US 20160328216A1

a2y Patent Application Publication o) Pub. No.: US 2016/0328216 A1

a9y United States

Leonelli et al.

43) Pub. Date: Nov. 10, 2016

(54) METHOD AND APPARATUS FOR
AUTOMATIC SOFTWARE DEVELOPMENT
FOR A GROUP OF CONTROLLER-BASED
DEVICES

(71) Applicant: Ciambella Ltd., Tortola (VG)
(72) Inventors: Jean-Baptiste Leonelli, Levallois (FR);

Trisala Chandaria, New York, NY
us)

(21) Appl. No.: 15/148,353
(22) Filed: May 6, 2016

Related U.S. Application Data

(60) Provisional application No. 62/158,636, filed on May
8, 2015.

Publication Classification

(51) Int. CL
GOGF 9/44 (2006.01)
HO4L 29/08 (2006.01)
(52) US.CL
CPC oo GOGF 8/34 (2013.01); HO4L 67/34
(2013.01); HO4L 67/02 (2013.01)
(57) ABSTRACT

A method and apparatus for automatic generation of soft-
ware for controller-based devices in a group is provided. The
method comprises receiving, for a controller-based device
from a plurality of controller-based devices displayed on a
graphical user interface (GUI) on a user device, a selection
of'a controller type, a communication protocol to be used for
communicating with another controller-based device in a
group of controller-based devices, the group comprising the
plurality of controller-based devices, and a function to be
performed based on a remote call from the controller-based
device.

200
202 .—~8TART //
RECEIVE SELECTION OF A CONTROLLER BASED
204 _— DEVICE (CBD) FROM A GRAPHICAL USER INTERFACE
(GUI) ON A USER DEVICE
905.| RECEIVE SELECTION OF A DEVICE TYPE OF THE
CBD, FROM THE GUI
RECENE SELEGTION OF CONTROLLER TYPE(S) OF
208 — THE CBD, FROM THE GUI
] RECEIVE SELECTION OF COMMUNICATION
210 - PROTOCOL(S) OF THE CBD, FROM THE GUI
RECEIVE SELECTION OF A FUNCTION TO BE CALLED
212 222

BY THE CBD, FROM THE GUI

214 —

RECEIVE INPUT OF PARAMETERS FOR PERFORMING
THE FUNCTION, FROM THE GUI

GENERATE FIRST CODE FOR THE CBD BASED ON THE
216 ——— DEVICE TYPE, CONTROLLER TYPE,COMMUNICATION
PROTOCOLS, FUNCTION AND PARAMETERS

218 —— SEND FIRST CODE FOR INSTALLATION ON THE CBD

220

PROCESS™_ YES
ANOTHER

~_ CBD?

224 —{ END }

NO

US 2016/0328216 Al

Nov. 10,2016 Sheet 1 of 7

Patent Application Publication

: [IND__}18et
vl vyl | ©Old AHOWIN o<1
, f
V-3dAL Avm3ILvOIN-a8D " "0gl
Q-43L3INVHVC|O-NOILONNA 8- 1000108433 TI04LNOD
#®s P} i peseee—— po—
L B E R 2R B —\Imn_>|_l R B ><I_n_w_omr\r.vm”—\
L-H3IFNVEVd | L1-NOLLONN | 1-100010¥d |2 110u inon | 3903 (+-A89| | ~1'STiAou0 el
]]] 7 1¥0ddNS]
] vl vl Wl ovk 301A30 ¥3SN
yas it ezl .
A Nl .
LT Q2L A 49"
3LON3Y okl N
13ddINS n xmoim_\z\\m = JDIAY3S ILONIY 8L
/3000 1suia] %t)
B P A R
> INYYO0Yd gcl
¥ZI AYOW3IN —
7ol 3INIONL R
ounoaxa || JSvavivahtzol
4% /9l —~-BIa8 | HOLYYINIO MASHit 89l
3000 ANODJ3S HOLYH3INID 3009y
1L MNOLONNS | ERLATEIN I
A 100d SS3004d 5L ANOWIN
——N-70L ol i .A
¥ { 5
| (AVM3LY9)ddd 83l [s1Ind¥ID [¥0ddNS} 01
/ —
. t x Il Y3IAY3S
d-col ¢Sl NOILVZITYNLYHIA 3A0D

Patent Application Publication Nov. 10,2016 Sheet 2 of 7 US 2016/0328216 A1

200
202 —START) P
‘W‘r
RECEIVE SELECTION OF A CONTROLLER BASED
204 ——| DEVICE (CBD) FROM A GRAPHICAL USER INTERFACE
(GUI) ON A USER DEVICE
3
206l RECEIVE SELECTION OF A DEVICE TYPE OF THE
CBD, FROM THE GUI
3
RECEIVE SELECTION OF CONTROLLER TYPE(S) OF
208 - THE CBD, FROM THE GUI
i
REGEIVE SELECTION OF COMMUNICATION
210 — PROTOCOL(S) OF THE CBD, FROM THE GUI
¥
o1 RECEIVE SELECTION OF A FUNCTION TO BE CALLED
= BY THE CBD, FROM THE GUI 222
3
RECEIVE INPUT OF PARAMETERS FOR PERFORMING
214 .

THE FUNCTION, FROM THE GUI

Y

216

GENERATE FIRST CODE FOR THE CBD BASED ON THE
DEVICE TYPE, CONTROLLER TYPE,COMMUNICATION
PROTOCOLS, FUNCTION AND PARAMETERS

3

218 ——

SEND FIRST CODE FOR INSTALLATION ON THE CBD

220 .
~PROCESS®

YES

~ ANOTHER |
~_ CBD?

FIG. 2

224 -.

US 2016/0328216 Al

dgd Ol v1vad d3SS300dd AN3S

_ 3

il

0ce

SAD O1 30IAY3S
10N d3SS300dd
NOd4 VIVAd AN3S

Nov. 10,2016 Sheet 3 of 7

{
olg
1S3N034 I0INGTS

3OINH3S 31LON3H
NOd4 V.1vA d3SS300dd IAIFO03H

]

{
8l¢e

1S3NV3Y FVINHIS F1O0NTS FLVILINI

3d00
1S4 ONILNO3IXT INNILNOD

mu 3

vce

SAD INO A4
V1vQd d3SS300dd IAITOIY

/

cce

AVMILYO VIA

N s

cle

3d00 ANOD3S ONILNOIX3I NID34

N 1

oLe

JLONIY SSI00¥d
{

vie

1
JOIANHG3S FLONTS

00€

Patent Application Publication

300 ANOD3S ILNOIXH
Ol 'AVMALVYD VIA ‘dg90 INO¥S
ONILVYNIOIHO T1vO FLONTH AIF03

SAD OL T1vO 31L0ONFd 31N0d

90¢

3d00 ANOD3S 31NO03AX3 OL
SAD OL 11vD 31LO0N3d 30V'1d

m 1

40}

(

80¢

1L (SAD) ¥3NY3S
NOILYZITVNSIA 3A0D

3d00 1SdI4 ONILNO3IX3 NI©O3d

(

c0¢

N-20l (@g9) 30IN3a

i
i
i
i
i
i
i
i
i
i
i
! [v
i
i
i
i
i
i
i
i
|
i
; a3svg Jd3T171041NOD

US 2016/0328216 Al

Nov. 10,2016 Sheet 4 of 7

Patent Application Publication

v Ol

B %
e ok Ry
5

FHAWHIIH &

o

X

Attt
H

R I T
&43
857
#3
fol 1 5]
o1 3 142
23 B3
Eonw zik
e L2
L05%. 8%y

M irrirreeivrrrrrirrerbrrrerrrred

NO_V e W, RERBRB

s R ;

sy s v A4 oSt vy vep v 8

E43 Kaanly - oomeppng.

Swagy | swanes

£ wpom 4o e

o P m&mm w & puypop Sesmmk sk £ .%mmmw

ey I3
SRS

fsareinines m

BELIH DS BAPSE APPEY

RV 7 SR WA

oov

US 2016/0328216 Al

Nov. 10,2016 Sheet 5 of 7

Patent Application Publication

G Ol

e 503 auangy 83pg ok asooy)

#0 » oy men o)L | s gewapspasmetsieam G

D e [y xasam | e W

T R aesy 708 Y N,om J

LI spoream [+ ommssery o (0% | | & iouwes Remaavnk tioum G|

gy s
YOURRIRS 4
FRGOIIMG &
RS 4
BPIRPNG 4.
xoati w
BBOHYIBOUY
b4
B4
SRR
vyt 4
A 4
LRI GIRABRIOT 4,
Ay 4
e
gy 4
RO

Higs
WP 4
KETELE 4

LHDEIY OIS Al KEEE e
3 kAo 00G

i wsdes) BT

US 2016/0328216 Al

Nov. 10,2016 Sheet 6 of 7

Patent Application Publication

9 Ol

c09

» gty e 3 |

Y GBS s feirieny ek g B Uy R Sy
Busn nok au rsosead yeum

5 e S OOV 1L e Pedyang] RpaindTisy Shy

g
o0ty 4
EPRGBINY 4
1OWT %
a4
BURIIET 4
SR
Rk)
nomeres 4
powlaen
YR
VRO o
REPPOTLS 4
ing 4
sl «
TG 4
AR
Goppy 4
uplisisa
RS 4

smdaey 11
sasnes s

Ay s m

IR0 IS0AITE ML Kevenn .

T s g yrOw

L Old

US 2016/0328216 Al

Nov. 10,2016 Sheet 7 of 7

AR %
| sdien
0l ™ WS %
; ” By %
i s Leald) vl S
GreiDve] en i kg 4
1 3L HED b 4
m o4
. : : St
g : n PR W AR WO B S G ORI RO M S e we san ARy e . N Rty 4
LEE LY ¥ ¥y . - : i e s e i
Fove 1To0nT wite) maly oy aipy Anok 40 DBIGY # WY s
Tiin wel | wess e s
T g L e &N&ﬂ&ﬁmn
S

ARU L B W L URE S L S P DT SRR Ye Y,

14 e ; .
:mw 3] i | | eRgy | w3asey | AVERYD |

sasiany i}
WA TN VRIS satay b

_ ¥y Emiytigeey m

Patent Application Publication

US 2016/0328216 Al

METHOD AND APPARATUS FOR
AUTOMATIC SOFTWARE DEVELOPMENT
FOR A GROUP OF CONTROLLER-BASED
DEVICES

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims priority to U.S. Provisional
Patent Application No. 62/158,636, filed May 8, 2015,
which is incorporated by reference herein in its entirety.

BACKGROUND OF THE INVENTION

[0002] 1. Field of the Invention

[0003] Embodiments of the present invention generally
relate to a method and apparatus for automatic software
development for a group of controller-based devices.
[0004] 2. Description of the Related Art

[0005] The use of field programmable gate arrays (FP-
GAs) and other controller-based devices (e.g. microcon-
troller or microprocessor based), such as MCU, SoC, mobile
phones, computers, etc. have grown considerably popular.
Low manufacturing costs, availability, and customization of
controllers have led to a proliferation of microcontrollers
and Systems on a Chip (SoC) (e.g., PIC, ARDUINO, RASP-
BERRY PI and the like) being used by commercial compa-
nies and hobbyists alike for creation of devices. Controller-
based devices include a processor core and a memory, which
are programmable for processing input/output data in com-
munication with peripherals. Program memory in the form
of NOR FLASH or OTP ROM is also often included on such
controller-based devices, as well as a small amount of
random access memory (RAM). Several such controller-
based devices are designed for embedded applications
within larger devices. Real world applications of such con-
troller-based devices can potentially include connecting
controller-based devices with conventional objects or sys-
tems as peripherals, thereby enabling digitization, connec-
tivity and even remote control of such peripherals. However,
several challenges exist in making such real world applica-
tions due to the complexity of combining Cloud technolo-
gies with hardware and software technologies

[0006] In general, programming controller-based devices
or groups thereof is quite complex. As the “Internet of
Things (IoT)” grows, more and more such controller-based
devices are connected to one another and/or to the Internet,
significantly increasing the complexity of programming. In
real-world scenarios, such controller-based devices may
communicate with one another and/or to a gateway such that
the gateway becomes a proxy for the Internet communica-
tions for the so-called edge devices. Edge devices may
communicate through one or more gateways, or directly as
independent devices. Within a group, all the devices (gate-
way and edge) must be programmed in a compatible manner
to facilitate interoperability, which further increases the
complexity of programming such devices significantly. Fur-
ther, managing compatibility every time a customization is
implemented may also be excessively time consuming.
Programming groups of controller-based devices is very
challenging for users as one has to memorize coding com-
mands, understand hierarchies, utilize proper calling syn-
taxes, and the like. Even if one device is programmed
incorrectly, a written program for that or another controller-
based device in the group may fail to run, or produce errors.

Nov. 10, 2016

[0007] Thus, there is a need in the art for simplifying
programming for controller-based devices, while automati-
cally doing so for a group of controller-based devices.

SUMMARY OF THE INVENTION

[0008] Embodiments of the present invention generally
relate to a method and apparatus for automatic software
development for a group of controller-based devices, sub-
stantially as shown in and/or described in connection with at
least one of the figures, as set forth more completely in the
claims.

[0009] These and other features and advantages of the
present disclosure may be appreciated from a review of the
following detailed description of the present disclosure,
along with the accompanying figures in which like reference
numerals refer to like parts throughout.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] So that the manner in which the above-recited
features of the present invention can be understood in detail,
a more particular description of the invention, briefly sum-
marized above, may be had by reference to embodiments,
some of which are illustrated in the appended drawings. It is
to be noted, however, that the appended drawings illustrate
only typical embodiments of this invention and are therefore
not to be considered limiting of its scope, for the invention
may admit to other equally effective embodiments.

[0011] FIG. 1 is a block diagram of a system 100 for
automatic software development for a group of controller-
based devices, in accordance with an embodiment of the
present invention;

[0012] FIG. 2 is flow diagram of a method for automatic
software development for a group of controller-based
devices as executed by the code virtualization server of FIG.
1, in accordance with an embodiment of the invention;
[0013] FIG. 3 is a flow diagram of a method 300 executed
by various devices of the apparatus 100 of FIG. 1, for
automatic software development for a group of controller-
based devices, in accordance with an embodiment of the
invention; and

[0014] FIGS. 4-7 depict a sequence of graphical user
interface (GUI) screens of the GUI 138 of FIG. 1, used to
specify controller-based devices and associated inputs, in
accordance with an embodiment of the invention.

DETAILED DESCRIPTION

[0015] Embodiments of the present invention relate to
method and apparatus for automatic software development
for a group of controller-based devices (e.g., devices having
a controller, such as microcontrollers, microprocessors,
SoC, MCU, among others) which function as edge or
gateway devices that operate interactively, and more spe-
cifically, to generating programs or code for execution on
edge and gateway devices forming a group of interconnected
controller-based devices comprising at least one edge device
and at least one gateway device. The code for the controller-
based devices includes code for execution on the controller-
based devices (a “first code”) comprising a remote call for
executing a function (by executing a “second code™) on a
device remote to the controller-based devices, for example,
a code virtualization server. The first code refers to a
complete program for execution on the controller-based
device, or to a code snippet, which may be included in a

US 2016/0328216 Al

preexisting program for the controller-based device. The
first code also comprises a software development kit (SDK)
for the controller-based devices. The SDK comprises a
library that enables communication between various con-
troller-based devices (edge and gateway devices) in the
group, and between the gateway and the code virtualization
server, to route a remote call from any controller-based
device in the group to the code virtualization server. The
second code includes one or more predefined processes or
programs on the code virtualization server for performing
the functions invoked by the remote call.

[0016] In some embodiments, the code virtualization
server also generates the first code automatically based on
inputs related to the controller-based device. The inputs are
selections made via a graphical user interface (GUI) on a
user device remote to the code virtualization server. Selec-
tions made via the GUI include a controller-based device of
the group, controller type of the controller-based device,
communication protocol to be used by the controller-based
device to communicate with another controller-based device
in the group, and a function to be performed based on the
remote call received from the controller-based device. Upon
generation, the first code is installed on the controller-based
device either directly by the code virtualization server, or via
the user device. The first code installed on each device of the
group enables interconnectivity between various devices of
the group, thereby enabling routing a remote call originating
from any device in the group to the code virtualization
server, via a gateway device. Therefore, in the course of
executing the first code, a controller-based device places a
remote call for performing a remote function along with
input and/or output data for the function, the remote call and
the input/output data is routed via a gateway of the group to
the code virtualization server. In response, the code virtu-
alization server executes the second code according to the
input/output data to perform the function. In this manner,
software (the first code comprising the SDK) is generated
automatically for each device in a group of interconnected
controller-based, by providing inputs conveniently using a
GUI. The software is generated for the entire group without
having to deal with the complexity of programming each
controller-based device, or configuring the programs for
each controller-based device individually according to the
interconnections of edge and gateway devices in the group
of controller-based devices.

[0017] Commonly assigned patent application Ser. No.
11/853,137, filed 11 Sep. 2007, Ser. No. 11/853,143, filed 11
Sep. 2007, and Ser. No. 12/931,292, filed 28 Jan. 2011 (now
U.S. Pat. No. 8,726,285) describe techniques for generating,
deploying and executing workflows remotely. Commonly
assigned patent application Ser. No. 14/307,198, filed 17
Jun. 2014, Ser. No. 14/307,208, filed 17 Jun. 2014, Ser. No.
14/307,227, filed 17 Jun. 2014, Ser. No. 14/328,415, filed 10
Jul. 2014, Ser. No. 14/593,151, filed 9 Jan. 2015, and Ser.
No. 14/685,064, filed 13 Apr. 2015, describe techniques for
automatic generation of code and SDK, virtualization of
code and SDK, generating remote process calls for code
virtualization, among other related techniques. The listed
applications describe techniques for developing software
automatically for a controller-based device incorporating a
controller, mapping the use of hardware such as sensors or
actuators to the controller remotely using a graphical user
interface, and executing the software, e.g. remotely, to
extend the capabilities of such a controller-based device via

Nov. 10, 2016

defined workflows. Each of the applications listed above is
incorporated herein by reference in its entirety. These tech-
niques function by placing a snippet of code and/or a library
(e.g. a SDK) in the memory of the controller-based device,
wherein the snippet, when executed, calls a function (or a
portion of code) for being executed on a remote device, for
example, a code virtualization server, and/or sends (directly,
or via the code virtualization server) data to a remote service
which is remote to the code virtualization server, and/or
further calls a function to be performed on the data by the
remote service.

[0018] Embodiments of the present invention use these
techniques to generate, automatically, programs for several
controller-based devices in a group, which includes edge and
gateway devices, and the edge devices communicate outside
the group via the gateway devices. With such embodiments,
code is generated automatically for some or all devices in the
group, which extends the functionality of the group, enables
plug and play of additional devices, while maintaining the
compatibility and interoperability of the devices in the
group.

[0019] FIG. 1 is a block diagram of a system 100 for
automatic software development for a group of controller-
based devices, in accordance with one or more embodiments
of the present invention. The system 100 comprises multiple
edge devices 102-1 . . . 102-N (collectively referred to as
edge devices 102), a gateway device or a gateway 108, a
network 110, a user computer 112, a code virtualization
server 114, and a remote service 118. In some embodiments
the edge devices 102 include a gateway device 102-P
configured as an edge device.

[0020] The network 110 comprises the Internet, or a wide
area network (WAN) or a combination thereof, and may
include one or more such networks, spanning the various
devices as illustrated in FIG. 1. All the components of the
apparatus 100 are connected to the network 110 or to each
other as illustrated in FIG. 1, using known methods and
components.

[0021] The edge devices 102 and the gateway 108 form a
group of controller-based devices (device group 116, or
group 116) connected to the Internet 110. The devices of the
group 116 communicate between edge devices 102 and the
gateway 108 along communications paths 106-1 . . . 106-N.
Although the communications paths are generally wireless
paths, in some embodiments, the paths may be wired. In
addition, in some embodiments, the controller-based devices
102 communicate amongst themselves along dashed paths
104-1 . . . 104-M, collectively referred to as 104, which
includes one-to-one, one-to-many, many-to-many (e.g. a
mesh network) connectivity configurations, or any combi-
nation thereof. Edge devices 102 communicate outside the
group 116 through the gateway 108. Although a single
gateway 108 is depicted, multiple gateways similar to the
gateway 108 may be used within the group 116, or spanning
multiple groups similar to the group 116.

[0022] Each of the edge devices 102 and the gateway 108
includes a device controller (DC) 120, peripheral electronics
(PE) 122, and a memory 124. Edge devices are controller-
based devices that do not communicate with devices outside
the group 116, whereas gateway devices 108 are devices that
communicate with devices outside the group 116, for
example the code virtualization server 114, the user device
112, and the remote service 118. For example, and for the
sake of brevity, only the edge device (or controller-based

US 2016/0328216 Al

device) 102-N is shown to include the device controller 120,
peripheral electronics 122 and a memory 124, although each
controller-based device (edge devices 102 and the gateway
108) includes a device controller and a memory, and may
include peripheral electronics, for example, in a manner
similar to the edge device 102-N. The device controller 120
includes one or more of a microcontroller (e.g., PIC, AVR
type, ARM type, and the like), a system on chip (SoC, e.g.,
RASPBERRY PI), or a microprocessor as generally known
in the art. The type of controller may differ from device to
device, for example, based on the application of such device
and the functionality required.

[0023] The peripheral electronics 122 include, but are not
limited to, sensors, lights, audio microphones, speakers,
actuators, displays, printers, scanners, /O devices, and any
other devices that may be manipulated using a digital signal
from the digital controller 120. The peripheral electronics
122 comprise components to manage or operate a conven-
tional system, or the peripheral electronics 122 are them-
selves a conventional system, such as a music system, an
alarm, household appliances, electrical devices, electro-
mechanical devices, among several others.

[0024] The memory 124 is any form of digital storage
used for storing data and executable software. Such memory
includes, but is not limited to, random access memory, read
only memory, disk storage, optical storage, and the like. The
memory 124 stores computer readable instructions corre-
sponding to an operating system (not shown), and a first
code, which is a program 125 or a code snippet 126 within
the program 125. The first code (referred to as 126 for
simplicity, but will be understood to mean either the pro-
gram 125 or the snippet 126) further includes a remote call
128 to a function on a device remote to the controller-based
device 102-N, for example, the code virtualization server
114. The first code 126 further includes additional code
components, such as an SDK 129 comprising library(ies)
necessary for executing the first code 126 and the remote call
128 on the edge device 102-N. The SDK 129 ensures that the
edge device 102-N can communicate to the code virtualiza-
tion server 114 via the gateway 108, or to other edge devices
102. Similarly, SDK for a gateway enables communications
from the gateway to the code virtualization server 114, to
edge devices 102, or to other gateway devices (not shown).

[0025] The user device 112 is a computer, such as a
personal computer (PC), a laptop, a tablet, a smartphone,
and the like, and the user device 112 comprises a CPU 130,
support circuits 132 and a memory 136. The CPU 130 may
be any commercially available processor, microprocessor,
microcontroller, and the like. The support circuits 132
comprise well-known circuits that provide functionality to
the CPU such as a user interface, clock circuits, network
communications, cache, power supplies, I/O circuits, and the
like. The /O circuits include a display 134, for example,
various standard or touch-based displays, such as computer
monitors as generally known in the art. In some embodi-
ments, the user interface comprises a keypad, electronic
buttons, speaker, touchscreen, display, or other user inter-
action mechanism. The memory 136 is any form of digital
storage used for storing data and executable software. Such
memory includes, but is not limited to, random access
memory, read only memory, disk storage, optical storage,
and the like. The memory 136 stores computer readable
instructions corresponding to an operating system (not
shown), and a graphical user interface (GUI) 138, which is

Nov. 10, 2016

displayed on the display 134. The GUI 138 is installed on the
user device 112, or a rendered via the browser 138 on the
user device 112. In some embodiments, the GUI is resident
on the code virtualization server, but is rendered on the user
device 112 via the browser 138 on the user device 112.

[0026] The GUI 138 presents selectable lists for a given
controller-based device in the group, and associated inputs,
such as, mode of operation (edge or gateway), controller
type(s), communication protocol(s) and function(s), which
are presented on the display 134 for a user to make corre-
sponding selections. In some embodiments, the user may
manipulate the GUI 138 using the user interface of the user
device 112, to load a list 140 of controller-based devices
(edge devices 102, gateway 108) of the group 116. The user
may also specify, for example, using a check box or a radio
button (not shown), if a gateway is being used in the group
116. The user selects CBD-N corresponding to the control-
ler-based device 102-N, as indicated by the solid underline.
For the selected device CBD-N, the GUI 138 loads lists
associated inputs, for example, list 141 of device type (edge
or gateway) of CBD-N, list 142 of the controller type(s), list
143 of the communication protocol(s), and list 144 of the
function(s) available to CBD-N or various devices of the
group 116. In some embodiments, a list 145 of parameters
comprising input forms is also presented for the user to input
at least one parameter for performing a function, for
example, the function selected in the list 144. Further, the
user may provide inputs corresponding to lists 141-145 with
respect to multiple controller-based devices, for example,
selecting a different device in the list 140 after inputs
corresponding one have been provided. In some embodi-
ments, predefined lists corresponding to the one or more
inputs associated with the controller-based device are avail-
able at the user device 112, or are created at the user device
112 by detecting controller-based devices connected to the
user device 112. In some embodiments, the predefined lists
are retrieved from the code virtualization server 114.

[0027] The lists are displayed by the GUI 138 as the lists
140-145, and user selects or provides input corresponding to
each list as indicated by the underlining in the lists 140-145.
For example, for the CBD-N selected in the list 140, EDGE
is selected in the list 141, CONTROLLER TYPE-1 is
selected in the list 142, PROTOCOL-1 is selected in the list
143, FUNCTION-1 is selected in the list 144, and PARAM-
ETER-1 is provided or selected in the list 145. Controller
types include, without limitation, PIC, AVR, ARM, and the
like. Communication protocols are machine-to-machine
communication protocols, including without limitation,
MQTT, CoAP, HTTP, HTTPS, and the like. Functions are
functions available for being performed on the code virtu-
alization server 114 for controller-based devices in the group
116, for example, sending an email, a text message, invoking
other internally (privately) hosted services, such as an inter-
nal data source (e.g., DB, noSQL DB, files and the like), or
Internet based services, for example, social networks, such
as TWITTER or FACEBOOK, online shopping portals, such
as AMAZON, VoIP providers, such as SKYPE, search
engines, such as GOOGLE, DUCKDUCKGO, a voice call,
a video call, among several others known in the art. Param-
eters are input attributes for achieving the desired behaviour
of the function, for example, the email service to use, the
email account, and the like. The selections and/or inputs may
be stored locally in the memory 136 of the user device 112,
or sent to the code virtualization server 114 directly. In this

US 2016/0328216 Al

manner, the selection inputs made via the GUI 138 are
provided to the code virtualization server 114. Examples of
controller types, communication protocols and parameters
are included in TABLE 1. In some embodiments, parameters
discussed in Table 1 may be used additionally to generate the
first code in a manner similar to that of the described
embodiments, and selection of such parameters may be
obtained as an input via the GUI 138, or may be obtained
from a predefined data stored on the code virtualization
server 114.

TABLE 1
Type Parameter Example/Comments
General Profile Name of a set of parameters (includes all sub-
name profiles)
Hardware Hardware Arduino Uno, Arduino Yun, Texas Instruments
Profile type CC3200, Raspberry PI, etc.
Hardware Processor AVR, ARM, PIC, etc.
Profile type
Hardware Network Arduino Wifi Shield, Built-in Ethernet,
Profile Hardware Ethernet Shield, BLE Shield, Built-in BLE
Credential Username Username for a web service like FACEBOOK,
Profile AMAZON . ..
Credential Password Password for a web service like FACEBOOK,
Profile AMAZON . ..
Credential API Key Developer API key given by web services like
Profile FACEBOOK, AMAZON, . . . There can be
several API keys
Credential API Secret Developer API secret given by web services
Profile like FACEBOOK, AMAZON, . . . There can be
several API secrets
Connection Connection Allows to select different Connection profiles
Profile Profile
name
Connection Type Wifi, Bluetooth, Zigbee, Z-WAVE, THREAD,
Profile LORA, 6LOWPAN, . . .
Connection Security =~ WPA, WEP, unsecured, . . .
Profile Type
Connection SSID Wifi network identifier
Profile
Connection Password Network password
Profile
Connection Transport MQTT, CoAP, HTTP/S, TCP/IP . . .
Profile Protocol
Connection Role Gateway or Edge
Profile
Setup Output Pin Indicates which Output Pin is selected on the
Profile processor (multiple Output Pins can be
selected)
Setup Input Pin Indicates which Input Pin is selected on the
Profile processor (multiple Input Pins can be selected)
Setup Pin Rule Specifies what rule is applied to a given Pin
Profile (Input or Output). For example: If
Temperature = 19 then write High to Pin 12
Input Required Also called variable. Can be any parameter a
Profile Input choreo needs to be executed. Can be multiple
Parameter Input Parameters. For example, a choreo
sending an email will need Input Parameters
like: Email address, Subject, Body,
Attachment, . . .
Input Optional ~ Optional Input parameters are used to add
Profile Input Parameters that are not necessary. Multiple
Parameter Optional Input Parameters are possible. For
example, a choreo sending an email has
optional Input Parameters like: CC, BCC or
encryption type
[0028] The GUI 138 described above illustrates one pos-

sible GUI scheme for receiving various selections and
communicating such selections to the code virtualization
server 114, and the techniques described herein are not
limited to the specific illustration of the GUI 138. For
example, the lists may be presented simultaneously on the

Nov. 10, 2016

same screen, or sequentially, or a combination, among
several other GUI schemes that will occur readily without
departing from the scope or spirit of the invention defined by
the claims. For example, FIGS. 4-7 illustrate an alternative
GUI scheme, according to embodiments of the invention. In
alternative embodiments, the GUI 138 may use algorithms
on a custom Application Specific Integrated Circuit (ASIC)
to provide the functionality provided by the combination of
the CPU 130, the support circuits 132 and the memory 136
as described with respect to the user device 112. In some
embodiments, the I/O devices include a keypad, electronic
buttons, speaker, touchscreen, display, or other user inter-
action mechanism.

[0029] The user device 112 is coupled to the network 110
when selecting a controller-based device (edge or gateway
devices) for software generation thereof, and selecting other
inputs such as controller type, functions, communication
protocols, parameters for executing the function, and when
receiving the developed software, for example, the first code
126. The user device 112 is also connected to the controller-
based (edge and gateway) devices in the device group 116
either directly, or via the network 110, when installing the
first code on respective controller-based devices. In some
embodiments, the user device 112 includes an integrated
development environment or IDE (not shown), to insert
snippets of code into preexisting programs on the controller-
based devices, or to install complete programs on the
controller-based device.

[0030] The code virtualization server 114 may be a gen-
eral-purpose computer or other electronic processing device
that is programmed to perform functions related to embodi-
ments of the present invention. The code virtualization
server 114 comprises a CPU 150, support circuits 152, and
a memory 154 containing instructions and algorithms. The
CPU 150 may be any commercially available processor,
microprocessor, microcontroller, and the like. The support
circuits 152 comprise well-known circuits that provide func-
tionality to the CPU such as a user interface, clock circuits,
network communications, cache, power supplies, [/O cir-
cuits, and the like. Alternative embodiments may use control
algorithms on a custom Application Specific Integrated
Circuit (ASIC) to provide the functionality provided by the
any combination of the CPU 150, the support circuits 152
and the memory 154. In some embodiments, the user
interface comprises a keypad, electronic buttons, speaker,
touchscreen, display, or other user interaction mechanism.

[0031] The memory 154 may be any form of digital
storage used for storing data and executable software. Such
memory includes, but is not limited to, random access
memory, read only memory, disk storage, optical storage,
and the like. The memory 154 stores computer readable
instructions corresponding to an operating system (not
shown), an interface 156, a process pool 158, a code
generator 160, a database 162, and an execution engine 164.

[0032] The interface 156 provides functionality for the
user device 112 to interact with the code virtualization server
114. In some embodiments, the interface 156 may also
include GUI software, for example, corresponding to the
GUI 138, which may be sent by the code virtualization
server 114 to the user device 112, or otherwise provided for
installation on the user device 112. In some embodiments,
the interface 156 includes software to render the GUI 138
through a browser on the user device 112. In addition, the

US 2016/0328216 Al

interface 156 provides connectivity to the controller-based
devices 102, 108 of the group 116, and to the remote service
118.

[0033] The process pool 158 comprises code correspond-
ing to functions to be performed in response to a remote call
received from the controller-based devices of the group 116.
The functions are also referred to as “choreographs™ or
“choreos”, and the corresponding code that is executed to
perform the functions is referred to as second code 166.
Hereinafter, the terms “function”, “choreographs”,
“choreos”, will also be referred to as the “second code” 166,
and the terms will be used interchangeably, unless otherwise
apparent from the context. In some embodiments, the func-
tions interact with external services, for example, a remote
service 118. The second code 166 also includes software
development kit (SDK) 167 to support execution of the
second code 166, and the SDK 167 may include SDK
components of the remote service 118 if the functions are
required to interact with the remote service 118. The process
pool 158 further comprises a list of functions corresponding
to each function made available for selection by the GUI
138, for example, as described above, and includes the
second code corresponding to the listed functions. Accord-
ing to some embodiments, the list of functions is sent to the
GUI 138 for display, and selection of a function by a user of
the user device 112.

[0034] The code generator 160 generates the first code 126
for the controller-based device 102-N, and embeds code
corresponding to the call 128 in the first code 126. The code
generator 160 further includes an SDK generator 168 to
generate the SDK 129 included in the first code 126, to
support the execution of the first code 126 on the controller-
based device 102-N. The first code 126 is generated auto-
matically for the controller-based device 102-N, based on its
configuration or device type (EDGE), the controller type
(CONTROLLER-1) of the digital controller 120, the com-
munication protocol (PROTOCOL-1) used for communicat-
ing with other controller-based device(s) in the group 116,
and the function (FUNCTION-1) to be performed in
response to the remote call 128. For example, the code
generator 160 incorporates, in the first code 126, the appro-
priate identifier or address for the second code 166 in the
remote call 128, in order to invoke the FUNCTION-1 based
on the remote call. The code generator 160 further incorpo-
rates appropriate communication protocol in the first code
126 to route the remote call 128 from the CBD 102-N to the
gateway device 108, and then to the code virtualization
server 114. The code generator 160 further generates the
code 126 suitable to the controller type of the CBD 102-N.
In some embodiments, the code generator 160 further incor-
porates parameter data (PARAMETER-1) in the first code
126 in order to perform the remote function according to the
PARAMETER-1. The SDK 129 supports execution of the
first code 126, for example, by providing necessary code
libraries according to the hardware, software platform, com-
munication infrastructure (including communication proto-
cols, connection types, and the like), and other code execu-
tion parameters.

[0035] The database 162 includes user data such user
names, identification information and passwords for authen-
ticating the user device 112 or the remote service 118 to the
code virtualization server 114, to achieve a secure environ-
ment. In some embodiments, the database 162 also includes
authentication information to authenticate the controller-

Nov. 10, 2016

based devices (102, 108) to the code virtualization server
114. According to various embodiments, the database 162
further includes, without limitation, one or more of a list of
controller-based devices in the group 116, controller type(s)
for each controller-based device in the group 116, commu-
nication protocol(s) used by each controller-based device of
the group 116, and preexisting parameters for performing
the function, that is, executing the first code. The interface
158 may use data from the database 162 may be used to
populate one or more lists of the GUI 138.

[0036] The execution engine 164 supports the foregoing
functions of the components on the code virtualization
server 114. In response to receiving the remote call 128 from
the controller-based device 102-N, the execution engine 164
executes the second code 166 (corresponding to the
requested function) using the appropriate parameters (e.g.,
stored in the database, or received as input from the GUI
138) for the second code 166. In some embodiments, the
execution engine 164 sends data generated from the execu-
tion of the second code 166 to the controller-based device
102-N via the gateway 108. In some embodiments, the
functions or the second code 166 interacts with the remote
service 118, and the execution engine 164 facilitates
exchange of data between the remote service 118 and the
second code 166. Embodiments of the invention enable
controller-based devices (CBD 102-N) of the group 116 to
place a remote call for execution of the second code 166 on
the code virtualization server 114 to perform functions that
the device controller 120 of the controller-based device
102-N would otherwise not be able to perform, greatly
enhancing the capability of the devices in the group 116.

[0037] The remote service 118 includes private or public
services provided by third party servers or databases (i.e.,
devices) that are remote to the user device 112, the code
virtualization server 114, and the controller-based devices
(102, 108). For example, the remote service 118 includes
third party databases and services (e.g., AMAZON, EBAY,
FACEBOOK, APPLE PUSH NOTIFICATION servers, text
message servers, email servers, and the like), or an internal
data source (e.g., DB, noSQL DB, files and the like). The
remote service 118 is accessible to the code virtualization
server 114 via the network 110 or another network. Accord-
ing to some embodiments, the remote service 118 is provi-
sioned upon execution of the second code 166 using asso-
ciated parameters, in response to receiving the remote call
128 from the controller-based device 102-N of the group
116.

[0038] FIG. 2 depicts a flow diagram of a method 200
executed by the code virtualization server 114 to program
the group 116 of controller-based devices in accordance with
embodiments of the present invention. The method 200 is
for programming a group of devices in which a gateway
device is used, for example, as may indicated via the GUI
138, or as shown via a GUI screen 400 of FIG. 4. The
method 200 begins at step 202 and proceeds to step 204, at
which the method 200 receives a selection of a controller-
based device from the GUI 138. In one embodiment, selec-
tion is made by clicking on CBD-N (indicated by solid
underline, FIG. 1) on the list 140, where CBD-N corre-
sponds to the device 102-N of the group 116. In another
embodiment, selection is made on a GUI screen 500 of FIG.
5, by selecting or adding a controller-based device 502
(gateway) and/or 504 (edge).

US 2016/0328216 Al

[0039] The method 200 proceeds to step 206. At step 206,
the method 200 receives from the GUI 138, an input
specifying the device type of the controller-based device
selected at step 204 (e.g. 102-N). Device type includes edge
device or gateway device. In one embodiment, the selection
is made by clicking on “EDGE” (solid underline, list 141 of
FIG. 1). In some embodiments, the device type may be
specified when selecting the controller-based device, for
example, as shown in selection or addition of the controller-
based devices 502, 504 via a GUI screen 500 of FIG. 5.
[0040] The method 200 proceeds to step 208, at which the
method 200 receives from the GUI 138, an input specitying
the controller type of the device controller 120 of the
selected controller-based device (e.g. 102-N). Controller
types include, without limitation, at least one of a micro-
controller or a microprocessor, for example, AVR, ARM,
PIC, among several similar other controller types, as gen-
erally known in the art. In some embodiments, the controller
type is selected by selecting an option from the list 142 of
FIG. 1. In some embodiments, the controller type is selected
by specifying the device details, for example, using a drop
down list 506 of the GUI screen 500.

[0041] The method 200 proceeds to step 210, at which the
method 200 receives from the GUI 138, an input specitying
a communication protocol for the selected device (102-N).
Typically, the communication protocol is a machine-to-
machine (M-to-M) communication protocol, which
includes, without limitation, HTTP, HTTPS, TCP/IP,
MQTT, CoAP, LoRa, ZigBee, Thread, Z-WAVE, Bluetooth,
6LOWPAN, or other known communication protocols. In
some embodiments, the communication protocol is selected
from the list 143 of FIG. 1. In some embodiments, the
communication protocol is specified by selecting an appro-
priate option from the drop down list 602 in GUI screen 600
of FIG. 6.

[0042] The method 200 proceeds to step 212, at which the
method 200 receives from the GUI 138, an input specitying
a function (or a choreo) to be called by the selected device
(102-N). In some embodiments, the function is selected
from the list 144 of FIG. 1. In some embodiments, the
function is specified by selecting an appropriate option from
menu 702 listing choreos in GUI screen 700 of FIG. 7.
[0043] The method 200 proceeds to optional step 214, at
which the method 200 receives from the GUI 138, an input
specifying parameters needed for performing the selected
function. The parameters define how the function will oper-
ate when called from the device (102-N). In some embodi-
ments, the parameters are specified using the list 145 of FI1G.
1. In some embodiments, the parameters are specified using
a form on a GUI screen, for example, similar to the GUI
screens depicted in FIGS. 4-7.

[0044] In steps 204-214, the inputs are received from the
GUI 138 sequentially or simultaneously. Further, the GUI
138 receives inputs from a user manipulating the input/
output devices of the user device 112 to select or input
appropriate responses, for example, as depicted by solid
underline in the lists 140-145 of FIG. 1, or the GUI screens
of FIGS. 4-7. Without limitation, other GUI schemes may
also be used for implementing the method 200, without
departing from the scope and spirit of the embodiments
described herein, as defined by the claims.

[0045] The method proceeds to step 216, at which the
method 200 generates a first code, for example, the first code
126 comprising a remote call (the remote call 128) to the

Nov. 10, 2016

function, and an SDK based on the input received from steps
206-214. For example, the first code 126 is generated for the
controller-based device 102-N based on the device type
(EDGE), the controller type (CONTROLLER-1) of the
digital controller 120, the communication protocol (PRO-
TOCOL-1) used for communicating with other controller-
based device(s) in the group 116, the function (FUNCTION-
1) to be performed in response to the remote call 128, and
the parameter (PARAMETER-1). The first code 126
includes an entire program for the device 102-N, or a snippet
for inserting into a preexisting program on the device 102-N,
and includes the information on the controller type, the
communication protocol, and the function to be performed
by the remote call. Specifically, the first code 126 is con-
figured to route the remote call 128 from the device 102-N,
via the gateway 108, to the code virtualization server 114 for
executing the function (or the second code 166). If provided
at optional step 214, the first code 126 also includes param-
eters required for operating the function.

[0046] The method 200 proceeds to step 218, at which the
method 200 sends the first code 126 for installation on the
controller-based device 102-N. In some embodiments, the
first code 126 is sent to the controller-based device 102-N
via the gateway 108. In some embodiments, the first code
126 is sent to the user device 112, which installs the first
code to the controller-based device 102-N directly, or via the
gateway 108. For example, the GUI 138 on the user device
may be used to insert the first code 126 as a code snippet in
a preexisting program on the controller-based device 102-N.
[0047] At step 220, the method 200 queries whether
another device is to be processed. If the query is answered
affirmatively (option “YES”), the method 200 proceeds
along path 222 to step 204 where a selection corresponding
to a new controller-based device is received from the GUI
138, for example, based on a user selection from the list 140.
It at step 218, the query is answered negatively (option
“NO”), for example, when the first code for a desired
number of devices of the group 116 has been generated, the
method 200 proceeds to step 224, at which the method 200
ends.

[0048] The method 200 may be repeated for several or all
controller-based devices of the group 116, including edge
devices 102 and the gateway 108. Embodiments of the
invention pertain to generating programs for device groups
in which at least one gateway device is used, for example,
the device group 116. If a gateway device is not used, for
example, if the checkbox 402 of the GUI screen 400 is not
selected, techniques for program generation for a single
device via a single device GUI may be used, for example, as
described in commonly assigned U.S. patent application Ser.
No. 14/207,208, filed 17 Jun. 2014 and herein incorporated
by reference in its entirety.

[0049] FIG. 3 depicts a flow diagram of a method 300
executed by various devices of the apparatus 100 of FIG. 1,
illustrating the programmed device 102-N in operation, for
example, programmed according to the method 200 of FIG.
2. The method 300 is executed by the controller-based
device 102-N, the code virtualization server 114, and the
remote service 118.

[0050] The method 300 begins at step 302, at which the
method 300 begins executing the first code on the controller-
based device 102-N. At step 304, the method 300 places a
remote call to the code virtualization server 114 to execute
the second code. At step 306, the method 300 routes the

US 2016/0328216 Al

remote call through a gateway device, for example, the
gateway 108 in the group 116, to the code virtualization
server 114. According to embodiments of the invention, the
first code (including the SDK) include connection protocols
to enable the remote call to be routed from the controller-
based device 102-N to the gateway 108 directly, or through
another controller-based device(s) in the group 116, and the
gateway 108 communicates the remote call to the code
virtualization server 114.

[0051] The method 300 proceeds to step 308, at which the
execution of the method 300 shifts to the code virtualization
server 114 and, at step 308, the method 300 receives the
remote call originating from the controller-based device
102-N, via the gateway 108, to execute the second code 166
to perform the desired function. For example, the function is
the function selected using the GUI 138 from the list 144.
[0052] At step 310, the method 300 begins executing the
second code to perform the function. In some embodiments,
the second code is executed using parameters for the func-
tion, for example, as discussed above. In some embodi-
ments, performing the function includes performing a ser-
vice request to a remote service, for example, the remote
service 118, and the second code includes functionality to
process a request to the remote service 118, for example,
using APIs and other available functionalities.

[0053] At step 312, the method 300 initiates a remote
service request from the code virtualization server 114 to the
remote service 118. Execution of the method 300 shifts to
the remote service 118 at step 314, at which the method 300
processes the remote service request and, at optional step
316, the method 300 sends data, if generated, by the remote
service 118 to the code virtualization server 114. In some
embodiments, the data generated from the processing of the
remote service 118 includes a confirmation that the request
for the remote service 118 has been processed. In other
embodiments, additional data may be generated by the
remote service 118.

[0054] Execution of the method 300 shifts to the code
virtualization server 114 at optional step 318, at which the
method 300 receives the data from the remote service 118.
At optional step 320, the method 300 sends the received data
to the controller-based device 102-N. In some embodiments
(not shown), the data received from the remote service 118
is sent to the user device 112 for display via the GUI at
optional step 320. Execution of the method 300 shifts to the
controller-based device 102-N at optional step 322, at which
the method 300 receives, from the code virtualization server
114, the processed data from the remote service 118. At
optional step 324, the method 300 continues executing the
first code on the controller-based device. In some embodi-
ments, even though the remote service 118 is performed at
step 314, no data is generated by the remote service 118, and
in such embodiments, the method 300 ends at step 314. In
some embodiments, at optional step 316, the method 300
sends a data indicating that the remote service 118 has been
processed, to the controller-based device 102-N, via the
code virtualization server 114 (e.g. via optional steps 318,
320) and the gateway 108, or only via the gateway 108. The
method 300 receives this data at optional step 322 and
continues execution of the first code at optional step 324. In
some embodiments, the controller-based device 102-N con-
tinues execution of the first code without waiting for data
from the remote service 118. In some embodiments, execu-
tion of the first code at the controller-based device 102-N

Nov. 10, 2016

concludes after routing the remote call to the code virtual-
izations server 114 at step 306.

[0055] In this manner, the functionality of the controller-
based device is significantly extended by programming the
device 102-N and the group 116 according to the embodi-
ments described herein.

[0056] For example, an environmental monitoring system
within a computer center may include multiple temperature
sensors, each sensor being coupled to a device controller
(together, an edge device) that gathers and transmits sensor
data to an aggregating device (functioning as a gateway), via
a wireless transceiver using a communication protocol com-
patible with the aggregating device. The communication
protocols may vary across the edge devices. The gateway
device aggregates and/or pre-processes the data received
from different edge devices, and transmits the data via the
Internet to a monitoring service. According to embodiments
of the invention, one or more edge devices are configured to
send its data to a function (i.e. by making a remote call to
perform the function remotely on another device) that sends
a text message when the sensor data falls in a predefined
range, for example, temperature exceeding a normal range
for the environmental monitoring system. In some embodi-
ments, the gateway could be configured to send data from a
particular edge device to the function that sends the text
message when the data falls in the predefined range, or when
data aggregated from several edge devices matches a pre-
defined pattern. In each case, the call to send a text message
is routed through the gateway. Additional sensors (edge
devices), for example, humidity sensors, each coupled to a
device controller, may be added to the environmental moni-
toring system, and the new edge devices may have varied
communication protocols. Embodiments of the invention,
enable programming the new edge devices with appropriate
code, and enable seamless interconnectivity with the other
devices (e.g., temperature sensors) in a convenient manner
by allowing simple, graphical user interface based inputs.
For example, using the embodiments described herein, the
new edge devices (humidity sensors) are enabled to call
remote functions through the gateway seamlessly. Thus,
embodiments of the invention augment the functionality of
the edge and gateway devices, extending the limited capac-
ity of the edge and gateway devices to the capacity of
available remote services, while doing so in a seamless
manner.

[0057] Further, according to some embodiments, one or
more gateway devices in a group are programmed to operate
as edge devices. In some embodiments, the group 116
includes multiple gateway devices, one or more of which
may be configured to operate as an edge device, and at least
one gateway device is configured to operate as an edge
device. In some embodiments, the group 116 includes only
multiple gateway devices, one or more of which may be
configured as an edge device, and at least one gateway
device is configured to operate as an edge device.

[0058] Techniques illustrated by various embodiments
discussed herein make software development for a group of
controller-based devices quick and easy for a user, by
avoiding the need to learn complex controller programming
language, and track connections and defined communication
protocols. In some embodiments, the code virtualization
server 114 is implemented as a service (not shown) that
provides access to code generation, deployment, remote
reprogramming through a web interface, or any GUI (e.g., a

US 2016/0328216 Al

smartphone app or a computer application) on a user device
(smartphone, computer, tablet, and the like). While the
embodiments are described with respect to Internet of things
(IoT) devices, those skilled in the art will readily appreciate
that the techniques exemplified by the disclosed embodi-
ments are applicable to several other programming environ-
ments.

[0059] The methods described herein may be imple-
mented in software, hardware, or a combination thereof, in
different embodiments. The methods may be embodied in
computer instructions stored in a non-transitory computer
readable medium, and executed by one or more processors
to perform the methods. In addition, the order of methods
may be changed, and various elements may be added,
reordered, combined, omitted or otherwise modified. All
examples described herein are presented in a non-limiting
manner. Various modifications and changes may be made as
would be obvious to a person skilled in the art having benefit
of this disclosure. Realizations in accordance with embodi-
ments have been described in the context of particular
embodiments. These embodiments are meant to be illustra-
tive and not limiting. Many variations, modifications, addi-
tions, and improvements are possible. Accordingly, plural
instances may be provided for components described herein
as a single instance. Boundaries between various compo-
nents, operations, and data stores are somewhat arbitrary,
and particular operations are illustrated in the context of
specific illustrative configurations. Other allocations of
functionality are envisioned and may fall within the scope of
claims that follow. Finally, structures and functionality pre-
sented as discrete components in the example configurations
may be implemented as a combined structure or component.
These and other variations, modifications, additions, and
improvements may fall within the scope of embodiments as
defined in the claims that follow.

[0060] While the foregoing is directed to embodiments of
the present invention, other and further embodiments of the
invention may be devised without departing from the basic
scope thereof, and the scope thereof is determined by the
claims that follow.

1. A computer-implemented method for automatic gen-
eration of a program for a controller-based device in a group
of controller-based devices, comprising:

receiving, for a controller-based device from a plurality of

controller-based devices displayed on a graphical user

interface (GUI) on a user device, a selection of:

a controller type of the controller-based device,

a communication protocol to be used by the controller-
based device for communicating with another con-
troller-based device in a group of controller-based
devices, the group comprising the plurality of con-
troller-based devices, and

a function to be performed based on a remote call from
the controller-based device; and

generating a first code, for execution on the controller-
based device, based on the controller type, the com-
munication protocol, and the function, the first code
comprising the remote call, and capable of routing
the remote call.

2. The method of claim 1, wherein each controller-based
device is either an edge device or a gateway device, and
wherein the group comprises either at least one edge device
and at least one gateway device, or at least two gateway
devices.

Nov. 10, 2016

3. The method of claim 2, wherein the first code routes the
remote call through the at least one gateway device.

4. The method of claim 2, further comprising receiving,
from the GUI, a selection of whether the controller-based
device is an edge device or a gateway device, and wherein
the generating the first code is further based on the selection
of the edge device or the gateway device.

5. The method of claim 2 further comprising:

receiving the remote call from the controller-based device

via the at least one gateway device; and

performing the function.

6. The method of claim 1, further comprising dispatching
the first code for installation on the controller-based device
directly or via the user device.

7. The method of claim 1, further comprising receiving,
from the GUI, at least one parameter for performing the
function, and wherein the generating the first code is further
based on the at least one parameter.

8. The method of claim 1, wherein the method is repeated
for all controller-based devices of the group.

9. The method of claim 1, wherein the controller type is
at least one of AVR, ARM, or PIC, wherein the communi-
cation protocol comprises at least one of HTTP, HTTPS,
TCP/IP, MQTT, CoAP, LoRa, ZigBee, Thread, Z-WAVE, or
6LOWPAN, and wherein the function is one of a text
message, a voice call, a video call, an internal data source,
or an Internet based service.

10. An apparatus for automatic software development for
a group of controller-based devices, comprising:

a processor; and

a memory comprising executable instructions, which

when executed using the processor, cause execution of

a method comprising:

receiving, for a controller-based device from a plurality
of controller-based devices displayed on a graphical
user interface (GUI) on a user device, a selection of

a controller type of the controller-based device,

a communication protocol to be used by the controller-
based device for communicating with another con-
troller-based device in a group of controller-based
devices, the group comprising the plurality of con-
troller-based devices, and

a function to be performed based on a remote call from
the controller-based device, and

generating a first code, for execution on the controller-
based device, based on the controller type, the com-
munication protocol, and the function, the first code
comprising the remote call, and capable of routing
the remote call.

11. The apparatus of claim 10, wherein each controller-
based device is either an edge device or a gateway device,
and wherein the group comprises either at least one edge
device and at least one gateway device, or at least two
gateway device.

12. The apparatus of claim 11, wherein the first code
routes the remote call through the at least one gateway
device.

13. The apparatus of claim 11, wherein the method further
comprises further comprising receiving, from the GUI, a
selection of whether the controller-based device is an edge
device or a gateway device, and wherein the generating the
first code is further based on the selection of the edge device
or the gateway device.

US 2016/0328216 Al

14. The apparatus of claim 11, wherein the method further
comprises:

receiving the remote call from the controller-based device

via the at least one gateway device; and

performing the function.

15. The apparatus of claim 10, wherein the method further
comprises dispatching the first code for installation on the
controller-based device directly or via the user device.

16. The apparatus of claim 10, wherein the method further
comprises receiving, from the GUI, at least one parameter
for performing the function, and wherein the generating the
first code is further based on the at least one parameter.

17. The apparatus of claim 10, wherein the method is
repeated for all controller-based devices of the group.

18. The apparatus of claim 10, wherein the controller type
is at least one of AVR, ARM, or PIC, wherein the commu-
nication protocol comprises at least one of HTTP, HTTPS,
TCP/IP, MQTT, CoAP, LoRa, ZigBee, Thread, Z-WAVE, or
6LOWPAN and wherein the function is one of a text
message, a voice call, a video call, an internal data source,
or an Internet based service.

19. A non-transitory computer readable medium for stor-
ing computer instructions that, when executed by at least one

Nov. 10, 2016

processor cause the at least one processor to perform a
method for automatic generation of a program for a con-
troller-based device in a group of controller-based devices,
comprising:
displaying a plurality of controller-based devices from a
group of controller-based devices on a graphical user
interface (GUI) on a user device;
receiving, for a controller-based device from the group, a
selection of:

a controller type of the controller-based device,

a communication protocol to be used by the controller-
based device for communicating with another con-
troller-based device in the group, and

a function to be performed based on a remote call from
the controller-based device; and

sending the selection to a code virtualization server.

20. The non-transitory computer readable medium of
claim 19, wherein the receiving further comprises:
receiving a selection or an input of parameters for per-
forming the function, and
sending the selection or the input to the code virtualiza-
tion server.

