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SYSTEM AND METHOD FOR PROGRAM
AND RESOURCE ALLOCATION WITHIN A
DATA-INTENSIVE COMPUTER

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH

[0001] This invention was made with government support
under grant number 1040114, awarded by the National Sci-
ence Foundation. The government has certain rights in the
invention.

BACKGROUND OF THE INVENTION

[0002] The field of the invention is specialized computing
systems and methods for data intensive computing. More
specifically, the present invention relates to systems and
methods for memory and data management within a data-
intensive computer architecture capable of facilitating multi-
petabyte data analysis.

[0003] The traditional process of scientific discovery con-
sists of systematic observation, experimentation, measure-
ment and data collection, leading to the creation of a theory
that explains past observations and predicts the results of
future experiments. In virtually every field of science, tech-
nological progress has led to the construction of high-
throughput measurement instruments, such as telescopes,
high-energy particle accelerators, gene sequencing machines,
and the like. These high-throughput measurement instru-
ments generate very large data sets from observation of com-
plex physical systems. On the other hand, theoretical descrip-
tion of complex physical phenomena starts with a set of basic
laws, typically expressed as partial differential equations,
whose consequences are investigated with the help of simu-
lation experiments using computational models. The volume
of data produced by computer simulations has been increas-
ing even more rapidly than the size of empirical measurement
data sets.

[0004] The availability of large experimental datasets
coupled with the potential to analyze them computationally is
changing the nature of science. In many cases, however, the
ability to acquire experimental data outpaces the ability to
process such data, leading to the so-called “data deluge.” This
data deluge is the outcome of three converging trends: the
proliferation and availability of high throughput instruments,
the increasing size and availability of mass storage devices to
store the measurements, and the continuing evolution of pro-
cessor design according to Moore’s law.

[0005] Asdiscussed above, the volume of data produced by
computer simulations, used in virtually all scientific disci-
plines today, is increasing at an even faster rate than experi-
mental data. The reason for this volumetric increase is, in
many cases, the desire to preserve intermediate simulation
steps for future reuse because the intermediate steps represent
substantial computational investments. The sheer volume of
these datasets is only one ofthe challenges that scientists must
confront. For example, data analyses in some disciplines,
such as environmental sciences, must span thousands of dis-
tinct datasets with incompatible formats and inconsistent
metadata. Overall, dataset sizes follow a power law distribu-
tion and challenges abound at both extremes of this distribu-
tion.

[0006] While improvements in computer hardware have
enabled this data explosion, the traditional computer archi-
tecture and components used within the traditional computer
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architecture has failed to keep pace. Referring to FIG. 1, a
traditional computer network 100 is illustrated. The computer
network 100 is formed by a plurality of workstations 102 that
are connected to one or more servers 104. The workstations
102 may have more or less high-performance hardware sys-
tems and the servers 104 generally include more high-perfor-
mance and substantially robust hardware systems than the
workstations 102. However, regardless of the underlying per-
formance of the hardware, such as clock speeds, memory
size, and the like, the underlying hardware architecture of
computer systems, both servers and workstations, and, by
extension, the software architecture designed to operate these
hardware architectures is generally similar and has been gen-
erally stagnant.

[0007] Specifically, referring to FIG. 1, a general hardware
architecture 106 is illustrated that is representative of the
hardware architecture employed in both workstations 102
and servers 104. Specifically, the hardware architecture 106
includes one or more CPUs 108. Trends in CPU designs have
evolved over the years and have included increasing clock
speeds, increasing density per chip, increasing chips per die,
and increasing processors that together form the CPU 108.
While each advancement has improved performance, com-
puter hardware architecture since the earliest designs have
maintained this design of a CPU 108, which may include one
or more caches 110.

[0008] The CPU 108 is generally connected through a
bridge 112 to memory 114 and, in some cases, an additional
non-local cache 116. While memory and cache design evo-
Iutions have been great over the years, they generally adhere
to the concept of placing one or more levels of comparatively
fast random access memory in close proximity (access prox-
imity) to the CPU 108. In more recent times, dedicated graph-
ics processing units (GPUs) 118 have been adapted from
processors utilized to simply drive a display 120 to a second-
ary, specialized processor that the CPU 108 can utilize to
offload tasks fitting the specialized capabilities of the CPU
108, such as transcoding operations and many others. In any
case, the general computer architecture 106, regardless of
workstation or server, regardless of whether the computer
architecture is from the 1990s or more recent times, provides
a CPU 108 and memory 114 and may be supplemented by
secondary processing and memory components, such as a
GPU 118 and various caches 110, 116 dedicated to particular
situations. In this regard, the above-described components
may be conceptualized as a CPU/memory sub-system 122.
[0009] The computer architecture 106 also includes a bus
or multiple buses 124 that connect the above-described CPU/
memory sub-system 122 to other, slower components of the
computer architecture 106. For example, the buses 124 may
provide connections to a universal serial bus (USB) hub or
controller 126 and/or dedicated, bus-connected I/O devices
128. Of course, I/O connections may vary substantially; how-
ever, in all cases, the bus 124 provides connections to one or
more hard drives 130. These hard drives 130 may take many
forms and, more recently, include hardware advances such as
solid-state drives, but are uniformly present in workstations
or personal computers 102 and servers 104. This is because all
traditional notions of computer architecture can be concep-
tualized as, at a minimum, including a CPU/memory sub-
system 122 and a mass-storage sub-system 132.

[0010] Despite great advances in the individual compo-
nents of the traditional hardware architecture and the software
designed to operate on the traditional hardware architecture,
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traditional computer architectures 106 include substantial
limitations. For example, CPU performance has been dou-
bling every 18 months, following Moore’s Law. The capacity
of disk drives is doubling at a similar rate, somewhat slower
that the original Kryder’s Law prediction, driven by higher
density platters. On the other hand, disks’ rotational speed has
changed little over the last ten years. The result of this diver-
gence is that, while sequential I/O speeds increase with den-
sity, random /O speeds have changed only moderately. Due
to the increasing difference between the sequential and ran-
dom /O speeds of disks, only sequential disk access is pos-
sible. More specifically, if a 100-terabyte computational
problem requires mostly random access patterns, it cannot be
done.

[0011] These and many other limitations of the traditional
notions of computer architecture are substantially com-
pounded when the computer systems are formed into a net-
work. As described above, traditional computer architectures,
generally, provide a substantial computing system at each
point that is, generally, capable of autonomous operation; that
is, each system includes a CPU/memory sub-system 122 and
mass-storage sub-system 132. Accordingly, general notions
of computers systems operating in a network and sharing
network resources are limited by network speeds, even in a
data center, that are unable to keep up with the doubling of the
data sizes. In other words, with petabytes (“PB”) of data, the
data cannot be moved to where the computing occurs with
sufficient speed.

[0012] The typical analysis pipeline of a data-intensive sci-
entific problem starts with a low level data access pattern
during which outliers are filtered out, aggregates are col-
lected, or a subset of the data is selected based on custom
criteria. The more CPU-intensive parts of the analysis happen
during subsequent passes. Such analyses are currently imple-
mented in academic Beowulf clusters that combine compute-
intensive but storage-poor servers with network attached stor-
age. These clusters can handle problems of a few tens of
terabytes, but they do not scale above hundred terabytes
because, for example, they may be constrained by the very-
high costs of PB-scale enterprise storage systems. Further-
more, as these traditional systems grow to meet subsequent
data needs, the power and space requirements for such sys-
tems exceed what is available to individual scientists and
small research groups. In addition, existing supercomputers
are not well suited for data intensive computations, at least in
part because they maximize CPU cycles but lack /O band-
width to the mass storage layer. Most supercomputers also
lack disk space adequate to store PB-size datasets over multi-
month periods.

[0013] Furthermore, commercial cloud computing plat-
forms are not a feasible solution. For example, recently, when
mass storage becomes a limitation, remote or “cloud” storage
is sought as a solution. However, when considering massive
and data-intensive computer operations on the scale of PBs or
factors of PBs, the data movement and access fees are exces-
sive compared to purchasing physical disks, the I/O perfor-
mance offered is substantially lower, and the amount of disk
space provided is inadequate.

[0014] The above description of memory and storage archi-
tecture and hierarchy has remained essentially consistent for
decades. For example, M. J. Murdocca and V. P. Heuring have
accurately summarized this hierarchy from slow and inexpen-
sive to fast and expensive in the following order: off-line/on-
line storage, secondary storage, main memory, caches, regis-
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ters. That is, this hierarchy and the results of this hierarchy
have remained consistent in Murdocca etal.’s 1999 book that
discussed this hierarchy, “Principles of Computer Architec-
ture,” in Murdocca et al.’s 2007 book that discussed this
hierarchy, “Computer Architecture and Organization: An
Integrated Approach,” and continuing through more recent
presentations on the subjects. However, as described above,
traditional paradigms of computer architecture and the soft-
ware constructs that operate on these traditional paradigms of
computer architecture are incapable of handling data-inten-
sive computing on the scale of PBs or factors of PBs.

[0015] Coupled with these shortcomings of traditional
notions of computer hardware architecture are traditional
notions of computer software architecture. Though not
always correlated directly, many operational and design com-
ponents of traditional computer software architectures are
predicated on systemic features of traditional computer hard-
ware and software. For example, the operating system of
traditional computer systems is designed to balance program
productivity with implementation efficiency.

[0016] Referring to FIG. 2, the above-described computer
hardware architecture 106 is coupled with an operating sys-
tem 200. The operating system 200 can be represented as a
plurality of sub-systems. On one end of the operating system
200 are a series of sub-systems, such as a file system 202 and
device drivers 204, that are tightly designed with the com-
puter hardware architecture 106 in mind. On the other end of
the operating system 200 are a series of sub-systems, such as
a user interface 206 and application program interfaces
(APIs) 208, that are more tightly coupled to or provide the
fundamental basis on which applications 210 can perform in
concert with the operating system 200. At the heart of the
operating system 200 is the kernel 212.

[0017] Though a simplification of the multitude of sub-
systems included with the operating system 200 and even
within the sub-systems illustrated in FIG. 2, the representa-
tion illustrates the influence of traditional computer hardware
notions on operating system design and, further, illustrates
that the combined standards of computer architecture and
operating system substantially dictate the fundamentals of
operation for applications 210. That is, traditional notions of
computer programming are build upon the consistency of the
above-described computer hardware and operating system
architectures. For example, high-level programming lan-
guages hide the computer’s memory hierarchy and system
architecture, while the operating system provides highly opti-
mized services for all application developers. The only means
of permanently storing data is by writing it in a file, and the
abstract programming model of sequential file access is effi-
ciently implemented in the operating system. The operating
system typically does not include services for handling high-
level programming objects, such as arrays or graphs. When
there is a need to store such objects for subsequent computa-
tion, the programmer must make use of the file system with
serialization/unserialization of these objects.

[0018] Tied to these notions of high-level programming
languages and traditional notions of computer operating sys-
tems are the fundamentals of traditional compilers. Because
traditional compilers are focused on the creation of execut-
able programs, traditional compilers are necessarily tied back
to the fundamentals of the operating system 200 and the
hardware architecture 106 described above. Unfortunately, as
described above, these systems, both hardware and software,
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present substantial impediments to realizing data-intensive
computing systems and methods on the order of PB or factors
of PB.

[0019] It would therefore be desirable to provide a system
and method for storing, transferring, and analyzing large sets
of data, for example, at a minimum of the petabyte range.

SUMMARY OF THE INVENTION

[0020] The present invention overcomes the aforemen-
tioned drawbacks by providing a data-intensive computer that
is formed from multiple server systems forming a processing
and storage infrastructure that underlies the computer.
Another system of servers provides a unifying operating sys-
tem environment that coordinates operation of all of the serv-
ers to act as components in a single data-intensive computer.
The servers providing the storage infrastructure collectively
form a massive database, for example, in excess of a petabyte
of storage. Applications running in data-intensive computer
are executed as distributed processes, where some of the
distributed process may be executed by the processing infra-
structure and others executed by the storage infrastructure.
The unifying operating system environment coordinates
which processes are distributed to the processing infrastruc-
ture and which processes are distributed to the storage infra-
structure.

[0021] In accordance with one aspect of the invention, a
data-intensive computer is disclosed that includes a process-
ing sub-system formed by a plurality of processing node
servers and a database sub-system formed by a plurality of
database servers configured to form a collective database in
excess of a petabyte of storage. The data-intensive computer
also includes an operating system sub-system formed by a
plurality of operating system servers configured to extend a
unifying operating system environment across the processing
sub-system, the database sub-system, and the operating sys-
tem sub-system to coordinate operation of the plurality of
processing node servers, the plurality of database servers, and
the plurality of operating system servers to act as components
in a single data-intensive computer. The operating system
sub-system is configured to coordinate execution of a single
application as distributed processes having at least one of the
distributed processes executed on the processing sub-system
and at least one of the distributed processes executed on the
database sub-system.

[0022] In accordance with another aspect of the present
invention, a data-intensive computer is disclosed that
includes a processing sub-system formed by a plurality of
processing node servers and a database sub-system formed by
aplurality of database servers configured to form a collective
database in excess of'a petabyte of storage. The data-intensive
computer also includes an operating system sub-system
formed by a plurality of operating system servers configured
to extend a unifying operating system environment across the
processing sub-system, the database sub-system, and the
operating system sub-system using a system management
layer, a data object layer, a database access layer, and a data
transport layer to coordinate operation of the processing sub-
system, the database sub-system, and the operating system
sub-system. The operating system sub-system is configured
to coordinate execution of a single application as distributed
processes, wherein at least one of the distributed processes
are executed on the processing sub-system and at least one of
the distributed processes are executed on the database sub-
system.
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[0023] Inaccordance with yet another aspect of the present
invention, a data-intensive computer is disclosed that
includes a processing sub-system formed by a plurality of
processing node servers and a database sub-system formed by
aplurality of database servers configured to form a collective
database in excess of'a petabyte of storage. The data-intensive
computer also includes an operating system sub-system
formed by a plurality of operating system servers configured
to extend a unifying operating system environment across the
processing sub-system, the database sub-system, and the
operating system sub-system to coordinate operation of the
plurality of processing node servers, the plurality of database
servers, and the plurality of operating system servers to act as
components in a single data-intensive computer. The data-
intensive computer further includes a compiler configured to
receive uncompiled code and generate executable code con-
figured to execute on the processing node servers and the
database servers. The operating system sub-system is config-
ured coordinate execution of the executable code to perform
as a single application with processes executing in both the
processing sub-system and the database sub-system and pre-
senting the database sub-system to processes running in the
processing sub-system as a layer in a memory hierarchy of the
data-intensive computer.

[0024] In accordance with one aspect of the invention, a
data-intensive computer is provided that includes a process-
ing sub-system formed by a plurality of processing node
servers and a database sub-system formed by a plurality of
database servers configured to form a collective database in
excess of a petabyte of storage. The data-intensive computer
also includes an operating system sub-system formed by a
plurality of operating system servers configured to extend a
unifying operating system environment across the processing
sub-system, the database sub-system, and the operating sys-
tem sub-system to coordinate operation of the plurality of
processing node servers, the plurality of database servers, and
the plurality of operating system servers to act as components
in a single data-intensive computer. The operating system
sub-system is further configured to present the database sub-
system to an application running in the processing sub-sys-
tem as a layer in a memory hierarchy of the data-intensive
computer.

[0025] In accordance with another aspect of the present
invention, a data-intensive computer is disclosed that
includes a processing sub-system formed by a plurality of
processing node servers and a database sub-system formed by
aplurality of database servers configured to form a collective
database in excess of'a petabyte of storage. The data-intensive
computer also includes an operating system sub-system
formed by a plurality of operating system servers configured
to extend a unifying operating system environment across the
processing sub-system, the database sub-system, and the
operating system sub-system using a system management
layer, a data object layer, a database access layer, and a data
transport layer to coordinate operation of the processing sub-
system, the database sub-system, and the operating system
sub-system. The database access layer coordinates with the
data object layer to present the database sub-system as a layer
in a memory hierarchy of the data-intensive computer to
applications executing, at least in part, at the processing sub-
system.

[0026] Inaccordance with yet another aspect of the present
invention, a data-intensive computer includes a processing
sub-system formed by a plurality of processing node servers
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and a database sub-system formed by a plurality of database
servers configured to form a collective database in excess of
a petabyte of storage. The data-intensive computer also
includes an operating system sub-system formed by a plural-
ity of operating system servers configured to extend a unify-
ing operating system environment across the processing sub-
system, the database sub-system, and the operating system
sub-system using a system management layer, a data object
layer, a database access layer, and a data transport layer to
coordinate operation of the processing sub-system, the data-
base sub-system, and the operating system sub-system. The
database access layer coordinates with the data object layerto
present the database sub-system as a layer in a memory hier-
archy of the data-intensive computer to applications execut-
ing, at least in part, at the processing sub-system. The oper-
ating system sub-system is configured to coordinate
execution of a single application as distributed processes
having at least one of the distributed processes executed on
the processing sub-system and at least one of the distributed
processes executed on the database sub-system.

[0027] The foregoing and other aspects and advantages of
the invention will appear from the following description. In
the description, reference is made to the accompanying draw-
ings which form a part hereof, and in which there is shown by
way of illustration a preferred embodiment of the invention.
Such embodiment does not necessarily represent the full
scope of the invention, however, and reference is made there-
fore to the claims and herein for interpreting the scope of the
invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0028] FIG. 1is a schematic diagram of a traditional com-
puter system and the architecture of computers and servers
that form traditional computer system and networks.

[0029] FIG. 2 is a schematic diagram of a traditional com-
puter operating system for use with the computer system of
FIG. 1 and illustrated with relation to applications designed
for operation with the operating system of FIG. 2 and the
hardware architecture of FIG. 1.

[0030] FIG. 3A is a schematic diagram of a data intensive
computer architecture in accordance with the present inven-
tion.

[0031] FIG. 3B is a schematic diagram illustrating data
connections within the data intensive computer of FIG. 3A.
[0032] FIG. 4 is a schematic diagram of an operating sys-
tem for use with the data intensive computer of FIGS. 3A and
3B.

DETAILED DESCRIPTION OF THE INVENTION

[0033] Data sets, for example, scientific data sets are now
approaching the petabyte (“PB”) range, exceeding the capa-
bilities of file systems, and are, therefore, often stored in
databases. Data sets at or in excess of a PB are not easily
accessible to computation because of input/output (I/0) limi-
tations of traditional computer architectures, operating sys-
tem designs, network configurations, and the like. Even in the
context of a so-called high performance computing (HPC)
system, substantial and data-intensive computing in PB or
multi-PB databases is presently very difficult.

[0034] There are no “off-the-shelf” solutions and a consid-
erable effort is required on the part of the human program-
mers to incorporate special-purpose database access tools to
allow PB or multi-PB databases to be accessed and compu-
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tations performed on small sub-sets of data stored on PB or
multi-PB databases. That is, such computer networks that
provide access to PB or multi-PB databases do so by allowing
computer systems on the network to access and copy portions
of'the PB or multi-PB database to the local computer system.

[0035] Referring to FIG. 1, this operational flow is predi-
cated on traditional notions of computer hardware and soft-
ware architecture. That is, a portion of a PB or multi-PB
database is accessible through server 104 and is copied over
the network to a specific workstation 102a. The specific
workstation 102a copies the portion of the PB or multi-PB
database onto its local hard drives 130. Local applications
installed on the local hard drive 130, as well as further,
smaller portions of the data copied from the PB or multi-PB
database are then copied into memory 114 and cache 110,
116, so that the local applications can perform operations on
the locally-copied portions of the PB or multi-PB database.

[0036] Not only is this construct plagued by numerous,
well-known issues of traditional file systems and distributed
files systems and databases, such as interceding update issues
and the like, it is highly inefficient. That is, even ignoring the
well-known data management and file-system limitations of
traditional hardware architectures and operating systems, the
need to copy, locally-manipulate, and copy back large
amounts of data, when extended to the scale of PB or multiple
PBs, presents a burden that is compounded sufficiently as to
make the process impractical. For example, the time required
to copy just one PB of data from a multi-PB database over a
computer network for local processing and then copy new
instances of the one PB of data back to the multi-PB database
renders the process impractical. Such impediments to work-
ing with large data sets, particularly when performing data-
intensive operations on large data sets are compounded even
further when data access is achieved using web services and
the like. These solutions do not provide a scalable solution for
many data-intensive applications. Furthermore, the resulting
data flow throughput needs to be improved by orders of mag-
nitude; even trivially parallelizable data processing tasks in
such environments are very difficult.

[0037] In order to satisfy the increasing demand for com-
putations with very large data sets, the present invention
provides a hardware architecture, an operating system, and
associated components, such as a compiler, that exploit the
massive parallelism in a database system to efficiently carry
out data storage and retrieval between the database and a
multiprocessor computing system. Rather than designing
stand-alone, networked computers (where the distinction
between server and client is primarily reflected in the cost and
performance of server hardware and additional “server-type
features” in the server operating system), the present inven-
tion provides a system hardware and software architecture
that is designed to “move the system to the data” rather than
“move data back and forth to individual systems.” See, for
example, A. S. Szalay, J. Gray, “Science in an Exponential
World”, Nature, 440, pp 23-24, 2006. In doing so, the present
invention provides a practical implementation to deliver on
the concept of “moving the system to the data” by breaking
from traditional notions of system architecture and network
design. Specifically, the present invention breaks from tradi-
tional notions of autonomous systems joined by networks run
by servers and data as a simple resource that this passed
between autonomous systems. However, at the same time, it
does not fall back on “thin-client-type designs” because such
implementations are also unsuited to massive, data-intensive
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computing because thin-client-type designs push the compu-
tational burden onto a processing surrogate, which does not
solve the above-detailed problems with data-intensive com-
puting at the PB or multi-PB database scale. Rather, such
implementations simply create new problems.

[0038] Inparticular, referring to FIG. 3 A, the present inven-
tion creates an integrated system, or “data-intensive com-
puter” 300, where the sub-components include cluster of
processing nodes 302, for example, a high performance com-
puting (HPC) cluster, a series of parallel database servers 304,
and an intermediate operating system cluster 306 that ties
these systems together to operate as a single data-intensive
computer 300 and not a group of autonomous systems with
individual instances of operating systems that are merely
joined by a network and/or shared resources. This data-inten-
sive computer 300 is accessed by general remote computers
308 or even data-scopes, such as described in the co-pending
application co-inventor Szalay directed to the data-scope con-
cepts, which is incorporated herein by reference.

[0039] As will be described, the processing nodes 302, at a
hierarchical level, form an extremely-high-powered process-
ing sub-system 310 that serves within the data-intensive com-
puter 300 of this example in a role akin to that of the CPU 108
in the traditional computer architecture of FIG. 1. The remote
computers 308 are akin to the /O devices, such as a display
120 or peripherals connected via USB connections 126 or
bus-connected I/O connections 128 in the traditional com-
puter architecture of FIG. 1. To join these systems and coor-
dinate operation of the data-intensive computer 300, unlike
traditional systems, the operating system servers 306,
together, form an operating system sub-system 312. Gener-
ally, with reference to /O between the processing nodes 302
and the database servers 304, the operating system servers
306 can provide quality service in the level of performance of
the data flow and ensure scalability and efficient parallel
scheduling and resource management. The operating system
servers 306 operate together as an operating system sub-
system 312 despite being formed of dedicated operating sys-
tem servers 306.

[0040] Thus, the operating system sub-system 312 assists
in forming a common or unifying data-intensive operating
system (DIOS) across the data-intensive computer 300. The
DIOS is a software suite that runs on all of the servers of the
data-intensive computer 300. That is, the DIOS forms a uni-
fying operating system environment that coordinates the
operation of all of the servers to act as components in a single
data-intensive computer 300. High-level user applications are
transformed by DIOS into a collection of lower level parallel
processes executed by the servers of each sub-system

[0041] As such, the operating system sub-system 312
enables direct I/O operations between local memory of the
processing nodes 302 and a database sub-system 314 formed
by the database servers 304. In this regard, as will be
described in further detail, the operating system sub-system
312 makes the database sub-system transparent to the pro-
grammer and effectively turns the database sub-system 314
into a layer in memory hierarchy of the data-intensive com-
puter 300. Accordingly, a single, fluidly-operating data-inten-
sive computer 300 is provided that can be accessed by the
remote computers 308. That is, the operating system sub-
system 312 extends a unifying operating system environment
across the processing sub-system 310, the database sub-sys-
tem 314, and the operating system sub-system 312 to coordi-
nate operation of the plurality of processing node servers 302,
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plurality of database servers 304, and plurality of operating
system servers 306 to act as components in a single data-
intensive computer 300.

[0042] Notably and as will be further detailed, the data
intensive computer 300 provides a hardware architecture that
can maximize stream processing throughput over 100 ter-
abyte (“TB”) size datasets for example, while using commod-
ity components to keep acquisition and maintenance costs
low. For example, accessing the data in a massively parallel
fashion from the processing nodes 302 via locally attached
disks and solid-state drives (SSDs) is significantly faster than
serving the data from shared network file servers to multiple
computer servers when investing in hardware at the same
costs. As will be described in greater detail with respect to
FIG. 3B, the operating system sub-system 312 establishes
peer-to-peer connections between nodes on the processing
sub-system 310 and the remote computers 308. As such, the
operating system sub-system 312 enables on-the-fly ingest of
data generated by a message passing interface (“MPI”) appli-
cation running between the data-scope /O nodes 308 and the
data-intensive computer 300, and for parallel compute-inten-
sive analysis of large data set reads from the database servers
304.

[0043] The data stored in the database sub-system 314 is
partitioned into blocks. In the course of an application execu-
tion data blocks are communicated by DIOS between the
database sub-system 314 and the processing servers 310. The
DIOS may use a database management system (DBMS) to
effectively transform the data sub-system 314 into a memory
layer of the data-intensive computer 300. An aspect of the
present invention is that the DBMS or other system is used to
implement random access memory (RAM) functionality in
the data-intensive computer 300. This means that accessing
(storing and retrieving) a block of data uses approximately the
same amount of time, regardless of the physical location of
the data block. For a data set consisting of N blocks the RAM
functionality within the data-intensive computer provides an
O(log(N)) access time to any one of the blocks of data. Within
this context, to function as a “database” in the data-intensive
computer 300, a given database server should, for example,
provide O(log N) time access to a memory page. This may be
realized by a system using binary trees. Rather than imple-
ment a system that will provide such RAM functionality for a
Petascale data set from scratch, the database of the database
sub-system 314 may be used.

[0044] Referring to FIGS. 3A and 3B, as illustrated, the
operating system sub-system 312 can be distributed to run on
a set of dedicated operating system servers 306. The indi-
vidual database servers 304 and processing nodes 302 can be
connected to the operating system servers 306 by a high-
bandwidth network 316, allowing transparent and scalable
1/0 between the processing nodes 302 and the database serv-
ers 304. In addition, the operating system servers 306 can also
provide services to the remote computers 308. In one specific
example, the data intensive computer 300 can include 90
processing nodes 302 and 12 database servers 304, and the
processing nodes 302 can include about 4000 CPU cores. In
this example, the total disk capacity can exceed 5 petabytes
(“PB”), with, for example, 3 PB in a storage-specific layer
and 2.2 PB dedicated to a performance-specific layer. The
peak aggregate sequential I/O performance can be about 460
to about 500 gigabytes/second, with about 600 Teraflops of
GPU computing.
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[0045] The above-described hardware architecture of the
data-intensive computer 300 is integrated through the soft-
ware that controls the collection of servers 302, 304, 306, that
traditionally were operated as coordinated autonomous sys-
tems, together as a single data-intensive computer. To do so,
the software includes a variety of features not common to
traditional notions of operating systems. However, it is
notable that this new architecture is likewise reflected in the
hardware described above with respect to FIGS. 3A and 3B.
Specifically, unlike traditional computer systems, the data-
intensive computer 300 utilizes a series of operating system
servers 306 that, as illustrated in FIG. 3B may, for example, be
designed to coordinate connections to multiple of the indi-
vidual database servers 304 and provide memory-level access
to these resources to the processing nodes 302. Thus, though
employing an entire system of what traditional notions char-
acterize as a “computer” or “server,” the data-intensive com-
puter 300 operates such that the processing nodes 302 operate
in coordination as the processing sub-system 310, similarly to
that of a multi-core CPU, and accesses the database servers
304 as a memory-level resource through the coordination of
the operating system sub-system 312.

[0046] Applications running on the processing nodes 302
of FIGS. 3A and 3B operate as clients for operating system
processes, and the operating system servers 306 of FIGS. 3A
and 3B can communicate with one or more database servers
304 for each process, as shown in FIG. 3B. Since execution of
database queries is slower than the transmission of the results
over the high bandwidth network 316, it is advantageous to
execute queries on multiple database servers 304 in parallel.
Accordingly, the operating system servers 306 act as a dis-
tributed scheduler for the database servers 304, where each
dedicated operating system server 306 process allocates mul-
tiple database server connections 316a for data-intensive
applications, and fewer database server connections 3164 for
applications with lower data requirements. This design is
scalable and is aimed at minimizing application /O by
employing smart heuristic scheduling algorithms. That is, the
operating system servers 306 are configured to monitor data
requirements ofa given application and facilitate access to the
database sub-system 314 based on the data requirements of
the application.

[0047] In addition, the operating system servers 306 can
transform application burst /O into uniform, balanced traffic
across the database servers 304. More specifically, when a
large number of applications are accessing the same data set,
efficiencies may be realized by grouping the /O requests of
different applications together. The operating system servers
306 can maintain storage local to the operating system servers
306 for caching I/O requests and can optimize database
access based on an applications’ access patterns, as well as
across applications. The operating system sub-system 312
can, therefore, incorporate efficient management of available
resources, and can grow or shrink on demand.

[0048] Another exemplary feature of the operating system
servers 306 is to enable applications with an arbitrary mix of
1/0 and computation. In many instances, it is advantageous to
carry out computations with large data objects in a database.
This “move the program to the data” approach is imple-
mented by the data-intensive computer 300 as a fundamental
tenet and realized in a way that is not possible with traditional
computer systems. In traditional systems, an attempt to move
the program to the data results in requests that may trigger
execution of predefined routines in the database, and such
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routines may be pre-programmed in the database, causing
additional human programming time. The present invention
extends the “move the program to the data” approach by
automatically generating the code that will be executed in the
database servers 304. For example, an application running at
the processing nodes 302, as will be described, is compiled
into code that will execute on the processing nodes 302, as
well as code for computations with operating-system-sup-
ported data objects that will execute on the database servers
304. The operating system sub-system 312 will, therefore,
carry out “moving the program to the data”.

[0049] Specifically, compiler-generated code for large data
object computations will be sent from the processing nodes
302 to the database servers 304 using the operating system
servers 306 and their inherent client-server communications
systems. The user application running on the processing
nodes 302 will be linked against the operating system client
software. At run time, the user application will execute code
on the processing sub-system 310, call system services that
will execute in the operating system sub-system 312 and
execute the application-generated code in the database sub-
system 314.

[0050] User applications can be developed in a high-level
programming language (such as Fortran, C, C++, and the like)
that includes mechanisms for concurrency control (such as
MPI), allowing easy porting of legacy applications to the
data-intensive computer 300. It is also contemplated that a
specially designed language, such as Titanium (produced by
Appcelerator, Inc.) or Charm++, which has a built-in mecha-
nism for concurrency control, can also be used for application
development. However, it is contemplated that, in some cases,
it may be advantageous to design a special purpose language
for processing large data sets, as it may improve programmer
productivity.

[0051] While a specific data object stored in the database
sub-system 314 may be logically represented as a single
object, its storage layout may be distributed among database
servers 304. In the process of reducing a run-time distributed
data object to a logically single object stored in the database
sub-system 314, the operating system sub-system 312 can
generate a physical mapping of the object’s storage layout in
the database sub-system 314. This mapping can identify the
specific database servers 304, any server-attached storage,
and the storage partitions that hold the data representing the
object, and can determine methods for access and modifica-
tion of the object.

[0052] Thus, the operating system sub-system 312 may be
configured to coordinate execution of a single application as
distributed processes having at least one of the distributed
processes executed on the processing sub-system 310 and at
least one of the distributed processes executed on the database
sub-system 314. To this end, the operating system sub-system
312 can provide a compiler 318 automatically generate
executable code directed to the processing node severs 302
and/or the database severs 304 to coordinate execution of a
single application as distributed processes. The compiler 318
is configured to receive uncompiled code from a remote com-
puter 308 connected to the data-intensive computer 300 and
generate executable code configured to execute on, for
example, the processing node servers 302, the operating sys-
tem servers 306, and the database servers 304, or subsets
thereof.

[0053] Referring to FIG. 3 A, in some implementations, the
data-intensive computer 300 may be designed for collabora-
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tive, non-local operating system services. For example, a
large data set is typically created and processed by a large
group of collaborating individuals, who execute a set of con-
current processes. Thus, remote computers 308 can obtain
services from the data-intensive operating system sub-system
312 in a manner similar to that of the applications running on
the processing nodes 302, as described above. More specifi-
cally, an application running on a remote computer 308 is
compiled into code that executes on that remote computer
308, connects to the data-intensive operating system sub-
system 312 over network connections 320 and sends to the
code that the operating system sub-system 312 provides for
execution within the database sub-system 314. Thus, one
difference between communication with applications run-
ning on the processing sub-system 310 and a remote-com-
puter 308 is the network connection speed, as the network
connections 320 to the remote computers 308 are not as fast as
the high-speed network connections 316 within the data-
intensive computer 300.

[0054] Remote users with slow network connections can
choose to download portions of data sets from the database
sub-system 314 to their remote computers 308, perform
extensive local computations, and send results back to the
database sub-system 314. Furthermore, the operating system
sub-system 312 of the data-intensive computer 300 can be
used as a software library accessible by the remote computer
308 and run in conjunction with the database sub-system 314
to enable the user to store data objects imported from a remote
database directly into the database sub-system 314, and to
process the data in the database sub-system 314 using the
same program that was previously created for remote, possi-
bly large-scale, data processing.

[0055] As described generally above, the operating system
subsystem 112 can support large-scale collaborative compu-
tations where user applications can be translated into code
that runs on a remote computer and code that runs in the
database. In this manner, the data-intensive computer 300 can
act as a subscription service, giving remote data users fast
access to large data sets.

[0056] Referring to FIG. 4, a schematic illustration of the
software architecture of the data-intensive computer is illus-
trated. The following paragraphs describe an example oper-
ating system, implemented as a software library, referred
herein as the message-passing-interface, database (MPI-DB)
400, for the data intensive computer. The software library
provides database services to scientific computing processes
and supports SQL-Server and MySQL. databases on Windows
and Linux with C, C++ and Fortran language bindings.

[0057] At a basic level, referring to FIG. 4, the library can
be conceptualized as including two compatible software
packages: a client package 402 and a server package 404. The
library can require a working MPI installation and UDT (a
UDP based Data Transfer protocol) sockets for its client-
server communications. User applications are compiled and
linked against the client. The server accepts connections from
clients at a known network address, services clients’ requests
by querying a database 406 and sending the results back to the
clients.

[0058] With reference to software architecture, MPI-DB
400 can be built as a layered structure, as shown in FIG. 4,
analogous to multi-layer protocols used in computer network
communications. Such a design is flexible and extensible.
This layered structure can include a data transport layer 408,
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a database access layer 410, a data object layer 412, and a
system management layer 414.

[0059] As shown in FIG. 4, the data transport layer 408 is
the lowest layer in the hierarchy of the MPI-DB 400. The data
transport layer 408 can provide the basic functionality for
establishing and managing the connection between clients
and servers over an external network 416. Notably, the exter-
nal network 416 is external to the high-bandwidth network
316 that is internal to the data-intensive computer 300 of
FIGS. 3A and 3B. This design encapsulates packet transmis-
sion in the data transport layer 408 and may include two
implementations of the data transport layer: one using UDT
(a UDP based Data Transfer protocol) sockets and the other
using the MPI-2 standard, as further discussed below. As
noted above, the MPI protocol is a widely-used standard in
scientific computing. MPI installations are available for a
wide range of operating systems and computer networks, and
in many instances benchmarking tests have shown MPI to be
among the fastest, currently-available, protocols for data
transfer.

[0060] The database access layer 410 provides basic func-
tionality to remotely execute queries and access the database
406. The database access layer provides the data object layer
412 with a narrow set of abstract operations needed to
manipulate MPI-DB programming objects in the database
406. The data access layer 410 encapsulates all SQL queries
and includes drivers for major databases, such as SQL Server,
MySQL and PostgreSQL.

[0061] The data object layer 412 contains the description of
the user-defined programming objects that are stored in the
database 406, including their physical storage layout, and
provides access and manipulation methods for these objects.
User-defined objects are serialized by the associated client
402, sent to the server 404, and unserialized by the server 404,
to be subsequently stored in the database 406. A hierarchical
description of the physical storage layout lists the servers, the
server-attached databases, and the storage partitions holding
the data associated with each object. Data access methods
implement the mapping between user-defined run-time par-
tition of the object among multiple processors and the
object’s hierarchical database storage layout. Thus, the data
object layer facilitates the presentation of the database sub-
system as a layer in a memory hierarchy of the data-intensive
computer to applications executing, at least in part, at the
processing sub-system.

[0062] The system management layer 414 maintains a
resource map, describing all the resources (storage and serv-
ers) available in the global database system. It includes a
caching system for grouping applications’ I/O requests and a
scheduler assigning the I/O requests to the database servers of
FIGS. 3A and 3B. The system management layer 414 can also
handle administration functions, managing all user related
information, including managing user logins and monitoring
user connections.

[0063] With respect to implementation of the software
library, the MPI-DB 400 can be developed as object-oriented
software in C++ and, in some cases, made available under a
BSD open-source software license. Features may include a
working implementation of the MPI standard, including
MPI-2 functionality, and can include software functions for
client-server interaction (MPI_Open_Port, etc.) and dynamic
process management (MPI_Comm_spawn).

[0064] An example use of the software library is described
below for a scientific application consisting of several parallel
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MPI processes continuously generating output that needs to
be stored (specifically, by the software library to a database).
In this example, the user application is written in C++ with
MPI. It is linked against the software library and there are two
parallel processes at runtime, whose ranks are 0 and 1.
[0065] The user interaction with the software library starts
by defining the data structures that will be stored in the data-
base. In this example, the two parallel MPI processes jointly
perform a computation using a single three-dimensional array
of 128x128x128 double precision floating point numbers.
The array is divided between the two processors, with pro-
cessor 0 holding in its local memory the [0 ... 127]x[0 ...
127]%[0 . . . 63] portion of the array and processor 1 holding
the [0...127]x[0. 127]x[64 . . . 127] part. Correspondingly,
each process defines an mpidb::Domain object subdomain
and an mpidb::Array object a. The exemplary code is as
follows:

// this user process has rank = MyID ,

// which in our example is either O or 1
MPI_Comm__rank(MPI_COMM_WORLD , &MyID);

mpidb : : Domain subdomain(0, 127, 0, 127, 64*MyID, 64*MyID+63)
mpidb : : Array a (subdomain, mpidb : : DOUBLE_ PRECISION);
// generate a stream of array data objects

mpidb : : DataStream s(a);

mpidb : : DataSet d( );

// DataSet d is a single object, common to both process

// DataSet d will contain two data streams

d.AddStream(s);

[0066] The application will perform repeated computation
of the data array, with each process periodically storing its
portion of the data array in the database. Each process will
therefore generate a stream of arrays. This is expressed in the
definition of the mpidb::DataStream object s.

[0067] Finally, the application defines the mpidb::DataSet
object d, which, in contrast to previously defined objects, is a
single (distributed) object common to both processes. After
each process adds a data stream to this data set, it will contain
two streams.

[0068] Having defined the data structures, each of the two
MPI processes attempts to establish a connection with an
MPI-DB server. This is achieved by defining an mpidb::Con-
nection object ¢ and executing on it the ConnectToServer
method with a given server address. Exemplary code is as
follows:

mpidb : :Connection c;
char * ServerAddress = “128.220.233.155 : : 52415”;
if (tc.ConnectToServer(ServerAddress))

{
cerr << “Failed to connected to server... disconnecting” << endl;
return O;
¥
else
cout << “Comnnected to server at : ”* << ServerAddress << end1;
[0069] Upon successtul connection, each of the two MPI

processes respectively processes their own mpidb::Connec-
tion object ¢ and each is allocated a dedicated MPI-DB server
thread to service requests over this connection.

[0070] The connection object can now be used by each
process to login to the database and create there a new data
set, according to the previous definition of the mpidb::
DataSet object d. Exemplary code as follows:
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if (tc.AccessDataBase(username, password)

{

cerr << “Failed to access the database.”” << end1;
return 0;

}

// create an image of d in the database
If (fe.CreateDataSet(d))

cerr << “Failed to create a new data set” << endl;
return 0;

[0071] In addition to creating the data set in the database,
the CreateDataSet method performs an operation of associ-
ating (binding) the user mpidb::DataSet object d with the
corresponding database data set using the mpidb::Connection
object c¢. The data can now be generated and stored in the
database. The local portion of the data array may be called
data. Exemplary code is as follows:

// the local portion of the 128x128x128 array
double data [128] [128] [64];
for (int TimeStep = 0; TimeStep < MaxTimeStep; TimeStep ++)

// compute the values of the local data array
ComputeValues(data);

// push the values of data into the DataStream s
s << data;

c.DisconnectFromServer( );

[0072] After computing the new values of data, the data is
stored in the database with the single instruction s<<data,
which pushes the content of the array data into the stream s
using the connection c. At the end of the program each process
disconnects from the MPI-DB server.

[0073] The above example demonstrates how a scientific
application can store arrays in the database. The user is no
longer required to write SQL queries and be concemed with
the layout of the tables in the database. The MPI-DB construct
provides the user with a set of programming objects (data
structures and methods to manipulate the data structures) that
is flexible and sufficient for most data-intensive applications,
such as scientific applications. In some cases, the ability to
access database tables directly can be exposed to advanced
users with specialized needs through the lower layers of the
MPI-DB software library.

[0074] The present invention has been described in terms of
one or more preferred embodiments, and it should be appre-
ciated that many equivalents, alternatives, variations, and
modifications, aside from those expressly stated, are possible
and within the scope of the invention.

1-20. (canceled)

21. A data-intensive computer comprising:

a processing sub-system formed by a plurality of process-
ing node servers;

a database sub-system formed by a plurality of database
servers configured to form a collective database in
excess of a petabyte of storage;

an operating system sub-system formed by a plurality of
operating system servers configured to extend a unifying
operating system environment across the processing
sub-system, the database sub-system, and the operating
system sub-system to coordinate operation of the plural-
ity of processing node servers, the plurality of database
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servers, and the plurality of operating system servers to
act as components in a single data-intensive computer;
and wherein the operating system sub-system is further
configured to present the database sub-system to an
application running in the processing subsystem as a
layer in a memory hierarchy of the data-intensive com-
puter.

22. The data-intensive computer of claim 21 wherein the
plurality of operating system servers are configured to moni-
tor data requirements of the application and facilitate access
to the database sub-system based on the data requirements of
the application.

23. The data-intensive computer of claim 21 wherein the
plurality of operating system servers act as a distributed
scheduler for the plurality of database servers to dynamically
allocate and reduce connections to selected ones of the plu-
rality of database servers in the database sub-system based on
data requirements of the application.

24. The data-intensive computer of claim 21 wherein the
operating system sub-system is configured to facilitate trans-
parent and scalable input/output (I/O) operations between the
plurality of processing node servers and the plurality of data-
base servers.

25. The data-intensive computer of claim 21 wherein the
operating system sub-system is configured to logically rep-
resent a specific data object stored in the database sub-system
as a single data object when the specific data object is physi-
cally distributed across the plurality of database servers of the
database subsystem.

26. The data-intensive computer of claim 25 wherein the
operating system sub-system is configured to generate a
physical mapping of the specific data object physically dis-
tributed across the plurality of database servers of the data-
base subsystem and utilize the physical mapping to present
the specific data object as the single data object to the appli-
cation.

27. The data-intensive computer of claim 21 wherein the
unifying operating system environment presents a system
management layer, a data object layer, a database access
layer, and a data transport layer to coordinate operation of the
processing sub-system, the database sub-system, and the
operating system subsystem.

28. The data-intensive computer of claim 27 wherein the
data transport layer is configured to manage connections by
client computers accessing the dataintensive computer over a
network external to the data-intensive computer using at least
two independent implementations of the data transport layer,
wherein a first implementation of the data transport layer uses
user-defined types (UDT) sockets and a second implementa-
tion of the data transport layer uses message passing interface
(MPI) protocols.

29. The data-intensive computer of claim 28 wherein the
MPI protocols are implemented according to an MPI-2 stan-
dard.

30. The data-intensive computer of claim 28 wherein the
unifying operating system environment presents a server soft-
ware package and a client software package and wherein the
sever software package is implemented using the UDT sock-
ets and the client software package is implemented using the
MPI protocols.

31. The data-intensive computer of claim 27 wherein the
database access layer facilitates execution of queries and
access requests implicating the database sub-system.
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32. The data-intensive computer of claim 27 wherein the
data object layer contains a description of user-defined pro-
gramming objects stored in the database sub-system.

33. The data-intensive computer of claim 32 wherein the
description of user-defined programming objects includes a
physical storage layout and provides access and manipulation
methods for user-defined programming objects.

34. The data-intensive computer of claim 27 wherein the
system management layer maintains a resource map describ-
ing storage and server resources available in the database
sub-system and provides a caching system for grouping 1/0
requests from the application and a scheduler assigning the
1/O requests to the plurality of database servers of the data-
base sub-system.

35. The data-intensive computer of claim 21 further com-
prising a highbandwidth network configured to connect the
processing sub-system, the database sub-system, and the
operating system sub-system.

36. The data-intensive computer of claim 35 further com-
prising a secondary network, separate from the high-band-
width network, configured to provide access to the data-
intensive computer by remote computers and wherein the
plurality of processing node servers includes at least 90 pro-
cessing node servers and the plurality of database servers
includes at least 12 database servers.

37. A data-intensive computer comprising:

a processing sub-system formed by a plurality of process-
ing node servers;

a database sub-system formed by a plurality of database
servers configured to form a collective database in
excess of a petabyte of storage;

an operating system sub-system formed by a plurality of
operating system servers configured to extend a unifying
operating system environment across the processing
sub-system, the database sub-system, and the operating
system sub-system using a system management layer, a
data object layer, a database access layer, and a data
transport layer to coordinate operation of the processing
sub-system, the database sub-system, and the operating
system sub-system; and

wherein the database access layer coordinates with the data
object layer to present the database sub-system as alayer
in a memory hierarchy of the data-intensive computer to
applications executing, at least in part, at the processing
sub-system.

38. The data-intensive computer of claim 37 wherein the
operating system sub-system is configured to logically rep-
resent a specific data object stored in the database sub-system
as a single data object when the specific data object is physi-
cally distributed across the plurality of database servers of the
database subsystem and generate a physical mapping of the
specific data object physically distributed across the plurality
of'database servers of the database sub-system and utilize the
physical mapping to present the specific data object as the
single object to the application.

39. The data-intensive computer of claim 37 wherein the
data transport layer is configured to manage connections by
client computers accessing the dataintensive computer over
an external network using at least two independent imple-
mentations of the data transport layer, wherein a first imple-
mentation of the data transport layer uses user-defined types
(UDT) sockets and a second implementation of the data trans-
port layer uses message passing interface (MPI) protocols.
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40. A data-intensive computer comprising:

a processing sub-system formed by a plurality of process-
ing node servers;

a database sub-system formed by a plurality of database
servers configured to form a collective database in
excess of a petabyte of storage;

an operating system sub-system formed by a plurality of
operating system servers configured to extend a unitying
operating system environment across the processing
sub-system, the database sub-system, and the operating
system sub-system using a system management layer, a
data object layer, a database access layer, and a data
transport layer to coordinate operation of the processing
sub-system, the database sub-system, and the operating
system sub-system;

wherein the database access layer coordinates with the data
object layer to present the database sub-system as alayer
in a memory hierarchy of the data-intensive computer to
applications executing, at least in part, at the processing
sub-system; and

wherein the operating system sub-system is configured to
coordinate execution of a single application as distrib-
uted processes having at least one of the distributed
processes executed on the processing sub-system and at
least one of the distributed processes executed on the
database sub-system.

#* #* #* #* #*
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