wo 2022/022802 A1 |0 0000 KO0 0 X 0

(12) INTERNATIONAL APPLICATION PUBLISHED

(19) World Intellectual Property '
Organization
International Bureau /
(43) International Publication Date ——’/
03 February 2022 (03.02.2022) WIRPO |

UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2022/022802 Al
PCT

(51) International Patent Classification:
GO6F 16/901 (2019.01) GO6F 16/242 (2019.01)

(21) International Application Number:
PCT/EP2020/071121

(22) International Filing Date:
27 July 2020 (27.07.2020)

(25) Filing Language: English

(26) Publication Language: English

(71) Applicant: HUAWEI TECHNOLOGIES CO., LTD.
[CN/CN]; Huawei Administration Building Bantian Long-
gang District, Shenzhen, Guangdong 518129 (CN).

(72) Inventor; and

(71) Applicant (for US only): MARTINEZ, Norbert [ES/DE];
Huawei Technologies Duesseldorf GmbH, Riesstr. 25,
80992 Munich (DE).

(74) Agent: KREUZ, Georg;, Huawei Technologies Duessel-
dorf GmbH, Riesstr. 25, 80992 Munich (DE).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ,DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, IT, JO, JP, KE, KG, KH, KN,
KP,KR,KW,KZ,LA,LC,LK, LR, LS, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO,
NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW,
SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US,UZ, VC, VN, WS, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ,NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,

TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

(54) Title: A DATABASE MANAGEMENT SYSTEM AND METHOD

SQL DDL
schema

410 mapping

.

400

Schema Mapping Engine

411c

i

I411

3
Schema SQL R2G
SQL DDL
pa?ser and mapping Schema mapping
converter rule validator query
\\
r (. /
heS / update graph schema 405
read table & ~ ’ X
4lla 411b graph schema ~~“~\ /, and R2G mapping I
~, 4
Database
RDMBS ° - 405a
(O e
413 connector R2G mapping 3 L~ 405b
S
S
Re
graph ,/ ° Relational
query —_— T 0T e query
engine
403 SQL query H
1
407 409
query I
F. b result
ig. 4

(57) Abstract: The disclosure relates to a database management system (400) for managing a database (405). The database management
system comprises a processor (411) configured to generate a schema mapping rule (411b), based on a definition (410) of at least one of
a graph vertex and a graph edge of data (405b) of the database. The schema mapping rule defines a correspondence between the data
of the database and a graph representation of the data of the database, the graph representation of the data including the at least one of
the graph vertex and the graph edge of the data of the database. The processor is further configured to generate, based on the schema
mapping rule, a database query (411e) for extracting one or more further graph vertices and/or graph edges of the data of the database.
In particular, the disclosure may be applied to a relational database management system.

[Continued on next page]

WO 2022/022802 A | [0} 00 000 OO OO 0 A O

EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SL SK, SM,
TR). OAPI (BF, BJ, CF, CG, CL CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

10

15

20

25

30

35

WO 2022/022802 PCT/EP2020/071121

A DATABASE MANAGEMENT SYSTEM AND METHOD

TECHNICAL FIELD

The present disclosure relates to database systems. More specifically, the present
disclosure relates to a database management system and method.

BACKGROUND

Relational databases managed by relational database management systems (RDBMS)
are the most popular way to store structured data. In relational databases, data is
organized in the form of tables comprising rows and columns.

A graph is a structure (diagram) comprising entities called vertices (or nodes or points)
and edges (or links or relationships), wherein the edges (or links or relationships) are
related pairs of vertices. In the Property Graph Model, data is organized as nodes,
relationships, and properties, wherein the properties are data values stored on the nodes
or relationships. By converting relational data into a property graph, it is possible to
explore (traverse) the relationships between the entities (rows) and to analyze the
underlying network topology.

Querying graphs on existing relational data is usually done using one of the following
three approaches.

According to a first approach illustrated in figure 1, a graph query engine 107 extracts, in
response to a graph query 103, relational data directly from a database 105. The graph
query engine 107 transforms rows of the extracted relational data into vertices and edges
of a graph on-the-fly using a conceptual schema mapping 101. The conceptual schema
mapping 101 defines a relationship between the relational schema, i.e. the structure of the
data in the relational database in the form of tables with rows and columns, and the graph
schema, i.e. the structure of the data in the graph in the form of vertices, edges and
properties. Finally, the graph query engine 107 provides query results 109 of the graph
query 103.

According to a second approach illustrated in figure 2, an extract-transform-load (ETL)
process 202 reads relational data from a database 205 and, by using a conceptual

1

10

15

20

25

30

35

WO 2022/022802 PCT/EP2020/071121

schema mapping 201, generates and stores inferred vertices and edges into a graph
database or graph storage 204. In response to a graph query 203, the graph query engine
207 then reads vertices and edges directly from the generated graph stored in the graph
storage 204 and provides query results 209 of the graph query 203.

According to a third approach illustrated in figure 3, a synchronization engine 306
maintains a graph database or graph storage 304 that is always updated with the latest
changes of the relational data in the database 305 by using a conceptual schema
mapping 301. In response to a graph query 303, the graph query engine 307 reads
vertices and edges directly from the graph provided by the graph database 304 as in the

second approach described above and provides query results 309 of the graph query 303.

As will be appreciated, the third approach is more sophisticated and, thus, more difficult to
implement than the second approach, while the second approach, in turn, is more
sophisticated and, thus, more difficult to implement than the first approach. Moreover,
while the first approach is capable of reading, transforming, and querying data on-the-fly,
the other two approaches require the materialization of the generated graph data into an
extra graph repository 204, 304, which, in practical terms, means a duplication of the data

storage capacities.

Besides, current approaches only employ simple schema mapping with vertices and
edges directly mapped in a one-to-one relationship to rows of relational tables. Thus, the
above approaches have one or more of the following disadvantages: (i) the relational data
has to be duplicated into the graph storage; (ii) the extraction and synchronization (for
providing consistency) between relational and graph data takes time and does not allow
for real-time processing of the latest updates; and/or (iii) the schema mapping used in
current approaches is very simple and often not very useful in practical terms. Moreover,
with the current approaches, when designing a database, it is necessary to use and
implement simple relational models that can be easily mapped to a graph model, or to
prepare sophisticated ETL procedures that are executed periodically to convert relational
data into graph entities.

SUMMARY

It is an objective of the present disclosure to provide an improved database management
system and method.

10

15

20

25

30

35

WO 2022/022802 PCT/EP2020/071121

The foregoing and other objectives are achieved by the subject matter of the independent
claims. Further implementation forms are apparent from the dependent claims, the
description, and the figures.

According to a first aspect, a database management system for managing a database is
provided. The database management system comprises a processor configured to
receive a definition of at least one of a graph vertex and a graph edge of data of the
database, generate a schema mapping rule, based on the definition of the at least one of
the graph vertex and the graph edge of the data of the database, wherein the schema
mapping rule defines a correspondence between the data of the database and a graph
representation of the data of the database, wherein the graph representation includes the
at least one of the graph vertex and the graph edge of the data of the database, and
generate, based on the schema mapping rule, a database query for extracting one or
more further graph vertices and/or graph edges of the data of the database.

As used herein and as will be described in more detail below, a definition of a graph
vertex and/or a graph edge of the data of the database may comprise one or more
instructions allowing the database management system to generate one or more graph
vertices and/or graph edges from the data of the database.

In a further possible implementation form of the first aspect, the processor is further
configured to generate the schema mapping rule as a conjunctive and/or disjunctive

combination of one or more predicates.

In a further possible implementation form of the first aspect, the processor is further
configured to store the database query in a database catalog of the database.

In a further possible implementation form of the first aspect, the processor of the database
management system is further configured to extract the one or more further graph vertices
and/or graph edges of the data of the database based on the database query stored in the
database catalog. Advantageously, this allows extracting non-explicit information hidden
in the relational representation of the data of the database.

In a further possible implementation form of the first aspect, the processor is further
configured to provide a programming interface, wherein the programming interface is

3

10

15

20

25

30

35

WO 2022/022802 PCT/EP2020/071121

configured to receive one or more programming instructions for at least one of extracting
the data from the database and/or defining the at least one of the graph vertex and the

graph edge of the data of the database.

In a further possible implementation form of the first aspect, the one or more programming
instructions of the programming interface comprises a first programming instruction
(herein referred to as a "MATCH" instruction) for extracting the data from the database or

from the graph representation of the data of the database.

In a further possible implementation form of the first aspect, the first programming
instruction for extracting data from the database, i.e. the "MATCH" instruction is
configured to define the at least one of the graph vertex and the graph edge of the data of
the database by recursive reference to the schema mapping rule. In other words, the
output of a "MATCH" instruction can be the input of another "MATCH?" instruction.

In a further possible implementation form of the first aspect, the one or more programming
instructions of the programming interface comprises a second programming instruction
(herein referred to as a "COMPARE" instruction) for filtering the data of the database on

the basis of one or more comparison predicates.

In a further possible implementation form of the first aspect, the one or more programming
instructions of the programming interface comprises a third programming instruction
(herein referred to as an "AGGREGATE" instruction) for determining one or more

aggregate functions over the data of the database.

In a further possible implementation form of the first aspect, the one or more programming
instructions of the programming interface comprises a fourth programming instruction
(herein referred to as a "EXCEPT" instruction) for discarding or filtering the data of the

database matching one or more criteria.

In a further possible implementation form of the first aspect, the one or more programming
instructions of the programming interface comprises a fifth programming instruction
(herein referred to as a "EVAL" instruction) for evaluating one or more pre-defined

functions or predicates.

10

15

20

25

30

35

WO 2022/022802 PCT/EP2020/071121

In a further possible implementation form of the first aspect, the database management

system further comprises the database.

According to a second aspect, a method for managing a database is provided. The
method comprises the steps of receiving a definition of at least one of a graph vertex and
a graph edge of data of the database, generating a schema mapping rule, based on the
definition of the at least one of the graph vertex and the graph edge of the data of the
database, wherein the schema mapping rule defines a correspondence between the data
of the database and a graph representation of the data of the database, wherein the graph
representation includes the at least one of the graph vertex and the graph edge of the
data of the database, and generating, based on the schema mapping rule, a database
query for extracting one or more further graph vertices and/or graph edges of the data of

the database.

In a further possible implementation form of the second aspect, the step of generating the
schema mapping rule comprises generating the schema mapping rule as a conjunctive
and/or disjunctive combination of one or more predicates.

In a further possible implementation form of the second aspect, the method further
comprises the step of storing the database query in a database catalog of the database.

In a further possible implementation form of the second aspect, the method comprises the
further step of extracting the one or more further graph vertices and/or graph edges of the

data of the database based on the database query stored in the database catalog.

In a further possible implementation form of the second aspect, the method further
comprises a step of providing a programming interface, wherein the programming
interface is configured to receive one or more programming instructions for defining the at

least one of the graph vertex and the graph edge of the data of the database.

The database management method according to the second aspect of the present
disclosure can be performed by the database management system according to the first
aspect of the present disclosure. Thus, further features of the data management method
according to the second aspect of the present disclosure result directly from the
functionality of the database management system according to the first aspect of the

10

15

20

25

30

35

WO 2022/022802 PCT/EP2020/071121

present disclosure as well as its different implementation forms described above and

below.

According to a third aspect, a computer program product storing program code which
causes a computer or a processor to perform the method according to the second aspect,
when the program code is executed by the computer or the processor, is provided.

As will be described in more detail in the following, embodiments of this disclosure provide
a rule-based domain specific language (DSL) for conceptual schema mapping that
describes, i.e. defines how to: (i) transform, using plain structured query language (SQL),
relational data to graph data (R2G) including direct mapping (e.g. row-to-vertex and row-
to-edge), generalizations/specializations, hierarchical, and denormalized relational
schemas; and (ii) infer new relationships from existing data, including nested relationships
and recursive relationships. Moreover, embodiments of this disclosure provide a rule-
based mapping engine for graphs based on logical programming and only five predicate
types (operations) that transforms graph queries into relational SQL queries over
persistent relational data without a need for redundant graph storage. The DSL may be
any declarative programming language that allows the definition of mappings using
predicates such as Datalog, or an extension to the SQL Data Definition Language (DDL)
as described above.

Embodiments of this disclosure provide, amongst others, the following advantages: (i)
there is no need to duplicate relational data as graph data; (i) relationships are inferred
on-the-fly from the most updated data without delays due to the ETL or synchronization
process; (iii) a (SQL-like) DSL simplifies the maintenance of the conceptual schema
mapping; (iv) more complex mappings than direct table to vertex/edge mappings between
relational and graph data can be expressed; (iv) new relationships can be derived from
data, including nested and recursive relationships; (v) no substantial changes of the
current infrastructure of a RDBMS are needed because standard SQL logic may be used,;
and (vi) a modular framework is provided that can be integrated into other frameworks,
where the source is relational data and the destination is graph data ready for interactive
graph queries of rules that specify how to transform relational schemas into graph
schemas, and generates the corresponding relational queries (SELECT, VIEW, CTE or
UDF), wherein these queries can be stored in the database catalog to be used later by the
graph query engine.

10

15

20

25

30

35

WO 2022/022802 PCT/EP2020/071121

Details of one or more embodiments are set forth in the accompanying drawings and the
description below. Other features, objects, and advantages will be apparent from the

description, drawings, and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

In the following, embodiments of the present disclosure are described in more detail with

reference to the attached figures and drawings, in which:

Fig. 1 is a schematic diagram illustrating a first known database management system;

Fig. 2 is a schematic diagram illustrating a second known database management system;

Fig. 3 is a schematic diagram illustrating a third known database management system;

Fig. 4a is a schematic diagram illustrating a database management system according to

an embodiment;

Fig. 4b is a schematic diagram illustrating more details of the database management

system of figure 4a;

Fig. 5 illustrates processing steps implemented by the database management system of
figures 4a and 4b;

Fig. 6 illustrates exemplary extensions of the SQL language implemented by a database

management system according to an embodiment;

Fig. 7 is an exemplary table for illustrating different aspects of a database management

system according to an embodiment;

Fig. 8 is a diagram illustrating inherent relations in the table of figure 7 as determined by a

database management system according to an embodiment;

Fig. 9 is a diagram of an exemplary Enhanced Entity Relationship (EER) relational
schema of a social network for illustrating different aspects of a database management
system according to an embodiment; and

10

15

20

25

30

35

WO 2022/022802 PCT/EP2020/071121

Fig. 10 is a flow diagram illustrating steps of a database management method according

to an embodiment.

In the following, identical reference signs refer to identical or at least functionally

equivalent features.

DETAILED DESCRIPTION OF EMBODIMENTS

In the following description, reference is made to the accompanying figures, which form
part of the disclosure, and which show, by way of illustration, specific aspects of
embodiments of the present disclosure or specific aspects in which embodiments of the
present disclosure may be used. It is understood that embodiments of the present
disclosure may be used in other aspects and comprise structural or logical changes not
depicted in the figures. The following detailed description, therefore, is not to be taken in a

limiting sense, and the scope of the present disclosure is defined by the appended claims.

For instance, it is to be understood that a disclosure in connection with a described
method may also hold true for a corresponding device or system configured to perform the
method and vice versa. For example, if one or a plurality of specific method steps are
described, a corresponding device may include one or a plurality of units, e.g. functional
units, to perform the described one or plurality of method steps (e.g. one unit performing
the one or plurality of steps, or a plurality of units each performing one or more of the
plurality of steps), even if such one or more units are not explicitly described or illustrated
in the figures. On the other hand, for example, if a specific apparatus is described based
on one or a plurality of units, e.g. functional units, a corresponding method may include
one step to perform the functionality of the one or plurality of units (e.g. one step
performing the functionality of the one or plurality of units, or a plurality of steps each
performing the functionality of one or more of the plurality of units), even if such one or
plurality of steps are not explicitly described or illustrated in the figures. Further, it is
understood that the features of the various exemplary embodiments and/or aspects

described herein may be combined with each other, unless specifically noted otherwise.

Figure 4a is a schematic diagram of a possible high-level architecture of a database
management system 400 according to an embodiment, which is configured to interact with
a database 405. As illustrated in figure 4a, the database management system 400 may

8

10

15

20

25

30

35

WO 2022/022802 PCT/EP2020/071121

comprise a processor 400a for processing data, a communication interface 400b for
exchanging data with the database 405, and a memory 400c for storing data. The
processor 400a of the database management system 400 may be implemented in
hardware and/or software. The hardware may comprise digital circuitry, or both analog
and digital circuitry. Digital circuitry may comprise components such as application-
specific integrated circuits (ASICs), field-programmable arrays (FPGAS), digital signal
processors (DSPs), or general-purpose processors. The memory 400c may store data,
such as executable program code which, when executed by the processor 400a, causes
the processor 400a to perform the functions, operations and methods described herein, in
particular implement one or more software-implemented engines, which will be described
in more detail below. The memory 400c may comprise a non-transitory memory portion for
storing persistent data and/or a volatile memory portion for storing volatile data.

In the embodiment shown in figure 4a, the database 405 is external to the database
management system 400. In a further embodiment, the database 405 may be embedded
within the database management system 400, e.g. within the memory 400c of the
database management system 400.

Figure 4b is a schematic diagram illustrating further details of the database management
system 400 of figure 4a. In an embodiment, the database management system 400 may
be configured to implement, for instance, by means of the processor 400a, one or more of
the components illustrated in figure 4b in software, such as a schema mapping engine
411, a RDBMS schema connector 413, a graph query engine 407, and a relational query
engine 405c.

The database management system 400 shown in figure 4b comprises and/or implements,
for instance, by means of the processor 400a, three main components that are integrated
into a generic architecture, namely (i) a rule-based DSL (domain-specific language) that
allows to specify, i.e. define a conceptual mapping between relational and graph models,
(ii) the RDBMS schema connector 413 configured to extract and maintain relational and
graph catalogs 405a from the RDBMS database 405, and (iii) the schema mapping engine
(SME) 411 configured to generate relational queries from the DSL specification that will be
used by the graph query engine 407 to execute a graph query 403. As already described
above, in an embodiment, the schema mapping engine 411 may be implemented by the
processor 400a of the database management system 400 shown in figure 4a.

10

15

20

25

30

35

WO 2022/022802 PCT/EP2020/071121

More specifically, the schema mapping engine 411 implemented by the processor 400a is
configured to generate a schema mapping rule 411b based on a SQL data definition
language (DDL) definition 410 (referred to as "SQL DDL schema mapping" in figure 4b) of
a graph vertex and/or a graph edge of data of the database 405. The schema mapping
rule 411b maps data, e.g. tables or rows of the database 405, to a graph representation of
the data of the database 405, including a plurality of graph vertices and a plurality of graph
edges. Moreover, the schema mapping engine 411 is configured to generate, based on
the schema mapping rule 411b, a database query 411e used by the relational query
engine 405c for extracting one or more graph vertices and/or graph edges 409 from the
database data 405b. As will be described in more detail below with respect to figure 5, in
the embodiment shown in figure 4b, the schema mapping engine 411, which may be
implemented by the processor 400a of the database management system 400, comprises
a SQL DDL (data definition language) parser and converter 411a, a schema validator
411c, and a SQL query generator 411d.

The database management system 400 shown in figure 4b differs from the conventional
database management systems 100, 200, 300 shown in figures 1, 2, and 3 in particular
with respect to the following aspects. In comparison with the simple conceptual schema
mapping implemented by the database management system 100 shown in figure 1, the
database management system 400 shown in figure 4b allows the definition of complex
relationships by generating a SQL query based on definitions specified using extensions
to the standard SQL DDL. Moreover, in comparison with the ETL extraction implemented
by the database management systems 200, 300 of figures 2 and 3, the database
management system 400 shown in figure 4b does not require storing the inferred vertices
and edges in an additional graph storage. This saves storage resources and allows real-

time inference that includes the most recent updates in the relational data.

Figure 5 illustrates the processing flow for the database management system 400 of figure
4b.

In step "1" 501, a user (database administrator or database programmer) may specify new
vertex or edge definitions by means of a SQL DDL schema mapping 410 using extensions
to the standard SQL language as, for example, the exemplary extension illustrated in
figure 6, which will be described below. The SQL mapping extension illustrated in figure 6
is based on three concepts: (i) references to existing tables into the relational schema as

a data source; (ii) references to already defined vertex and edge mappings as a data

10

10

15

20

25

30

35

WO 2022/022802 PCT/EP2020/071121

source; and (iii) predicates that specify how to do the transformation from the referenced

sources (tables, vertices and edges) into new vertices or edges.

In step "2" 503, the SQL DDL parser and converter 411a shown in figure 4b extracts all
the definitions from the SQL DDL schema mapping 410, identifies all data sources (tables,
vertices or edges) and generates an equivalent rule, namely the schema mapping rule
411b, in a conjunctive form of one or more predicates, similar to the Prolog or Datalog

programming languages.

In step "3" 505, the schema validator 411c shown in figure 4b matches through the
RDBMS schema connector 413 the data sources with the existing tables and mappings
into the database catalog 405a and validates the mapping correctness.

In step "4" 507, the SQL query generator 411d shown in figure 4b generates a new SQL
R2G mapping query (SELECT, VIEW, CTE, or UDF) 411e based on the expected input

data sources and the schema mapping rule 411b.

In step "5" 509, the RDBMS schema connector 413 registers the vertex or edge mapping
and the SQL R2G mapping query 411e in the database catalog 405a.

In step "6" 511, the SQL R2G mapping query 411e may be used by the graph query
engine 407 to execute in the relational query engine 405c a graph query 403 that extracts
vertices and/or edges on-the-fly from existing data into the database 405 and provides a

query result 409.

Steps "5" and "6" may be implemented using already existing tools for converting graph

queries into relational queries.

In an embodiment, the query evaluation of rules as implemented by the database
management system 400 may be based on first-order logic (predicate logic). In an
embodiment, there is a valid result for the rule for each combination of inputs (data
sources) that match all the predicates in the rule. In a rule, each predicate has a name
and a list of arguments. An argument can be, for instance, a constant value (number,
character string, and the like), a variable name (a symbolic name associated with a value)
or a predefined enumerated type. If a variable name appears at the same time in two or
more predicates, then it may contain the same value for all the predicates at a specific

11

10

15

20

25

30

35

WO 2022/022802 PCT/EP2020/071121

instant of time. In an embodiment, it is further possible to use a union (combination) of one
or more disjoint rules in order to express different ways to map one or more sources to the

same vertex or edge definition.

Figure 7 shows an example of a relational table containing exemplary household
registration data. By way of example, the table of figure 7 comprises the following
columns: "House", "City", "ID", "Relationship”, "Birthday", "Registration start", and

"Registration end", wherein each column has eight rows.

Figure 8 shows the property graph inferred from the table of figure 7. As will be
appreciated, some relationships are directly extracted from the table (e.g. wife), while
others require inference based on nested relationships (e.g. son of wife or sibling). In
figure 8, solid-line relationships are explicit in the data and dotted-line relationships are

implicit and must be inferred.

The database management system 400 allows implementing mappings between a
relational schema and a property graph covering everything from simple scenarios, such
as strong (strict) schema, where relations are directly vertices and edges (explicit, e.g.
wife), up to free schema or complex use cases, where vertices and edges are derived
from existing data using multiple composite or recursive predicates (inferred, e.g. sibling).
In an embodiment, the database management system 400 implements one or more of the

following rules and schemes.

In an embodiment, the database management system 400 may implement a strong (strict)
schema, where there is a relation for each vertex label and for each edge label. In this
case, the relational schema may be normalized in first normal form (1NF) where (i) there
is a separate table for each relation, (ii) each set of related data is identified with a primary
key, and (iii) each attribute contains only atomic (indivisible) values. Migration of attributes
of 1:1 and 1:N relationships are also in 1NF, but, in this case, an edge is defined in the

same relation as one of the participating vertices.

In an embodiment, the database management system 400 may implement a
denormalized relational schema, when, for example, the relational schema is not in
second normal form (2NF) (without partial dependencies) or in third normal form (3NF)

(without transitive dependencies) because of a performance-oriented design or by

12

10

15

20

25

30

35

WO 2022/022802 PCT/EP2020/071121

constraints imposed by the application. An example is when a single relation contains

attributes that should be split into multiple relations.

In an embodiment, the database management system 400 may implement object-oriented
schemas, such as generalizations or specializations of Enhanced Relational Models
(EER), where common characteristics of different entities (specializations or subtypes or
subclasses) are stored in a common relation called superclass or supertype. Each
subclass contains a reference (sometimes weak) to the superclass and its own attributes.
In this kind of mapping, inheritance of attributes appears from the superclass and
relationships to superclasses that are extended to all of the subclasses. The mapping also

forces each vertex in the subclass to have all the labels of the inheritance hierarchy tree.

In an embodiment, the database management system 400 may implement a hierarchical
query, which is a form of recursive query that retrieves a hierarchy. It returns the rows of
the result set in a hierarchical order based upon data forming a parent-child relationship.

Hierarchies in relational data are typically represented by inverted tree structures.

In an embodiment, the database management system 400 may implement nested
relationships, i.e. relationships that can be derived as a combination of other inferred
relationships, in the same way as nested queries. One classical example is relatives or
distant relatives such as grandparents or siblings that can be inferred from a simple family

tree that only contains direct relative relationships.

Figure 9 shows the EER relational schema of a social network that includes generalized
vertices, such as "Message", specialized vertices of "Message" as "Post" and "Comment",
each with different properties, and relationships to a superclass such as "replyOf" to
"Message". Thus, instead of defining graph relationships based only on a strict mapping of
the relational schema to the graph schema, with a schema implemented by the database
management system 400, new edges can be obtained with the evaluation of one or more
graph queries, including recursion.

In an embodiment, the database management system 400 may be configured to query
and analyze graphs using one or more of the following frameworks: Property Graph
Databases (PGDBMS), Graph Analytical Frameworks, RDF/SPARQL, Graph Streaming,
and the like. The conversion between relational data and graph data may be done

logically, as part of the query process, or physically by duplicating the original relational

13

10

15

20

25

30

35

WO 2022/022802 PCT/EP2020/071121

data into graph vertices and edges. A conceptual schema mapping may be used to define

how to convert from relational model to graph, and vice versa.

In an embodiment, the schema mapping engine 411 is configured to provide a
programming interface, wherein the programming interface is configured to receive one or
more programming instructions (also referred to as predicates) for extracting data 405b
from the database 405 and/or defining a graph vertex and/or a graph edge of the graph
representation of the data 405b of the database 405.

In an embodiment, the one or more programming instructions of the programming
interface comprises a first programming instruction, herein referred to as a "MATCH"
instruction, for extracting data 405b from the database 405 or from the graph
representation of the data 405b of the database 405. In an embodiment, the "MATCH"
instruction for extracting data from the database 405 is configured to define a graph vertex
and/or a graph edge of the graph representation of the data 405b of the database 405 by
recursive reference to the schema mapping rule 411b. In an embodiment, the "MATCH"

instruction may be defined as follows:

e MATCH(T,S, [C1:V1,...,ChiVy]) — given source S of type T (table, vertex, edge,
self), returns each distinct tuple with the value of each column (or vertex or
edge property) Ci of S into Vi, where all Ci matches all the other predicates in

the rule. The data source type selfis for recursive calls of the rule to itself.

In an embodiment, the one or more programming instructions of the programming
interface comprises a second programming instruction, herein referred to as a
"COMPARE" instruction, for filtering data 405b of the database 405 on the basis of one or
more comparison predicates. In an embodiment, the "COMPARE" instruction may be

defined as follows:

¢ COMPARE(V,C,K | W) — returns the logical comparison C (equality or
inequality) between variable V and the constant value K or variable W

In an embodiment, the one or more programming instructions of the programming

interface comprises a third programming instruction, herein referred to as an

"AGGREGATE" instruction, for determining one or more aggregate functions over data of

14

10

15

20

25

30

35

WO 2022/022802 PCT/EP2020/071121

the database. In an embodiment, the "AGGREGATE" instruction may be defined as

follows:

o AGGREGATE(V,A W) — computes the aggregate function A over all matching
values of W, and returns the result into V. An aggregate function can be the
number (count) of matches, sum or the average of all values, the minimum or

maximum value, etc.

In an embodiment, the one or more programming instructions of the programming
interface comprises a fourth programming instruction, herein referred to as a "EXCEPT"
instruction, for discarding data of the database or data from the graph representation of
the data matching one or more criteria. In an embodiment, the "EXCEPT" instruction may

be defined as follows:

o EXCEPT(T,S, [C1:V4,..., ChiVi]) - given source S of type T (same as for
MATCH), discards all combinations of values Vi for column (or vertex or edge
property) of S, where all Ci match the corresponding Vi.

In an embodiment, the one or more programming instructions of the programming
interface comprises a fifth programming instruction, herein referred to as a "EVAL"
instruction, for evaluating one or more pre-defined functions or predicates. In an

embodiment, the "EVAL" instruction may be defined as follows:

o EVAL(V,E[W; ..., W,]) — evaluates an expressions with arguments Wi (constant
values or variables) and built-in or used-defined operations, and returns the
result into variable V

Thus, the "MATCH" instruction may be used to define how to access data sources such
as a table or an existing vertex and edge mapping. The "COMPARE" instruction may filter
data based on comparison predicates such as equality, inequalities or existence into a set
of values. The "AGGREGATE" instruction may be used to compute aggregate functions
over the data, such as counting occurrences or finding maximum or minimum values. The
"EXCEPT" instruction may be used to discard occurrences that do match some criteria.
The "EVAL" instruction allows for the evaluation of built-in predicates provided by each
specific RDBMS, for example to extract the year from a date. A particular case is

recursion that can be achieved by nested rules.

15

10

15

20

25

30

35

WO 2022/022802 PCT/EP2020/071121

In the following, the above five programming instructions provided by the programming
interface of the schema mapping engine 411 for extracting data 405b from the database
405 and/or defining a graph vertex and/or a graph edge of the graph representation of the
data 405b of the database 405 will be described in more detail in the context of the

examples shown in figures 7, 8, and 9.

For the relational table shown in figure 7 containing household registration data, the

relational schema may be defined as follows:

Household(House VARCHAR, City VARCHAR, ID INT, Relationship VARCHAR,
Birthday DATE, Registration_start DATE, Registration_end DATE)

A graph with different vertex and edge mappings may be defined using the programming

instructions described above in the following way.

A vertex for each person (simple MATCH) may be defined as follows:
Person(id I, birthday B) :-
MATCH(TABLE, Household, [I:ID, B:Birthday])

A vertex for each house (a different MATCH to the same table) may be defined as follows:
House(house H, city C) :-
MATCH(TABLE, Household, [H:House, C:City])

An edge for each householder (simple MATCH with filter) may be defined as follows:
Householder(id I, house H) :-
MATCH(TABLE, Household, [I:ID, H:house, R:Relationship])
COMPARE(R,<EQUAL>Householder’)

An edge for each wife of a householder (inference) may be defined as follows:
Wife(id 1, wife W) :-
MATCH(TABLE, Household, [W:ID, H:House, R:Relationship])
COMPARE(R,<EQUAL>,"Wife’)
MATCH(EDGE, Householder, [l:id, H: house])

An edge for each mother (inference) may be defined as follows:
Mother(id I, mother M) :-

16

10

15

20

25

30

35

WO 2022/022802 PCT/EP2020/071121

MATCH(TABLE, Household, [I:ID, H:House, R:Relationship])
COMPARE(R,<IN>,{’Son’,'Daughter’})

MATCH(TABLE, Household, [F:ID, H:House])
MATCH(EDGE, Wife, [F:id, M:wife])

An edge for each grandmother (nested inference) may be defined as follows:
Grandmother(id I, grandmother G) :-

MATCH(EDGE, Mother, [l:id, M:mother])

MATCH(EDGE, Mother, [M:id, G:mother])

A vertex for each bachelor householder (no wife, inference) may be defined as follows:
Bachelor (id I, city C) :-

MATCH(EDGE, Householder, [l:id, H:house])

EXCEPT(EDGE, Wife, [I:id])

MATCH(VERTEX, House, [H:house, C:City])

An edge for each family with children (aggregate) may be defined as follows:
Family (id I, wife W, child N) :-

MATCH(EDGE, Wife, [l:id, W:wife])

MATCH(EDGE, Mother, [C:id, W:mother])

AGGREGATE(C, <COUNT>, N)

COMPARE(N, <GREATER_THAN >, 0)

A vertex for each baby (built-in expression) may be defined as follows:
Baby(mother M, child) :-

MATCH(EDGE, Mother, [C:id, W:mother])

MATCH(VERTEX, Person, [C:id, B:birthday])

EVAL(Y, 2020-year(B))

COMPARE(Y, <LESS_THAN >, 1)

The following examples show the complete flow of inference of one vertex type and one

edge type.

The database management system 400 may use an extension of SQL DDL to define how
to extract people, houses, and how to link householders with houses and wives with
householders from the relational table shown in figure 7 in the following way.

17

10

15

20

25

30

35

WO 2022/022802

-- people

CREATE VERTEX person(id I, birthday B)
KEY (id)
FROM TABLE Household(ID, Birthday) HH
AS HH(l, B);

-- house

CREATE VERTEX house(house H, city C)
KEY (house)
FROM TABLE Household(House, City) HH
AS HH(H, C);

-- householder
CREATE EDGE householder(id I, house H)
FROM TABLE Household(ID, House, Relationship) HH
OUTGOING person BY (id)
INCOMING house BY (house)
AS HH(l, H, R)
AND R='Householder'

-- wives
CREATE EDGE wife(id |, wife W)
FROM TABLE Household(ID, House, Relationship) HH,
EDGE householder(id, house) HR
OUTGOING person BY (id)
INCOMING person BY (wife)
AS HH(W, H, R)
AND R="Wife'
AND HR(l, H)

PCT/EP2020/071121

The following examples show the corresponding rules for the vertex and edge.

person(id I, birthday B) :-
MATCH(TABLE, Household, [I:ID, B:Birthday])

18

10

15

20

25

30

35

WO 2022/022802 PCT/EP2020/071121

house(house H, city C) :-
MATCH(TABLE, Household, [H:House, C:City])

householder(id I, house H) :-
MATCH(TABLE, Household, [I:ID, H:house, R:Relationship])
COMPARE(R,<EQUAL>Householder’)

wife(id |, wife W) :-
MATCH(TABLE, Household, [W:ID, H:House,R:Relationship])
COMPARE(R, <EQUAL>, 'Wife’)
MATCH(EDGE, householder, [I:id, H:house])

Finally, the following examples show the final SQL queries that will extract those vertices

and edges from the database 405.

-- person
SELECT DISTINCT ID, Birthday
FROM Household

-- house
SELECT DISTINCT House, City
FROM Household

-- householder
SELECT DISTINCT ID, House
FROM Household HH
WHERE Relationship = ‘Householder’

-- wife
SELECT DISTINCT HH1.ID, HH2.ID
FROM Household HH1, Household HH2
WHERE HH1.House = HH2.House
AND HH2.Relationship = "Wife'
AND HH1.Relationship = ‘Householder’

19

10

15

20

25

30

WO 2022/022802

PCT/EP2020/071121

In the following, a further example is described, which merges data from two relational
tables in order to create vertices that identify "female faculty members older than 25 years
from Barcelona Universities".

A SQL-like definition of a new vertex (w_faculty) based on two relational data sources
(Person and University) with some constraints (gender, age and location) may be defined
as follows:
-- female faculty members older than 25 years from Barcelona Universities
CREATE VERTEX w_faculty(id I, name N, age A)
KEY (id)
FROM TABLE Person(id, name, gender, birthday, universityld) T_P,
TABLE Universitity(id, city) T_U
AS T_P(I,N,G,B,U)
AND T_U(U,C)
AND G='F'
AND C='Barcelona’
AND A=EVAL(2019-year(B))
AND A>25;

The schema of the relational data sources may be defined as follows:

University(id INT, name VARCHAR, city VARCHAR)

Person(id INT, name VARCHAR, gender CHAR][1], birthday DATE, address VARCHAR,
universityld INT)

The logical rule that represents the vertex mapping for this example may be defined as
follows:
w_faculty(I,N,A) :-
MATCH(TABLE,Person,[id:l,name:N,gender:G,birthday:B,universityld:U])
MATCH(TABLE,University,[id:U, city:C])
COMPARE(G,<EQUAL>'F")
COMPARE(C,<EQUAL>,'Barcelona’)
EVAL(A, 2019-year(B))
COMPARE(G,<GREATER_THAN>,25)

20

10

15

20

25

30

35

WO 2022/022802 PCT/EP2020/071121

As already described above, figures 4b and 5 illustrate a processing flow implemented by
the database management system 400, including the mapping from relational to graph
written in the DSL, until the final relational query is generated.

As already described above, the schema mapping engine 411 may read a script provided
by a database administrator or database programmer, parses and validates its content,
and generates an intermediate data structure with the parse tree, for example an Abstract
Syntax Tree (AST) or in-memory data structures. As already described above, an
exemplary SQL DDL extension that covers all the requirements described above is
illustrated in figure 6. In the following some exemplary mappings using the SQL-like DDL
illustrated in figure 6 will be described, namely a very simple (strict vertex or edge)
example as well as a more sophisticated example including negation, recursion and

aggregates.

The schema mapping engine 411 may then extract all the data dependencies from the
existing database relational tables or previously defined graph vertex and edge mappings.
For example, the relational schema of four tables may be defined as follows:

University(id INT, name VARCHAR, city VARCHAR)

Person(id INT, name VARCHAR, gender CHAR][1], birthday DATE, address VARCHAR,
universityld INT)

Paper(id INT, name VARCHAR, year INT, country VARCHAR)

Authorship(id INT, idPerson INT, idPatent INT, position INT)

The SQL-like script with the definition of two vertex (author, paper) and two edge

(authorship, is_coauthor) mappings to those four tables may be defined as follows:

-- female faculty members younger than 30 years
CREATE VERTEX w_faculty(id |, city C, age A)
KEY (id)
FROM
TABLE Person(id, gender, birthday,
universityld) T_P,
TABLE Universitity(id, city) T_U
AS T_P(I,N,G,B,U)
AND T_U(U,C)

21

10

15

20

25

30

35

WO 2022/022802
AND G=F'
AND A=EVAL(2019-year(B))
AND A<30;
-- papers

CREATE VERTEX paper(id I,name N,year)

KEY (id)

FROM TABLE Paper(id,name,year) PA

AS PA(I,N,Y);

-- authorship

CREATE EDGE is_author(person P,paper A)

FROM TABLE Authorship(idPerson,idPaper) T_AU

OUTGOING person BY (person)
INCOMING paper BY (paper)
AS T_AU(P,A);

-- coauthorship of female faculty members,

-- younger than 30 years,

-- from the same city, with at least 5 papers since 2010
CREATE EDGE is_coauthor(person V,coauthor W,patents N)

FROM VERTEX w_faculty,

VERTEX paper,

EDGE is_author
OUTGOING w_faculty BY (person)
INCOMING w_faculty BY (coauthor)
AS is_author(V,P)

AND is_author(W,P)

AND V<>W

AND paper(P,Y)

AND Y>=2010

AND w_faculty(V,C1,-)

AND w_faculty(W,C2,-)

AND C1=C2

AND N=COUNT(P)

AND N>5;

22

PCT/EP2020/071121

o

WO 2022/022802 PCT/EP2020/071121

In step 2 of figure 5, a rule 411b is created with a MATCH predicate for each data source
and all the constraints and aggregates are added to the rule as predicates (COMPARE,
AGGREGATE, EXCEPT or EVAL). The rules for the two vertices and the two edges for
the present example may be defined as follows, wherein each predicate is labelled on the
right for the sake of clarity;

w_faculty(l,C,A) :-
MATCH(TABLE,Person,[id:[,name:N,gender:G,birthday:B,universityld:U]) -- F.1

MATCH(TABLE,University,[id:U,city:C]) -F.2

COMPARE(G,<EQUAL>,'F") -F3

EVAL(A, 2019-year(B)) --F.4

COMPARE(A,<LESS_THAN>,30) --F.5
paper(I,N,Y) :-

MATCH(TABLE,Paper,[id:l,name:N,year:Y]) -PA1

is_author(P,A) :-
MATCH(TABLE, Authorship(idPerson:A,idPaper:P) - A1

is_coauthor(V,W,N) :-

MATCH(EDGE,is_author,[person:V,paper:P]) --C.1
MATCH(EDGE,is_author,[person:\W,paper:P]) --C2
COMPARE(V,<NOT_EQUAL>,W) -C23
MATCH(VERTEX,paper,[id:P,year:Y]) --C4
COMPARE(Y,<GREATER_THAN_EQUAL>,2010) -C.5
MATCH(VERTEX,w_faculty,[id:V,city:C1]) --Cb
MATCH(VERTEX,w_faculty,[id:W,city:C2]) -C7
COMPARE(C1,<EQUAL>,C2) -C8
AGGREGATE(N,<COUNT>,P) -C9
COMPARE(N,<GREATER_THAN>,5) --C.10

Then, all non-recursive MATCH and EXCEPT instructions to vertices or edges are
expanded with their corresponding rule definition, excluding those with type SELF. This

expansion is done recursively until all data source references in MATCH and EXCEPT are
only to relational tables.

23

10

15

20

25

30

35

WO 2022/022802 PCT/EP2020/071121

The expansion of predicates C.1, C.2, C.4, C.6 and C.7 in the rule of the new derived
edge Jis_coauthor may be defined as follows, wherein he labels on the right correspond to
the same labels above before the expansion:

is_coauthor(V,W,N) :-

MATCH(TABLE, Authorship,[idPerson:V, idPaper:P]) --CA1
MATCH(TABLE, Authorship,[idPerson:W, idPaper:P]) -C.2
COMPARE(V,<NOT_EQUAL>,W) -C3
MATCH(TABLE, Paper, [id:P,year:Y)) -C4
COMPARE(Y,<GREATER_THAN_EQUAL>,2010) -C5

MATCH(TABLE,Person,[id:V, gender.G1,birthday:B1,universityld:U1]) --C.6
MATCH(TABLE,University,[city:C1])

COMPARE(G1,<EQUAL>,'F")

EVAL(A1, 2019-year(B1))

COMPARE(A1,<LESS_THAN>,30)

MATCH(TABLE,Person,[id:W, gender:G2,birthday:B2,universityld:U2]) --C.7
MATCH(TABLE,University,[city:C2])

COMPARE(G2,<EQUAL>,'F")

EVAL(A2, 2019-year(B2))

COMPARE(A2,<LESS_THAN>,30)

COMPARE(C1,<EQUAL>,C2) --C.8
AGGREGATE(N,<COUNT>,P) --C.9
COMPARE(N,<GREATER_THAN>,5) --C.10

After the expansion, all redundant MATCH or EXCEPT instructions may be automatically
removed in order to avoid unnecessary redundant data access to the same data sources.

In step 3 of figure 5, all the dependencies to data sources (table, vertex or edge) are
validated by the RDBMS Schema Connector 413. Each data source must exist, each
column (property) must exist, and each column (property) data type must be correct or
there must be a proper way to coerce from the required data type to the column (property)
data type.

Finally, step 4 of figure 5 only needs to convert each rule into a SQL query (SELECT
statement, VIEW, CTE, UDF, or the like). For this step, it is possible to use any known

24

10

15

20

25

30

35

WO 2022/022802 PCT/EP2020/071121

technique for the conversion from logical programs to relational operators such as those
used in Datalog. If the rule contains one or more recursive predicates (MATCH of type
self), then it will require a recursive CTE, Stored Procedure or UDF. For all the other
cases, a single SELECT or VIEW is enough. For multi-rule disjoint definitions (more than
one rule for the same vertex or edge mapping), the UNION operator may be used to
combine both results.

The final SQL statement for the new derived edge is_coauthor that returns an edge
between all female faculty members from the same city, younger than 30 years old and
that have published at least 5 papers together since 2010 may be defined as follows:

SELECT DISTINCT P1.id, P2.id, COUNT(*)
FROM Person P1, Person P2,
Authorship A1, Authorship A2,
University U1, University U2,

Paper P

WHERE A1.idPerson = P1.id - C.1
AND A2.idPerson = P2.id -C.2
AND A1.idPaper = A2.idPaper
AND Af1.idPerson <> A2.idPerson -C3
AND P.id = A1.idPaper -C4
AND P.year > 2010 -C5
AND P1.id = A1.idPerson -C6

AND P1.gender ='F'

AND (2019-year(P1.birthday)) < 30

AND P2.id = A2.idPerson -C7
AND P2.gender = 'F'

AND (2019-year(P2.birthday)) < 30

AND U1.id = P1.universityld

AND U2.id = P2.universityld

AND U1 .city = U2.city -C38
GROUP BY P1.id, P2.id -C.9
HAVING COUNT(*)>5 -C.9,C.10

The following further example includes the negation of a match as a EXCEPT:

25

10

15

20

25

30

35

WO 2022/022802

-- employees

CREATE VERTEX employee(id |,name N,department D)
KEY (id)
FROM TABLE Employee(id,name,department) T_E
AS T_E(I,N,D);

-- department

CREATE VERTEX department(id D)
KEY (id)
FROM TABLE Employee(department) T_E
AS T_E(D);

-- supervisor
CREATE EDGE supervisor(departmentld D, employeeld E)
FROM VERTEX employee(id) V_E,
VERTEX department(id) V_D,
TABLE Employee(id,department,isSupervisor) T_E
OUTGOING department BY (departmentid)
INCOMING employee BY (employeeld)
AS T_E(E,D,S)
AND S=true
AND V_E(E)
AND V_D(D);

-- co-workers that are not supervisors of the department
CREATE EDGE isCoworkerNotSupervisor(empld X, coWorkerld Y)
FROM VERTEX employee(id,department) V_E
OUTGOING employee BY (empld)
INCOMING employee BY (coWorkerld)
AS V_E(X,D)
AND V_E(Y,D)
AND NOT supervisor (D,Y)

PCT/EP2020/071121

The logical rules that represent the mappings for this example may be defined as follows:

employee(l,N) :-

26

10

15

20

25

30

35

WO 2022/022802

MATCH(TABLE, Employee, [id:l,name:N,department:D])

department(D) :-
MATCH(TABLE, Employee, [id:D])

supervisor(D,E) :-
MATCH(TABLE, Employee, [id:E,department.D,isSupervisor:S])
COMPARE(S,<EQUAL> true)

isCoworkerNotSupervisor(X,Y) :-
MATCH(TABLE, Employee, [id:X,department:D])
EXCEPT(TABLE, Employee, [id:Y,department:D,isSupervisor:S])
COMPARE(S,<EQUAL> true)

The following further example illustrates a multi-rule recursive definition based on the

vertex and edge mappings introduced in the previous example.

-- supervisors of employee with level distance
CREATE EDGE isSupervisor(mngrid X, empld Y, level L)
FROM VERTEX employee(id) V_E,
EDGE supervisor E_S
OUTGOING employee BY (mngrid)
INCOMING employee BY (empld)
AS employee(X,D)
AND employee(Y,D)
AND supervisor(D,X)
AND X<>Y
AND L=1
OR isSupervisor(Z,Y,L1)
AND isSupervisor(X,Z,L2)
AND L=EVAL(L1+L2);

The logical rules that represent the mappings for this example may be defined as follows:

isSupervisor(X,Y,L) :-
MATCH(TABLE, Employee, [id:Y ,department.D])

27

PCT/EP2020/071121

10

15

20

25

30

35

WO 2022/022802 PCT/EP2020/071121

MATCH(TABLE, Employee, [id:X,department.D,isSupervisor:S])
COMPARE(S,<EQUAL> true)
EVAL(L,1)

isSupervisor(X,Y,L) :-
MATCH(SELF, isSupervisor, [mngrid:Z,empld:Y level:L1])
MATCH(SELF, isSupervisor, [mngrid:X,empld:Z,level:L2])
EVAL(L,L1+I2)

As will be appreciated, all rules for the same mapping should have the same signature
(output arguments in number and data type). In this case, the expected SQL query may
be a recursive CTE, Stored Procedure or UDF.

Once the SQL query has been created, then the schema mapping engine 411 only needs
to register it into the catalog 405a of the database 405 by calling again to the database
405. Subsequently, the graph query engine 407 may use those SQL queries to solve
graph queries that include those new vertices and edges.

Figure 10 is a flow diagram of a method 1000 for managing a database 405. The method

1000 comprises the following steps.

In a step 1001, a definition of at least one of a graph vertex and a graph edge of data
405b of the database 405 is received. In a step 1003, a schema mapping rule 411b is
generated based on the received definition of the at least one of the graph vertex and the
graph edge of the data 405b of the database 405. The schema mapping rule 411b defines
a correspondence between the data 405b of the database 405, e.g. tables or rows of the
database 405, and a graph representation of the data 405b of the database 405. The
graph representation of the data 405b of the database 405 includes the at least one of the
graph vertex and the graph edge of the data 405b of the database 405. In a step 1005,
based on the generated schema mapping rule 411b, a database query 411e is generated
for extracting one or more further graph vertices and/or graph edges of the data 405b of
the database 405.

The person skilled in the art will understand that the "blocks" ("units") of the various
figures (method and apparatus) represent or describe functionalities of embodiments of
the present disclosure (rather than necessarily individual "units" in hardware or software)

28

10

15

20

WO 2022/022802 PCT/EP2020/071121

and thus describe equally functions or features of apparatus embodiments as well as

method embodiments (unit = step).

In the several embodiments provided in the present application, it should be understood
that the disclosed system, apparatus, and method may be implemented in other manners.
For example, the described embodiment of an apparatus is merely exemplary. For
example, the unit division is merely logical function division and may be another division in
an actual implementation. For example, a plurality of units or components may be
combined or integrated into another system, or some features may be ignored or not
performed. In addition, the displayed or discussed mutual couplings or direct couplings or
communication connections may be implemented by using some interfaces. The indirect
couplings or communication connections between the apparatuses or units may be

implemented in electronic, mechanical, or other forms.

The units described as separate parts may or may not be physically separate, and parts
displayed as units may or may not be physical units, may be located in one position, or
may be distributed on a plurality of network units. Some or all of the units may be selected
according to actual needs to achieve the objectives of the solutions of the embodiments.

In addition, functional units in the embodiments of the invention may be integrated into

one processing unit, or each of the units may exist alone physically, or two or more units

are integrated into one unit.

29

10

15

20

25

30

35

WO 2022/022802 PCT/EP2020/071121

CLAIMS

1. A database management system (400) for managing a database (405), the

database management system (400) comprising a processor (400a, 411) configured to:

receive a definition of at least one of a graph vertex and a graph edge of data (405b) of
the database (405);

generate a schema mapping rule (411b), based on the definition of the at least one of the
graph vertex and the graph edge of the data (405b) of the database (405), wherein the
schema mapping rule (411b) defines a correspondence between the data (405b) of the
database (405) and a graph representation of the data (405b) of the database (405), the
graph representation including the at least one of the graph vertex and the graph edge of
the data (405b) of the database (405); and

generate, based on the schema mapping rule (411b), a database query (411e) for
extracting one or more further graph vertices and/or graph edges of the data (405b) of the
database (405).

2. The database management system (400) of claim 1, wherein the processor (400a,
411) is further configured to generate the schema mapping rule (411b) as a conjunctive or
disjunctive combination of one or more predicates.

3. The database management system (400) of any one of the preceding claims,
wherein the processor (400a, 411) is further configured to store the database query
(411e) in a database catalog (405a) of the database (405).

4, The database management system (400) of claim 3, wherein the processor (400a,
407) is further configured to extract the one or more further graph vertices and/or graph
edges of the data (405b) of the database (405) based on the database query (411e)

stored in the database catalog (405a).

5. The database management system (400) of any one of the preceding claims,
wherein the processor (400a, 411) is further configured to provide a programming
interface, wherein the programming interface is configured to receive one or more

30

10

15

20

25

30

35

WO 2022/022802 PCT/EP2020/071121

programming instructions for at least one of extracting the data (405b) from the database
(405) and defining the at least one of the graph vertex and the graph edge of the data
(405b) of the database (405).

6. The database management system (400) of claim 5, wherein the one or more
programming instructions of the programming interface comprise a first programming
instruction for extracting the data (405b) from the database (405) or from the graph
representation of the data (405b) of the database (405).

7. The database management system (400) of claim 6, wherein the first programming
instruction for extracting the data (405b) from the database (405) is configured to define
the at least one of the graph vertex and the graph edge of the data (405b) of the database

(405) by recursive reference to the schema mapping rule (411b).

8. The database management system (400) of any one of claims 5 to 7, wherein the
one or more programming instructions of the programming interface comprise a second
programming instruction for filtering the data (405b) of the database (405) on the basis of
one or more comparison predicates.

9. The database management system (400) of any one of claims 5 to 8, wherein the
one or more programming instructions of the programming interface comprise a third
programming instruction for determining one or more aggregate functions over the data
(405b) of the database (405).

10. The database management system (400) of any one of claims 5 to 9, wherein the
one or more programming instructions of the programming interface comprise a fourth
programming instruction for discarding or filtering the data (405b) of the database (405)
matching one or more criteria.

11. The database management system (400) of any one of claims 5 to 10, wherein the
one or more programming instructions of the programming interface comprise a fifth

programming instruction for evaluating one or more predefined functions or predicates.

12. The database management system (400) of any one of the preceding claims,
wherein the database management system (400) further comprises the database (405).

31

10

15

20

25

30

WO 2022/022802 PCT/EP2020/071121

13. A method (1000) for managing a database (405), comprising:

receiving (1001) a definition of at least one of a graph vertex and a graph edge of data
(405b) of the database (405);

generating (1003) a schema mapping rule (411b), based on the definition of the at least
one of the graph vertex and the graph edge of the data (405b) of the database (405),
wherein the schema mapping rule (411b) defines a correspondence between the data of
the database (405) and a graph representation of the data of the database (405), the
graph representation including the at least one of the graph vertex and the graph edge of
the data (405b) of the database (405); and

generating (1005), based on the schema mapping rule (411b), a database query (411e)
for extracting one or more further graph vertices and/or graph edges of the data (405b) of
the database (405).

14, The method (1000) of claim 13, wherein generating (1001) the schema mapping
rule (411b) comprises generating the schema mapping rule (411b) as a conjunctive or

disjunctive combination of one or more predicates.

15. The method (1000) of claim 13 or 14, further comprising storing the database
query (411e) in a database catalog (405a) of the database (405).

16. The method (1000) of claim 15, further comprising extracting the one or more
further graph vertices and/or graph edges of the data (405b) of the database (405) based
on the database query (411e) stored in the database catalog (405a).

17. The method (1000) of any one of claims 13 to 16, further comprising providing a
programming interface, wherein the programming interface is configured to receive one or
more programming instructions for at least one of extracting the data (405b) from the
database (405) and defining the at least one of the graph vertex and the graph edge of the
data (405b) of the database (405).

32

WO 2022/022802 PCT/EP2020/071121

18. A computer program product storing program code which causes a computer or a
processor to perform the method (1000) of any one of claims 13 to 17, when the program
code is executed by the computer or the processor.

33

PCT/EP2020/071121

WO 2022/022802

1/11

Jinsal

/ €0t

Aanb
60T
I\I/
Aonb
aulbus ydesb
Aanb
£0T ydeio I
Buiddew
peaJ ejep Bwayos
[enydaouod

50T

solepdn
elep

- 101

PCT/EP2020/071121

WO 2022/022802

2/11

Jinsal
Aanb

60¢

A

L0¢

peal ydeib

v0z .\. ‘-

sojepdn ydeub

Aanb

desb
c €0¢

o \ﬁ 113 T

pealJ elep

S0¢
solepdn
elep

Buiddew
BWIBYDS
[enydaouod

10¢

¢ "bi4

PCT/EP2020/071121

WO 2022/022802

3/11

Jinsal
Aanb

60¢€ \.

aulbua €0¢
Aenb Kianb
/06 ydeio ydeub

fuiddew
BWAYOS
[enydaouod

auibua
UONBZIUOIYOUAS

/ T0€

4013

solepdn
ydeub solepdn
elep

/ S0¢€

¢ "bi4

PCT/EP2020/071121

WO 2022/022802

4/11

10)7

eseqeiea | (N
=

Aowsn

CRIIPEMI]
uoiesIuUNWWOo)

10ss920.4

~ 200t

~ 400t

N~ 00V

4
00¥

ey 614

qy b1

JOUBAUOD

= unsal
= fianb
S
5 o0 L0
o
= | \
5 Aenb 1OS cob
A mﬁ_m:% aulbua fisnb
an o e e o e e e fionb udel -
[euonejoy ° \\\ Haeo ydeib
G017 e
’
s
’ €Ty
QS0 — \\ puiddew ozy 10J08UU0D
SaINdd

S0t — aseqejeq °
—i &III
— /’ Sa ewayds ydelb
y .\ Buiddew 5y pue R4 Ill S peo) qTTV eTTY

Sov ‘ewayds ydetb ajepdn ¢ s, 2°laEp
\\ N k
L4 ,,

WO 2022/022802

00t

S

:«\

Kianb

Bfuiddew
9¢2d 108

.yt

PTTY

Aanb 108

< _ Jojesauab _A

1Y

Jojepijea
BWayos

}

hl

a[nJ
Buiddew
BWAYOS

auibu3 Buiddely ewayos

pue JoesJed
1ad 1os

Buiddew
BWSYDS

1aa1os

OtV

PCT/EP2020/071121

WO 2022/022802

6/11

sabpa Jo/pue Sa2IUaA MaU UIN}al 0}
SINGAY dY} WoJ) Blep swiojsuel) pue sjoelixa usyl pue boleieds SINGAY
ay} ul patsysibal Apealje Alenb Buiddew S palelsuab ayy Buisn Alenb
[euolnejal & ol Aianb ydelb e susauod auibus Aianb ydelb sy 9 doyg

Bojeleo SINGAy aul Ul passisibal
ale Buiddew ewayss sy} pue Aianb Buiddew 1S mau ay] ¢ dog

4

SINGAy au} wouy sabpa 10 $a211ISA SIORIIXS Jeyl
Kanb Buiddew THS mau e sajelausb Jojelsusb Aisnb TS syl dois

%

Buiddew ay; ul syeddiued [jIm 1Y) $S821N0S Blep
pajsanbal ay} |[e Jo BWBYIS By} SH08YD Jojepl|eA BwWaYDS 8y ¢ do)s

4

3|ni e oyu 1aq
71OS 8y} S18AUOD pue suoliulap 8y} |e sioraxe Jesied JOS 8yl :z dois

4

(7aq) sbenbue| uoniuysp eyep JOS pJepuels ay} JO UOISUBIXS
ue Buisn abpa 1o XallaA e Jo uoniuyap ay) sepirold Jesn ay| | doys

G ‘B14

PCT/EP2020/071121

WO 2022/022802

7/11

& (<51 TBTE>: <ubTS> (813) J £ (<BATHTP> "\) <51 THTP>e<ubTs> <XIDTL>
+{6° 0] <xFoETE>

[~ 1+Y) <xgoEE>

vr Gt el) s <H3omyg>

Do (DANTTINGD) TN <xEDme>

y [6~0Z-¥Z-2] [Z-¥2-¢] <¥IOTE>

JASTYA, | HOEL,

JTION, | uesTooq | xequmu| DUTIYS

pT peatwiisp | pt_dernbex

pt aernbaz

w=<y | o<y 1 e=y w P BT N * P

s » (TRISITT L 74) TRIDITT), (NI, STYeTIRA
{Teas3TT | aTqeraea) do duwd STYRTIBRA

o, ITgeTaea L), (GREOS, | OGHIN, | GXUW, | INOOD,)
o4 Buraas L), THAE,

TeIsatT

d¥s =, STYLTIRA

e wwa) ISTITIUSDT
.. | TeaBATT | eTqeTIEA
A (B yoasw L 4,y Baw yoaww L), ISTITIUSDT

LA uxsaaed L), 1 393TTI | ubrsse | TTR | yoiww ¢, ION,
«{@3e0Tpaad ,aNd,) =3edTpead
uzsazed | HBuraas {((NITHIED, | 7108.)

e BRI L), | BTna

« (wezboxd uo,) werboxd

Apogq 5%, SWMTOD A", ISTITIUSPT ,ONIWODNI,
SWmMTOD (A€, IBTITIUSPT , ONIOHLOO,

STURTIARA JISTITIUSDT

Ay e (Raxedoxd ,¢,) Raxsdoxd),

O A (ERTITIWSRT L7,) ISTITIUSDT L),
ISTITIUSPT & {, 7, ISTITIUSDT)

(SWMTOD ISTITIUSPT ,FDAEF,

LEUUMTOD I2TJTIULPT (HIELYEA,

B isUMNTOD STqeY &, FTEVL,

ebps woIJ | ¥31I8A WOIY | STOE1 WOIT

»{(WoIg ') WOII WO,

SUUMTOD | AHH,

sarizadord I8TITIUSDT

v (I5p 20p3 \NOIND,) Fep =bpe

20IAN0E THURT &L JILOYIAND, L E20E, JELYEED,
Apoq 6%, @nInos Aey TeUeT \XUIMEA, JHIYELD,
+{:¢, (8bpa | xa1184))

TN
s316TD

ubts

Putaas

PT PeATHITED
pT aeinfax
uraTonq
TRISTY

1213 TIUSPT
sTqRTIeA

do dus

IBITTF

adxs
ubrese

_ TIte
Bre uysiew
yooww
alvoTpard
uzeiaed
|Tnx
wexbord
Kpoog

Isp efps
Axzadoad
sat3asdoad
SUNMTOD
TR

2bps woIy
¥37I8A WOIJ
sTqel woas
woIg
FOIN0E

Kay

TaqRT

abpa
HELIBA
bza

9 b4

PCT/EP2020/071121

8/11

WO 2022/022802

e

1-/-9102 1-6-7102 L-6-7661 lap|oyasnoH £¥59/8 buiflueu d
1-/-1102 1-6-5102 1-6-8102 193ybnep 15| 2€1¥59/ buifueu d
- l-6-7102 L-7-0002 lap|oyasnoH 19SYE2 buifueu g
- 1-2-0861 L-2-0861 S}IM 068799 leybueys v
1-6-5102 L-¥7-1002 L-7-1002 uos pug 8/9S¥¢ leybueys v
1l-6-7102 L-#-0002 L-7-0002 uos 3s| 19S¥E2 leybueys v
1-6-9102 2-%-2002 2-%7-2002 1a3ybnep 3s| 6895 leybueys v
- L-1-0861 1-1-0861 lap|oyasnoH 95¥eCl leybueys v
3Jels u diysuonejoy | oshoH |

PCT/EP2020/071121

WO 2022/022802

9/11

g b4

SUSZID MO{]94

L95¥Ee
g

£v59/8
d

1eybnep |

'iiiiiiii;giiiiiiliiiJ

sBuijqis

pez | 2ybnep ;1

4

paiLep \\.

LGN

sioyioig 1 wos sy

&
4

BYIoW ,

ByIop
sbujqis

PCT/EP2020/071121

WO 2022/022802

10/11

Jaquig|ysey
b
0
Buuys:ewsa
a|iy:ebew 0 L | ®epuonessn | .o | e¥ep:Repypiqg .0
Jabojui:Bunes Buuys:ebenbue| |« Buuys:ai » Bulys.iepuab
jJusluwio’n }SO0d Sulejuod winioj Jojelspojpsey Buuys:sweu
0 uosSiad
AW be]sey L1
«0J +0 SMOUY
Buys:usiuod .0 .0 BuLys aWeu .0
ajep:uoneald > Bel <
Jokiday abessapy be|sey isalsjuisey
A
0
Jojealnsey

6 b1

PCT/EP2020/071121

WO 2022/022802

11/11

aseqelep 3y} Jo eiep ay1 Jo sadpa ydeas Jo/pue sad1uaA ydels Jsyling a1ow 4o auo
3uipoeJixs 4o Atanb aseqelep e ‘9nJ Suiddew ewayds ay3 uo paseq ‘Suileiausn

S00T \

A

A

aseqelep ay3 Jo elep ayi o a3pa ydead sy pue xapaA ydead syl Jo suo
3se3| 1e ay1 Suipnjoul uoliejuasaldal ydeud ay3 ‘oseqelep ay3 Jo elep ayi Jo uoleuasasdal
ydei3 e pue aseqelep syl JO elep sy} UdaM1S(] 32Ul3puUOdsaLl0d e saulap 3Nt Suiddew
BLWBYDS Y3 UIaIaym ‘aseqelep ay3 Jo elep ayi o a3pa ydead syl pue xauaA ydead

3y} JO SUO 1SeI| 1B 3Y3} JO UOIUL3P BY} UO

paseq ‘S|nJ Suiddew ewayds e ujjeiausn

€oot \

4

A

aseqelep ay3 Jo elep Jo
98pa ydei3 e pue xa149A ydeid e Jo SUO 1Se3| 1e JO UoIHUIIP e SUIAIDIDY

T00T \

R

0001

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2020/071121

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F16/901 GO6F16/242
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2019/286662 Al (YOUSFI SIHAM [MA] ET 1-4,
AL) 19 September 2019 (2019-09-19) 12-16,18
Y abstract; figures 1-2 5-11,17
paragraph [0064] - paragraph [0067]
paragraph [0075] - paragraph [0083]
Y US 2020/226156 Al (BORRA AJAY KRISHNA [IN] 5-11,17
ET AL) 16 July 2020 (2020-07-16)
A abstract; figures 1,3,4A 1-4,
paragraph [0072] - paragraph [0076] 12-16,18
A US 2018/121501 Al (VAQUERO GONZALEZ LUIS 1-18
MIGUEL [GB] ET AL) 3 May 2018 (2018-05-03)
figures 1-2
paragraph [0030] - paragraph [0040]

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

7 April 2021

Date of mailing of the international search report

16/04/2021

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Nazzaro, Antonio

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2020/071121
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2019286662 Al 19-09-2019 US 2017293697 Al 12-10-2017
US 2019286662 Al 19-09-2019
US 2020226156 Al 16-07-2020 NONE
US 2018121501 Al 03-05-2018 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - wo-search-report
	Page 48 - wo-search-report

