
US 2011 O161780A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2011/0161780 A1

Emma et al. (43) Pub. Date: Jun. 30, 2011

(54) METHOD AND SYSTEM FOR PROVIDING AN Related U.S. Application Data
IMPROVED STORE-IN CACHE (63) Continuation of application No. 1 1/683.285, filed on

Mar. 7, 2007, now Pat. No. 7,941,728.
(75) Inventors: phiesWEspinbury Publication Classification

Chappaqua, NY (US); Thomas R. (51) Int. Cl.
Puzak, Ridgefield, CT (US); H03M, 3/00 (2006.01)
Vijayalakshmi Srinivasan, New G06F II/00 (2006.01)
York, NY (US) (52) U.S. Cl. 714/758; 714/E11.02

(57) ABSTRACT
(73) Assignee: INTERNATIONAL BUSINESS

MACHINES CORPORATION, A hardened store-in cache system includes a store-in cache
Armonk, NY (US) having lines of a first linesize stored with checkbits, wherein

s the checkbits include byte-parity bits, and an ancillary store
only cache (ASOC) that holds a copy of most recently stored

(21) Appl. No.: 13/041,248 to lines of the store-in cache. The ASOC includes fewer lines
than the store-in cache, each line of the ASOC having the first

(22) Filed: Mar. 4, 2011 linesize stored with the checkbits.

W = lines and DWS Rate FMR + Store Rate

202

Store
Through
Cache

Store
W/PAR

Patent Application Publication Jun. 30, 2011 Sheet 1 of 4 US 2011/O161780 A1

Rate = MR + Castout Rate

102

Store-In
Cache

Store
W/PAR

Figure 1

Patent Application Publication Jun. 30, 2011 Sheet 2 of 4 US 2011/O161780 A1

WF lines and DWS Rate FMR + Store Rate

202

Store
Through
Cache

Store
WPAR

Figure 2

Patent Application Publication Jun. 30, 2011 Sheet 3 of 4 US 2011/O161780 A1

Hardened
Store-In
Cache

Figure 3

Patent Application Publication Jun. 30, 2011 Sheet 4 of 4 US 2011/O161780 A1

Storing data associated with most recently stored-to lines of the
-

store-in L1 cache in an ancillary store-only cache (ASOC) 410

Controlling storing of, and recovering of, the data associated with

the most recently stored-to lines of the store-in L1 cache from the

ancillary store-only cache (ASOC) such that the data from the

ancillary store-only cache (ASOC) is used only if parity errors are 42O

encountered in the Store-in L1 Cache.

FIGURE 4

US 2011/O161780 A1

METHOD AND SYSTEM FOR PROVIDING AN
IMPROVED STORE-IN CACHE

RELATED APPLICATIONS

0001. The present application is a Continuation applica
tion of U.S. patent application Ser. No. 1 1/683.285, filed on
Mar. 7, 2007, the entire content of which is incorporated
herein by reference.

BACKGROUND OF THE INVENTION

0002 1. Field of the Invention
0003. The present invention generally relates to a method
and system for providing an improved store-in cache, and
more particularly, to the operation of stores in a cache system
and the reliable maintenance of locally modified data in such
a cache system.
0004 2. Description of the Conventional Art
0005 Caches are categorized according to many different
parameters, each of which has its own implications on per
formance, power, design complexity, and limitations of use.
One of the major parameters used is the Store Policy, which
determines how stores to the cache are handled. Such a Store
Policy includes two basic approaches, called Store-In and
Store-Through.
0006 When storing into a Store-In cache, that is all that
one needs to do: Store into it. This is exceedingly simple.
However, the directory entry for any line that has been stored
to must have a status bit (sometimes called a “dirty bit) to
indicate that the contents of the line have been changed. When
a store has not been percolated into the rest of the cache
hierarchy, but has simply been stored into, then the local
cache has the most recent, hence the only valid copy of the
new data.
0007. This means that if a remote processor attempts to
reference this line, it will miss in its local cache, and it must
get the only valid copy from the only place that exists—which
is the local cache of the processor that last stored into the line.
It further means that if a cache selects a line for replacement
that has its “dirty bit set, the modified line cannot simply be
overwritten. First, the modified line has to be written back to
the next cache level in the hierarchy. This operation is called
a “Castout.'
0008. Usually, a Castout is done by moving the modified
line into a “Castout Buffer then waiting for the bus (to the
next level in the cache hierarchy) to become available (be
cause it should be busy bringing in the new line to replace the
Castout), and then moving the line out of the Castout Buffer
and over the bus to the next cache level. While a Castout
sounds like it is a lot of trouble because it is a new operation
that needs to be done, in fact the effect of Castouts is to reduce
the overall traffic. This is because most lines that get modified
get modified repeatedly. The Castout essentially aggregates
these multiple modifications into a single transfer—unlike
what occurs in the second approach to the Store Policy, which
is a Store-Through approach.
0009. In a Store-Through cache, when data is stored into
the local cache, it is also “stored through the cache, which
means that it is stored into the next level of cache too. Thus the
total store bandwidth coming out of a Store-Through cache is
higher, since every store goes through it. It is noted that a
Store-In cache has the effect of aggregating multiple stores
made to the same location. It is also noted that, with a Store
Through cache, not only does it have the most recent copy of

Jun. 30, 2011

the stored data, but the next layer of cache in the cache
hierarchy has it as well. This means that remote misses can be
serviced directly from the next layer of cache in the hierarchy
(which may be quicker), and it also means that soft-errors
occurring in the lower level of cache are not fatal, since valid
data exists in the next level above it.
0010 Conventionally, server processors used for reliable
applications all have Store-Through L1 caches, which means
that each store made by the processor is done to both its L1
cache and to the next cache level in the hierarchy. This is
precisely to protect against Soft errors in modified L1 lines,
which works because there is a recoverable copy of the data
further up in the cache hierarchy.
0011. Of course, having a Store-Through L1 cache would
not be a requirement for reliability if Error Correcting Codes
(ECC) were used at the L1 level, but this is very difficult to do
for the following reason. Many stores in database applica
tions are single byte stores. Maintaining ECC on abyte granu
larity requires 3 additional bits per byte, which is quite costly.
0012. The alternative to using byte-ECC is to use double
word (8 byte) ECC, which requires 8 bits per doubleword—
the same overhead as byte parity. However, doubleword ECC
would require a longer pipeline for byte store instructions,
because the ECC would need to be regenerated for the entire
doubleword containing the byte. Doing a byte store would no
longer simply be a matter of storing a byte. Instead, it first
would require reading out the original doubleword, then
doing an ECC check to verify that the data in the doubleword
is good, then merging the new byte into the doubleword, then
regenerating the ECC for the modified doubleword, and
finally, storing the new doubleword back. The performance
lost to this longer pipeline can be significant.
0013. In some cases, for performance reasons it is more
desirable to have the L1 be a Store-In cache. In a Store-In
cache, Stores do not percolate through the L1 into the rest of
the hierarchy, but instead are accumulated in the L1 lines. The
only event in which data is written up to the next level in the
hierarchy is if a modified line is chosen (by the L1) for
replacement, i.e., for a Castout. In this case, the entire line is
written out to the next cache level in the hierarchy.
0014. One reason that this is desirable is that the higher
levels in the hierarchy are shielded from the raw store band
width. Another reason is that certain optimizations can be
made in higher levels of the hierarchy if they need only deal
with a single store quanta (e.g., just lines as opposed to both
lines and doublewords).
0015. In conventional systems and methods, even when a
Store-In cache is preferable, such is not an option if reliable
operation is a requirement. The present invention overcomes
the above problems.
0016 Some conventional Store-In and Store-Through
cache implementations are described below.
0017 FIG. 1 exemplarily shows a processor 100 with an
existing-art Store-In cache 101. For the cache to be able to
fetch and store data to the next level, the system includes a
Bus Interface Unit (BIU) 102. The system also includes a
Castout Buffer (COB) 103 for managing Castouts.
0018. In the exemplary arrangement illustrated in FIG. 1,
the processor 100 need not be concerned with the machina
tions of the BIU 102 or the COB 103. Instead, the processor
100 interacts only with the cache 101 itself. When the pro
cessor 100 fetches from the cache 101, the processor 100
receives doublewords (with byte parity), but when the pro

US 2011/O161780 A1

cessor 101 stores, it can store data (again, with byte parity) on
an individual byte granularity.
0019. When there is a cache miss, the cache 101 sends the
miss transaction to the Bus Interface Unit (BIU) 102. The
“transaction' includes the miss address and the desired state
of the miss data (meaning shared or exclusive). The BIU 102
forwards this information to the next cache level in the hier
archy as a “miss request. In the mean time, if the cache
selects a line for replacement (by the line that is to be brought
in by the miss) that has been modified locally, the modified
line needs to be sent to the next cache level to update its copy
of the line. To prepare for this, the cache 101 moves the
modified line into the Castout Buffer (COB) 103, which noti
fies the BIU 102 that it has a Castout.
0020 Typically, by the time that the modified line is
moved from the cache 101 to the Castout Buffer 103, the BIU
102 will be in the process of handling the incoming line from
the miss request, and putting it into the cache 101. Once the
incoming line has been completely transferred, the BIU 102
will send the modified line from the Castout Buffer 103 up to
the next cache level in the hierarchy (not shown).
0021 Note that the processor 100 interacts with the cache
on either a doubleword granularity for fetches, or on a byte
granularity for stores.
0022. For purposes of this disclosure, “byte granularity”
generally means that the stores can be as Small as a single
byte, but they can also be multiple bytes, up to a doubleword.
0023. On the other hand, the Bus Interface Unit 102, hence
the next cache in the hierarchy (not shown), only works with
cache lines, which are typically 128 bytes. That is to say that
all transactions to the next cache level in the hierarchy (not
shown) are either line fetches or line stores. This means that
the next level in the cache hierarchy can be optimized to
handle only lines.
0024. The rate of transactions (which are all line transac
tions) to the next cache level in the hierarchy is the basic L1
miss rate (which are line fetch requests) plus the Castout rate
(which are all line store requests). Since only a fraction of the
misses will cause Castouts, the Castout rate will be a fraction
of the miss rate.
0025 FIG. 2 exemplarily shows a similar processor 200
with an existing-art Store-Through cache 201. As before, the
processor 200 interacts with the cache 201 by fetching
doublewords and storing bytes—all with parity. But since all
stores are to be stored-through, all stores done by the proces
sor 200 begin by transferring the doubleword to which the
store will be done to the processor during the normal store
pretest. When the processor 200 stores a byte back to the
cache 201, it also merges the byte into the prefetched double
word, and it sends the modified doubleword to a Pending
Store Buffer (PSB) 203.
0026. The PSB 2.03 deals only in doublewords. Within the
PSB, a doubleword Error-Control Code (ECC) is generated
for the doubleword sent by the processor (not shown), and the
(now protected) doubleword is buffered until the instruction
that did the store operation has been completed.
0027 Typically the ECC is a Single Error Correcting,
Double Error Detecting (SECDED) code, which does just
what it says: if a single bit is flipped, the ECC will be able to
determine which bit it was, and it will correct it; if two bits are
flipped, the ECC will be able to detect that the data is bad, but
it will not be able to correct the data.
0028. When the store instruction is completed, the proces
Sor 200 notifies the PSB 2.03 that the Stored data should be

Jun. 30, 2011

sent to the next cache level in the hierarchy (not shown). The
PSB 2.03 sends a doubleword store request to the BIU 202,
which will send the modified doubleword up to the next cache
level in the hierarchy (not shown).
0029. Meanwhile, as was the case with the Store-In cache
of FIG. 1, if a miss occurs in the Store-Through cache 201 of
FIG. 2, the miss address and desired state (shared or exclu
sive) is sent to the BIU 202, which issues the miss request to
the next cache level in the hierarchy. Since all stores have
already been sent up into the hierarchy, there is no need to cast
out any data, ergo, a Castout Buffer is not needed. The BIU
202 merely manages line misses and doubleword stores.
0030 Note that in this case, there are two granularities of
data that are used in the next cache level in the hierarchy. For
misses, there are line-oriented fetch requests sent to the next
level. These requests occur at the L1 cache 201 miss rate. And
for every store issued by the processor 200, there is a double
word store request sent to the next level in the hierarchy. Thus,
the next cache level cannot be optimized for a single data
granularity, since it must deal both with lines and with
doublewords. Further, the next cache level is subjected to the
full store-bandwidth of the processor 200.

SUMMARY OF THE INVENTION

0031. In view of the foregoing and other exemplary prob
lems, drawbacks, and disadvantages of the related art meth
ods and structures, an exemplary feature of the present inven
tion is to provide a system, method, and framework for
providing an improved store-in cache, and more particularly,
to the operation of Stores in a cache system and the reliable
maintenance of locally modified data in Such a cache system.
0032 More particularly, an exemplary feature of the
present invention provides a Store-In cache with an additional
mechanism, which includes an Ancillary Store-Only Cache”
(ASOC). The ASOC according to the present invention can
provide and ensure robust reliability of the system. One
skilled in the art would recognize that the ASOC according to
the present invention, and how it operates, can include many
variations.
0033. An exemplary feature of the present invention pro
vides a method and apparatus for protecting a Store-In cache,
which may hold the only valid copy of recently stored data,
from soft errors. This allows the use of a Store-In policy when
it is desirable for performance reasons, without sacrificing the
robust recovery capability that is normally sacrificed when
the Store-In policy is used.
0034 Conventionally, server processors used for reliable
applications all have store-through caches, which means that
each store is done to both the L1 cache and to the next cache
level in the hierarchy. This is so that if soft errors occur in
modified L1 lines, there is a recoverable copy of the data
further up in the hierarchy.
0035. Of course, this would not be necessary if Error Cor
recting Codes were used at the L1 level, but this is very
difficult to do for the following reasons.
0036 Many stores in database applications are single byte
stores. Maintaining ECC on a byte granularity requires 3
additional bits per byte, which can be quite costly. An alter
native is to use doubleword (8 byte) ECC, which requires 8
bits per doubleword the same overhead as byte parity. How
ever, doubleword ECC would require a longer pipeline for
byte store instructions. Such a store would require reading out
the original doubleword, doing an ECC check, merging in the

US 2011/O161780 A1

new byte, regenerating the ECC, and storing back the new
doubleword. Hence, the performance lost to this longer pipe
line can be significant.
0037. In some cases, for performance reasons, it is more
desirable to have the L1 be a store-in cache. In a store-in
cache, Stores do not percolate through the L1 into the rest of
the hierarchy, but instead are accumulated in the L1 lines. The
only event in which data is written up to the next level in the
hierarchy is if a modified line is chosen (by the L1) for
replacement. In this case, the entire line is written out to the
next cache level in the hierarchy. One reason that this is
desirable is that the higher levels in the hierarchy are shielded
from the raw store bandwidth. Another reason is that certain
optimizations can be made in higher levels of the hierarchy if
they need only deal with a single store quanta (e.g., just lines
as opposed to both lines and doublewords).
0038 Conventionally, even when a store-in L1 is prefer
able, it is not an option if reliable operation is a requirement.
The present invention provides a system and method that
overcomes Such problems with the conventional methods and
systems.
0039 For example, the exemplary aspects of the present
invention can provide a store-in L1 with an additional means,
called an Ancillary Store-Only Cache' (ASOC), which
ensures robust reliability of the system. According to the
exemplary aspects of the present invention, the ASOC, and
how it operates, can include many variations. Several exem
plary aspects of the present invention are described below.
However, anyone skilled in the art will recognize that the
present invention is not limited to the examples provided
below.
0040. For purposes of the present invention, the ASOC
generally is defined as a small cache (e.g., 8-16 lines) having
the same linesize as the L1. The ASOC can be a cache of the
most-recently stored-to lines. Lines in the ASOC can be kept
with doubleword ECC.

0041. When a line is first stored-to, the line can be fetched
from the L1, and copied into the ASOC, while generating
doubleword ECC during the transfer. For byte stores, the
object doubleword can be read from the L1 during store
pretest, and it can be parity-checked. When the store is com
mitted, the new byte can be written into the L1 with its parity.
This is the path that the pipeline “sees.” What the pipeline
does not see is that the byte is then merged into the object
doubleword (that was previously fetched), ECC is generated,
and the new doubleword is written into the ASOC.

0042. If no parity errors are encountered in the L1, the
contents of the ASOC may not be used. However, if there is a
parity error, the correct data can be recovered from the ASOC.
0043. When a line ages out of the ASOC, the exemplary
aspects of the invention can, for example, do either of two
things. First, the exemplary aspects of the invention can write
the line out into the hierarchy (and mark it “unmodified in
the L1). Alternatively, the exemplary aspects of the invention
can just write the line back into the L1. According to the
present invention, the L1 should have the valid data contents,
since the present invention would be updating it all along.
However, what the line does not have is an ECC—which it
needs if it is to remain in the L1 (but not in the ASOC) in a
“modified state. Thus, all that the exemplary aspects of the
invention would need to do is to write back the ECC.
0044) The exemplary aspects of the invention take advan
tage of the fact that doubleword ECC is the same number of
bits as byte parity. When the present invention ages a line out

Jun. 30, 2011

of the ASOC, the exemplary aspects of the invention can
overwrite the parity bits in the L1 with the corresponding
doubleword ECC bits, and set a new state bit to indicate that
the check bits for the line are ECC bits, and not parity.
0045 Alternatively, the exemplary aspects of the inven
tion can allocate space in the L1 cache for both ECC and for
parity. This is a relatively low cost overhead. The exemplary
aspects of the invention also need to indicate whether the ECC
bits are valid. For unmodified lines, they will not be. However,
according to the exemplary aspects of the invention, once a
line has become modified, the ECC bits should be valid.
0046. It is also noted that the exemplary aspects of the
invention do not actually need to copy the entire contents of a
line from the L1 to the ASOC when the line is first put into the
ASOC. Instead, the present invention need only maintain the
doublewords that are actually stored to. The exemplary
aspects of the invention treat the doublewords in an ASOC
line as sectors, and use a “presence' bit for each stored
doubleword.

0047. When storing the sector ECCs back to the L1, the
exemplary aspects of the invention can indicate (within the
L1) which of the sectors (doublewords) have actually been
modified, so that it can be known that the checkbits associated
with those sectors are actually ECC bits. Alternatively, in a
case in which there is room for both, the exemplary aspects of
the invention can indicate which ones have actually been set.
0048 If it is desirable to keep both byte-parity and double
word ECC, but the full overhead of ECC for all doublewords
(an additional bit per byte) is undesirable, the exemplary
aspects of the invention can instead allocate space for only a
subset of the doublewords in a line (e.g., 2, 3, or 4) with an
indication of which doublewords these are associated with. In
this last exemplary case, lines having more than this many
doublewords modified can be castout (to the hierarchy) when
this threshold is exceeded.
0049. The practice of these exemplary methods, together
with the exemplary apparatidescribed above, enables store-in
behavior (as seen by the pipeline and by the rest of the cache
hierarchy) while providing the robust protection of a store
through cache.
0050. In one exemplary aspect of the invention, a hardened
store-in cache mechanism includes a store-in cache having
lines of a first linesize stored with checkbits. The checkbits
have byte-parity bits. The hardened store-in cache mecha
nism also includes an ancillary store-only cache (ASOC) that
holds a copy of most recently stored-to lines of the store-in
cache. The ancillary store-only cache (ASOC) includes fewer
lines than the store-in cache. Each line of the ancillary store
only cache (ASOC) has the first linesize stored with the
checkbits, and the checkbits of the ancillary store-only cache
(ASOC) are doubleword Error Correcting Code (ECC) for
each doubleword within the stored-to lines. The stored-to
lines are marked as being modified within the store-in cache
when the stored-to lines are stored to using a modified indi
CatOr.

0051. In another exemplary aspect of the invention, a hard
ened store-in cache mechanism includes a store-in cache
having lines of a first linesize stored with checkbits, wherein
the checkbits include byte-parity bits, and storing means for
holding a copy of most recently stored-to lines of the store-in
cache, wherein the storing means includes fewer lines than
the store-in cache, each line of the storing means having the
first linesize stored with the checkbits, the checkbits of the
storing means being doubleword Error Correcting Code

US 2011/O161780 A1

(ECC) for each doubleword within the stored-to lines, and the
stored-to lines being marked as being modified within the
store-in cache when the stored-to lines are stored to using a
modified indicator.
0052 Another exemplary aspect of the invention is
directed to a method of controlling, storing, and recovering
data in a store-in cache system having a store-in cache having
lines of a first linesize stored with checkbits, wherein the
checkbits are byte-parity bits, and an ancillary store-only
cache (ASOC) that holds a copy of most recently stored-to
lines of the store-in cache, wherein the ancillary store-only
cache (ASOC) includes fewer lines than the store-in cache,
each line of the ancillary store-only cache (ASOC) having the
first linesize stored with the checkbits, the checkbits of the
ancillary store-only cache (ASOC) being doubleword Error
Correcting Code (ECC) for each doubleword within the
stored-to lines, and the stored-to lines being marked as being
modified within the store-in cache when the stored-to lines
are stored to using a modified indicator. The exemplary
method includes storing the most recently stored-to lines of
the store-in cache into the ancillary store-only cache (ASOC)
with doubleword Error Correcting Codes, reading data stored
into the ancillary store-only cache only when the correspond
ing copy of that data is found to have parity errors in the
store-in cache, and using the read data from the ancillary
store-only cache to overwrite the data having parity errors in
the store-in cache.

BRIEF DESCRIPTION OF THE DRAWINGS

0053. The foregoing and other exemplary purposes,
aspects and advantages will be better understood from the
following detailed description of an exemplary aspects of the
invention with reference to the drawings, in which:
0054 FIG. 1 illustrates a conventional processor with a
store-in cache.
0055 FIG. 2 illustrates a conventional processor with a
store-through cache.
0056 FIG. 3 illustrates an exemplary processor with a
store-in cache that is augmented with an ancillary store-only
cache, according to an exemplary, non-limiting aspect of the
present invention; and
0057 FIG. 4 illustrates an exemplary method, according
to an exemplary, non-limiting aspect of the present invention.

DETAILED DESCRIPTION OF EXEMPLARY
ASPECTS OF THE INVENTION

0058 Referring now to the drawings, and more particu
larly to FIGS. 3 and 4, there are shown exemplary aspects of
the method and structures according to the present invention.
0059. The present invention relates to a method and sys
tem for providing an improved store-in cache, and more par
ticularly, to the operation of stores in a cache system and the
reliable maintenance of locally modified data in Such a cache
system.
0060 FIG.3 illustrates an exemplary aspect of the present
invention. As illustrated in FIG. 3, the exemplary system can
include a processor 300 with a Store-In cache 301 that oper
ates similarly to the Store-In cache of FIG. 1, except that FIG.
3 includes an additional mechanism added to the system,
which we will call an “Ancillary Store-Only Cache” 304
(ASOC). Component by component, the constituent parts of
FIG.3 are similar to (or the same as) their counterparts in FIG.
1. That is, the processor 300 can be the same as or similar to

Jun. 30, 2011

the processor 100: cache 301 can be the same as or similar to
cache 101: Bus Interface Unit (BIU) 302 can be the same as
or similar to BIU 102; and Castout Buffer (COB) 303 can be
the same as or similar to COB 103. A difference between FIG.
1 and FIG. 3, for example, how each respective system oper
ates, is exemplarily illustrated by the feature of the ASOC
304. Thus, the exemplary aspects of the present invention
provide an important advantage of including the ASOC 304,
which is not taught or suggested by the conventional systems
(e.g., see FIG. 1).
0061 Thus, the ASOC 304 and its basic function provide
an important advantage over the conventional systems. Of
course, those skilled in the art would recognize that there are
many variations on the specifics of how the exemplary ASOC
304 can be used and/or managed. The present invention pro
vides some examples of such below. For example, the basic
broad function of the ASOC 304 is explained below.
0062 Fundamentally, the ASOC 304 is another cache that

is (logically) operated in parallel with the Store-In cache 301.
However, the exemplary ASOC 304 may only hold lines that
have been stored into (modified) locally. Further, the ASOC
304 can hold those lines with doubleword ECC, whereas the
Store-In cache 301 holds the same lines with byte parity (at
least in this first exemplary aspect).
0063. Furthermore, for purposes of this disclosure, the
term “doubleword generally is used as a proxy for any
quanta that is larger thana byte but Smaller than a cache line.
That is, by using the word “doubleword, the present inven
tion is not restricted exclusively to an 8-byte quanta. Instead,
Such is illustrated for exemplary purposes only. For example,
an optimization that happens to be particular to an 8-byte
quanta, will be described below.
0064. When a store is issued by the processor 300 in the
exemplary “Hardened Store-In Cache' system of FIG. 3, the
basic Store-In protocol of FIG. 1 can be followed. That is, a
byte (or a plurality of bytes) with byte-parity can be stored
directly into the cache 301, and the directory entry for the line
that was stored into can be marked appropriately (as being
modified locally).
0065 However, at the same time, the line to which the
store is issued can be copied into the ASOC 304, and double
word ECC can be generated for the line in this exemplary
process. When the store is first issued, the doubleword into
which the byte is stored can be prefetched into the processor
300 just as was done in the case of the Store-Through cache
illustrated in FIG. 2. As the processor 300 stores a byte (or
multiple bytes) with parity into the cache 301, it also can
merge the byte into the prefetched doubleword, and send the
doubleword to the ASOC 304, where doubleword ECC is
generated, and the doubleword with ECC can be stored into
the copy of the line in the ASOC.
0066. In essence, this merging of the new byte into the
object doubleword, and generation of doubleword ECC can
be similar to the undesirable operation of dealing with
doublewords and ECC that was described in the Background
section above. For example, in the Background section, it was
explained that such was undesirable because it lengthened the
pipeline associated with the store operation, which can have a
deleterious effect on performance. However, such problems
can be avoided or overcome with the ASOC, according to the
exemplary aspects of the present invention.
0067. According to the present invention, the ASOC is not
part of the processor's store pipeline, hence the merging of
bytes and the generation of doubleword ECC have no effect

US 2011/O161780 A1

on the performance of the processor's pipeline. The processor
pipeline involves only the Store-In cache 301, and is similar to
(or the same as) the processor pipeline of FIG.1. In fact, the
contents of ASOC generally are not read, unless there is an
error that must be recovered.
0068 Thus, the ASOC is simply a small cache that keeps
a copy of all of the locally-modified lines, and it keeps those
lines with ECC. This allows the processor to work with the
Store-In cache of FIG. 1, while maintaining a backup hard
ened (meaning “with ECC) copy of modified data, which
allows recovery in the event of a soft error.
0069. The exemplary “Hardened Store-In Cache' system
of FIG. 3 can afford the two advantages of a Store-In cache
(those being that the next level in the cache hierarchy can be
optimized for lines only, and that the next level in the cache
hierarchy is shielded from the raw store bandwidth of the
processor), while providing the error immunity of a Store
Through cache.
0070 Those with ordinarily skill in the art will recognize
that variations on the above exemplary aspects of the inven
tion can include any or all variations in how the ASOC is
actually managed, and what is actually kept in both the ASOC
and the main cache.
0071. Further Exemplary Aspects of the Invention
0072. As mentioned above, for purposes of the present
application, the ASOC generally is defined as a small cache
(e.g., 8-16 lines) having the same line size as the L1. The
ASOC can be a cache of the most-recently stored-to lines.
Lines in the ASOC can be kept with doubleword ECC.
0073. When a line is first stored-to, the line is fetched from
the L1, and copied into the ASOC, while generating double
word ECC during the transfer. For byte stores, the object
doubleword is read from the L1 during store pretest, and it is
parity-checked. When the store is committed, the new byte is
written into the L1 with its parity. This is the path that the
pipeline “sees.” What the pipeline does not see is that the byte
is then merged into the object doubleword (that was previ
ously fetched during the store pretest). ECC is generated, and
the new doubleword is written into the ASOC.
0074. If no parity errors are encountered in the L1, the
contents of the ASOC generally are not used. However, if
there is a parity error, the correct data can be recovered from
the ASOC.
0075. When a lineages out of the ASOC, the exemplary
aspects of the present invention can do either of two things.
First, the present invention can write the line out into the
hierarchy (and mark it “unmodified in the L1). Alternatively,
the present invention can write the line back into the L1.
0.076 Recall that the L1 should have the valid data con
tents, since the present invention can be updating it all along.
However, what the line in the L1 does not have is an ECC,
which it needs if it is to remain in the L1 (but not in the ASOC)
in a “modified’ state. Thus, the present invention merely
needs to write back the ECC into the checkbits that had
originally held parity.
0077. The present invention takes advantage of the fact
that doubleword ECC is the same number of bits as byte
parity. When the present invention ages a line out of the
ASOC, the present invention can overwrite the parity bits in
the L1 with the corresponding doubleword ECC bits, and set
a new state bit to indicate that the check bits for the line are
ECC bits, and not parity.
0078. Note that, strictly speaking, the present invention
does not actually need this new state bit. The ordinarily

Jun. 30, 2011

skilled artisan would recognize that, if the cache were man
aged in this way, all modified lines in the L1 that are not in the
ASOC must have ECC.
0079 Alternatively, the present invention can allocate
space in the L1 cache for both ECC bits and for parity bits.
This is a relatively low cost overhead. In this exemplary
aspect, the present invention also could indicate whether the
ECC bits are valid. It is noted that, for unmodified lines, they
will not be. However, once a line has become modified, the
ECC bits should be valid.

0080. It also is noted that this exemplary aspect of the
present invention does not actually need to copy the entire
contents of a line from the L1 to the ASOC when the line is
first put into the ASOC. Instead, this exemplary aspect of the
present invention would only need to maintain the double
words that are actually stored to. The present invention can
treat the doublewords in an ASOC lineas sectors, and can use
a “presence' bit for each stored doubleword.
0081. When the sector ECCs are stored back to the L1, the
exemplary aspect of the present invention can indicate (within
the L1) which of the sectors (doublewords) have actually been
modified, so that it is known that the check bits associated
with those sectors are actually ECC bits. Alternatively, in the
exemplary case in which there is room for both, the present
invention can provide an indication of which ones have actu
ally been set.
I0082 If it is desirable to keep both byte-parity and double
word ECC, but it is not desirable to have the full overhead of
ECC for all doublewords (an additional bit per byte), space
can instead be allocated for only a subset of the doublewords
in a line (e.g., 2, 3, or 4) with an indication of which double
words these are associated with. In this last exemplary case,
lines including more than this many doublewords modified
are Castout (to the hierarchy) when such a threshold is
exceeded.
I0083. According to the exemplary aspects of the inven
tion, the ASOC need not actually contain the doubleword
data. Instead, the exemplary ASOC can simply be a cache that
just contains the ECC bits for the modified lines in the L1.
I0084. The practice of these exemplary methods, together
with the exemplary apparati described above, can enable
store-in behavior (as seen by the pipeline and by the rest of the
cache hierarchy) while providing the robust protection of a
store-through cache.
0085 While the invention has been described in terms of
several exemplary aspects, those skilled in the art will recog
nize that the invention can be practiced with modification
within the spirit and scope of the appended claims.
I0086. Further, it is noted that, Applicants intent is to
encompass equivalents of all claim elements, even if
amended later during prosecution.

What is claimed is:
1. A hardened store-in cache system, comprising:
a store-in cache having lines of a first linesize stored with

checkbits, wherein said checkbits comprise byte-parity
bits; and

an ancillary store-only cache (ASOC) that holds a copy of
most recently stored-to lines of said store-in cache,

wherein the ASOC includes fewer lines than said store-in
cache, each line of the ASOC comprising said first line
size stored with said checkbits.

US 2011/O161780 A1

2. The hardened store-in cache system according to claim
1, wherein said checkbits of said ASOC comprise a double
word Error Correcting Code (ECC) for each doubleword
within said stored-to lines.

3. The hardened store-in cache system according to claim
1, further comprising:

a cache controller that controls storing of data to the ASOC
and recovering of data from the ASOC such that said
data from the ASOC is used only if parity errors are
encountered in the store-in cache.

4. The hardened store-in cache system according to claim
1, wherein, when lines age out of the ASOC, said lines are
written back to another level of cache within a cache hierar
chy, with said another level being different from the store-in
level, and with a modified indicator corresponding to said
written-back lines being reset to indicate non-modification in
the store-in cache.

5. The hardened store-in cache system according to claim
1, wherein said lines within the ASOC are partitioned into
doubleword sectors, said sectors being used to hold only
those doublewords that are actually modified, and further
including a presence bit for each said sector, said presence bit
indicating whether a corresponding sector has valid contents.

6. The hardened store-in cache system according to claim
1, wherein the state of each line within said store-in cache is
augmented to indicate that said checkbits are to be interpreted
as at least one of parity and a doubleword Error Correction
Code (ECC).

7. The hardened store-in cache system according to claim
6, wherein when lines age out of the ASOC, said aged-out
lines are written back into said store-in cache, and

wherein ECC bits from the ASOC overwrite said corre
sponding parity bits within said store-in cache, said aug
mented State in said store-in cache being set to indicate
that newly written checkbits are the ECC bits.

8. The hardened store-in cache system according to claim
7, wherein said store-in cache includes both parity bits and
said ECC bits, and

wherein less than all of the ECC bits are valid.
9. The hardened store-in cache system according to claim

7, wherein said store-in cache includes only a subset of the
ECC bits,

Jun. 30, 2011

wherein said store-in cache includes a field to indicate
which doubleword sectors are protected in each line, and

wherein said store-in cache includes a policy of casting out
lines whena threshold number of modified doublewords
is exceeded.

10. The hardened store-in cache system of claim 1, wherein
said ancillary store-only cache includes said checkbit infor
mation, and is devoid of said data.

11. A hardened store-in cache system, comprising:
a store-in cache having lines of a first linesize stored with

checkbits, wherein said checkbits comprise byte-parity
bits; and

a memory device for holding a copy of most recently
stored-to lines of said store-in cache,

wherein said memory device includes fewer lines than said
store-in cache, each line of said memory device having
said first linesize stored with said checkbits, said stored
to lines being marked as being modified within said
store-in cache when said stored-to lines are stored to
using a modified indicator.

12. The hardened store-in cache system according to claim
11, further comprising:

a cache controller that controls storing of data to said
memory device and recovers data from said memory
device Such that said data from said memory device is
used only if parity errors are encountered in the store-in
cache.

13. A hardened store-in cache apparatus, comprising:
a store-in cache having lines of a first linesize stored with

checkbits, wherein said checkbits comprise byte-parity
bits; and

an ancillary store-only cache (ASOC) that holds a copy of
most recently stored-to lines of said store-in cache,

wherein the ASOC includes fewer lines than said store-in
cache, each line of the ASOC having said first linesize
stored with said checkbits, and said stored-to lines being
marked as being modified within said store-in cache
when said stored-to lines are stored to use a modified
indicator.

14. The hardened store-in cache apparatus according to
claim 13, wherein said checkbits of the ASOC comprise a
doubleword Error Correcting Code (ECC).

c c c c c

