
US 20170116105A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2017/0116105 A1

Chamberlain et al. (43) Pub. Date: Apr. 27, 2017

(54) USING CORE FILES TO DEVELOP Publication Classification
DAGNOSTIC PROGRAMS

(51) Int. Cl.
(71) Applicant: International Business Machines G06F II/36 (2006.01)

Corporation, Armonk, NY (US) (52) U.S. Cl.
CPC G06F II/366 (2013.01); G06F II/364

(72) Inventors: Richard N. Chamberlain, (2013.01)
Southhampton (GB); Howard J.
Hellyer, Hampshire (GB); Matthew F.
Peters, Hampshire (GB); Adam J.
Pilkington, Hampshire (GB) (57) ABSTRACT

(21) Appl. No.: 15/399,841
(22) Filed: Jan. 6, 2017 A list of classes found in a core dump file is determined. One

O O or more classes requested by a classloader is also deter
Related U.S. Application Data mined. A set of one or more classes requested by the

(63) Continuation of application No. 14/867,171, filed on classloader that are found in the core dump file is then
Sep. 28, 2015, now Pat. No. 9,588,873. determined.

O

//
s/

NORK

SERVER DEVCE CLIENT DEVICE - 130

DAGNOSTIC
2 PROGRAM - 132 A (AON

DATA
REPOSITORY

Patent Application Publication Apr. 27, 2017. Sheet 1 of 3 US 2017/011 6105 A1

O

-"

NiORK

CLIENT DEVICE h-130 SERVER DEVCE

OAGNOS
ROGRA APPLICATION

DATA
REPOSITORY

FG.

Patent Application Publication Apr. 27, 2017. Sheet 2 of 3 US 2017/011 6105 A1

Patent Application Publication Apr. 27, 2017. Sheet 3 of 3 US 2017/011 6105 A1

FERSISTENT
STORAGE

39

iO
iNTERFACES)

EXTERNAL
DEVICES)

US 2017/011 6 105 A1

USING CORE FILES TO DEVELOP
DAGNOSTIC PROGRAMS

BACKGROUND OF THE INVENTION

0001. The present invention relates generally to the field
of Software programs, and more particularly to debugging
(i.e., finding errors in) a program that does not work cor
rectly.
0002 Programmers write “code' (e.g., software pro
grams, applications, etc.—the generic term program will
be used throughout this document) to perform specific tasks,
often turning something complex into something simple. It
is rare that a program is totally correct the first time it is
written and this may lead to the program failing before it
Successfully completes the task for which it was designed. A
program that fails (or crashes) before completion would
require the programmer to make changes to the program and
to Subsequently run it again. This iterative process to correct
a program that does not execute properly is known as
debugging.

SUMMARY

0003 Embodiments of the present invention include a
method, computer program product, and system for resolv
ing classes from a core dump file in order to debug a
program. In one embodiment, a list of classes found in a core
dump file is determined. One or more classes requested by
a classloader is also determined. A set of one or more classes
requested by the classloader that are found in the core dump
file is then determined.

BRIEF DESCRIPTION OF THE DRAWINGS

0004 FIG. 1 is a functional block diagram of a comput
ing environment, in accordance with an embodiment of the
present invention;
0005 FIG. 2 is a flowchart depicting operational steps of
a Software component of a development toolkit that func
tions to resolve classes from a core dump file in order to
debug a program that is not working correctly, in accordance
with an embodiment of the present invention; and
0006 FIG. 3 depicts a block diagram of the components
of a computing system representative of the client device
and server device of FIG. 1, in accordance with an embodi
ment of the present invention.

DETAILED DESCRIPTION

0007 Some embodiments of the present invention rec
ognize that software programs do not always work correctly
or as intended. When a program fails, a service engineer
(SE) may be called in to analyze the program in order to
determine the reason why it did not work correctly. Stated
another way, the SE will debug the program to find out why
it crashed. Depending on the complexity of the program,
debugging may be quick and easy or long and arduous. The
debug process may be straight-forward for a simple pro
gram. However, the debug process may be complicated and
time consuming for a more complex program. For the
program user, this means a longer downtime and a more
costly resolution to the non-working program.
0008 Embodiments of the present invention offer a
mechanism for the debugging of a program that is not
working correctly. A program not working properly may
crash, hang up, produce incorrect results, run slowly, termi

Apr. 27, 2017

nate abnormally, etc. This may be achieved by the SE
creating a diagnostic program to use a core dump file in
order to determine the cause of the program failure. The
diagnostic program provides the SE with a more efficient
way to access program state for the crashed program by
accessing the bytecodes that define the failing program and
the data structures it had created. A core dump file may be
requested by a user or created when a program stops running
correctly (for example, if the program crashes or runs
slowly) and the core dump file consists of the working
memory of the computer program or application at that point
in time. This method of creating and running the diagnostic
program saves the SE time in resolving the problem which
in turn saves the program user the expense of continued
downtime.

0009. The present invention will now be described in
detail with references to the Figures. FIG. 1 is a functional
block diagram of a computing environment, generally des
ignated 100, in accordance with an embodiment of the
present invention. FIG. 1 provides only an illustration of one
implementation and does not imply any limitations with
regard to the environments in which different embodiments
may be implemented. Those skilled in the art may make
many modifications to the depicted environment without
departing from the scope of the invention as recited by the
claims.

0010. An embodiment of computing environment 100
includes server device 120 and client device 130, intercon
nected over network 110. In an example embodiment, uti
lizing network 110, server device 120 may communicate
with client device 130. In example embodiments, computing
environment 100 can include other computing devices not
shown Such as Smartwatches, cell phones, Smartphones,
phablets, tablet computers, laptop computers, desktop com
puters, computer servers or any other computer system
known in the art, interconnected with server device 120 and
client device 130 over network 110.

0011. In example embodiments, server device 120 and
client device 130 may connect to network 110 which enables
server device 120 and client device 130 to access other
computing devices and/or data not directly stored to server
device 120 and client device 130. Network 110 may be a
local area network (LAN), a telecommunications network, a
wide area network (WAN) such as the Internet, or any
combination of the three, and include wired, wireless or fiber
optic connections. Network 110 may include one or more
wired and/or wireless networks that are capable of receiving
and transmitting data, Voice, and/or video signals, including
multimedia signals that include Voice, data, and video infor
mation. In general, network 110 can be any combination of
connections and protocols that will Support communications
between server device 120, client device 130, and other
computing devices (not shown) within computing environ
ment 100, in accordance with embodiments of the present
invention.

0012. According to embodiments of the present inven
tion, server device 120 may be a laptop, tablet or netbook
personal computer (PC), a desktop computer, a personal
digital assistant (PDA), a Smartphone, or any programmable
electronic device capable of communicating with any com
puting device within computing environment 100. In certain
embodiments, server device 120 represents a computer
system utilizing clustered computers and components (e.g.,
database server computers, application server computers,

US 2017/011 6 105 A1

etc.) that act as a single pool of seamless resources when
accessed by elements of computing environment 100 (e.g.,
client device 130). In general, server device 120 is repre
sentative of any electronic device or combination of elec
tronic devices capable of executing computer readable pro
gram instructions. Client device 130 is substantially similar
to server device 120 and has substantially similar compo
nents. Server device 120 may include components as
depicted and described in further detail with respect to FIG.
3, in accordance with embodiments of the present invention.
0013 Server device 120 includes application 122 and
data repository 124. In various embodiments of the present
invention, server device 120 may run application 122 and
store data, either sent or received, from client device 130, to
data repository 124.
0014 Application 122 is a program designed to carry out
operations to complete a specific task. In various embodi
ments, application 122 may be a word processor, a spread
sheet system, a database, a Smartphone game, an e-mail
system, a calendar System, etc. Application 122 cannot run
on itself but is dependent on system software to execute. The
system Software serves the application, which in turn serves
the user. Application 122 may be either bundled with a
computer and its system Software or published separately.
00.15 Data repository 124 may be storage that may be
written to and/or read by application 122 and diagnostic
program 132. In one embodiment, data repository 124
resides on server device 120. In other embodiments, data
repository 124 may reside on client device 130, in cloud
storage or on another computing device accessible via
network 110. In yet another embodiment, data repository
124 may represent multiple storage devices within server
device 120. In various embodiments, data repository 124
may be implemented as a database, a collection of files, a
knowledge base, an expert system, etc., residing on a
database server, a hard disk drive, flash memory, and the
like. In an embodiment of the present invention, data sent or
received by client device 130 may be stored to data reposi
tory 124. For example, a core dump file extracted from
application 122 by diagnostic program 132 may be stored to
data repository 124.
0016 Client device 130 includes diagnostic program 132
which may be a program, Subprogram of a larger program,
application, or software component of a Software develop
ment toolkit which functions to resolve classes from a core
dump file in order to debug a program not working correctly.
0017. A software development toolkit (SDK or “devkit’)
may be a set of software development tools that allows the
creation of applications for a certain software package,
Software framework, hardware platform, computer system,
Video game console, operating system, or similar develop
ment platform. To create applications, a user has to down
load this software development toolkit.
0.018. In object-oriented programming, a class is an
extensible program-code-template for creating objects, pro
viding initial values for state (member variables) and imple
mentations of behavior (member functions or methods). In
many languages, the class name is used as the name for the
class (the template itself), as the name for the default
constructor of the class (a Subroutine that creates objects),
and as the type of objects generated by instantiating the
class. These distinct concepts are easily conflated. When a
constructor of the class creates an object, the resulting object
is called an instance of the class, and the member variables

Apr. 27, 2017

specific to the object are called instance variables, to contrast
with the class variables shared across the class.

0019. In an embodiment of the present invention, diag
nostic program 132 may be a special purpose program run
within a debugging tool to examine execution data of a
failing program. A debugging tool (or debugger) is a com
puter program used to test and debug other programs.
According to embodiments of the present invention, diag
nostic program 132 analyzes a core dump file to retrieve the
object state from the data structures on the heap (i.e., the
memory allocated to programs currently running) and the
bytecodes required to examine or analyze the data correctly
in order to determine why the program is not working
correctly. Diagnostic program 132 may be written in a
number of programming languages and is not specific to any
one particular language. Diagnostic program 132 may be
found on client device 130, server device 120, or other
computing devices (not shown) accessible on network 110.
0020 FIG. 2 is a flowchart depicting operational steps
200 of diagnostic program 132 located on client device 130
within computing environment 100 of FIG. 1, a software
component of an SDK which functions to resolve classes
from a core dump file in order to debug a program that is not
working correctly, in accordance with an embodiment of the
present invention. In one embodiment, the operational steps
are performed by diagnostic program 132. In an alternative
embodiment, any other program, while working with diag
nostic program 132, may perform the operational steps. In
an embodiment, diagnostic program 132 may invoke opera
tional steps 200 when a program stops running before
completion. In an alternative embodiment, diagnostic pro
gram 132 may invoke operational steps 200 upon the request
of a user.
0021 Diagnostic program 132 loads the class (step 202).
In other words, diagnostic program 132 obtains the class
definition and associated code from a core dump file which
was created when the program being debugged stopped
working correctly. In one embodiment, the core dump file
may contain a single class while in another embodiment, the
core dump file may contain multiple classes. In an embodi
ment of the present invention, a debugging tool (not shown)
may be used to examine a core dump file. The class is
extracted from the core dump file as the runtime environ
ment cannot locate the class in the normal manner because
access to the code used in the failing program is not
available. For example, a dump viewer (not shown) or
similar tool may be used to open the core dump file and a
core file classloader may be used to extract the class from the
core dump file which is then used by diagnostic program
132. A classloader is part of a runtime environment that
dynamically loads classes into a virtual machine. Runtime
begins when a program is opened (or executed) and ends
when the program is quit or closed.
0022 Diagnostic program 132 checks the list of classes
(step 204). In other words, diagnostic program 132 obtains
the list of classes from the core dump file created by the
failing program. Diagnostic program 132 also obtains the
list of classes requested by the core file classloader. Diag
nostic program 132 then determines a set of classes which
are both requested by the classloader and found in the core
dump file so that the classes in the core dump file may be
used rather than the same classes found in an archive file. In
an embodiment of the present invention, the list of classes
used in the failing program are obtained from a core dump

US 2017/011 6 105 A1

of the failing program using a set of routines, protocols, and
tools for building software applications; for example, an API
(application programming interface). The API may come in
the form of a library that includes specifications for routines,
data structures, object classes, and variables and is source
code based. Once the list of classes is obtained, diagnostic
program 132 checks to determine whether the core file
contains a class with the name requested by the classloader.
For example, consider an object "Color” which includes
methods isGreen, isRed, and isBlue. The Color interface
may be shown as:
interface Color {
0023 boolean isGreen ();
0024 boolean isRed ();
0025 boolean isBlue ():

For this example, diagnostic program 132 checks that the
class implementing Color exists in the core dump file.
0026 Diagnostic program 132 injects constructors (step
206). In other words, diagnostic program 132 provides
special purpose constructors that set object fields to the
values the objects had in the failing program at the moment
when the core dump file was created (i.e., at the moment the
program stopped working correctly). A constructor is a
special type of code or Subroutine run to create an object
from a class. In an embodiment of the present invention,
diagnostic program 132 obtains the bytecode for the
required class from the core dump file. Then diagnostic
program 132 injects the special purpose constructors into the
class at runtime by the classloader. The use of the special
purpose constructors enables the object to be initialized to
the state found in the core dump file. For example, the fields
of an instance of the Color object may be initialized from the
binary data in the core dump file rather than by parameters
from the standard constructors. This allows the fields to have
the same values in this instance of the Color object as in the
failing object which created the core dump file. In another
embodiment, “factory methods” may be used rather than
injected constructors. A factory method is a standard tech
nique for creating an object when additional logic is required
during object creation.
0027 Diagnostic program 132 populates data (step 208).
In other words, diagnostic program 132 uses the special
purpose constructors to populate the object fields with data
obtained from the core dump file. In an embodiment of the
present invention, the instance of the object is recreated for
use by diagnostic program 132 with the state that existed in
the failing program when the core dump file was created.
The special purpose constructors do this by locating the
instance of the object within the core dump file and copying
the values of the object fields of this instance into the new
object. For example, the object myColor is created and
may be called in a Subsequent step by a diagnostic program.
0028 Diagnostic program 132 creates the proxy (step
210). In other words, diagnostic program 132 creates a
proxy for the newly created object which allows for initial
ization of objects referred to by the original object. A proxy,
in its most general form, is a class functioning as an interface
to something else. The proxy could interface to anything: a
network connection; an object in memory; a file; or some
other resource that is expensive or impossible to duplicate.
The proxy provides an interface to other objects by creating
a “wrapper class' as the proxy. The “wrapper class” (i.e., the
proxy) may add additional functionality to the object of

Apr. 27, 2017

interest without changing the code of the object. In short, the
proxy is the object that is being called by the client to access
the real object behind the scenes. This is required for
instances where that object has, as some of its data fields,
references to other objects, and those referenced objects are
of classes that are not available, in the normal manner (i.e.,
without using the special purpose constructors), to diagnos
tic program 132. For example, assume the Color object
includes a reference to a String object containing a name of
the color. If a diagnostic program attempts to access the
referenced String object, the proxy may perform all of the
steps which eliminates the need to recreate every object
from the crash dump file.
0029 FIG.3 depicts a block diagram of computer system
300 which is an example of a computer system that may
include diagnostic program 132. It should be appreciated
that FIG. 3 provides only an illustration of one implemen
tation and does not imply any limitations with regard to the
environments in which different embodiments can be imple
mented. Many modifications to the depicted environment
can be made.

0030 Computer system 300 includes processors 301,
cache 303, memory 302, persistent storage 305, communi
cations unit 307, input/output (I/O) interface(s) 306 and
communications fabric 304. Communications fabric 304
provides communications between cache 303, memory 302,
persistent storage 305, communications unit 307, and input/
output (I/O) interface(s) 306. Communications fabric 304
can be implemented with any architecture designed for
passing data and/or control information between processors
(such as microprocessors, communications and network
processors, etc.), system memory, peripheral devices, and
any other hardware components within a system. For
example, communications fabric 304 can be implemented
with one or more buses or a crossbar switch.

0031 Memory 302 and persistent storage 305 are com
puter readable storage media. In this embodiment, memory
302 includes random access memory (RAM). In general,
memory 302 can include any suitable volatile or non-volatile
computer readable storage media. Cache 303 is a fast
memory that enhances the performance of processors 301 by
holding recently accessed data, and data near recently
accessed data, from memory 302.
0032. Program instructions and data used to practice
embodiments of the present invention (e.g., data repository
124 and diagnostic program 132) may be stored in persistent
storage 305 and in memory 302 for execution by one or
more of the respective processors 301 via cache 303. In an
embodiment, persistent storage 305 includes a magnetic
hard disk drive. Alternatively, or in addition to a magnetic
hard disk drive, persistent storage 305 can include a solid
state hard drive, a semiconductor storage device, read-only
memory (ROM), erasable programmable read-only memory
(EPROM), flash memory, or any other computer readable
storage media that is capable of storing program instructions
or digital information.
0033. The media used by persistent storage 305 may also
be removable. For example, a removable hard drive may be
used for persistent storage 305. Other examples include
optical and magnetic disks, thumb drives, and Smart cards
that are inserted into a drive for transfer onto another
computer readable storage medium that is also part of
persistent storage 305.

US 2017/011 6 105 A1

0034 Communications unit 307, in these examples, pro
vides for communications with other data processing sys
tems or devices, including resources of server device 120. In
these examples, communications unit 307 includes one or
more network interface cards. Communications unit 307
may provide communications through the use of either or
both physical and wireless communications links. Program
instructions and data used to practice embodiments of the
present invention may be downloaded to persistent storage
305 through communications unit 307.
0035) I/O interface(s) 306 allows for input and output of
data with other devices that may be connected to each
computer system. For example, I/O interface 306 may
provide a connection to external devices 308 such as a
keyboard, keypad, a touch screen, and/or some other Suit
able input device. External devices 308 can also include
portable computer readable storage media Such as, for
example, thumb drives, portable optical or magnetic disks,
and memory cards. Software and data used to practice
embodiments of the present invention (e.g., data repository
124 and diagnostic program 132) can be stored on Such
portable computer readable storage media and can be loaded
onto persistent storage 305 via I/O interface(s) 306. I/O
interface(s) 306 also connect to display 309.
0036 Display 309 provides a mechanism to display data
to a user and may be, for example, a computer monitor.
Display 309 can also function as a touchscreen, such as a
display of a tablet computer.
0037. The present invention may be a system, a method,
and/or a computer program product. The computer program
product may include a computer readable storage medium
(or media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention.
0038. The computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an instruction execution device. The computer readable
storage medium can be, for example, but is not limited to, an
electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals perse. Such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.
0039 Computer readable program instructions described
herein can be downloaded to respective computing/process
ing devices from a computer readable storage medium or to
an external computer or external storage device via a net
work, for example, the Internet, a local area network, a wide

Apr. 27, 2017

area network and/or a wireless network. The network may
comprise copper transmission cables, optical transmission
fibers, wireless transmission, routers, firewalls, Switches,
gateway computers and/or edge servers. A network adapter
card or network interface in each computing/processing
device receives computer readable program instructions
from the network and forwards the computer readable
program instructions for storage in a computer readable
storage medium within the respective computing/processing
device.

0040 Computer readable program instructions for carry
ing out operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written in any combination
of one or more programming languages, including an object
oriented programming language Such as Smalltalk, C++ or
the like, and conventional procedural programming lan
guages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the users computer,
partly on the user's computer, as a stand-alone software
package, partly on the user's computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user's computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of the computer readable program instructions to personalize
the electronic circuitry, in order to perform aspects of the
present invention.
0041 Aspects of the present invention are described
herein with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems), and computer
program products according to embodiments of the inven
tion. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer readable program instruc
tions.

0042. These computer readable program instructions may
be provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro
cessing apparatus to produce a machine, Such that the
instructions, which execute via the processor of the com
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

US 2017/011 6 105 A1

0043. The computer readable program instructions may
also be loaded onto a computer, other programmable data
processing apparatus, or other device to cause a series of
operational steps to be performed on the computer, other
programmable apparatus or other device to produce a com
puter implemented process, such that the instructions which
execute on the computer, other programmable apparatus, or
other device implement the functions/acts specified in the
flowchart and/or block diagram block or blocks.
0044) The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods, and com
puter program products according to various embodiments
of the present invention. In this regard, each block in the
flowchart or block diagrams may represent a module, seg
ment, or portion of instructions, which comprises one or
more executable instructions for implementing the specified
logical function(s). In some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in Succession
may, in fact, be executed Substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.
0045. The descriptions of the various embodiments of the
present invention have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
invention. The terminology used herein was chosen to best
explain the principles of the embodiment, the practical
application or technical improvement over technologies
found in the marketplace, or to enable others of ordinary
skill in the art to understand the embodiments disclosed
herein.

What is claimed is:
1. A method for resolving classes from a core dump file

in order to debug a program, the method comprising:
determining, by one or more computer processors, one or
more sets of classes requested by a classloader that are
found in a core dump file;

determining, by one or more computer processors, a
constructor for the determined one or more sets of
classes;

locating, by one or more computer processors, an instance
of an object in the core dump file, wherein the object is
an instance of a class of the one or more sets of classes;

copying, by one or more computer processors, one or
more object fields from the object into a new object;
and

creating, by one or more computer processors, a proxy for
initializing the new object using the determined con
structor and the copied one or more object fields.

2. The method of claim 1, further comprising:
determining, by one or more computer processors, a class

definition and associated code for the classes found in
the core dump file.

Apr. 27, 2017

3. The method of claim 1, further comprising:
determining, by one or more computer processors, a

factory method for the determined one or more set of
classes;

determining, by one or more computer processors, one or
more object fields for the determined one or more sets
of classes; and

creating, by one or more computer processors, a proxy
using the determined factory method and the deter
mined one or more object fields.

4. The method of claim 1, wherein the core dump file is
a file which consists of a recorded State of a working
memory of a computer program at a specific time.

5. The method of claim 4, wherein the specific time is the
time when a program terminates abnormally.

6. A computer program product for resolving classes from
a core dump file in order to debug program, the computer
program product comprising:

one or more computer readable storage media; and
program instructions stored on the one or more computer

readable storage media, the program instructions com
prising:
program instructions to determine one or more sets of

classes requested by a classloader that are found in a
core dump file;

program instructions to determine a constructor for the
determined one or more sets of classes;

program instructions to locate an instance of an object
in the core dump file, wherein the object is an
instance of a class of the one or more sets of classes;

program instructions to copy one or more object fields
from the object into a new object; and

program instructions to create a proxy for initializing
the new object using the determined constructor and
the copied one or more object fields.

7. The computer program product of claim 6, further
comprising program instructions, stored on the one or more
computer readable storage media, to:

determine a class definition and associated code for the
classes found in the core dump file.

8. The computer program product of claim 6, further
comprising program instructions, stored on the one or more
computer readable storage media, to:

determine a factory method for the determined one or
more sets of classes;

determine one or more object fields for the determined
one or more sets of classes; and

create a proxy using the determined factory method and
the determined one or more object fields.

9. The computer program product of claim 6, wherein the
core dump file is a file which consists of a recorded state of
a working memory of a computer program at a specific time.

10. The computer program product of claim 9, wherein
the specific time is the time when a program terminates
abnormally.

11. A computer system for resolving classes from a core
dump file in order to debug a program, the computer system
comprising:

one or more computer processors;
one or more computer readable storage media; and
program instructions stored on the one or more computer

readable storage media for execution by at least one of
the one or more computer processors, the program
instructions comprising:

US 2017/011 6 105 A1

program instructions to determine one or more sets of
classes requested by a classloader that are found in a
core dump file;

program instructions to determine a constructor for the
determined one or more sets of classes;

program instructions to locate an instance of an object
in the core dump file, wherein the object is an
instance of a class of the one or more sets of classes;

program instructions to copy one or more object fields
from the object into a new object; and

program instructions to create a proxy for initializing
the new object using the determined constructor and
the copied one or more object fields.

12. The computer system of claim 11, further comprising
program instructions, stored on the one or more computer
readable storage media for execution by at least one of the
one or more computer processors, to:

Apr. 27, 2017

determine a class definition and associated code for the
classes found in the core dump file.

13. The computer system of claim 11, further comprising
program instructions, stored on the one or more computer
readable storage media for execution by at least one of the
one or more computer processors, to:

determine a factory method for the determined one or
more sets of classes;

determine one or more object fields for the determined
one or more sets of classes; and

create a proxy using the determined factory method and
the determined one or more object fields.

14. The computer system of claim 11, wherein the core
dump file is a file which consists of a recorded state of a
working memory of a computer program at a specific time.

15. The computer system of claim 14, wherein the specific
time is the time when a program terminates abnormally.

k k k k k

