (e.g., smart appliances, IoT devices, etc.) have the limited
amounts of memory and other hardware that must be strategically used. These types of devices
have small amounts of memory, short run times, and shared libraries. Not only that, but they also
include an OS environment that controls things like networking, security, and compatibility and
also application-specific code that controls how the end device operates, collects data, and
generally functions. For example, an embedded system may include an OS to connect a smart
appliance to the network, prevent it from being hacked, and be able to be updated and also
instructions that provide remote monitoring for the appliance, make it is not running when it
should not be, or other functions specific to the appliance. Using the same hardware on the
embedded system for both the OS instructions and the application-specific instructions exposes
vulnerabilities of one to the other.
SUMMARY
The disclosed examples are described in detail below with reference to the accompanying drawing
figures listed below. The following summary is provided to illustrate some examples disclosed
herein. It is not meant, however, to limit all examples to any particular configuration or sequence
of operations.
Examples and implementations disclosed herein are directed to an embedded system configured
to perform application-specific instructions. The embedded system includes an application virtual
machine (VM) and a system VM that operate locally in isolation from one another. Hardware and
software on the embedded system are only connected to one VM or the other—the application
VM or the system VM—isolating the two VMs from each other. And each VM runs its own
software versions and components. This ensures that changes to the application code or the system
code do not impact the other.
BRIEF DESCRIPTION OF THE DRAWINGS
The disclosed examples are described in detail below with reference to the accompanying drawing

figures listed below:

10

15

20

25

30

35

WO 2023/018497 PCT/US2022/036048
FIG. 1 illustrates a block diagram of an example embedded system, according to some of the
disclosed implementations;
FIG. 2 illustrates a block diagram of a networking environment for operating a cloud-connected
embedded system, according to some of the disclosed implementations;
FIG. 3 illustrates a generalized block diagram of an embedded system with a partitioned
application VM and system VM, according to some of the disclosed implementations;
FIG. 4 illustrates a detailed block diagram of an embedded system with a partitioned application
VM and system VM, according to some of the disclosed implementations; and
FIGs. 5-6 illustrate flow chart diagrams detailing a workflows for creating embedded system with
an application VM isolated from a system VM, according to some of the disclosed
implementations.

DETAILED DESCRIPTION

The various implementations and examples will be described in detail with reference to the
accompanying drawings. Wherever possible, the same reference numbers will be used throughout
the drawings to refer to the same or like parts. References made throughout this disclosure relating
to specific examples and implementations are provided solely for illustrative purposes but, unless
indicated to the contrary, are not meant to limit all examples.
As referenced herein, an “embedded system” refers to an end computing device that has a
combination of a computer processing unit (e.g., SoC, controller, microcontroller, microprocessor,
or the like); computer memory; and hardware 1/Os, peripherals, sensors, or other hardware
components that collectively function for an intended purpose. It may be “embedded” as part of a
complete device often including electrical or electronic hardware and mechanical parts. Because
an embedded system typically controls physical operations of the machine that it is embedded
within, it often has real-time computing constraints. For example, a smart appliance may include
various embedded systems that control operation or remote connection. A factory robot may have
a sensor that monitors parts on a conveyor belt. Myriad other examples exist.
Today’s embedded systems traditionally have a small amount of memory compared to general
computer systems. With embedded systems moving into the cloud, complex OSes are needed to
communicate over networks that consume even more of the local memory space. Not only that,
but security and compatibility changes of these complex OSes often cause chip malfunctions
because the embedded system uses the same memory spaces for OS and other system operations
as well as application-specific operations. For example, an [oT device may only have 16MB or
memory that are continually used to load and erase both OS and application-specific operations.
This limited memory combined with the larger demands of a modern OS have left many device

developers operating close to the limit. Some developers even run the embedded system out of

2

10

15

20

25

30

35

WO 2023/018497 PCT/US2022/036048

memory and then back off so they use all they can. This has put the OS in a precarious position as
any small updates may change memory characteristics in such a way that breaks a customer
application scenario that worked on a previous version.

Additionally, OS developers spend significant time investing in building APIs, curating libraries,
and providing custom services to enable application authors to build desired experiences. For
microcontroller units (MCU), developers are expected to bring their own libraries and own
maintenance and security patching of them. Libraries are often statically linked so servicing a
library includes updating the core app that uses them. For example, in LINUX, the OS provides
libraries via some form of package manager and that servicing of a library involves updating the
core OS and not device-specific applications.

This poses a few challenges for developers who create application-specific programs to run on
embedded systems. First, developers cannot easily bring existing open source software (OSS)
unless it happens to line up with application programming interfaces (APIs) exposed by the
particular software development kit (SDK) of the SoC, controller, or processor of the embedded
system. This limits usage of the existing ecosystem of libraries and OSS. Second, the libraries that
are exposed must have hard compatibility guarantees that impact upgrade strategies and security
fixes. In the Linux world, this is often solved by shipping multiple versions of a library, which has
limited lifetime in desktop and server deployments. Developers need to be able to pull in existing
open source or code to run for years in today’s embedded systems, and the current offerings are
stretched to their limits attempting to provide that support.

Moreover, in the MCU world, developers are used to interfacing directly with peripheral
hardware. This has a higher development cost as drivers must be written for each SoC but, in turn,
it gives maximum control and performance to the developer. For LINUX, device drivers and
abstractions simplify developing an application that uses peripherals at the expense of
performance.

To ensure compatibility and security, the disclosed implementations and examples describe
embedded systems that provide separate partitioned VMs for system software to evolve
independently from application software. In particular, the disclosed implementations and
examples are directed to embedded systems that isolate application-specific code from the system
OS using at least two partitioned virtual machines (VMs). An application VM is created that runs
the application-specific code for the end device, and a system VM is created that runs more
generalized system operations, such as a networking stack, OS, and software update functions.
Shared resources and operations eliminated or at least dramatically minimized as much as
possible, allowing customers to get their application workloads running on the disclosed

embedded systems quickly and without friction.

10

15

20

25

30

35

WO 2023/018497 PCT/US2022/036048

FIG. 1 illustrates an example of an embedded system, shown as client device 100, configured to
receive an OS build with hardware driver bindings and instances for resident hardware
components in accordance with some of the embodiments disclosed herein. Client device 100 is
an embedded system that includes one or more processing units 102, input/output (I/O) ports 104,
a communications interface 106, computer-storage memory (memory) 108, hardware components
110, and a communications path 112—all of which constitute hardware components with drivers
and presence in one or more device trees. Client device 100 may take the form any number of
computing devices, such as smart sensor, IoT device, application-specific integrated circuit
(ASIC), or other device that engineered and programmed for a specific functional purpose. Client
device 100 is but one example of a suitable computing environment and is not intended to suggest
any limitation as to the scope of use or functionality of the disclosed embodiments.

The processing unit 102 may include any type of ASIC, SoC, microcontroller, MCU, controller,
microprocessor, processor, analog circuit, or the like programmed to execute computer-executable
instructions for implementing aspects of this disclosure. In some examples, the processing unit
102 1s programmed to execute instructions such as those illustrated in the other drawings discussed
herein. For purposes of this disclosure, the terms “processor,” “controller,” “MCU,” “processing
unit,” and “control unit” are meant to connote the same thing and are used interchangeably.
Client device 100 is equipped with one or more hardware components 110. Hardware components
110 refer to the specific hardware that is connected to or resident on client device 100. Examples
of hardware components 110 include, without limitation, transceivers (e.g., UART); displays (e.g.,
touch, VR or augmented reality (AR), etc.); peripherals (e.g., stylus, wearable, etc.); sensors (e.g.,
accelerometer, inertial movement unit (IMU), gyroscope, global positioning system (GPS),
magnetometer, etc.); microphones; speakers; or any other hardware. Any combination of hardware
may be incorporated in client device 100.

I/O ports 104 provider internal and external connections for the hardware components 110.
Hardware components 110 use the I/O ports 104 to operate externally and internally.
Communications interface 106 allows software and data to be transferred between client device
100 and external devices over a network 140. Examples of communications interface 106 may
include a modem, a network interface (such as an Ethernet card), a communications port, a
Personal Computer Memory Card International Association (PCMCIA) slot and card, a
BLUETOOTH® transceiver, radio frequency (RF) transceiver, a near-field communication
(NFC) transmitter, or the like. Software and data transferred via the communications interface 106
are in the form of signals that may be electronic, electromagnetic, optical or other signals capable
of being received by communications interface 106. Such signals are provided to the

communications interface 106 via the communications path (e.g., channel) 112. This

4

10

15

20

25

30

35

WO 2023/018497 PCT/US2022/036048
communications path 112 carries the signals and may be implemented using a wired, wireless,
fiber optic, telephone, cellular, radio frequency RF, or other communication channel. The
communications interface 106 and the I/O ports 104 are shown separate from the hardware
components 110, even though they are shown separately.

The hardware components 110 are logically discussed herein as being application hardware
components 110a and system hardware components 110b, meaning they are either logically
connected to application-specific code (discussed in more detail below as application code 122)
or system-specific code (discussed in more detail below as system code 126. For the disclosure,
“logically connected” may include physically connected, electrically connected, or able to
communicate via signaling (e.g., through radio waves, wirelessly, light, infrared, or the like). The
hardware components 110 may be used by either the application code 122 or the system code 126,
but those two portions of code (application code 122 and system code 126) are isolated from one
another using different VMs that establish a partition 118, as discussed in more detail below.
Network 140 may include any computer network or combination thereof. Examples of computer
networks configurable to operate as network 140 include, without limitation, a wireless network;
landline; cable line; digital subscriber line (DSL): fiber-optic line; cellular network (e.g., 3G, 4G,
5@G, etc.); local area network (LAN); wide area network (WAN):, metropolitan area network
(MAN); or the like. The network 140 is not limited, however, to connections coupling separate
computer units. Rather, the network 140 may also comprise subsystems that transfer data between
servers or computing devices. For example, the network 140 may also include a point-to-point
connection, the Internet, an Ethernet, an electrical bus, a neural network, or other internal system.
Such networking architectures are well known and need not be discussed at depth herein.
Computer-storage memory 108 includes any quantity of memory devices associated with or
accessible by the client device 100. The computer-storage memory 108 may take the form of the
computer-storage media references below and operatively provide storage of computer-readable
instructions, data structures, program modules and other data for the client device 100 to store and
access instructions configured to carry out the various operations disclosed herein. The computer-
storage memory 108 may include memory devices in the form of volatile and/or nonvolatile
memory, removable or non-removable memory, data disks in virtual environments, or a
combination thereof. And computer-storage memory 108 may include any quantity of memory
associated with or accessible by the client device 100. Examples of client device 100 include,
without limitation, random access memory (RAM); read only memory (ROM); electronically
erasable programmable read only memory (EEPROM); flash memory or other memory
technologies; CDROM, digital versatile disks (DVDs) or other optical or holographic media;

magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices;

10

15

20

25

30

35

WO 2023/018497 PCT/US2022/036048
memory wired into an analog computing device; or any other computer memory.
The computer-storage memory 108 may be internal to the client device 100 (as shown in FIG. 1),
external to the client device 100 (not shown), or both (not shown). Additionally or alternatively,
the computer-storage memory 108 may be distributed across multiple client devices 100 and/or

servers, e.g., in a virtualized environment providing distributed processing. For the purposes of

29 (13 29 (13

this disclosure, “computer storage media,” “computer-storage memory,” “memory,” and
“memory devices” are synonymous terms for the computer-storage media 108, and none of these
terms include carrier waves or propagating signaling.

The client device 100 is configured to operate for a given purpose. For example, a smart appliance
may provide appliance capabilities, an industrial robot may monitor parts on an assembly line,
security sensor may alert authorities when particular sounds are detected, etc. IoT devices have
myriad uses, far too many to exhaustively list in this disclosure. To carry these out, the client
device 100 has specific application code 122 that performs application-specific functions (e.g.,
appliance functions, computer vision for assembly line monitoring, security operations, etc.).
Additionally, the client device 100 includes an application OS 114 in which the application code
122 executes.

Additionally, the client device 100 includes various system operations that are shown as system
code 126 executing in a system OS 124. The system operations include, without limitation,
networking operations 128, compatibility operations, security operations, an updating module
130, and other non-application-specific operations. In particular, the network operations 128
include a network stack for communicating with remote devices in a cloud environment, and the
update module 130 include instructions for updating the various OSes and the application code
122 of the client device 100.

To keep the application-specific operations of the client device 100 separate from the system
operations, the disclosed implementations and examples provision two or more separate VMs on
the client device: an application VM 114 and a system VM 116. The application VM 114 includes
the application OS 120 and the application code 122. The system VM includes the system OS 124
and the system code 126. These two VMs (114 and 116) run independently of each other,
effectively creating a partition 118 therebetween. In some examples, the application VM 114 and
the system VM 116 are provisioned on the client device 100 by the manufacturer of the processing
unit 102. For example, a chip manufacturer may program the processing unit 102 (e.g., SoC, chip,
MCU, etc.) and memory with the application VM 114 and the system VM 116 before being
shipped to end users.

The application VM 114 and the system VM 116 are connected to their own hardware components

110. As depicted, the application VM 114 is only connected to a specific subset of hardware

6

10

15

20

25

30

35

WO 2023/018497 PCT/US2022/036048

components 110: application hardware components 110a. And the system VM 116 is only
connected to a specific subset of hardware components 110: system hardware components 110b.
In some implementations, the application VM 114 and the system VM 116 cannot access the
other’s hardware components 110. To clarify, the system VM 116 is not connected to the
application hardware components 110a, and the application VM 114 is not connected to the system
hardware components 110b. For instance, the application VM 114 may be connected to a flash
drive of memory as part of the application hardware components 110a, and thus, only the
application VM 114 may access that flash memory—not the system VM 116. Similarly, the
system VM 116 may be connected to a Wi-Fi adapter as part of the system hardware components
110b that is not accessible by the application VM 114. This ensures that updates to either the
application code 122 do not affect operation of the system code 126, and vice versa.

The disclosed OSes—the application OS 120 and the system OS 124—may be may be any OS
designed to control the functionality of client device 100, including, for example but without
limitation: WINDOWS® developed by the MICROSOFT CORPORATION® of Redmond,
Washington; MAC OS® developed by APPLE, INC.® of Cupertino, California, ANDROID™
developed by GOOGLE, INC.® of Mountain View, California; open-source LINUX®; or the like.
In some embodiments, the application OS 120 and the system OS 124 are embedded OSes for
running on an embedded system. Embedded OSes are typically designed to be resource-efficient,
including functions that only operate on RAM or ROM of memory 108, which may be the only
resident memory onboard. In such embodiments, the application OS 120 and/or the system OS
124 may be a real-time OS (RTOS).

The examples disclosed herein may be described in the general context of computer code or
machine- or computer-executable instructions, such as program components, being executed by a
computer or other machine. Generally, program components include routines, programs, objects,
components, data structures, and the like that refer to code, performs particular tasks, or implement
particular abstract data types.

Computing device 100 includes a bus 110 that directly or indirectly couples the following devices:
computer-storage memory 112, one or more processors 114, one or more presentation components
116, 1/0 ports 118, I/O components 120, a power supply 122, and a network component 124.
While computing device 100 is depicted as a seemingly single device, multiple computing devices
100 may work together and share the depicted device resources. For example, memory 112 is
distributed across multiple devices, and processor(s) 114 is housed with different devices. Bus
110 represents what may be one or more busses (such as an address bus, data bus, or a combination
thereof). Although the various blocks of FIG. 1 are shown with lines for the sake of clarity,

delineating various components may be accomplished with alternative representations. For

7

10

15

20

25

30

35

WO 2023/018497 PCT/US2022/036048
example, a presentation component such as a display device is an I/O component in some
examples, and some examples of processors have their own memory.

Memory 112 may take the form of the computer-storage memory device referenced below and
operatively provide storage of computer-readable instructions, data structures, program modules
and other data for the computing device 100. In some examples, memory 112 stores one or more
of an OS, a universal application platform, or other program modules and program data. Memory
112 is thus able to store and access data 112a and instructions 112b that are executable by
processor 114 and configured to carry out the various operations disclosed herein. In some
examples, memory 112 stores executable computer instructions for an OS and various software
applications. The OS may be any OS designed to the control the functionality of the computing
device 100, including, for example but without limitation: WINDOWS® developed by the
MICROSOFT CORPORATION®, MAC OS® developed by APPLE, INC.® of Cupertino, Calif,,
ANDROID™ developed by GOOGLE, INC.® of Mountain View, California, open-source
LINUX®, and the like.

By way of example and not limitation, computer readable media comprise computer-storage
memory devices and communication media. Computer-storage memory devices may include
volatile, nonvolatile, removable, non-removable, or other memory implemented in any method or
technology for storage of information such as computer-readable instructions, data structures,
program modules, or the like. Computer-storage memory devices are tangible and mutually
exclusive to communication media. Computer-storage memory devices are implemented in
hardware and exclude carrier waves and propagated signals. Computer-storage memory devices
for purposes of this disclosure are not signals per se. Example computer-storage memory devices
include hard disks, flash drives, solid state memory, phase change random-access memory
(PRAM), static random-access memory (SRAM), dynamic random-access memory (DRAM),
other types of random-access memory (RAM), read-only memory (ROM), electrically erasable
programmable read-only memory (EEPROM), flash memory or other memory technology,
compact disk read-only memory (CD-ROM), digital versatile disks (DVD) or other optical
storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage
devices, or any other non-transmission medium that may be used to store information for access
by a computing device. In contrast, communication media typically embody computer readable
instructions, data structures, program modules, or the like in a modulated data signal such as a
carrier wave or other transport mechanism and include any information delivery media.

The computer-executable instructions may be organized into one or more computer-executable
components or modules. Generally, program modules include, but are not limited to, routines,

programs, objects, components, and data structures that perform particular tasks or implement

10

15

20

25

30

35

WO 2023/018497 PCT/US2022/036048

particular abstract data types. Aspects of the disclosure may be implemented with any number an
organization of such components or modules. For example, aspects of the disclosure are not
limited to the specific computer-executable instructions or the specific components or modules
illustrated in the figures and described herein. Other examples of the disclosure may include
different computer-executable instructions or components having more or less functionality than
illustrated and described herein. In examples involving a general-purpose computer, aspects of the
disclosure transform the general-purpose computer into a special-purpose computing device,
MCU, SoC, ASIC, or the like for isolating application operations from system operations.
Processor(s) 114 may include any SoC, MCU, controller, processor, processing unit that perform
the various operations stored in the memory 112. Specifically, processor(s) 114 are programmed
to execute computer-executable instructions for implementing aspects of the disclosure.
Moreover, in some examples, the processor(s) 114 represent an implementation of analog
techniques to perform the operations described herein.

Presentation component(s) 116 present data indications to a user or other device. Exemplary
presentation components include a display device, speaker, printing component, vibrating
component, etc. One skilled in the art will understand and appreciate that computer data may be
presented in a number of ways, such as visually in a graphical user interface (GUI), audibly
through speakers, wirelessly between computing devices 100, across a wired connection, or in
other ways. I/O ports 118 allow computing device 100 to be logically coupled to other devices
including I/O components 120, some of which may be built in. Example I/O components 120
include, for example but without limitation, a microphone, joystick, game pad, satellite dish,
scanner, printer, wireless device, etc.

The computing device 100 may communicate over a network 130 via network component 124
using logical connections to one or more remote computers. In some examples, the network
component 124 includes a network interface card and/or computer-executable instructions (e.g.,
an adapter) for operating the network interface card. Communication between the computing
device 100 and other devices may occur using any protocol or mechanism over any wired or
wireless connection. In some examples, network component 124 is operable to communicate data
over public, private, or hybrid (public and private) using a transfer protocol, between devices
wirelessly using short range communication technologies (e.g., near-field communication (NFC),
Bluetooth™ branded communications, or the like), or a combination thereof. Network component
124 communicates over wireless communication link 126 and/or a wired communication link
126a across network 130 to a cloud environment 128, such as the cloud-computing environment
described in more detail below. Various different examples of communication links 126 and 126a

include a wireless connection, a wired connection, and/or a dedicated link, and in some examples,

9

10

15

20

25

30

35

WO 2023/018497 PCT/US2022/036048

at least a portion is routed through the Internet.

The network 130 may include any computer network or combination thereof. Examples of
computer networks configurable to operate as network 130 include, without limitation, a wireless
network; landline; cable line; digital subscriber line (DSL): fiber-optic line; cellular network (e.g.,
3G, 4G, 5G, etc.); local area network (LAN); wide area network (WAN): metropolitan area
network (MAN); or the like. The network 130 is not limited, however, to connections coupling
separate computer units. Rather, the network 130 may also include subsystems that transfer data
between servers or computing devices. For example, the network 130 may also include a point-
to-point connection, the Internet, an Ethernet, an electrical bus, a neural network, or other internal
system. Such networking architectures are well known and need not be discussed at depth herein.
FIG. 2 illustrates a block diagram of a networking environment 200 for operating a cloud-
connected embedded system (client device), according to some of the disclosed implementations.
The networking environment 200 involves a client computing device 200 and a cloud environment
228 that communicate over network 230. In reference to FIG. 1, client device 100 represents an
embedded system provisioned with the application VM 114 and the system VM 116 that are
independently connected to their respective hardware components 110 (i.e., application hardware
components 110a and system hardware components 110b, respectively).

A user 206 may connect to the cloud environment 200 and access data collected by the client
device 100 using a computer 204. For example, the user 206 may view the current status of a smart
appliance, monitor the performance of an industrial robot, check the status of a sensor on an oil
well, or otherwise engage with any number of IoT devices. Any number of users 206, computers
204, and client devices (embedded systems) 100 may be accessible and use the networking
environment 200.

Cloud environment 200 includes various servers 201 that may be any type of server or remote
computing device, either as a dedicated, relational, virtual, private, public, hybrid, or other cloud-
based resource. Servers 201 include a mixture of physical servers and VMs. Individually or
collectively, servers 201 include or have access to one or more processors 202, I/O ports 204,
communications interfaces 206, and computer-storage memory 208. Server topologies and
processing resources are generally well known to those in the art, and need not be discussed at
length herein, other than to say that any server configuration may be used to communicate with
the client device 100 through receiving data therefrom and pushing updates thereto.

Memory 208 represents a quantity of computer-storage memory and memory devices that store
executable instructions and data for use in hosting, monitoring, and managing the client devices
100. In some examples, memory 208 stores compatibility updates 210 and security updates 212

for the client device 100. The compatibility updates 210 include changes to the application code

10

10

15

20

25

30

35

WO 2023/018497 PCT/US2022/036048

122 that includes the application-specific functions for the client device 100 that are run in the
application VM 114. The security updates 212 include security changes to the system code 126
that is run in the system VM 116. These changes are transmitted to the client device 100 over the
network 140 and may be installed on the client device 100 by the update module 130.

FIG. 3 illustrates a block diagram of the client device 100 with the partitioned application VM
114 and system VM 116, according to some of the disclosed implementations. The processing
unit 102 is shown executing with the memory 108. Within the processing unit 102 and the memory
108, a security processing unit 302 is running along with the provisioned application VM 114 and
the system VM 116.

The security processing unit 302 includes a security processor 304 and a security monitor 306.
The system VM 116 includes the system OS 124 that, itself, includes a system kernel 308, device
authentication and attestation (DAA) 310 that handles error reporting, the update module 130, a
virtual machine manager (VMM) 312, and a primary networking adapter 314. The application
VM 114 includes its own application kernel 318, one or more corresponding libraries 320, and
various files that make up the application code 122. During operation, the security monitor 306
loads application code 122 from an application container 322 to a real-time container 324. The
real-time container 324 represents the processing cores that run the application code 122.

To create the isolation between the system VM 116 and the application VM 114, the depicted OS
architecture takes advantage of virtual machine technology and hardware firewalls to enforce strict
isolation. The system OS 124 serves as the host and the application VM 114 runs as a virtual
machine. Peripherals of the hardware components 110 are passed through directly to the
application VM 114 to allow the application kernel 318 to control them. In some implementations,
a few key peripherals, such as the primary networking adapter 314 and flash access, are para-
virtualized to allow access as a shared resource between the system OS 124 and the application
VM 114.

The application VM 114 hosts the core OS responsible for interfacing with hardware and running
customer logic. In some implementations, the application VM 114 contains a full Linux instance,
or other OS instance, that includes device builder customizations and applications. The application
OS 120 provides numerous services to applications, including device drivers, support libraries
320, and security logic (such as process isolation).

Developers are able to start from an original image of the application kernel 318 and libraries 320
to make it easy to write new application (or application code 122). If they require more power,
they can modify and customize the application OS 124 or replace it entirely with something like
MICROSOFT AZURE® RTOS, ANDROID™, or a Silicon provider distribution. The developer

are also to connect, or “pin,” to a specific version of the Azure Sphere distribution for maximum

11

10

15

20

25

30

35

WO 2023/018497 PCT/US2022/036048
compatibility. Real-time cores (which executed in the disclosed real-time container 324 mentioned
below) continue to provide time sensitive support as they do today, but with a more direct link to
the application container 322 to allow for more coordination between device specific logic of the
application code 122.

The system OS 124 serves as the core host of the client device 100 and provides system services
and functionality based on the specific OS. The fact that customer applications (i.e., application
code 122) no longer run directly in the system OS 124 allows for opportunities to simplify the
application code 122. One example of this is the security policy, where many of the things that
must be dynamic today to enable application scenarios are now fixed. Similarly, only shared
peripherals like networking need to run in the system OS 124, which simplifies the kernel
configuration and library needs.

Since primary networking is a shared resource, the primary networking adapter 324, and related
functionality, remains in the system OS 124. In some implementations and examples, the
application container 322 is presented with a para-virtualized ethernet adapter, much like
traditional VM setups. Application code 122, however, is still needed to do things like scan for
networks, configure credentials, and provide Internet Protocol (IP) settings. The virtual machine
manager provides an existing guest to host [IPC mechanism over a virtual socket that may be
leveraged for this.

Like networking services, the system OS 124 must provide services for update. Some
implementations and examples expose additional APIs to applications to better control update
timing. This logic may also move to a virtual socket IPC between the application and the system
OS 124.

The application container 322 is a VM. As a VM, the application container 322 includes a full
kernel (app kernel 318) and user space file system comprising the libraries 320 in addition to the
application code 122. Manufacturers of the client device 100 are in complete control of the
application code 120 running in the application container 322. They can run a custom OS, or they
can leverage existing code to build out their environment. The application container 322 has direct
access to most peripherals to allow existing driver code to be used without modification. In some
implementations, only a single application container 322 VM is created regardless of the number
of applications running.

In some implementations, the real-time container 324 contains bare metal code that runs on
microcontroller class compute cores. This allows customers to bridge the gap between traditional
RTOS deployments and more-robust, proprietary OSes. Support for real time applications is a
SoC specific feature and it is not expected to be uniform between SoCs. For example, one SoC

might expose a general-purpose compute core such as an ARM Cortex-M while another SoC

12

10

15

20

25

30

35

WO 2023/018497 PCT/US2022/036048

might expose a specialty DSP for audio processing. Processor manufacturers largely define the
development experience for real time cores, focusing on cross-core communication and data
sharing so that developers can build an end-to-end experience. For example, a sensor application
running on a Cortex-M may gather data, do some simple batching, and then send it to an
application on another core (e.g., HLOS) for network transmission.

Each SoC may define the role that a real time application plays in the overall hardware. A
specialized DSP may only have access to a limited set of peripherals or logic while a more generic
microcontroller core may be a general-purpose device.

Not all developers will want to fully customize the application OS in the application container
322. To help enable rapid development, implementations and examples provide an OS build that
can be used as is or as a starting point for customer needs. The OS evolves over time, but customers
will control the decision on when to update by rebuilding their applications. This enables them to
“lock in” on a known working version and avoid the risk of an unexpected break. Similarly, the
system OS 124 or application OS 120 may be open source so that customers can modify or extend
the build as needed to meet their needs. Examples of this include adding libraries 320 to the file
system, adding additional kernel modules to the application kernel 318, or the like.

One of the side effects of running two kernels is an increased memory (RAM) overhead. The app
kernel 318 may be designed to be what is commonly referred to as a “micro VM,” changing the
view on minimum platform requirements. In addition, processing units that use double data rate
(DDR) may be used, bringing larger amounts of storage at similar price points.

Some SoC platforms may support both 32- and 64-bit code. In these implementations, developers
are able to maintain control of what bit size they want to run. In addition, since this is entirely in
the system OS 124, changes may be made over time. For example, first builds may be 32-bit and
switched over 64-bit without impacting the application container 322.

Another piece of the hardware architecture to enable the OS design is related to direct memory
access (DMA) engine usage. To enable peripherals of the hardware components 100 to natively
run in the application container 322, DMA engines are also mapped to the application container
322. It is important that the DMA engine not be allowed access to system OS 124 memory 108,
or shared resources, since it would not route through the virtualization memory protection
mechanism and thus provide a VM escape opportunity.

To ensure the DMA engine has the right access control for the shared address space there are two
approaches based on hardware capability. The first is to have the DMA engine use a unique
identity on the firewall. This allows firewall rules to be programmed to disallow DMA access to
System OS RAM and peripherals. On systems that have a memory management unit (MMU)

integrated with the DMA engine this can be used to achieve the same results.

13

10

15

20

25

30

35

WO 2023/018497 PCT/US2022/036048

Hardware, both on the SoC and via external buses, are critical to IoT experiences. In traditional
Linux OSes, some hardware is made easy to access but many physical interfaces are limited to
highly privileged users and not optimized for performance. The average Linux deployment is
primarily focused on storage, networking, and compute. The disclosed OS deployment build on
this by additionally focusing on peripherals and data buses.

Hardware should largely be left in control of the device builder via kernel drivers and application
code 122. Only shared resources, such as primary networking and storage, are mapped to system
VM 124 partition. The SoC defines which peripherals can be used by specific domains. In some
SoCs, peripherals may be able to map to multiple domains based on customer need. In other cases,
hardware may be limited to just a single domain. Similarly, pin multiplexing differs among
hardware offerings.

Isolation between the application VM 114 and the system VM 116 enables OS developers to be
confident that their changes will not negatively impact developer applications or vice-versa. This
approach allows for faster innovation by enabling developers to bring modifications and new code
into the app container that they control. Security and functionality of the system OS 124 may
continuously evolve without impact to the application running on the embedded system 100.
FIG. 4 illustrates a detailed block diagram of the client device 100 with a partitioned application
VM 114 and system VM 116, according to some of the disclosed implementations. The depicted
implementation shows the application VM 114 partitioned and isolated away from the system VM
116. The application VM 114 includes the application container 322. Processing cores execute the
real-time container 324, where the application code 122 is actually executed. The system VM 116
includes system firmware 502 comprising the system OS 124.

Additionally, as illustrated, the client device 100 includes various types of hardware components
110 that are connected exclusively to either the system VM 116, the application VM 114, or are
used by both. These include the system attached hardware, representing the previously discussed
system hardware components 110b, para-virtualized hardware components 504, and application
hardware components 110a. More specifically, the application hardware components 110a include
those hardware components that are attached to the application container 322 and the real-time
container 324, shown as HL-app attached h/w 506 and RT-app attached h/w 508, respectively.
Each of these hardware components 110 are discussed in more detail below.

The system hardware components 110b includes the security processor 302, flash memory 114,
and the primary network adapter 314. These various hardware components 110b are exclusively
mapped and connected to the system VM 116, and are thus not usable by the application VM 114.
The application hardware components 110a include various peripherals 510 (e.g., a display,

universal serial bus (USB) host, serial peripheral interface (SPI), and the like) that are used by the

14

10

15

20

25

30

35

WO 2023/018497 PCT/US2022/036048
application partition 322. Other peripherals 512 (e.g., SPI, 12C, etc.) are connected to and used by
the real-time container 324.

Moreover, some additional hardware components 110, paravirtualized h/w 504, may be used by
both the application VM 114 and the system VM 116. Exposing only this small subset of hardware
components 110 to the application VM 114 and the system VM 116 ensures that only a small
number of hardware resources are impacted by both.

The system VM 116 includes the system firmware 502. The system firmware 502 includes the
system OS 124 that comprises a number of kernel operations, APIs, and OS functions.
Specifically, gatewayd 514 provides device communications for command and control. Software
update support is provided through update module 516. Crash dumps and failure reporting is
handled via crash module 518. Networkd 520 is the primary network device handles firewall
management. The VMM 312 handles creation, editing, starting, stopping, and various other
management operations of setting up the VMs discussed herein. An application manager (appman)
522 starts, stops, and monitors running applications. The system OS 124 uses various shared
libraries 524, a kernel 526, a device tree blob (DTB) 528, the security monitor 306, and a security
runtime 530. These operate together to provide a host OS (system OS 124) and security within the
system VM 116.

Again, the application VM 116 includes the application container 322, and the real-time container
524 1s executed on processing cores of the embedded system 100. The application container 322
various application services 532a-c, the libraries 320, a system 534, various system identifiers
534-540, kernel modules 542 for the application OS 120, a kernel 544 for the application OS 120,
and a DTB 546 for the application OS 120. Moreover, the real-time container 522 is loaded with
the application code 122 for the client device 100 (e.g., the instructions for the smart appliance to
operate, computer vision for the industrial robot, telecommunication instructions for the security
system, etc.). These operate together so that the application VM 114 is able to execute the
application code 122 independent from the system OS 124.

FIG. 5 illustrates a flow chart diagram detailing a workflow 500 for programming an embedded
system with the application VM isolated from the system VM, according to some of the disclosed
implementations. Hardware components on the embedded system are identified, as shown at 502.
The hardware components include application hardware components and system hardware
components. The application VM and the system VM are created, as shown at 504 and 506,
respectively. The application VM is isolated from the system VM, as shown at 508. To do so, the
application VM is only connected to the application hardware components, as shown at 510. And
the system VM is only connected to the system hardware components, as shown at 512.

FIG. 6 illustrates a flow chart diagram detailing a workflow 600 for programming an embedded

15

10

15

20

25

30

35

WO 2023/018497 PCT/US2022/036048

system with the application VM isolated from the system VM, according to some of the disclosed
implementations. Hardware components on the embedded system are identified, as shown at 602.
The hardware components include application hardware components and system hardware
components. The application VM and the system VM are created, as shown at 604 and 606,
respectively. The application VM is isolated from the system VM, as shown at 608. To do so, the
application VM is only connected to the application hardware components, as shown at 610. And
the system VM is only connected to the system hardware components, as shown at 612. Also,
paravirtualized hardware is connected to both the application VM and the system VM, as shown
at 614

Additional Examples

Some examples are directed to an embedded system configured to perform application-specific
instructions. The embedded system includes: a plurality of hardware components comprising
system hardware components and application hardware components; memory embodied with
instructions for creating an application VM in isolation from a system VM; and a processing unit
configured to only connect the application hardware components to the application VM
application hardware components and only connect the system hardware components to the
system VM.

In some examples, the application VM comprises an application container that contains an
application OS.

Other examples include: an application OS running exclusively in the application VM; and a
system OS running exclusively in the system VM.

Other examples include paravirtualized hardware components that are usable by both the
application VM and the system VM.

In some examples, the processing unit is at least one of a microprocessor.

In some examples, the processing unit is at least one of an SoC, MCU, or ASIC.

In some examples, the embedded system is an Internet of things (IoT) device.

In some examples, the application hardware components comprise at least one peripheral
component.

In some examples, the system hardware components comprise at least one of a security processor,
flash memory, or a primary network adapter.

Other examples are directed to an embedded system configured to perform application-specific
instructions. The embedded system includes: a plurality of hardware components comprising
system hardware components, application hardware components, and paravirtualized hardware
components; memory embodied with instructions for creating an application virtual machine

(VM) in isolation from a system VM; and a processing unit configured to: only connect the

16

10

15

20

25

30

35

WO 2023/018497 PCT/US2022/036048

application hardware components to the application VM application hardware components, only
connect the system hardware components to the system VM, and create a real-time container in
the application VM for running application code to carry out the application-specific instructions.
Other examples include paravirtualized hardware components that are usable by both the
application VM and the system VM.

In some examples, the processing unit is at least one of a microprocessor.

In some examples, the processing unit is at least one of a system on chip (SoC), microcontroller
unit (MCU), or application-specific integrated circuit (ASIC).

In some examples, the embedded system is an Internet of things (IoT) device.

In some examples, the application hardware components comprise at least one peripheral
component.

In some examples, the system hardware components comprise at least one of a security processor,
flash memory, or a primary network adapter.

Other examples are directed to a method for programming an embedded system configured to
perform application-specific instructions. The method includes: identifying a plurality of
hardware components of the embedded system, the plurality of hardware components comprising
application hardware components and system hardware components; creating an application
virtual machine (VM) to run on the embedded system; creating a system VM to also run on the
embedded system in isolation from the application VM, connecting the application VM to only
the application hardware components; and connecting the system VM to only the system hardware
components.

Other examples are directed to: receiving an update to a system operating system (OS) executing
in the system VM; and updating the system OS in the system VM without updating software in
the application VM.

While the aspects of the disclosure have been described in terms of various examples with their
associated operations, a person skilled in the art would appreciate that a combination of operations
from any number of different examples is also within scope of the aspects of the disclosure.

The order of execution or performance of the operations in examples of the disclosure illustrated
and described herein is not essential, and may be performed in different sequential manners in
various examples. For example, it is contemplated that executing or performing a particular
operation before, contemporaneously with, or after another operation is within the scope of aspects
of the disclosure.

When introducing elements of aspects of the disclosure or the examples thereof, the articles "a,"

an," "the," and "said" are intended to mean that there are one or more of the elements. The terms

"comprising," "including," and "having" are intended to be inclusive and mean that there may be

17

WO 2023/018497 PCT/US2022/036048

additional elements other than the listed elements. The term “exemplary” is intended to mean “an
example of.” The phrase “one or more of the following: A, B, and C” means “at least one of A
and/or at least one of B and/or at least one of C."

Having described aspects of the disclosure in detail, it will be apparent that modifications and
variations are possible without departing from the scope of aspects of the disclosure as defined in
the appended claims. As various changes could be made in the above constructions, products, and
methods without departing from the scope of aspects of the disclosure, it is intended that all matter
contained in the above description and shown in the accompanying drawings shall be interpreted

as illustrative and not in a limiting sense.

18

WO 2023/018497 PCT/US2022/036048
CLAIMS

1. An embedded system configured to perform application-specific instructions, the
embedded system comprising:

a plurality of hardware components comprising system hardware components and
application hardware components;

memory embodied with instructions for creating an application virtual machine (VM) in
isolation from a system VM, and

a processing unit configured to only connect the application hardware components to the
application VM and only connect the system hardware components to the system VM.

2. The embedded system of claim 1, wherein the application VM comprises an
application container that contains an application operating system (OS).

3. The embedded system of claim 2, wherein the application VM includes
application code executable to perform the application-specific instructions.

4. The embedded system of at least one of claims 1-3, further comprising:

an application operating system (OS) running exclusively in the application VM; and

a system OS running exclusively in the system VM.

5. The embedded system of at least one of claims 1-4, further comprising
paravirtualized hardware components that are usable by both the application VM and the system
VM.

6. The embedded system of at least one of claims 1-5, where the processing unit is
at least one of a microprocessor.

7. The embedded system of at least one of claims 1-6, wherein the processing unit is
at least one of a system on chip (SoC), microcontroller unit (MCU), or application-specific
integrated circuit (ASIC).

8. The embedded system of at least one of claims 1-7, wherein the embedded
system is an Internet of things (IoT) device.

9. The embedded system of at least one of claims 1-8, wherein the application
hardware components comprise at least one peripheral component.

10. The embedded system of at least one of claims 1-9, wherein the system hardware
components comprise at least one of a security processor, flash memory, or a primary network
adapter.

11. An embedded system configured to perform application-specific instructions, the
embedded system comprising:

a plurality of hardware components comprising system hardware components,

application hardware components, and paravirtualized hardware components;

19

WO 2023/018497 PCT/US2022/036048
memory embodied with instructions for creating an application virtual machine (VM) in
isolation from a system VM; and

a processing unit configured to:

only connect the application hardware components to the application VM
application hardware components,

only connect the system hardware components to the system VM, and

create a real-time container in the application VM for running application code to
carry out the application-specific instructions.

12. The embedded system of claim 11, further comprising:

an application operating system (OS) running exclusively in the application VM; and

a system OS running exclusively in the system VM.

13. The embedded system of at least one of claims 11-12, further comprising
paravirtualized hardware components that are usable by both the application VM and the system
VM.

14. The embedded system of at least one of claims 11-13, wherein the processing
unit is at least one of a system on chip (SoC), microcontroller unit (MCU), or application-
specific integrated circuit (ASIC).

15. A method for programming an embedded system configured to perform
application-specific instructions, the method comprising:

identifying a plurality of hardware components of the embedded system, the plurality of
hardware components comprising application hardware components and system hardware
components;

creating an application virtual machine (VM) to run on the embedded system,;

creating a system VM to also run on the embedded system in isolation from the
application VM,

connecting the application VM to only the application hardware components; and

connecting the system VM to only the system hardware components.

20

WO 2023/018497 PCT/US2022/036048
1/6
140
Client Device (Embedded System)
100
icati 106
Processing Unit Communications { /~
Interface
/O Ports Communications | ~~ 112
Path
110
\ Memory
Hardware ApplicatonvM | ~114
Components
120
Application OS I
Application 199
Hardware % ¥ - T
Components Application Code 118
TN || ST —— el
. 110a 116
\ 110b i System VM S~ ,—108
X\ i
\ \ :
v —124
Y System 4 5 System OS i+
Y Hardware
\ Components System Code _’/126
Network 5’ 128
Operations
— 130

Update Module

FIG. 1

WO 2023/018497 PCT/US2022/036048

2/6

200

\‘x Servers

202
N Pprocessor

N
o
o

204
N\ I/O Ports

206 ~_|Communications
Interfaces

Memory

&
P

RN
NANANNRNANANNS

TR

\
N
§ RE—
N

N
Al TR

FIG. 2

WO 2023/018497 PCT/US2022/036048
3/6
Memory 108
Processing Unit 102
Security Processing Unit 302
302~ Security Security | 306
Processor Monitor
116
124 Q\ Svetom OS Application VM
308—TH) Application Container Real-Time
NdIl System Container
Kernel App Kernel \318) ;
310 — % I _—324
NJL| DAA / Error Libraries Application §]
Reporting a 320 : Code
130 — E
4| Update ,L Application * 114
Module Code | N__ - 1
122
312\\ \
+— VMM \\
314— Primary 322
- Networking
Adapter

FIG. 3

PCT/US2022/036048

WO 2023/018497

4/6

¥ Old

380G MY payoeye dde- | Y

90S MY payoene dde-1H

770G MY pazijenuireled

Cls
(D21 “1dS

‘6-9) s|esoyduod

016 (1ds
‘)soy gsn ‘Aejdsip
‘6-9) s|esoydued

BT vl
A aoeLa)UI
yse|d SIOMBN

JoL 1 esempiey pasyoene weisAg

vli€ T
c0g
@Fu___mv_“.”u_om\,NMZ Vi Jossa00.d
Arewnd useld Ajunoeg

44}
9POD
uoneslddy

0EG swinuny Ajinoeg

90¢E JoyUo ANnoes

8¢G 91Qi{9ZS |sulaX (SO waelsAg)

9¥G 910 (SO ddy) | | 7S [susey (SO ddy)
\.wuw PG solnpow |suisy (SO ddy)
Ilm e e e e ot e o e e o e e e rm e ot et e ot e o o e e ot ot o e o e
% orS 8¢S 9€es eS8
— | preuinol | pouAsawiyi | pyJomiau (yun)
_w PWaIsSAs | |-pwalsAs | |-pwoisAs | | pwalsAs
0¢¢€ (++opisqi *006aIl ‘0qI|B) sqi| paseys

oces aces BceS

aoIneg ddy aoInIeg ddy aoIAeg ddy

¢S sql| paleys
225 uewdde 815 ysein
91G eyepdn

4% NINA

0ZG pHiomisu

716 pAemaieb

72l SO walsAg

YZ< Jeuiejuo) awl] -|leay

2C€ Jauiejuo) uoneolddy

Z0S alemulil4 weisAg

oo_\\\

N
il

N

9Ll

WO 2023/018497 PCT/US2022/036048

5/6

Identify hardware components, including 502
application hardware components and 2
system hardware components

504 | 506
N LN
Create application VM Create system VM

508
Isolate application VM from system VM /

Connect application VM to only 910
application hardware components

Connect system VM to only 512
system hardware components

FIG. 5

WO 2023/018497 PCT/US2022/036048

6/6

Identify hardware components, including 602
application hardware components and 2
system hardware components

604 | 606
N LN
Create application VM Create system VM

608
Isolate application VM from system VM /

Connect application VM to only 610
application hardware components

Connect system VM to only 612
system hardware components

Connect paravirtualized hardware 614
components to application VM and e
system VM

FIG. 6

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2022/036048

A. CLASSIFICATION OF SUBJECT MATTER
INV. GO06F9/455

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
b ¢ US 2020/326968 Al (HAYES JOHN [US] ET AL) 1-15
15 October 2020 (2020-10-15)
paragraph [0027] - paragraph [0059];
figures 2,6
X US 2019/173846 Al (PATTERSON CHRISTOPHER 1-15
JAMES [US] ET AL) 6 June 2019 (2019-06-06)
paragraph [0025] - paragraph [0045];
figure 4
A WO 2015/139228 Al (INTEL PATENT GROUP 1-15
[US]; LI KEVIN [CN] ET AL.)
24 September 2015 (2015-09-24)
page 5 — page 7; figure 1
-/

|__K| Further documents are listed in the continuation of Box C.

‘z‘ See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance;; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

document of particular relevance;; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

wyn

"&" document member of the same patent family

Date of the actual completion of the international search

11 October 2022

Date of mailing of the international search report

25/10/2022

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Kalejs, Eriks

Form PCT/ASA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2022/036048

C(Continuation).

DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

CINQUE MARCELLO ET AL: "Towards
Lightweight Temporal and Fault Isolation
in Mixed-Criticality Systems with
Real-Time Containers",

2018 48TH ANNUAL IEEE/IFIP INTERNATIONAL
CONFERENCE ON DEPENDABLE SYSTEMS AND
NETWORKS WORKSHOPS (DSN-W), IEEE,

25 June 2018 (2018-06-25), pages 59-60,
XP033376264,

DOI: 10.1109/DSN-W.2018.00029

[retrieved on 2018-07-19]

page 59 - page 60

1-15

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2022/036048
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2020326968 Al 15-10-2020 Us 2020326968 Al 15-10-2020
Us 2021286642 Al 16-09-2021
US 2019173846 Al 06-06-2019 NONE
WO 2015139228 Al 24-09-2015 CN 106255955 A 21-12-2016
EP 3120238 Al 25-01-2017
JP 6466476 B2 06-02-2019
JP 2017511554 A 20-04-2017
KR 20160108517 A 19-09-2016
Us 2016124751 Al 05-05-2016
Us 2019278611 Al 12-09-2019
WO 2015139228 Al 24-09-2015

Form PCT/ASA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - claims
	Page 22 - claims
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - wo-search-report
	Page 30 - wo-search-report
	Page 31 - wo-search-report

