a9y United States

US 20240004658A1

a2y Patent Application Publication o) Pub. No.: US 2024/0004658 A1

Wang et al. 43) Pub. Date: Jan. 4, 2024
(54) INSTRUCTION SIMULATION DEVICE AND GOGF 11/07 (2006.01)
METHOD THEREOF GOGF 9/455 (2006.01)
(52) US.CL

(71) Applicant: Shanghai Zhaoxin Semiconductor
Co., Ltd., Shanghai (CN)

(72) Inventors: Weilin Wang, Beijing (CN); Yingbing

Guan, Shanghai (CN); Mengchen
Yang, Beijing (CN)

(73) Assignee: Shanghai Zhaoxin Semiconductor
Co., Ltd., Shanghai (CN)

(21) Appl. No.: 18/465,189

(22) Filed: Sep. 12, 2023

Related U.S. Application Data
(63) Continuation of application No. 17/471,167, filed on

Sep. 10, 2021, now Pat. No. 11,803,381.

(30) Foreign Application Priority Data

Dec. 29, 2020 (CN)
Dec. 29, 2020 (CN)

Publication Classification

CPC ... GOGF 9/30145 (2013.01); GOGF 9/30047
(2013.01); GOGF 9/3814 (2013.01); GO6F

9/30189 (2013.01); GOGF 9/30101 (2013.01);
GOGF 9/30185 (2013.01); GOGF 9/3017

(2013.01); GOGF 9/4812 (2013.01); GO6F

11/0772 (2013.01); GOGF 9/45516 (2013.01);
GOGF 9/30174 (2013.01); GOGF 9/455

(2013.01); GOGF 9/3858 (2023.08)

(57) ABSTRACT

An instruction simulation device and a method thereof are
provided. The instruction simulation device includes a pro-
cessor. The processor includes an instruction decoder which
generates format information of a ready-for-execution
instruction. The processor determines whether the ready-
for-execution instruction currently executed by the proces-
sor is a compatible instruction or an extended instruction
based on the format information of the ready-for-execution
instruction. If the ready-for-execution instruction is an
extended instruction under the new instruction set or the

2020115888853 extended instruction set, the processor converts the ready-
202011588921 .6 for-execution instruction into a simulation program corre-

sponding to the extended instruction, and simulates an
execution result of the ready-for-execution instruction by
executing the simulation program. The simulation program

(51) Int. CL is composed of at least one compatible instructions of the
GO6F 9/30 (2006.01) processor. If the ready-for-execution instruction is a com-
GO6F 9/38 (2006.01) patible instruction, the processor executes the ready-for-
GO6F 9/48 (2006.01) execution instruction.

~100
ready—for Application Electronic device
—execution -130
instruction |~132
Operating
system ~120
171+ --174
-122
Simulation
module
—173
112 14 Processor
Instruction W -110
decoder 1\72

Patent Application Publication Jan. 4,2024 Sheet 1 of 13 US 2024/0004658 A1

100

ready—for Application Electronic device

—execution 130
instruction 132

Operating

system —120

171 174

122

Simulation
module

—173

/112 /“4 Processor

Instruction K Monitor —110
decoder 172

FIG. 1

Patent Application Publication Jan. 4,2024 Sheet 2 of 13 US 2024/0004658 A1
/100
ready—for Application Electronic device
—execution 1 130
instruction 1
/124
Operating Store region
system —120 /1242
Processor—current
171 —174 —state store
region
122 1244
Conversion—information
Simulation store region
module \ 1246
175 | ——— L
Simulation—execution
—result store region
173 176
/112 /“4 Processor
Instruction K Monitor 110
decoder 172

FIG. 2A

Patent Application Publication

Jan. 4,2024 Sheet 3 of 13 US 2024/0004658 A1

/100
Ready—for Application Electronic device
—execution 1 130
instruction 1
/124
Operating Store region
system —120 1242
Processor—current
171 —174 —state store
region
/122 /1244
Conversion—information
Simulation store region
module \ 1246
175 : L
Conversion—execution
—result store region
173 176
, 112 /“4 Processor
Instruction K Monitor 110
decoder 172
/116
Dedicated hardware

FIG. 2B

US 2024/0004658 A1

Jan. 4,2024 Sheet 4 of 13

Patent Application Publication

¢ Ol

8|} Je)sibal UONDINWIS

19151681 9)DALIY

uoibal 81018

a9l

9pzl | 1Insai—uoijnoaxs 18181baJ Jsyuiod
—UOID|NWIS 1|NS8J—U0INJBX3
uoibal 910)s —UonoINWIS
ppgl—{ Uolbuiojul 91l
—UOISJBAUOY) 12151084 Jsrui0d
UOI1DWLIOJUI
—U0|SJBAUOY
uoibaJ 2101s aoll
TvZl~{ 91DIS—1Uand oS

—1055200.4

2bDJ01S UIDY

9

Ja1uod 91015
1U8J4n0— 1055920

Vol

m_@:,
9JOMPIDY P3)DIIPa(] 5119 9G¢

ubaJ3
| —ubaJ3

” buiddop

162J7
0bel3

3|l Ja)s1baJ 18buD|

Patent Application Publication Jan. 4,2024 Sheet 5 of 13 US 2024/0004658 A1

~40 420 430
N Instruction qunch
cache predictor |
o |
—132 :
12 |
Instruction decoder :
1122 |
Instruction :
analyzing unit :
PRE /EOP /MOP /0D |
/470 |
1124 114 116D |
Microinstruction Microinstruction . EF Private :
- Monitor .
sequence sequence calling register :
storage unit unit 139 |
e
JMOP |
280 '
- Clear !
. 122
LA Conversion : L
cache T
| : .
J40P A0 A0 Slrr:g:ﬂfn
Microcode | Microcode :
control unit] memory |L
160
Execut
xecutor 1602 4402 /440
Renaming unit Instruction retire unit
4404
1604 L L
, , Entry 1
Reservation station
1606 1608 : Resr?frmg
Execution Memory uter
: : Entry N
unit access unit

FIG. 4A

FIG.

4B

Patent Application Publication Jan. 4,2024 Sheet 6 of 13 US 2024/0004658 A1
~40 420 430
N Instruction qunch
cache predictor |
o |
—132 :
112 |
Instruction decoder :
1122 |
Instruction :
analyzing unit !
PRE /EOP /MOP /0DI |
/470 |
124 114 116D |
Microinstruction Microinstruction . EF Private :
- Monitor .
sequence sequence calling register :
storage unit unit 139 |
0P o
280 0 :
Conversion ear : 22
cache T
460 450 : Simulation
Microcode | Microcode : module
control unit] memory |L
160
Executor
Xecu 1602 4402 /440
Renaming unit Instruction retiring
4404
1604 L L
, , Entry 1
Reservation station
1606 1608 Ret())rcfifrmg
Execution Memory uter
: : Entry N
unit access unit

US 2024/0004658 A1

Jan. 4,2024 Sheet 7 of 13

Patent Application Publication

9|qD1
2oUanbas
—wnJboud
|co:o_:ﬂ£m
v90.

9[qD1]
UOISIBALOD
woJboud
—UoNDINWIS
01 uononasul
%%%ft@
Y0/

VG "Ol4

NWwpJibold~uonojnwig

<— Ja1UI0d ™ NOIJUIS

V2290, — rwoiboid—uorppnwis

< Joui0dTpoudquig <

ZwpJbosduono|nwig

e 151U10d7704qUIS

|wpJbosd™uonn|nwig

<— Jo1uI0d™ |0UquIS

Y290/ — Swpiboud uolpjnwig

Jauiod™ NoI4WIS

NT100/N™dOW/N™d0o3/N™ 34d

Vil
|

JR1I0dT oSS

100/ dOW/ 1 do3/ 1 34d

<— }IH

\ J21U0d™7044WIS

¢ 100/2” dOW/ 2~ d03/ ¢ 3ud

\ Joruiod™ [oddwis

17100/ 1 dOW/ 1 d03/ 1~ 3¥d

QNN@E ‘a|dwioxs Jof)

‘ Jayuiod aousnbas
—wo4boad—uonniNWIS
V0L

Vb0

b1 uononAsul
—Papusixy
¥Zr0L -

wpJboud uonbjnWIS

1un 04107

vZ0L -

(F1a0/r~dow/r
~d03/r34d bupnjour)
UoIoNASUl papualx

US 2024/0004658 A1

Jan. 4,2024 Sheet 8 of 13

Patent Application Publication

9|qp} 9ouanbas
—wpJboid-uonpinwig

,
890,

2|qD) UOISISAUOD
wpJboid—uonpnwis o}
LOIONIISUI—PapuaIx]

,
avoL

e 131UI0d 7 NOJJuIS

NwoIboid~uonoinuwIs

. ¢ —puipJbosd™uononWIS
Z—rwoiboid™uonpnwis

| —rwoJboid~uonpnuwiIs

8¢¢90L —

ZwoJboiduonninuiIs

<— 191uI0d™ 7014WIS

7 — | wpJboid~uonoinwis

< Jo1uj0d 77— 04duWIS

| — | WpJboid™uonojnwig

< 1a)uI0d™ | —0JquiIg

9790/ — SWpDOoJd UOI}DINWIS
m Jajuiod—NoIdWig N”100/N_dOW/N"d03/N_34d a0/
W J8yuIod=g—poiduig C=r7100/M dON/ 1~ d03/ 1~ 3ud
| Jayuiod™ g —0JquIS ¢-17100/1~ dON/ 1~ d03/1™ 3¥d m\gé
g 181U10d™ | -PoUquis L-M7100/1~dOW/1~d03/r™3Md fe—1H

\ J3UI0d™Z014uwIS

17100/2”dOW/ 2 d03/ 2~ 34d

\ J18U10d™7 - [04dWIg

| 18yul0d™ | — |0IduwIS

Nl
Z-17100/ 1~ dOW/1~d03/ 1~ 3ud
L=17100/ 1 dOW/ 1~ d03/ 1~ 3Md

) Jp1u10d 3oUBNDAS
924401 —wnJboid—uonoinuwig
grv0L -

b0y uononnsul TR
By (r7100/1~ dOW/Ido3/1™ 3ud
mmvom\ @c%:_oc; UOI}ONIISUI PapuUaIX]

e— 191UI0d™ | —POJJUIIS <~

Ammmmom ‘s|dwoxa _ob
woiboud uononWIS

US 2024/0004658 A1

Jan. 4,2024 Sheet 9 of 13

Patent Application Publication

v9 "Old

(A xew<-Isul ‘Zois<sul ‘xj0)Bad pesl = [z}g)zas
}esie

{
SN Xeuwi<-8ul ‘ZoIs<-isul ‘myp)Bes peal = [z} 5lzous
}H{zous<-su) ‘mup)Basejeinws) 4

{
{18 xeuic-jsul ‘|ois<-isul ‘xpo)bas pesl = [z16]108
}ospe
{
{IA xew<-Isu ‘LoIs<sul ‘myp)Bas pesl = [z36]10us
H{1ois<-38u1 ‘myp)Bas ajepnws) §
{
{18 xew<-1sU1 18p<-1sul ‘xp0iBal pesi = [z1glinsad dug
}ospe
{

Buiddew p\He1eoIpep Wol) peal // (A Xew<-1sul Sp<-isul ‘mup)Bal peal = [z} glinses duy
}H{sp<-isur ‘myp)Bes sienwa)
{0} = [z15lzos gn
{0} =[zigloss gn
{0} = [z1ghinses dwy gn
‘INON DY =01} epow”punoy
}

(Mup, MHeIBOIPBQ ‘SNIB]S, SNIBJSSSa004d ‘X10, JXBJUOOI0SS8001d ‘JSUI, OU[ISUZ LG PSppeE sjeinwa

< o © ied
STV ITL2E2ZTEINRNSG

— 0N D P D O

US 2024/0004658 A1

Jan. 4,2024 Sheet 10 of 13

Patent Application Publication

89 "OId

0 = [gz A xew<-jsuinsad duy
Trozzihioms = [p9iz) Mnsad dun
{
1
0 = [(:calnsasdug
H{sup)Beyoiszsey) i
{
[0:eolnsas duwy uo abueyo ou Jf
H{zsu)Beyabiow sey) i
}os
_ f
(01 “[preglynses dug)punos = [g.cohnsad duy
sunnoJ punos wioped

To'eolzous + [0:g9)i0is = [prgolinsas dus
uoyesado ppe op jf

}Hlolly seuni<-jsut |f (suyseuny sey) §
kfsoxo = 24
}ese

{
DI XaAB<SU = 9
H{zois<-sunBai s 9% | == q'XeA8<-Jsul) i

0g
6
14
iy
o
S
144
(37
oy
Iy
Oy
6t
8¢
i€
9t
141
143
12
4%
23
oF
6¢
114
iZ
9

US 2024/0004658 A1

Jan. 4,2024 Sheet 11 of 13

Patent Application Publication

J9 "Ol4

{

T Lnyay

{
AMH AT LHOddNS A XyiNsuyapasd Jsp<-isul Jnsas dunifeoss sjepdn
} (MH™AS 1H0ddNS A XV auyapaid < JA Xeu<-jsul) §

{
(1N XeLl<-I5U1 1SP<-SUl Ynsal” dusy Xiahinsad sAes
}asp

{IN XBW<-jSUI JSp<-ISuUl ‘nsas duly ‘MUp)nsal oABS
1 {(sp<-isul “myp)Bes speina)

£9
29
19
09
69
84
A
98
S8
4]
€9
A
3

Patent Application Publication Jan. 4,2024 Sheet 12 of 13 US 2024/0004658 A1

Invoke an interrupt service program, store current context 5702
of the processor and prohibit interrupts

v
Establish a simulation environment/context specified to | 5704
the simulation module

Read the
format information of the 5706
ready—for— execution instruction byte—by-
byte according to a pointer provided by the interrupt

service program, and then determines whether this ready
<for—execution instruction may be implemented
No : , Yes
in the current operating mode of
the processor
5708
Restore the pre—stored 5710
context before the interrupt Use the format information of
program being invoked, the ready—for—execution
then quit the interrupt instruction to invoke corresponding
service program simulation program
512
Report an error or an
dbnormality Ac;ess a memory opergnds or @
register operand according to the
indication of the ready—for
—execution instruction
Execute the simulation program, and store the
SI4— gimulation execution result in the simulation—
execution—result store region

Restore the pre—stored context, enable interrupts, J
and quit the interrupt service program

S716~ FIG. 7

US 2024/0004658 A1

Jan. 4,2024 Sheet 13 of 13

Patent Application Publication

8 9Id

UOINONIISUI UOIINJaX3—I0)
—AppaJ 8y o suonDIUsWA|dWI SY) S1DINWIS 0) PaINIaXs
Apusnbasgns si yolym ‘woJboud uonpINWIS D 01Ul UoNONASUI

U0IIN08Xd—J0}—ApDaJ aUl 1J8AUCD ‘9|npow UONDINWIS ay} DIA

9185

3|NPOW UOID|NWIS D 01 SD 0S 3|gD) J0109A
1dnusIul UD 95JaADJY 01 43 BD|l UONDINWS Yl 14asSy

7185~

1INsal UG NdaXa Ub uclIpWIoLUl 10UIO)

Da1DJauab ay) 0} buiplodoo uononisu

uolpILou
1UBA3 —|puo daoxd
/—snojowoun
un umay

7185

uononisu
PapuUsIXa UD
SI UONONJISUI UOIINJ9Xa—1o)

—AppaJ 8y Jaylaym
auIWIB1R(]

ON

SUIN}aJ puUD UOIJONSUI !
a|q1pdwod sy a|gnpdwod D S UONONASUI UOIINIaXa
S$31n09x2 J0ssa00ud ay| —loj—Appal ayy Jayjauym
908S
208S QUILLRIB(
$09S—| UoIDWIOUI JDWIO) 81043USD 0} LOONIISUI UOIINO8Xa—10j—ApDaJ SIU} 8pods(]

i

UONANNSUI Uo

€085

1N29X2—J0) —ApDaJ D 8AI8d3Y

US 2024/0004658 Al

INSTRUCTION SIMULATION DEVICE AND
METHOD THEREOF

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application is a continuation application of
and claims the priority benefit of a prior application Ser. No.
17/471,167, filed on Sep. 10, 2021, which claims the priority
benefit of China application serial no. 202011588885.3, filed
on Dec. 29, 2020, and China application serial no.
202011588921.6, filed on Dec. 29, 2020. The entirety of
each of the above-mentioned patent applications is hereby
incorporated by reference herein and made a part of this
specification.

BACKGROUND

Technical Field

[0002] The disclosure relates to an instruction execution of
a computer device, and in particular to an instruction simu-
lation device and a method thereof.

Description of Related Art

[0003] With continuous developments in computer sys-
tems, processor manufacturers may upgrade their instruction
sets of those instruction set architectures (ISAs) supported
by their processors. A processor may thus incompletely
support a new, updated, or an extended instruction set
sharing the same ISA currently supported by itself, such that
an instruction under new/updated instruction sets may be
executed inaccurately and thus cause executional errors. In
other words, those instructions which a processor may
support are determinate after manufacture such that any
new-added extended instruction may be incorrectly
executed over an old-version processor. The incompatibility
among processor instruction sets and their updated versions
is still an outstanding issue up-to-date.

[0004] Therefore, an old-version processor and/or the
computer system embodied with it may be thrown away if
this old-version is unable to support an updated version of its
current instruction set, which is obvious a resource-wasting
as well as a life-shortening approach for the uses of those
electronic appliances embodied with old-version processors
therein.

SUMMARY

[0005] The disclosure provides an instruction simulation
device and a method thereof, configured to overcome the
incompatibility issue among processor instruction sets,
thereby extending the service life of an electronic appliance
embodied with the disclosed simulation device therein.

[0006] In an embodiment of the disclosure, an instruction
simulation device including a processor is provided. The
processor includes an instruction decoder which is config-
ured to generate format information of a ready-for-execution
instruction. The processor is configured to determine
whether the ready-for-execution instruction currently
executed by the processor is a compatible instruction or an
extended instruction based on the format information of the
ready-for-execution instruction. The compatible instruction
is an instruction under a current instruction set of the
processor. The extended instruction is not an instruction
under the current instruction set of the processor but is an

Jan. 4, 2024

instruction under a new instruction set or an extended
instruction set. The new instruction set and the extended
instruction set are instruction sets that do not belong to a
native instruction set of the processor. If the ready-for-
execution instruction is an extended instruction under the
new instruction set or the extended instruction set, the
processor converts the ready-for-execution instruction into a
simulation program corresponding to the extended instruc-
tion, and simulates an execution result of the ready-for-
execution instruction by executing the simulation program.
The simulation program is composed of at least one com-
patible instructions of the processor. If the ready-for-execu-
tion instruction is a compatible instruction, the processor
executes the ready-for-execution instruction.

[0007] In an embodiment of the disclosure, an instruction
simulation method performed by a processor is provided.
The processor includes an instruction decoder. The instruc-
tion simulation method comprises: using the instruction
decoder of the processor to generate format information of
a ready-for-execution instruction; determining by the pro-
cessor whether the ready-for-execution instruction currently
executed by the processor is a compatible instruction or an
extended instruction based on the format information of the
ready-for-execution instruction, wherein the compatible
instruction is an instruction under a current instruction set of
the processor, and the extended instruction is not an instruc-
tion under the current instruction set of the processor, but is
an instruction under a new instruction set or an extended
instruction set, wherein the new instruction set and the
extended instruction set are instruction sets that do not
belong to a native instruction set of the processor; translating
the ready-for-execution instruction into a simulation pro-
gram corresponding to the extended instruction wherein an
execution result of the ready-for-execution instruction is
generated by means of a simulation execution result gener-
ated by the simulation program if the read-for-execution
instruction is an extended instruction under the new instruc-
tion set or the extended instruction set; and executing the
ready-for-execution instruction by the processor if the read-
for-execution instruction is a compatible instruction. The
simulation program is composed of at least one compatible
instruction of the processor.

[0008] In another embodiment of the disclosure, a proces-
sor instruction simulation method is provided. The processor
instruction simulation method comprises: using an instruc-
tion decoder of a processor to generate format information
of a ready-for-execution instruction; determining, by the
processor, whether the ready-for-execution instruction cur-
rently executed by the processor is an extended instruction
based on the format information of the ready-for-execution
instruction; when the ready-for-execution instruction cur-
rently executed by the processor is the extended instruction,
calling a simulation module by using an interrupt service
program to obtain a simulation program corresponding to
the extended instruction, wherein the extended instruction is
not an instruction under a current instruction set of the
processor, but is an instruction under a new instruction set or
an extended instruction set, wherein the new instruction set
and the extended instruction set are instruction sets that do
not belong to a native instruction set of the processor; and
executing the simulation program to generate a simulation
execution result for simulating an execution result of the
ready-for-execution instruction.

US 2024/0004658 Al

[0009] In another embodiment of the disclosure, a proces-
sor instruction simulation method is provided. The processor
instruction simulation method comprises: using an instruc-
tion decoder of a processor to generate format information
of a ready-for-execution instruction; determining, by the
processor, whether the ready-for-execution instruction cur-
rently executed by the processor is an extended instruction
based on the format information of the ready-for-execution
instruction; when the ready-for-execution instruction cur-
rently executed by the processor is the extended instruction,
calling an interrupt service program to obtain a simulation
program corresponding to the extended instruction, wherein
the extended instruction is not an instruction under a current
instruction set of the processor, but is an instruction under a
new instruction set or an extended instruction set, wherein
the new instruction set and the extended instruction set are
instruction sets that do not belong to a native instruction set
of the processor; and executing the simulation program to
generate a simulation execution result for simulating the
extended instruction.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] FIG. 1 is a schematic diagram of an electronic
device embodied with an instruction simulation device
according to an embodiment of the disclosure.

[0011] FIG. 2A is a schematic diagram of an electronic
device embodied with an instruction simulation device
according to another embodiment of the disclosure.

[0012] FIG. 2B is a schematic diagram of an electronic
device embodied with an instruction simulation device
according to yet another embodiment of the disclosure.
[0013] FIG. 3 is an architecture diagram of a dedicated
hardware according to an embodiment of the disclosure.
[0014] FIG. 4A is a detailed structure diagram of a pro-
cessor in an electronic device according to an embodiment
of the disclosure.

[0015] FIG. 4B is a detailed structure diagram of a pro-
cessor in an electronic device according to another embodi-
ment of the disclosure.

[0016] FIG. 5A is a schematic diagram of a simulation
module used for translating an extended instruction accord-
ing to an embodiment of the disclosure.

[0017] FIG. 5B is a schematic diagram of a simulation
module used for translating an extended instruction accord-
ing to another embodiment of the disclosure.

[0018] FIGS. 6A-6C collaboratively demonstrate an
exemplary simulation program according to an embodiment
of the disclosure.

[0019] FIG. 7 is a flow chart illustrative of simulation
operations according to an embodiment of the disclosure.
[0020] FIG. 8 is a flow chart illustrative of processing a
ready-for-execution instruction according to an embodiment
of the disclosure.

DESCRIPTION OF THE EMBODIMENTS

[0021] Some terminologies and technical terms herein are
used to describe embodiments of the specification only and
should not be constructed as any limitation to the present
invention:

[0022] Compatible instruction: a compatible instruction is
an instruction that is a native instruction of a certain series/
model of processors, or an instruction that may be recog-

Jan. 4, 2024

nized/interpreted as at least one native instructions, and
therefore may be implemented accurately by the processors.
[0023] Incompatible instruction: an incompatible instruc-
tion refers to at least one of the three types of instructions:
(a). an instruction which is under a new/extension instruc-
tion set in comparison with that of a certain series/model of
a processor but shares the same ISA with that of this
processor such that such an instruction may be inaccurately
recognized/interpreted by the processor, (b). an incorrect/
invalid instruction, or (c). an instruction that is classified as
a different ISA from that of the processor.

[0024] Extended instruction: an extended instruction is an
instruction under a new/extended instruction set in compari-
son with that of a certain series/model of processor but
shares the same ISA as that of this processor, such that an
extended instruction may be inaccurately recognized/inter-
preted by the processor and may raises an incompatible
issue. For example, an instruction in AVX/AVX-512 (for
example, VADDSD or VADDPD) is an extended instruction
for a Pentium M processor. An extended instruction is also
the type (a) of the incompatible instruction aforementioned.
[0025] Untranslatable instruction: an untranslatable
instruction refers to one of the two types of instructions: (a).
an incorrect/invalid instruction of the aforementioned
incompatible instruction or (b). an instruction that shares a
different ISA from that of the processor (for example, any
instruction in an ARM/RISC ISA is an instruction sharing
different ISA from that of a X86 processor). An untranslat-
able instruction may be type (b) or (c) of the aforementioned
incompatible instruction.

[0026] Compatible instruction sequence: a compatible
instruction sequence is an instruction sequence composed of
at least one native/compatible instructions of a processor. An
execution result of the compatible instruction sequence is
the same as that of an associated extended instruction.
[0027] Simulation program: a simulation program is a
program encompasses an aforementioned compatible
instruction sequence composed of at least one native/com-
patible instructions of a processor as well as required
definitions of data structures, variables, parameters or the
like, . . . etc., and the simulation program may be performed
by the processor to simulate an execution result of associ-
ated extended instruction.

[0028] Real-time simulation mode: a real-time simulation
mode refers to those operations of recognizing a ready-for-
execution instruction which is going to be executed by a
processor currently is an extended instruction or not, and of
translating and performing a simulating program associated
with the recognized extended instruction to generate an
execution result for simulating that of the ready-for-execu-
tion instruction. An application program arising this ready-
for-execution instruction to the processor for executions is
unconscious of the existence of the real-time simulation
mode.

[0029] Itis to be noted that the aforementioned compatible
instruction, the incompatible instruction, the extended
instruction, the untranslatable instruction, the compatible
instruction sequence, and the simulation program are all
related to a certain series or model of processors. Specifi-
cally, the processors may be, but no limit to, those Reduced
Instruction Set Computing (RISC) processors supporting an
ARM Cortex series instruction sets, Complex Instruction Set
Computing (CISC) processors supporting X86 instruction
sets developed by Intel/AMD, Microprocessor without

US 2024/0004658 Al

Interlocked Pipeline Stages (MIPS) processors, processors
supporting RISC-V (RISC-Five) ISA, processors supporting
both the ARM and X86 ISAs, or processors equipped with
an ISA other than RISC/CISC. The disclosure does not
specifically limit any ISA type supported by the processor.
Those skilled in the art should understand that an integrated
circuit manufacturer may define/implement their own
microarchitectures under the ISA supported by their proces-
sors according to their needs, and the disclosure is not
limited in this respect.

[0030] Regarding those terminologies defined above,
those skilled in the art may define different technical terms
with respect to the technical ideas of the disclosure by
themselves. Those terminologies defined aforementioned
should be understood from the perspectives of technical-
function implementations and should not be distinguished
by the wording thereof. The disclosure is not limited thereto.
Those skilled in the art should understand that an integrated
circuit manufacturer may use different terms to define a
specific concept and/or refer to a specific component. The
specification and claims do not distinguish a technical term
by means of the difference in wording only, but distinguish
it based on the difference in its technical function. The terms
“including” and “such as” mentioned in the entire specifi-
cation and claims are open-ended terms, so they should be
interpreted as “including but not limited to.” In addition, the
term “coupled” in the specification includes any direct and
indirect electrical connection approaches. Therefore, if a
first device is coupled to a second device described in the
specification, it means that the first device may be electri-
cally connected to the second device directly, or indirectly
electrically connected to the second device over other
devices or connection manners. Those skilled in the art
should know that those variations described above do not
depart from the spirits of the disclosure should be included
in the appended claims.

[0031] FIG. 1 is a schematic diagram of an electronic
device 100 according to an embodiment of the disclosure,
wherein a simulation device is operated within the processor
embodied in the electronic device 100. The electronic device
100 is, for example, a consumer electronic device, such as
a tablet computer, a smart phone, a computer, a server, etc.

[0032] Referring to FIG. 1, the electronic device 100
encompasses a processor 110 configured to perform an
operating system 120 and an application program 130
thereon and the operating system 120 executing on the
processor 110 manages the operations of the application
program 130 performed thereon. The application program
130 running on the operating system 120 uses various
functions provided by the processor 110 and other hardware
(not shown in FIG. 1, for example, a hard disk, a network
interface card, etc.) with the assistances of the operating
system 120. When the electronic device 100 is turned on, a
basic input/output system (BIOS) may be used for self-
testing and initialization, while the operating system 120 and
device drivers associated hardware components are subse-
quently performed by means of the processor 110. The
application program 130 is composed of multiple instruc-
tions, which are executed by the processor 110 to implement
those functions defined by the application program 130.
Specifically, when a ready-for-execution instruction 132
derived from the application program 130 is read from a
storage medium (e.g., a hard disk, not shown) and stored in
a dynamic random access memory (for example, a system

Jan. 4, 2024

memory, not shown) of the electronic device 100, the
processor 110 executes the ready-for-execution instruction
132 in program order. When the processor 110 is to execute
the ready-for-execution instruction 132, an instruction
decoder 112 interprets the ready-for-execution instruction
132 to generate associated format information (for example,
the instruction is divided into lots of fields indicating dif-
ferent operations, definitions, the way of accessing oper-
ands, . . . etc.) and subsequently decodes the ready-for-
execution instruction 132 according to the generated format
information. On the other hand, a monitor 114 determines
whether the ready-for-execution instruction 132 is a com-
patible instruction (for example, a native instruction or an
instruction recognizable for the processor 110) or an
extended instruction (forwarding to the monitor 114 along
an arrow 172 shown in FIG. 1 for determinations) according
to the format information generated by the instruction
decoder 112. If the ready-for-execution instruction 132 is a
native/compatible instruction, the processor 110 executes
the ready-for-execution instruction 132 and returns an
execution result (not shown in the drawing) to the applica-
tion program 130. The execution operation of a native/
compatible instruction is well-known by those skilled in the
art and will not be described in the specification in details.
On the other hand, when the monitor 114 determines the
ready-for-execution instruction 132 currently executed by
the processor 110 as one of extended instructions, this
ready-for-execution instruction 132 is regarded as param-
eters for invoking the simulation module 122 (along an
arrow 173 shown in FIG. 1). The simulation module 122
converts the ready-for-execution instruction 132 (currently
an extended instruction) into a simulation program including
a compatible instruction sequence, then executes the simu-
lation program to generate an execution result, and finally
returns associated execution result of the simulation pro-
gram to the application program 130 (along an arrow 174
shown in FIG. 1) to simulate the implementations of the
extended instruction. On the other hand, when the instruc-
tion decoder 112 fails to recognize and interpret the ready-
for-execution instruction 132 executed by the processor 110
currently, this ready-for-execution instruction 132 is then
determined as an untranslatable instruction by the monitor
114, and the processor 110 reports an executional error or an
exception (not shown in the drawing) to the application
program 130. The manipulation processes of the untranslat-
able instruction are not shown herein because they are
well-known by those skilled persons. After the simulation
module 122 is called, the simulation module 122 reads the
ready-for-execution instruction 132 (currently being deter-
mined as an extended instruction as aforementioned), and
determines whether a simulation program corresponding to
this extended instruction is found. The simulation module
122 may search a simulation program table to find the one
corresponding to the extended instruction. The simulation
program table consists of lots of simulation programs (which
are respectively made up of associated compatible instruc-
tion sequences as aforementioned), which are programmed
and prepared by processor designers according to associated
implementations of extended instructions in advance. The
simulation program table may be indexed by means of
extended instructions or may be realized through a database
such that the simulation module 122 may search and find
requested one therefrom. When the simulation program
corresponding to the extended instruction is in the simula-

US 2024/0004658 Al

tion program table, the simulation module 122 retrieves and
subsequently executes the simulation program to generate
and return a simulation execution result to the application
program 130, and finally terminates the calls to the simula-
tion module 112. On the other hand, if the simulation module
122 fails to find the simulation program corresponding to the
extended instruction from the simulation program table, the
simulation module 122 returns a failure result to the pro-
cessor 110 and terminates the calling process. It is to be
noted that the simulation module 122 is called when the
processor 110 executes the ready-for-execution instruction
132 derived from the application program 130 is determined
as an extended instruction, and the simulation module 122
terminates operations after associated simulation execution
result of the simulation program corresponding to the
extended instruction has been generated and returned.
Therefore, the application program 130 does not perceive
the operations regarding the extended instruction conver-
sions as well as the simulation program implementations
performed by the simulation module 122 (the real-time
simulation mode is turned on during the entire operating
period of the simulation module 122 and turned off the rest
of the time), such that all operations of the simulation
module 122 are transparent to the application program 130.
Operations that the simulation module 122 calls and
executes the simulation program will be described in more
detail later.

[0033] The processor 110 in FIG. 1 may be a single-core
or multiple-core central processing unit (CPU), a micropro-
cessor, a programmable processing unit, a digital signal
processor (DSP), a programmable controller, an application
specific integrated circuit (ASIC), a programmable logic
device (PLD), or other similar devices. In addition, the
ready-for-execution instruction 132 corresponding to the
application program 130 is derived from source codes
written by application developers by using a middle-/high-
level programming-language platform (such as C language/
C++ language/C #language, Java language, Python language

. . etc.) and/or low-level programming-language platform
(such as assembly language). A compiler then compiles
those source codes to generate associated executable codes
for the implementations over the processor 110 (such as
machine codes or binary codes). Therefore, as shown in FIG.
1, the ready-for-execution instruction 132 forwarding to the
processor 110 via the arrow 171 is a machine code or an
instruction recognizable for the processor 110, which is
generated through associated compiling/linking processes
performed on a program written by programming-language
platform. Those skilled in the art should understand that, for
the sake descriptions, the ready-for-execution instruction
132 is a machine instruction that is recognizable and execut-
able for the processor 110. The disclosure does not repeat-
edly distinguish a machine instruction such as the ready-
for-execution instruction 132 from any instruction written
by a middle/high-level program language hereinafter.

[0034] The monitor 114 in FIG. 1 is disposed inside the
processor 110 to determine whether a ready-for-execution
instruction 132 is a compatible instruction or an extended
instruction. However, those skilled persons may employ any
circuit structure or any firmware/software program to realize
the determinations of the monitor 114. For example, the
monitor 114 supporting a new-version instruction set may be
established by updating the device driver of an old-version
processor without any hardware similar to the monitor 114

Jan. 4, 2024

therein. Originally, this old-version processor can neither
interpret instructions under the new-version instruction set
nor call the simulation module 122 to support those opera-
tions such as translating the extended instruction into asso-
ciated simulation program and then executing the simulation
program having associated compatible instruction sequence
to generate required simulation result. However, if the
functions of monitor 114 are implemented by program codes
and complied as a portion of a device driver, when the
old-version processor causes an invalid opcode exception
(for example, #UD), the monitor 114 software, which may
become a callback function of the operating system 120, is
invoked by using a system call raised from an interrupt
service program corresponding to #UD. And, when the
monitor 114 software determines that the current ready-for-
execution instruction 132 (causing this invalid opcode
exception) is an extended instruction and thus needs afore-
mentioned conversion assistances, the simulation module
122 (which may be programmed and updated accompanied
with the monitor 114 software) is subsequently invoked to
search and execute associated simulation program corre-
sponding to this extended instruction, and finally return an
execution result of this searched simulation program for
simulating implementations of the current ready-for-execu-
tion instruction 132. In one embodiment, a driver that
includes the monitor 114 program codes as well as the
simulation module 122 may be carried out by live updates.
The processor 110 designer may use native instructions of
the old-version processors to program associated simulation
programs corresponding to extended instructions, and then
inform users of live-updating the drivers of their old-version
processors to possess the capabilities of supporting the
new/updated instruction sets. In sum, any independent mod-
ule, software program, hardware unit, or implementation
integrated with software/hardware, . . . etc., should be
considered as variations of the monitor 114 for the deter-
minations of whether a ready-for-execution instruction 132
is a compatible instruction or an extended instruction. The
disclosure is not limited in this respect.

[0035] In an embodiment, after the electronic device 100
turns on, the operating system 120 then turns on the func-
tions provided by a real-time simulation mode and allocates
various store regions in the storage devices of the electronic
device 100 to store processor statuses (e.g., for the uses of
context switch) and associated information generated during
conversion/simulation execution processes. In other words,
when the ready-for-execution instruction 132 which is going
to be executed by the processor 110 is determined by the
monitor 114 as an extended instruction, the simulation
module 122 may be called to convert the extended instruc-
tion and execute the simulation program relative to the
extended instruction to generate required execution result by
using those allocated store regions. In one embodiment,
those skilled in the art may design the timing as well as
determination conditions of turning on the real-time con-
version mode to call the simulation module 122 according to
their application needs. For example, when the monitor 114
determines that the ready-for-execution instruction 132 is an
extended instruction, a flag (e.g., an emulation flag EF,
relative descriptions will be given later) may be set so as to
turn on the real-time conversion mode, such that the flag
status is checked before the simulation module 122 is called
accordingly. In another embodiment, the application pro-
gram 130 that intends to call the simulation module 122 is

US 2024/0004658 Al

confirmed as an authorized one by the operating system 120
firstly. The application program 130 may access required
password by means of the device driver if it passes associ-
ated authorization checks, and the simulation module 122
may be invoked after the password is verified successfully.
In one embodiment, the password may be stored in the
driver of the processor 110. In order to call the simulation
module 122, the processor 110 may obtain this password
through the processor 110 driver, while the simulation
module 122 is called after the accessed password is verified
successfully. In another embodiment, multiple authentica-
tion processes or at least one encryption processes applied to
the password may be performed when calling the simulation
module 122, so as to ensure the security of the simulation
processes for the ready-for-execution instruction 132. For
example, if the application program 130 tries to access
associated encrypted password is authenticated by the oper-
ating system 120, the simulation module 122 is called only
when the encrypted password being accessed and decrypted
successfully. Advantageously, the real-time simulation mode
is turned on (that is, the simulation module 122 is authorized
to be invoked) only when the simulation module 122 is
called for real-time simulating the ready-for-execution
instruction 132. Therefore, any unauthorized user may be
prevented from invading the simulation module 122, or
making any unauthorized changes or alters within the simu-
lation processes for the ready-for-execution instruction 132.
It should be understood that the time of calling the simula-
tion module 122 may be changed according to application
designs, and the disclosure is not limited in this respect.
Furthermore, the allocations of the corresponding store
regions after the simulation module 122 is called will be
described in details by referring FIGS. 2 and 4.

[0036] Based on the above descriptions, a processor 110
equipped with the X86 instruction set may be unable to
support an update/new X86 instruction set as well as any
extended instruction in the updated/new one, since its X86
instruction set and hardware is determinate after manufac-
ture. The processor 110 may inaccurately recognize and
execute an extended instruction due to the limitations of its
hardware structure even the extended instruction is an
X86-ISA-related instruction. Therefore, the embodiment of
the disclosure uses the monitor 114 of the simulation device
to firstly determine whether the instruction (that is, the
ready-for-execution instruction 132) that is going to be
executed is a compatible instruction of the X86 instruction
set inside the processor 110 or an extended instruction under
an updated/new X86 instruction set, and then continues
subsequently processing according to the determination.
Therefore, in the embodiment of the disclosure, if the
ready-for-execution instruction 132 executed by the X86
processor 110 is an X86-extended instruction of the X86
new/updated instruction set, the X86 processor 110 of the
embodiment converts the ready-for-execution instruction
132 into a simulation program consisting of the X86 com-
patible instructions under the current instruction set of the
X86 processor 110. Subsequently, the simulation module
122 executes the simulation program to simulate the execu-
tion result of the ready-for-execution instruction 132, and
finally returns the execution result to the application pro-
gram 130. Therefore, with the assistances of the simulation
module 122, in the embodiment of the disclosure, the
processor 110 with an old-version X86 instruction set is
capable of translating an extended instruction of a new/

Jan. 4, 2024

updated X86 instruction set to obtain a simulation program
(as shown above, the simulation program is constructed by
X86 compatible instruction sequence executable for the
old-version X86 processor) and to simulate associated
execution result of the ready-for-execution instruction 132
by performing the simulation program. In another embodi-
ment, the processor 110 is a processor equipped with an
ARM ISA and the ready-for-execution instruction 132 is an
extended instruction under the new/updated ARM instruc-
tion set relative to the current one of the ARM processor 110,
and any ARM compatible instruction sequence in the simu-
lation program is composed of at least one native instruc-
tions or compatible instructions under the current instruction
set of the ARM processor. Therefore, the execution result of
the ready-for-execution instruction 132, which is an
extended instruction under the new/updated ARM instruc-
tion set in comparison with that of the ARM processor, may
be simulated by executing the simulation program associ-
ated with this ARM extended instruction. As described
above, the ready-for-execution instruction, the compatible
instruction, and the extended instruction described in this
embodiment are all instructions sharing the same ISA, and
are not limited to instructions of the X86 ISA (or a CISC
ISA). The instructions aforementioned may be instructions
of'an ARM ISA (or an RISC ISA), a processor that supports
a MIPS or RISC-V ISA, or other ISAs, and the disclosure is
not limited by ISA types. It is to be noted that the processor
110 of the disclosure, which possesses a relatively old
instruction set architecture, is capable of supporting opera-
tions indicated by instructions from a relatively new ISA.
Accordingly, the service life of an electronic appliance
including an old-version processor is extendable, and a
processor designer may make his/her old-version processors
being able to support instructions under associated new/
updated instruction set with few hardware modifications
only (or by driver updates aforementioned). Specifically, the
objective may be achievable by introducing required hard-
ware into the processor 110, including but not limited, the
monitor 114, signal transmissions among the instruction
decoder 112, and the monitor 114, etc. (which are all added
based on simulation requirements), accompanied with soft-
ware constructing the simulation module 122 and associated
simulation program table. There is no need to modify the
other circuitry structure, such as pipeline and branch pre-
dictor, etc., within the processor, which indicates a processor
having the disclosed functions of the embodiments may be
quickly designed.

[0037] Furthermore, in an embodiment, the simulation
module 122 may be stored in the basic input/output system
(BIOS) of the electronic device 100, which loads the simu-
lation module 122 into the operating system 120 when a
system mounted with the processor 110 is turned on. In
another embodiment, the simulation module 122 may be
encoded in the driver of the processor 110 and be loaded into
a system memory after executed by the operating system
120; in yet another embodiment, the simulation module 122
may be compiled as a part of the kernel of the operating
system 120 and being invoked after the operating system
120 is performed. In yet another embodiment, during the
conversion operations of the simulation module 122, the
operating system 120 may be notified of stopping from
responding interrupts (for example, any hardware interrupt
irrelevant to current simulation operations) so that the con-
version operations may be performed without any interfer-

US 2024/0004658 Al

ence. The skilled persons should know that those variations
to the above embodiments do not depart from the spirits of
the disclosure should be included in the claims of the
disclosure.

[0038] FIG. 2A is a schematic diagram of the electronic
device 100 and a simulation device embodied therein
according to another embodiment of the disclosure. The
simulation device of electronic device 100 may further share
a store region 124 in an access medium (for example, a
memory) of the electronic device 100. In the store region
124, at least a processor-current-state store region 1242, a
conversion-information store region 1244, and a simulation-
execution-result store region 1246 are divided therefrom.
The processor-current-state store region 1242 is configured
to store current-context parameters of the processor 110
which are used for resuming the processor 110 back to the
state before switching context, the conversion-information
store region 1244 is configured to store temporary data
during the operations of translating the extended instruction
to obtain required simulation program (for example, tem-
porary comparison information/results during searching
required simulation program, or a pointer indicating to a
simulation program in the simulation program table, etc.),
and the simulation-execution-result store region 1246 is
configured to store associated temporary information when
the simulation program performs (for example, the storage
space used for storing variables defined in the simulation
program, or temporary data during executions, etc.) and
generate required execution result. As shown in FIG. 2A, the
simulation module 122 may temporarily store relevant state
data in the store region 124 (as shown by an arrow 175), and
the processor 110 may also access required execution result
from the store region 124 (along the indication of the arrow
176). It is to be noted that in an embodiment, BIOS of the
electric device 100 may be used to access parameters of the
store region 124 as well as the processor-current-state store
region 1242, the conversion-information store region 1244,
the simulation-execution-result store region 1246 from asso-
ciated storage medium of the electronic device 100 for the
uses of configurations (for example, the size of each store
region and base pointer). That is, the store region 124 may
be configured other than the operating system 120, and the
disclosure does not limit configuration approaches of the
store region 124. The usage of the store region 124 will be
described in more detail later.

[0039] FIG. 2B is a schematic diagram of the electronic
device 100 embodied with a simulation device therein
according to yet another embodiment of the disclosure. The
processor 110 of this embodiment further includes a dedi-
cated hardware 116 which is used as a storage space dedi-
cated to store information required by the processor 110
during the operations of translating the extended instruction
into a simulation program and of executing the simulation
program to generate associated simulation execution result.
The usage of the dedicated hardware 116 will be described
in more detail later.

[0040] FIG. 3 is an architecture diagram of the dedicated
hardware 116 according to an embodiment of the disclosure.
Referring to FIGS. 2A, 2B and 3 together, as shown in FIG.
3, the dedicated hardware 116 of the processor 110 includes
a processor-current-state pointer register 116A, a conver-
sion-information pointer register 116B, a simulation-execu-
tion-result pointer register 116C, a private register 116D, and
a simulation register file 116E which is used for mapping an

Jan. 4, 2024

extended structural register(s) under a new/updated structure
file (each of the extended structural registers is indicated by
a ready-for-execution instruction (which is determined as an
extended instruction) but is not supported by the current
processor 110, detail descriptions about the uses of the
simulation register file 116E will be given later). The pro-
cessor 110 may read required state information from the
store region 124 in a main storage based on associated
register pointers described above. The address indicated by
the processor-current-state pointer register 116A is config-
ured to point to a storage space in the main storage for
storing current-context states of the processor 110, including
various register states illustrative of the current context
which the processor 110 is running currently, or the instruc-
tion address next to the ready-for-execution instruction 132.
The address indicated by the conversion-information pointer
register 116B is configured to point to a storage space within
the main storage, which is configured as a temporary storage
space required by the conversion processes performed for
simulating the extended instruction or configured to store
intermediate information during the conversion processes,
such as the format information of the extended instruction,
those pointers pointing to prepared simulation programs, etc.
The address indicated by the simulation-execution-result
pointer register 116C is configured to point to a storage
space within the main storage, which is configured as a
temporary storage space when executing the simulation
program corresponding to the extended instruction, or con-
figured to store the information generated during the execu-
tions (for example, an intermediate execution result of
simulating the extended instruction, etc.) as well as the
execution result of the simulation program. The private
register 116D may include an emulation flag EF and a
register for caching the extended instruction (neither is not
shown). The emulation flag EF is configured to indicate
whether a current ready-for-execution instruction 132 is a
convertible/simulatable extended instruction. For instance,
the current ready-for-execution instruction 132 is an
extended instruction if the value thereof is set to 1, so that
the simulation module 122 may be called to convert/simu-
late the extended instruction. On the other hand, the register,
which is configured to cache the ready-for-execution
instruction 132 in the private register 116D, is configured as
a temporary storage space for storing the ready-for-execu-
tion instruction 132 provided as a parameter to the simula-
tion module 122 when the simulation module 122 is called
(the ready-for-execution instruction 132 at this time is
determined as an extended instruction). The simulation
register file 116E contains N (N is a natural number or a
positive integer greater than 1) 256-bit simulation registers
Ereg0, Eregl . . . Eregn-1, Eregn to support, for example,
specific micro-operations read/write/computation of the pro-
cessor 110. Exemplarily, two 256-bit registers may respec-
tively map a high 256-bit and a low 256-bit of a 512-bit
register, such that the processor 110 may use 256-bit regis-
ters in the simulation register file 116F to map and simulate
an unsupported 512-bit register for the processor 110, such
as Treg0, Tregl . . . Tregn-1, Tregm (a target register file
116F) shown in the dashed lines in FIG. 3. Mapping opera-
tions between registers are well-known for those skilled in
the art and will not be described in details herein. Please note
that although the aforementioned 256-bit registers are used
to map/simulate associated 512-bit unsupported registers, it
does not mean the simulation is limited to mappings

US 2024/0004658 Al

between registers with different sizes. For example, in
another embodiment, the simulation register file 116E may
be configured as specific registers that are not supported by
current hardware of the processor 110, such as, for simulat-
ing a base address or a state control register dedicated for a
specific operation mode (operating under the new/updated
instruction set). On the other hand, the dedicated hardware
116, designed for the purpose of simulating an extended
instruction, may be configured by designating certain reg-
isters within a register file of the processor 110 specifically,
and the disclosure is not limited in this respect.

[0041] FIG. 4A depicts a detailed structure diagram of a
processor 110 in the electronic device 100 according to an
embodiment of the disclosure. In addition to the instruction
decoder 112, the monitor 114, and the dedicated hardware
116 described above, the electronic device 100 further
includes an instruction translation lookaside buffer ITLB
410, an instruction cache 420, a branch predictor 430, a
reordering buffer 440, a microcode memory 450, a micro-
code control unit 460, and a microinstruction-sequence
storage unit 470. The instruction translation lookaside buffer
ITLB 410 may be configured to store instructions waiting
for executions, such as an instruction that supports a func-
tion instructed by an application program 130 (e.g., the
function indicated by the ready-for-execution instruction
132). The instruction cache 420 is configured to receive an
instruction address from the ITLB 410 through a translation
lookaside buffer (TLB) and then forward instruction binary
to the following pipeline stages for executions. The branch
predictor 430 cooperates with the instruction cache 420 that
attempts to predict/guess whether an instruction causes a
branch, and fetches/stores a most likely instruction to the
instruction cache 420 when a branch is predicted to be taken.
As described above, the private register 116D includes the
emulation flag EF indicating whether the current ready-for-
execution instruction 132 is an extended instruction capable
of being simulated, and a storage space caching this ready-
for-execution instruction 132. The usage of the emulation
flag EF and the storage of the extended instruction will be
described in detailed later. Furthermore, an executor 160 at
least includes a renaming unit 1602, a reservation station
1604, an execution unit 1606, and a memory access unit
1608. The instruction decoder 112 further includes an
instruction analyzing unit 1122 and a microinstruction-
sequence calling unit 1124. The instruction analyzing unit
1122 is coupled to the microinstruction-sequence calling
unit 1124 and the monitor 114 which is further coupled to the
private register 116D, while the microinstruction-sequence
calling unit 1124 is coupled to the microinstruction-se-
quence storage unit 470.

[0042] When the ready-for-execution instruction 132 is
sent from the instruction cache 420 to the instruction
decoder 112, the instruction analyzing unit 1122 in the
instruction decoder 112 first identifies the format of the
ready-for-execution instruction 132 and then separates for-
mat information, such as a prefix (PRE), an escape code
(EOP), an main opcode (MOP) and other decoding infor-
mation (Other Decoding Information (ODI) includes infor-
mation within an extended instruction required for instruc-
tion decoding/interpretations) if this ready-for-execution
instruction 132 is recognizable. Next, the format information
(that is, PRE/EOP/MOP/ODI) is directed to the microin-
struction-sequence calling unit 1124 and the monitor 114 at
the same time. The microinstruction-sequence calling unit

Jan. 4, 2024

1124 in the instruction decoder 112 subsequently decodes
the format information to learn the operation instructed by
the ready-for-execution instruction 132, and then fetches
corresponding microinstruction ([Lop) sequence (composed
of at least one microinstruction) from the microinstruction-
sequence storage unit 470, incorporate the fetched microin-
struction sequence with the operand information (for
example, addressing information of operands) indicated by
the ready-for-execution instruction 132 to generate required
microinstruction(s), and finally redirects the microinstruc-
tion(s) to the executor 160 (for example, to the renaming
unit 1602 therein). After associated renaming processes are
performed on the microinstruction(s), the microinstruction
(s) is(are) redirected to the reservation station 1604 and the
reordering buffer 440 simultaneously. The reservation sta-
tion 1604 issues the microinstruction(s) to an execution unit
1606 or the memory access unit 1608 for further processing
according to the function indicated by the microinstruction
(s). The reordering buffer 440 includes an instruction retire
unit 4402 and a microinstruction buffer 4404, wherein the
microinstruction buffer 4404 includes a plurality of instruc-
tion entries that are further configured to store the microin-
struction(s) received from the renaming unit 1602. After the
microinstruction(s) is(are) completely implemented, the
execution unit 1606 or the memory access unit 1608 notifies
the instruction retire unit 4402 within the reordering buffer
440 of retiring this implemented microinstruction(s) accord-
ing to the original program order.

[0043] The following describes the manipulations when
the ready-for-execution instruction 132 which is going to be
performed by the processor 110 is determined as an
extended instruction. The monitor 114 determines whether
the ready-for-execution instruction 132 is an extended
instruction according to the format information (PRE/EOP/
MOP/ODI obtained through format analysis of the ready-
for-execution instruction 132 by the instruction analyzing
unit 1122), firstly. If the ready-for-execution instruction 132
is determined as an extended instruction, the emulation flag
EF is then asserted and the private register 116D is instructed
to store the ready-for-execution instruction 132. On the other
hand, as described above, when the ready-for-execution
instruction 132 is an extended instruction, a no operation
(NOP) instruction is derived if the microinstruction-se-
quence calling unit 1124 fails to recognize the format
information. Therefore, when this NOP instruction is the
oldest instruction in the reordering buffer 440 waiting for
retirement, the instruction retire unit 4402 checks the emu-
lation flag EF and finds that the emulation flag EF is
asserted, such that the instruction retire unit 4402 invokes
associated interrupt service program of calling the simula-
tion module 122 so as to convert and simulate implemen-
tations of the extended instruction. Operations of calling the
simulation program corresponding to an extended instruc-
tion will be described later with the references of FIGS. 5A
and 5B, while an exemplary simulation program is shown in
FIGS. 6A-6C. In an embodiment, the interrupt service
program configured to call the simulation module 122 may
be achieved by modifying the interrupt service program
associated with #UD when an invalid opcode or incorrect
instruction is met, or by self-defining a specialized interrupt
service program by processor designers. Accordingly, when
the NOP instruction that arises #UD is retired and then
invoked the interrupt service program corresponding to
#UD, this specified #UD-associated service program checks

US 2024/0004658 Al

the status of the emulation flag EF firstly, and then issues a
conversion request to the simulation module 122 through the
operating system 120 when the emulation flag EF is
asserted, or invokes a conventional exception service pro-
gram specialized in handling the exception derived from an
invalid opcode/incorrect instruction when the emulation flag
EF is non-asserted. In an embodiment, the processor 110
designer may separate the conventional #UD interrupt ser-
vice program and the specified #UD interrupt service pro-
gram for calling the simulation module 122 as two pro-
grams, which may be called according to the status of the
emulation flag EF, respectively. For example, when the
emulation flag EF is not asserted, the conventional #UD
interrupt service program is called, but the specialized #UD
interrupt service program for calling the simulation module
122 is invoked when the emulation flag EF is asserted. In yet
another embodiment, when the NOP instruction that derived
#UD is retired, the retire unit 4402 first checks the emulation
flag EF, and then requests the operating system 120 to call
the simulation module 122 through a self-defined interrupt
service program (for example, the processor 110 designer
may select a reserved or non-used vector number (e.g., 20H)
from the conventional interrupt vector table and defines an
interrupt vector #NE (NE is the abbreviation of Non-support
instruction Emulator) for this selected vector number) if the
emulation flag EF is set. It is to be noted that when the
interrupt service program calls the simulation module 122,
the ready-for-execution instruction 132 (currently, an
extended instruction) may be sent as a parameter to the
simulation module 122, e.g., a register-address pointer indi-
cating where the ready-for-execution instruction 132 is
stored in the private register 116D is sent as a parameter to
the simulation module 122. The simulation module 122 then
converts the extended instruction, executes corresponding
simulation program of this extended instruction, and finally
terminates operations of calling the simulation module 122
(that is, quitting the simulation mode) after storing the
execution result of the simulation program in the simulation-
execution-result store region 1246. On the other hand, when
the simulation execution result of the ready-for-execution
instruction 132 that is determined as an extended instruction
is read from the simulation module 122 by the processor
110, the emulation flag EF in the private register 116D will
be clear so as to indicate that the simulation operations of the
ready-for-execution instruction 132 has been completed.
Therefore, if another ready-for-execution instruction 132 is
determined as an extended instruction in the future, the
emulation flag EF will be re-asserted for the sake of calling
the simulation module 122 again, which will activate asso-
ciated conversion and execution operations of the simulation
program corresponding to the extended instruction.

[0044] In an embodiment, the interrupt service program
used to call the simulation module 122 (that is, the afore-
mentioned specialized #UD interrupt service program or the
self-defined interrupt service program #NE) may be pro-
grammed as microcode and stored in a microcode memory
450 and may be accessed by a microcode control unit 460
(which may be implemented by a state machine and a
combination logic circuit). In another embodiment, the
operations of calling the specialized/self-defined interrupt
service program may be independently constructed as an
interrupt control unit or module (for example, an interrupt
control unit under an RISC/RISC-V architecture); in yet
another embodiment, the specialized/self-defined interrupt

Jan. 4, 2024

service program may be called through the address indicated
by associated microcode stored in the microcode memory
450. In yet another embodiment, an interrupt pre-processing
unit (for example, the microcode control unit 460 is con-
structed as an interrupt pre-processing unit, or the interrupt
control unit under the RISC/RISC-V architecture is modified
as an interrupt pre-processing unit) may be used to invoke a
corresponding interrupt service program to call the simula-
tion module 122 when a NOP instruction corresponding to
the ready-for-execution instruction 132 (currently an
extended instruction) is retired. In one embodiment, the
interrupt pre-processing unit may be microcode stored in a
ROM (Read Only Memory) or codes programmed by PLA
(Programmable Logic Array). In an embodiment, a system
call of requesting the operating system 120 to activate the
simulation module 122 may be applied by means of inter-
rupts as aforementioned. Specifically, the simulation module
122 may be programmed as a callback function and the
ready-for-execution instruction 132 (or only its format infor-
mation) may be sent as parameters to this callback function.
And, after this programmed callback function implements
the conversions and executions of the simulation program
corresponding to the ready-for-execution instruction 132,
this callback function may store associated execution result
in the simulation-execution-result store region 1246 and
then inform the processor 110 of retrieving the stored
execution result therefrom. In one embodiment, the simu-
lation module 122 may be called through an internal inter-
rupt or a trap. Specifically, the processor 110 designer may
define an interrupt vector #NE to invoke a system call so as
to enter a kernel mode of the operating system 120 to invoke
the simulation module 122. Implementations of such tech-
nologies are well-known by those skilled persons and will
not be repeated herein. In yet another embodiment, each
instruction entry of the reordering buffer 440 further
includes an emulation flag field (not shown) configured to
store the emulation flag EF associated with each microin-
struction. In this embodiment, if a ready-for-execution
instruction 132 is an extended instruction such that the
microinstruction-sequence calling unit 1124 fails to inter-
pret/recognize it and thus causes an associated NOP opera-
tion. Simultaneously, the monitor 114 determines that this
ready-for-execution instruction 132 is an extended instruc-
tion (and may be simulated by the processor 110) and then
asserts the emulation flag EF, which is sent to the renaming
unit 1602 and the reordering buffer 440 accompanied with
this NOP instruction. Accordingly, when the instruction
retire unit 4402 of the reordering buffer 440 retires this NOP
instruction, the instruction retire unit 4402 checks to find
that the emulation flag EF accompanied with this NOP
instruction is asserted (without accessing the private register
116D), thereby invoking associated interrupt service pro-
gram to call the simulation module 122 to convert the
ready-for-execution instruction 132 (also an extended
instruction) into a simulation program and then execute it
thereafter. It is to be noted that if the emulation flag EF
accompanied with this NOP instruction is not asserted, the
instruction retire unit 4402 will invoke the conventional
interrupt service program regarding the interrupt vector #UD
to process the invalid opcode/instruction exception. This
conventional exception manipulations are well-known by
the skilled persons such that related description are not
repeated herein.

US 2024/0004658 Al

[0045] In an embodiment, the processor 110 may further
include a conversion cache 280, configured to couple with
the microinstruction-sequence calling unit 1124 and the
monitor 114, to store the microinstruction sequence of the
simulation program sent from the microinstruction-sequence
calling unit 1124 when the emulation flag EF is set (for
example, the value thereof is set to 1). The stored microin-
struction sequence may be directly retrieved from the con-
version cache 280 for the following uses if the same
extended instruction is encountered in the future, which
indicates the same conversion/simulation operations for this
extended instruction are unnecessary to repeat again. That is,
if an ready-for-execution instruction 132 is determined as an
extended instruction and the microinstruction sequence of
the simulation program relative to this extended instruction
has been stored in the conversion cache 280, the required
microinstruction sequence may be accessed from the con-
version cache 280 and then a clear signal may be asserted to
inform the private register 116D of clearing/invalidating the
emulation flag EF and the ready-for-execution instruction
132 stored in the current private register 116D, which means
that it is unnecessary to call the simulation module 122 and
repeat conversion/simulation operations again. In an
embodiment, in order to facilitate the identification of an
extended instruction corresponding to each simulation pro-
gram, the instruction format information (for example, PRE/
EOP/MOP/ODI) of the extended instruction may be used as
the tag for indexing associated simulation program. There-
fore, when the emulation flag EF is 1 (i.e., asserted), the
instruction format information (for example, PRE/EOP/
MOP/ODI) of the extended instruction may be used as
comparisons with those tags of the conversion cache 280,
and the microinstruction sequence whose tag hits with the
instruction format information will be retrieved. It is to be
noted that the contents of the microinstruction sequence
stored in the conversion cache 280 are authorized to be
accessed/modified only when the emulation flag EF is
asserted, so that the values thereof remains unchanged when
the emulation flag EF is not asserted. Specifically, the
microinstruction sequences stored in the conversion cache
280 will be prevented from being cleared, reset, overwritten,
or modified when the processor 110 switches current context
to execute other programs. Accordingly, if the processor 110
encounters the same extended instruction which may need to
repeat the same simulation operations again, the processor
110 may retrieve the required microinstruction sequence
from the conversion cache 280 instead of calling the simu-
lation module 122 to perform conversion/simulation opera-
tions. In another embodiment, the conversion cache 280 may
be embodied in an uncore region (e.g., [.3-cache) of a
multiple-core processor, so that the simulation program
stored therein may be shared by all processor cores. Please
note that the simulation program stored in the uncore region
of the multi-core processor should be macroinstructions,
such that a processor core requiring simulation operations
for its current ready-for-execution instruction (which is an
extended instruction now) may access and decode associated
simulation program from the uncore region to generate
required microinstruction sequence, which is then directed
to a subsequent pipeline circuitry (e.g., the executor 160)
within this processor core for executions.

[0046] In an embodiment, in the processor 110 shown in
FIG. 4B, the microinstruction sequence and the value of
emulation flag EF in the conversion cache 280 are provided

Jan. 4, 2024

to the microinstruction-sequence calling unit 1124 for ref-
erences. Under the structure of the processor 110 in FIG. 4B,
when the current ready-for-execution instruction 132 is an
extended instruction which has been simulated in the past,
associated microinstruction sequence for simulating this
extended instruction is stored in the conversion cache 280.
Specifically, if the extended instruction becomes the current
ready-for-execution instruction 132 again, the microinstruc-
tion-sequence calling unit 1124 of instruction decoder 112
still cannot recognize the ready-for-execution instruction
132 correctly (thereby causing a NOP instruction), but on the
other hand, the monitor 114 may also determine this ready-
for-execution instruction 132 as an extended instruction and
thus assert the emulation flag EF. Thereafter, the microin-
struction-sequence calling unit 1124 checks and finds that
the emulation flag EF is set because of the failure of
inaccurately decoding current ready-for-execution instruc-
tion 132, and then query the conversion cache 280 for the
provision of required microinstruction sequence. After the
microinstruction-sequence calling unit 1124 receives needed
microinstruction sequence corresponding to the extended
instruction from the conversion cache 280, the microinstruc-
tion-sequence calling unit 1124 may incorporate associated
operand information of the ready-for-execution instruction
132 (e.g., this operand information may be the way of
addressing operands indicated by the current ready-for-
execution instruction 132 since the operands of the current
extended instruction may be different from the previously
stored ones) with the stored microinstruction sequence, so as
to generate required microinstruction sequence correspond-
ing to the current ready-for-execution instruction. The gen-
erated microinstruction sequence is forwarded to the execu-
tor 160 and then the emulation flag EF as well as the
register(s) for caching the extended instruction in the private
register 116D will be cleared/invalidated. Alternatively, if
the emulation flag EF is asserted but the microinstruction-
sequence calling unit 1124 does not find the required micro-
instruction sequence relative to current extended instruction
within the conversion cache 280, a NOP instruction will be
derived and sent to the renaming unit 1602. Accordingly,
when this NOP instruction is retired, the extended instruc-
tion is converted and simulated by means of associated
interrupt service program as aforementioned (e.g., #UD or
#NE). The operation described above has been illustrated in
previous sections and will not be repeated herein.

[0047] It is to be noted that, since the formats as well as
definitions of the extended instructions are accessible in
public and well-known by the skilled persons, the processor
110 designers may analyze the formats/definitions of the
extended instruction and then design their own instruction
analyzing unit 1122 by means of combination logic circuit or
other similar designs for extended instruction determina-
tions. The disclosure is not limited in this respect.

[0048] In an embodiment, the instruction analyzing unit
1122 within the instruction decoder 112 in FIG. 4A or FIG.
4B may be duplicated in the monitor 114, which also
receives the ready-for-execution instruction 132 and specifi-
cally determines whether this ready-for-execution instruc-
tion 132 is an extended instruction or not. Under this
structure, the processor 110 designer may separate the
instruction decoder 112 and the monitor 114 as two inde-
pendent modules within their processor 110 (and receive the
ready-for-execution instruction 132 together).

US 2024/0004658 Al

[0049] Next, FIG. 5A illustrates an exemplarily schematic
diagram showing how the simulation module 122 converts
an extended instruction. The simulation module 122 in FIG.
5A includes a control unit 702A, an extended-instruction to
simulation-program conversion table 704A, and a simula-
tion-program-sequence table 706A (that is, the simulation
program table described above). The control unit 702A is
responsible for the conversion operations of the simulation
module 122 on the extended instruction (a ready-for-execu-
tion instruction 132, currently) to access a simulation pro-
gram corresponding to the extended instruction. Those
operations will be described in detail later. The extended-
instruction to simulation-program conversion table 704A
includes two sections: an extended-instruction tag 7042A
and a simulation-program-sequence pointer 7044A, which
are respectively configured to store the format information
of the extended instruction and the address indicating where
the simulation program associated with the extended instruc-
tion is stored in the simulation-program-sequence table
706A. The simulation-program-sequence table 706A stores
simulation programs 7062 A (which are programed by means
of compatible instructions of the processor 110 in advance)
of all the extended instructions, and is traversed through the
simulation-program-sequence pointer 7044 A. In an embodi-
ment, the processor 110 designer may program each
extended instruction (which is under an extended or new
instruction set) as associated compatible instruction
sequence by using compatible instructions (such as the
native instructions) of the processor 110 beforehand. Each of
these pre-prepared/pre-programmed compatible instruction
sequence is then compiled as associated simulation program
7062A and stored in the simulation-program-sequence table
706A. Therefore, if the current ready-for-execution instruc-
tion 132 is an extended instruction having pre-programmed
simulation program(s), relative simulation program may be
found and accessed through the structure shown in FIG. 5A
to generate a simulation execution result for the current one.

[0050] The control unit 702A may compare the format
information of the extended instruction, including PRE,
EOP, MOP, and ODI (as aforementioned, ODI includes
information within an extended instruction required for
instruction decoding/interpretations) with the extended-in-
struction tag 7042A in the extended-instruction to simula-
tion-program conversion table 704A. If a match is found
(that is, the format information of the extended instruction
hit with one of the extended-instruction tags 7042A), the
control unit 702A traverses the simulation-program-se-
quence table 706A and then accesses required simulation
program along the indication of the simulation-program-
sequence pointer 7044A appended with the extended-in-
struction tag 7042A. Assume the format information of the
ready-for-execution instruction 132 sent from the processor
110 are PRE_J/EOP_J/MOP_J/ODI_J (J is a positive integer
between 1 and N), the control unit 702A compares each
extended instruction tag 7042A with the PRE_J/EOP_J/
MOP_J/ODI_J. As shown in FIG. 5A, the format informa-
tion PRE_J/EOP_J/MOP_J/ODI_J has been stored in the
extended-instruction to simulation-program conversion
table 704A, such that a “hit” occurs at the tag indicated by
70422A and the simulation-program-sequence pointer
70442 A (that is, SimProJ_Pointer) may be accessed and then
employed to look for required simulation program from the
simulation-program-sequence table 706A. The simulation
program 70622 A (that is, Simulation_Programl] indicated by

Jan. 4, 2024

SimProJ_Pointer in FIG. 5A) is then found along the indi-
cation of a dashed-line arrow 708A, and the conversion
processes for the extended instruction is completed after the
control unit 702A retrieves required simulation program
(i.e., Simulation_Programl). Thereafter, the simulation
module 122 may execute the simulation program Simula-
tion_Program] to generate and then forward required execu-
tion result (for simulating the implementations of extended
instruction whose format information is PRE_J/EOP_J/
MOP_J/ODI_J) to the processor 110. The executions of the
simulation program will be explained later with the refer-
ences of the exemplary program shown in FIGS. 6A-6C
collectively.

[0051] In an embodiment, in addition to the extended
instruction (or the format information of the extended
instruction, which is only portions of the extended instruc-
tion), the processor 110 may further forward more additional
information to the simulation module 122, such as the
context-state information which the processor 110 is cur-
rently running as well as associated context limitation(s) in
implementing the current extended instruction, so as to
determine whether the current extended instruction can be
executed under the current context of the processor 110. For
example, if the control unit 702A determines that the
extended instruction cannot (or is not suitable to) be per-
formed in current context of the processor 110 (e.g., the
extended instruction may be performed in protected mode
but the processor is in real mode now), it may thus invoke
corresponding interrupt service program to notify the oper-
ating system 120/the application program 130 of this inter-
pretation/execution exception. In another embodiment, the
simulation module 122 may carry out the comparisons by
using a part of the extended instruction only, for example,
PRE/EOP/MOP, to obtain required simulation program.

[0052] Itis to be noted that in an embodiment, those codes
stored in the extended-instruction tag 7042A of the
extended-instruction to simulation-program conversion
table 704A may be derived from further processing on the
PRE, EOP, MOP, and ODI, such as encryption or hashing
operations performed on PRE/EOP/MOP/ODI, so as to
provide more protections to the conversion processes for the
extended instruction. Those approaches should be well-
known by those skilled in the art and will not be repeated
herein. In another embodiment, the extended instructions
and associated simulation programs may be added, deleted,
or amended to the extended-instruction to simulation-pro-
gram conversion table 704A and the simulation-program-
sequence table 706A according to design needs. For
example, the size of the extended-instruction to simulation-
program conversion table 704A and the simulation-pro-
gram-sequence table 706 A may be increased through firm-
ware updates. Assume the processor 110 designer plans to
add a new extended instruction (with format information
PRE N+1/EOP N+1/MOP N+1/ODI N+1) accompanied
with associated simulation program Simulation_Pro-
gramN+1 into FIG. 5A, while this simulation program
Simulation_ProgramN+1 comprises an instruction sequence
further consisting of M native instructions InstSeqN+1_
Natlnst 1, . . ., InstSeqN+1 Natlnst M (M and N are both
positive integers greater than 1). The aforementioned
extended-instruction format information PRE N+1/EOP
N+1/MOP N+1/0DI N+1, the conversion instruction
sequence InstSeqN+1 Natlnst 1, . . ., InstSeqN+1 NatInst M,
and the simulation program Simulation_ProgramN+1 are

US 2024/0004658 Al

not shown in FIG. 5A. Specifically, since there are already
N extended-instruction tags in the extended-instruction to
simulation-program conversion table 704A, this new-added
extended instruction will be numbered as N+1 with a new
extended-instruction tag 7042A by referring to its format
information PRE N+1/EOP N+1/MOP N+1/0DI N+1, while
a new simulation-program pointer InstSeqN+1 Pointer
7044A (not shown in FIG. 5A) is employed to indicate
where the new simulation program Simulation_Pro-
gramN+1 is located within the simulation-program-se-
quence table 706 A (which may be stored in the store region
next to that of Simulation_ProgramN). Finally, the original
contents as well as all new-added information within these
two tables (i.e., 704A and 704B) may be overwritten through
firmware updates after the processor 110 designer accom-
plishes all his/her modifications. In yet another embodiment,
the modifications made to the extended-instruction to simu-
lation-program conversion table 704A and the simulation-
program-sequence table 706 A may be accomplished through
live updates, and the disclosure is not limited in this respect.

[0053] Inan embodiment, the simulation module 122 may
further include an exception processing module (not shown).
When an anomalous or exceptional event (for example, the
simulation program does not exist, or the current converted
extended instruction cannot (or is unsuitable to) be executed
in current context which the processor 110 is performing)
occurs during the conversion processes of the simulation
module 122, this exception processing module may generate
and notify an abnormality/exception result of the application
program 130 and the operating system 120 so as to activate
corresponding remedial steps to prevent the electronic
device 100 from crashing/damaging by this anomalous/
exceptional event. For example, the abnormality/exception
result may be an asserted flag (or a notification by writing a
specific register) indicative of an exception occurrence,
which is then returned to the application program 130 for
further processing. In another embodiment, the application
program 130 or the operating system 120 may skip the
instruction causing this abnormality/exception instruction,
or display that the function indicated by this instruction
cannot be implemented, or report an error.

[0054] Next, FIG. 5B shows a schematic diagram of the
simulation module 122 according to another embodiment for
translating an extended instruction. Similar to the embodi-
ment of FIG. 5A, the simulation module 122 in FIG. 5B also
includes a control unit 702B, an extended-instruction to
simulation-program conversion table 704B, and a simula-
tion-program-sequence table 706B. The control unit 702B is
responsible for the conversion operations of the simulation
module 122 on the extended instruction to obtain a simula-
tion program corresponding to the extended instruction (that
is, the ready-for-execution instruction 132). The extended-
instruction to simulation-program conversion table 704B
includes two sections: an extended-instruction tag 7042B
and a simulation-program-sequence pointer 70448, which
are respectively configured to store the format information
of the extended instruction and the address indicating where
the simulation program corresponding to the extended
instruction is stored in the simulation-program-sequence
table 706B. The simulation-program-sequence table 7068
stores simulation programs 7062B of all the extended
instructions, and is accessed through the simulation-pro-
gram-sequence pointer 7044B. The simulation-program-
sequence table 706B stores simulation programs 7062B

Jan. 4, 2024

(which are programed by means of compatible instructions
of the processor 110 in advance) of all the extended instruc-
tions, and is traversed through the simulation-program-
sequence pointer 7044B. In yet another embodiment, any
modification made to the extended-instruction to simulation-
program conversion table 704B and the simulation-pro-
gram-sequence table 706B may also be implemented by live
updates and the disclosure is not limited in this respect.

[0055] The embodiment of FIG. 5B allows an extended
instruction to map with more than one simulation programs,
which is different from that of FIG. 5A. For example,
assume the format information PRE/EOP/MOP/ODI of the
ready-for-execution instruction 132 is PRE_J/EOP_J/MOP_
J/ODI_J, which may correspond to three extended-instruc-
tion tags and simulation-program pointers in the extended-
instruction to simulation-program conversion table 704 A,
such as those three extended-instruction tags PRE_J/EOP_
J/MOP_J/ODI_J-1, PRE_JVEOP_I/MOP_J/ODI_J-2, and
PRE_I/EOP_J/MOP_J/ODI_J-3 in FIG. 5B and their asso-
ciated simulation-program pointers SimProJ-1 Pointer,
SimProJ-2 Pointer, and SimProJ-3_Pointer, respectively.
This is because, for example, an extended instruction may
support operands with different sizes, while relative instruc-
tion sequences regarding this extended instruction may
include determinations or iterations, which may arise at least
one branches and/or iteration loops during executions and
thus affect the performances of the processor 110. Therefore,
it may be advantageous for the processor 110 designer to
upgrade their processor performances by evaluating/analyz-
ing operand sizes in advance and then create instruction
sequences capable of reducing or avoiding possible
branches/iterations within instruction flows of processor
pipelines. For example, if the extended-instruction tags
PRE_J/EOP_J/MOP_J/ODI_J-1, PRE_I/EOP_J/MOP_J/
ODI_J-2, and PRE_J/EOP_J/MOP_J/ODI_J-3 respectively
correspond to an extended instruction with 128-bit, 256-bit,
and 512-bit operands, the control unit 702B may analyze the
format information (for example, ODI) of the extended
instruction and then learn the operand size of the current
extended instruction before accessing required simulation
program (e.g., the simulation program associated with PRE_
J/EOP_J/MOP_J/ODI_J-3 is accessed if the maximum size
512-bit operand is used). The performances of the required
simulation programs may be upgraded because relatively
efficient simulation program is accessed for implementa-
tions. It is noted that the above examples are for illustrative
purposes only, and those skilled in the art should know that
any approach other than the operand-size determinations
may be applied to separate independent simulation programs
required by an extended instruction, and the disclosure is not
limited in this respect.

[0056] Referring back to FIG. 5B to demonstrate the
following operations of the embodiments. The control unit
702B may compare the format information of the extended
instruction, including PRE, EOP, MOP, and ODI (which is
required for instruction interpretations as aforementioned)
with the extended-instruction tag 7042B in the extended-
instruction to simulation-program conversion table 704B. If
a match is found (that is, the format information of current
extended instruction hits with one of the extended instruc-
tion tags 7042B), the control unit 702B traverses the simu-
lation-program-sequence table 706B to retrieve required
simulation program 7062B according to the indication of
simulation-program-sequence pointer 7044B appended with

US 2024/0004658 Al

the extended-instruction tag 7042B. For example, if PRE/
EOP/MOP/ODI of the ready-for-execution instruction 132
directed from the processor 110 is PRE_J/EOP_J/MOP_J/
ODI_J (J is a positive integer between 1 and N) and the
control unit 702B finds that PRE_J/EOP_J/MOP_J/ODI_J
should be PRE_J/EOP_J/MOP_J/ODI_J-1 after analyzing
PRE_J/EOP_J/MOP_J/ODI_J (for example, after analyzing
the operand size of this extended instruction), the match will
be found during comparisons with PRE_J/EOP_I/MOP_J/
ODI_J-1 of the extended-instruction to simulation-program
conversion table 704B (as shown by a reference number
70422B). Thereafter, the control unit 702B obtains associ-
ated simulation-program-sequence pointer 70442B from the
extended-instruction to simulation-program conversion
table 704B according to the extended instruction tag 70422B
(that is, SimProJ-1 Pointer), and then employs the address
indicated by the simulation-program-sequence pointer
70442B to traverse the simulation-program-sequence table
706B for required simulation program. The simulation pro-
gram 70622B, which is also Simulation_ProgramJ-1 in FIG.
5B, is found along a dashed line arrow 708B indicated by the
simulation-program-sequence pointer 70442B. Finally, after
the control unit 702B retrieves the simulation program (the
Simulation_ProgramJ-1 indicated by the simulation-pro-
gram-sequence pointer 70442B), the simulation module 122
executes this simulation program Simulation_ProgramlJ-1
to generate and provide an execution result to the processor
110.

[0057] In an embodiment, in addition to the extended
instruction (or the format information of the extended
instruction, which is only portions of the extended instruc-
tion), the processor 110 may further deliver more additional
information to the control unit 702B, such as the context-
state information of the context which the processor 110 is
running currently as well as associated context limitation(s)
for performing the extended instruction, so as to determine
whether the extended instruction can be executed under the
current context of the processor 110. The above operations
are the same as that of FIG. 5A and will not be repeated
again. In an embodiment, those codes stored in the
extended-instruction tag 7042B of the extended-instruction
to simulation-program conversion table 704B may be
derivatives from further processing on the PRE, EOP, MOP,
and ODI, such as encryption or hashing operations per-
formed on PRE/EOP/MOP/ODI, so as to provide more
protections to the conversion processes for the extended
instruction. Those approaches should be well-known to the
skilled persons and will not be repeated again. In yet another
embodiment, extended instructions and associated simula-
tion programs may be added, deleted, or updated to the
extended-instruction to simulation-program conversion
table 704B and the simulation-program-sequence table
706B according to needs, which is the same as that of FIG.
5A and will not be repeated again.

[0058] Please note that regardless of the conversion opera-
tions on the extended instruction in FIG. 5A or 5B, associ-
ated temporary information (for example, the temporary
information derived from the comparison processes on the
extended instruction tags 7042A/7042B, all the tables and
pointers shown in FIG. 5A or 5B, and/or those program
codes required for the implementations of the control units
702A/702B) generated in operations may be stored in the
conversion-information store region 1244 of the main stor-
age through an address indicated by the conversion-infor-

Jan. 4, 2024

mation pointer register 116B. The accessed simulation pro-
gram may also be temporarily stored in the conversion-
information store region 1244 and wait for executions by the
processor 110 (e.g., transferring the simulation-program-
sequence pointer (such as SimProJ-1_Pointer) to the pro-
cessor 110 for accessing and implementations). In one
embodiment, the processor 110 designer may mark all the
simulation programs that have been accessed or may log/
record the accessed count/frequency for each of the simu-
lation program as references for the simulation module 122
or for the consecutive processor designs.

[0059] In another embodiment, the conversion operations
of FIGS. 5A and 5B may be implemented by an independent
conversion module (not shown), which may be embedded
within the simulation module 122 or as a callback function
invoked by the simulation module 122 (such as the system
call), such that the processor 110 may store associated
contents of state registers before the processor 110 switches
context to perform this independent conversion module.
Based on this requirement, a state stack (not shown) may be
allocated in the processor-current-state store region 1242 for
the uses of storing current context information of the pro-
cessor 110. For example, the current context/operation infor-
mation of the processor 110 is pushed to store in a first layer
of the state stack when the processor 110 invokes the
simulation module 122. Subsequently, when the simulation
module 122 calls the conversion module, the simulation
module 122 pushes context/operation parameters used by
current context to be stored in the second layer of the state
stack (may be allocated right above the first layer) and then
switches context for the conversion module to perform
conversion operations on the extended instruction. Thereat-
ter, when the conversion module accomplishes conversion
operations for the extended instruction and obtains corre-
sponding simulation program successfully, the processor
110 restores/resumes the context before calling the conver-
sion module by popping the pre-stored context/operation
parameters from the second layer of the state stack and then
performs context resuming operations. Finally, after the
simulation module 122 executes the simulation program
relative to the extended instruction, the simulation module
122 may pop the context/operation parameters stored in the
first layer of the state stack and resume the context at the
moment calling the simulation module 122. Although the
disclosure stores context information in stacks, those skilled
in the art should know that any approach configured to store
the context/operation parameters is an equivalent substitu-
tion without departing from the spirits of the disclosure, and
should be included in the appended claims of the disclosure.

[0060] Finally, when the simulation module 122 executes
the simulation program, all temporary information generated
in the simulation processes, including data structures and
variables defined by the simulation program as well as
temporary data derived within the execution processes, etc.,
may be stored into the simulation-execution-result store
region 1246 indicated by the simulation-execution-result
pointer register 116C. The execution result of the simulation
program may also be reserved/remained in the simulation-
execution-result store region 1246 as references for the
processor 110 or subsequent extended instruction(s). The
purpose of reserving previous execution result is, for
example, if the application program 130 forwards continu-
ous extended instructions to the processor 110 and those
extended instructions have (data) dependency upon execu-

US 2024/0004658 Al

tions, the execution result(s) of the previous extended
instruction(s) may be maintained for the reference(s) of
subsequent extended instruction(s), thereby improving the
simulation performance(s) of the (consecutive) extended
instruction(s). It is noted that since the processor-current-
state store region 1242, the conversion-information store
region 1244, and the simulation-execution-result store
region 1246 within the store region 124 may be accessed
during the period when the simulation module 122 is called
(that is, the period when the real-time simulation mode is
turned on), all the information stored in the store region 124
may be freely accessible by the simulation module 122.
Those skilled in the art may make any adjustment based on
their applications but the disclosure is not limited in this
respect. In an embodiment, the processor 110 designer may
program/compile an independent execution module (not
shown) separated from the simulation program to implement
the aforementioned simulation operations, which is then
invoked to execute simulation operations by the simulation
program. The skilled persons are familiar with those opera-
tions in editing/programming/compiling an execution mod-
ule and will not be described in detail herein.

[0061] FIGS. 6A-6C collectively show an exemplary
simulation program corresponding to a VADDSD instruc-
tion under the AVX-512 instruction set (AVX is the abbre-
viation of Advanced Vector Extensions). As aforementioned,
this VADDSD instruction may be unrecognizable by the
instruction decoder 112 (thereby arising a NOP instruction)
but may be recognizable by the monitor 114, such that the
monitor 114 asserts the emulation flag EF and subsequently
to invoke the simulation module 122 by means of related
interrupt service program (which is related to #UD or #NE
invoked by the retirement of the NOP instruction) accom-
panied with the VADDSD instruction as a parameter. The
instruction format of the VADDSD in AVX-512 specifica-
tion is:
VADDSD XMMO{K1}{Z}, XMM1 XMM?2

The operations defined by VADDSD is: add the low double-
precision floating-point value from XMM2 to XMM1 and
store the result in XMMO. In addition, VADDSD further
supports a masking operation, which executes the above
addition when {K1}=1 (K1 is the second bit in an 8-bit
masking register, that is, bit 1 in bit 0—bit 7). {Z} is
configured to determine whether a final result should be
zeroing-masking or merging-masking with the original one.
Please refer to the AVX-512 spec for additional definitions/
demonstrations for VADDSD, and the disclosure will not
repeat them herein.

[0062] Basic information of the simulation program simu-
late_addsd_512 in FIGS. 6A-6C is illustrated as follows:

[0063] (1) Inst: a data structure that includes all infor-
mation decoded and obtained from machine codes (for
example, obtained from the ready-for-execution
instruction 132 which is determined as an extended
instruction), in which:

[0064] a. dst: a target register obtained by decoding
the ready-for-execution instruction;

[0065] b. src*: a plurality of source registers obtained
by decoding the ready-for-execution instruction;

[0066] c. evex.b: the operation mode indicated by the
current instruction;

Jan. 4, 2024

[0067] (2) max_vl: the maximum size of the current
vector register. For the AVX-512 specification, max_
vl=512;

[0068] (3) ProcessorContext: the machine state reserved
by the processor when an interrupt (for example, #NE
interrupt) occurs;

[0069] (4) DedicateHW: the hardware resource pro-
vided by the dedicated hardware 116 for the uses of the
data structure during simulation operations.

[0070] The contents as well as meanings of the exemplary
program codes of FIGS. 6 A-6C are shown as follows:

[0071] (1) Lines 3-6: Initialize store regions required for
simulation operations;

[0072] (2) Lines 7-12: Determine if the dedicated hard-
ware 116 supports the current target register dst which
needs simulations (instructed by DedicatedHW). If the
current target register dst does not exist in the dedicated
hardware 116 (which indicates the processor 110 hard-
ware supports this target register), associated data will
be accessed from the processor-current-state store
region 1242 according to the indication of *ctx (in-
structed by ProcessorContext);

[0073] (3) Lines 14-25: Read the source operands (rep-
resented by srcl/src2, respectively). The way of obtain-
ing these source operands is the same as that of
obtaining the aforementioned target register (i.e., dst).
The simulation program firstly determines if the source
operands are existent ones in the dedicated hardware
116 (i.e., supported by the dedicated hardware 116). If
the source operands are nonexistent in the dedicated
hardware 116, which means the processor 110 supports
the registers, such that the source operands are accessed
from the processor-current-state store region 1242 by
means of *ctx (indicated by ProcessorContext);

[0074] (4) Lines 27-49: program codes written accord-
ing to the VADDSD operations defined by the AVX-
512 specification, for example:

[0075] a. Line 27: Recognize the operation mode
(Broadcast/RC/SAE context) indicated by the current
instruction, and activate a static rounding control on the
operands according to the specification when evex.b is
1;

[0076] ©b. Lines 34-49: Determine whether the current
VADDSD instruction is controlled by a masking reg-
ister. For example, srcl+src2 is executed when
k1{0}=1, but no operation is performed otherwise;

[0077] c. The final result is determined based on {Z}.
For example, a zeroing-masking operation is performed
if {z}=1, while a merging-masking operation is per-
formed on the original result in the target register dst if
{z}=0:

[0078] (5) Lines 51-56: Determine whether the target
register dst is supported by the processor 110 (for
example, a 512-bit register is not supported by the
processor 110 if the maximum register size of the
processor 110 is 256-bit). When the dst register is not
supported by the processor 110, those simulation reg-
isters (allocated in the simulation register file 116E)
provided by the processor 110 for simulating non-
supported registers are used to simulate the dst register,
and associated contents corresponding to the dst reg-
ister (e.g., the simulation result) are stored in the
simulation registers. If the target register dst is sup-

US 2024/0004658 Al

ported by the processor 110, associated execution result
is stored to the processor 110 running states of for #NE;

[0079] (6) Lines 58-60: After a maximum operand size

(for example, 256) supported by the current hardware
of the processor 110 is identified, all the execution
results are updated to those vector registers supported
by the processor 110 hardware;

[0080] (7) Line 62: Finally, return an execution result.
[0081] Itis to be noted that lines 36, 48, and 49 in FIG. 6B
are operations of the encoded version defined for VADDSD
in the AVX-512 specification. Since the source operands of
the instruction is 128-bit (WMI1) and 64-bit (WM2), only
one simulation program is required to simulate VADDSD
operation. However, for those instructions supporting 512-
bit source/target registers, multiple simulation programs (or
may be programmed as different sections within an identical
simulation program) may be required for respect 512-bit
source/target registers. For example, an ADDPS (or
VADDPS) instruction in the AVX-512 specification may
support a 512-bit register:

ADDPS ZMMO{k1 Mz}, ZMM1 ,ZMM2

all ZMMO, ZMMI1, and ZMM2 are 512-bit registers.
According to the definitions of the AVX-512 specification,
there are lots of determinations (for example, if/else) as well
as for-loops required for simulations, but these determina-
tion/for-loop steps are unnecessary in the encoded versions.
Specifically, the performances when the processor 110 simu-
lates ADDPS instructions may be upgraded by referring to
the encoded-version definitions such that the simulation
program relative to ADDPS may be further separated into
three independent ones according to operand sizes (e.g.,
according to 128-/256-/512-bit operands), and which one of
these three is invoked depends on the largest operand size
among the target/source operands of ADDPA instruction.
For example, when the ready-for-execution instruction 132
is an ADDPS instruction and an operand YMM?2 (which is
a 256-bit operand) is identified to have the largest operand
size, the processor 110 will access and perform the inde-
pendent simulation program specified for 256-bit ADDPS
instruction. The operations of calling relative simulation
programs for VADDPD described above may be performed
by using the architecture illustrated in FIG. 5B and will not
be repeated herein.

[0082] FIG. 7 is a flow chart of a simulation method
according to an embodiment of the disclosure, which is
specified for the processor shown in FIGS. 4A and 4B. As
shown in FIG. 7, in step S702, when the ready-for-execution
instruction 132 currently executed by the processor 110 is an
extended instruction, the processor 110 hardware triggers an
interrupt (e.g., #UD or #NE) and invokes a relative interrupt
service program. Please refer to those descriptions in the
FIGS. 4A and 4B regarding the way of invoking associated
interrupt service program. At this time, other unrelated
hardware interrupts are prohibited to prevent the conversion/
simulation processes from being interrupted, as well as to
avoid possible attack/hack to the conversion/simulation
operations. In step S704, a simulation environment/context
specified to the simulation module 122 is established. The
parameters used for constructing a processor environment/
context for the simulation module 122 may be pre-stored in
the BIOS, the processor driver, or may be compiled/inte-
grated into the kernel of the operating system, and be
retrieved during establishing the environment/context for

Jan. 4, 2024

the simulation module 122. Those execution parameters
associated with the current context of the processor 110 are
then stored. For example, the current context-related execu-
tion parameters of the processor 110 may be stored in the
processor-current-state store region 1242 (e.g., being pushed
into the state stack) in the main storage through the address
indicated by the processor-current-state pointer register
116A in the dedicated hardware 116. In step S706, the
simulation module 122 reads the format information of the
ready-for-execution instruction 132 byte-by-byte according
to a pointer provided by the interrupt service program (the
way of decoding and obtaining the instruction information is
shown in relative descriptions of FIGS. 4A and 4B), and then
determines whether this ready-for-execution instruction 132
may be implemented in the current operating mode of the
processor 110. If this ready-for-execution instruction 132 is
inapplicable to the current operating mode (for example, the
current ready-for-execution instruction 132 (which is an
extended instruction) may be executed under protected
mode only, but the processor 110 works under real mode
currently), the determination result at this time will be “No,”
and thus the flow proceeds to step S708 to restore the
pre-stored context before the interrupt program being
invoked. For example, the context-related execution param-
eters of the processor 110 previously stored in the processor-
current-state store region 1242 by the simulation module
122 is now read (for example, the previously stored context-
related execution parameters are popped from the state
stack) from the address indicated by the processor-current-
state pointer register 116A, to resume/restore the context
before the processor 110 invokes the simulation module 122.
Subsequently, the processor 110 then quits the simulation
module 122 and terminates the conversion/simulation opera-
tions for the ready-for-execution instruction 132. If the
ready-for-execution instruction 132 may be implemented in
the current context of the processor 110, then the flow
proceed to step S710 from step S706. After the simulation
module 122 uses the format information of the ready-for-
execution instruction 132 to invoke corresponding simula-
tion program in block 710, the flow proceeds to block S712,
and a memory operands or a register operand is accessed
according to the indication of the ready-for-execution
instruction 132. If an architectural register that is not sup-
ported by current hardware of the processor 110 is encoun-
tered, associated mappings by means of the simulation
register file 116E in the dedicated hardware 116 is used for
searching required operands (data is stored or modified
subsequently). As described above, in the processes of
calling the simulation program in step S712, all the infor-
mation during the conversion processes may be stored in the
conversion-information store region 1244 through the
address indicated by the conversion-information pointer
register 116B. In step S714, the simulation module 112
executes the simulation program. As previously described,
all the information generated in the execution processes of
block 714 may be stored in the simulation-execution-result
store region 1246 through the address indicated by the
simulation-execution-result pointer register 116C. Please
note that the simulation execution result generated by the
simulation program is remained in the simulation-execution-
result store region 1246. In step S716, a notification regard-
ing simulation completion is set in the simulation-execution-
result store region 1246 so as to inform the processor 110 of
resuming/restoring the pre-stored context (that is, the con-

US 2024/0004658 Al

text-related execution parameters of the processor 110 pre-
stored in the state stack of the processor-current-state store
region 1242 before the simulation module 122 is invoked is
read/obtained from the address indicated by the processor-
current-state pointer register 116 A). The processor 110 then
quits the simulation module 122 and terminates associated
simulation operations for the extended instruction. Finally,
the processor 110 may use the address indicated by the
simulation-execution-result pointer register 116C to read the
simulation execution result of the ready-for-execution
instruction 132.

[0083] FIG. 8 is a flow chart illustrative of processing a
ready-for-execution instruction according to the embodi-
ment of the disclosure. As shown in FIG. 8, in step S802, the
processor 110 receives a ready-for-execution instruction
132. In step S804, the processor 110 decodes this ready-for-
execution instruction 132, while the instruction decoder 112
determines whether the ready-for-execution instruction 132
is a compatible instruction (for example, a native instruc-
tion) in step S806. If the ready-for-execution instruction 132
is a compatible instruction (i.e., the determination is “Yes”),
the flow proceeds to step S808 and the processor 110
executes the compatible instruction and returns an execution
result. If the ready-for-execution instruction 132 is not a
compatible instruction (i.e., the determination of step S806
is “No”), the flow proceeds to step S810 and the monitor 114
determines whether the ready-for-execution instruction 132
is an extended instruction. If the monitor 114 determines that
the ready-for-execution instruction 132 is an extended
instruction (for example, the determination is “Yes”), the
flow proceeds to step S814 and the monitor 114 asserts the
emulation flag EF to traverse an interrupt vector table so as
to look for a corresponding interrupt service program (for
example, relative to #NE) when the ready-for-execution
instruction 132 is retired (as shown in FIGS. 4A and 4B, a
NOP instruction corresponding to the ready-for-execution
instruction 132 is retired at this moment), and then the
simulation module 122 may be invoked by the interrupt
service program. The interrupt service program may call the
simulation module 122 by using a pre-embodied hardware,
a pre-programmed software, or an interface formed by a
combination of software/hardware (for example, microcode
executed by a microcode control unit). The simulation
module 122 is called after the current ready-for-execution
instruction 132 is determined as capable of calling the
simulation module 122 (for example, the application pro-
gram 130 has been authenticated successfully). Finally, the
flow proceeds to S816 and the simulation module 122
converts the ready-for-execution instruction 132 into a simu-
lation program, which is subsequently executed to simulate
the implementations of the ready-for-execution instruction
132 (currently an extended instruction). Associated execu-
tion result is finally returned. On the other hand, the flow
proceeds from step S810 to S812 if the determination in step
S810 is “No”, while an anomalous-/exceptional-event noti-
fication may be returned to inform the processor 110/the
operating system 120 that the current ready-for-execution
instruction is an incompatible one such that its execution
result is unsimulatable.

[0084] In summary, the instruction simulation device and
the method thereof described in the embodiments of the
disclosure determine whether a ready-for-execution instruc-
tion derived from the application program is a compatible
instruction or an extended instruction for the processor. If

Jan. 4, 2024

the ready-for-execution instruction is determined as an
extended instruction, the processor converts the ready-for-
execution instruction into a simulation program executable
by the processor, so as to overcome the incompatibility issue
among processor instruction sets, thereby extending the
service life of an electronic appliance employing the dis-
closed simulation device therein.

[0085] The above descriptions are only exemplary
embodiments of the disclosure, which are not used to limit
the scope of the disclosure. Those skilled in the art may
make further improvements and changes on the basis with-
out departing from the spirit and scope of the disclosure.
Therefore, the protection scope of the disclosure shall be
subject to the scope defined by the claims of the disclosure.

What is claimed is:

1. An instruction simulation device, comprising a proces-
sor, the processor comprising:

an instruction decoder, configured to generate format
information of a ready-for-execution instruction; and

the processor is configured to determine whether the
ready-for-execution instruction currently executed by
the processor is a compatible instruction or an extended
instruction based on the format information of the
ready-for-execution instruction, wherein the compat-
ible instruction is an instruction under a current instruc-
tion set of the processor, and the extended instruction is
not an instruction under the current instruction set of
the processor but is an instruction under a new instruc-
tion set or an extended instruction set, wherein the new
instruction set and the extended instruction set are
instruction sets that do not belong to a native instruc-
tion set of the processor; wherein

if the ready-for-execution instruction is an extended
instruction under the new instruction set or the
extended instruction set, the processor converts the
ready-for-execution instruction into a simulation pro-
gram corresponding to the extended instruction, and
simulates an execution result of the ready-for-execution
instruction by executing the simulation program; and

if the ready-for-execution instruction is a compatible
instruction, the processor executes the ready-for-execu-
tion instruction;

wherein the simulation program is composed of at least
one compatible instructions of the processor.

2. The instruction simulation device according to claim 1,
wherein a computer system embodied with the processor
comprises a system memory, the system memory compris-
ing:

a processor-current-state store region, configured to store

a current-context state of the processor;

a conversion-information store region, configured to store
temporary information in a process of translating the
ready-for-execution instruction into the corresponding
simulation program; and

an execution-result store region, configured to store the
execution result after executing the simulation pro-
gram.

3. The instruction simulation device according to claim 1,
wherein when the ready-for-execution instruction is the
extended instruction, the processor asserts an emulation flag
to obtain the corresponding simulation program by means of
an interrupt service program.

4. The instruction simulation device according to claim 1,
wherein the processor comprises:

US 2024/0004658 Al

aplurality of registers, comprising a register configured to
indicate an address of a storage space caching a current
state of the processor, a register configured to indicate
an address of a storage space caching a conversion
intermediate result when calling the corresponding
simulation program, a register configured to indicate an
address of a storage space caching a simulation execu-
tion result, a simulation register configured to map a
target register indicated by the extended instruction,
and a register configured to cache an address indicative
of a real-time conversion mode state store region.

5. The instruction simulation device according to claim 1,
wherein an interrupt service program calls a simulation
module to query if there is a simulation program correspond-
ing to the extended instruction, wherein if the simulation
program corresponding to the extended instruction is found,
the simulation module executes the simulation program and
obtains a simulation execution result for simulating the
execution result of the ready-for-execution instruction.

6. The instruction simulation device according to claim 5,
wherein the simulation execution result is reserved after
terminating the calling to the simulation module, and when
the simulation program corresponding to the extended
instruction is not found, a failure result is returned to notify
the processor and the calling to the simulation module is
terminated in responsive to the failure result.

7. The instruction simulation device according to claim 6,
wherein after terminating the calling to the simulation
module, the processor reads the reserved simulation execu-
tion result or receives the failure result, wherein the proces-
sor notifies an application program arising the ready-for-
execution instruction of the failure result.

8. The instruction simulation device according to claim 6,
wherein if a subsequent ready-for-execution instruction is an
extended instruction and the subsequent ready-for-execution
instruction is converted into a simulation program corre-
sponding to the subsequent ready-for-execution instruction,
the reserved simulation execution result serves as a refer-
ence when executing the simulation program corresponding
to the subsequent ready-for-execution instruction.

9. The instruction simulation device according to claim 5,
wherein the simulation module is embodied in a processor
driver, in a kernel of an operating system running on the
processor, or stored in a basic input/output system of a
computer system embodied with the processor.

10. The instruction simulation device according to claim
1, wherein the compatible instruction and the extended
instruction are both instructions under an x86 instruction set
architecture or a reduced instruction set computer (RISC)
architecture.

11. An instruction simulation method, performed by a
processor including an instruction decoder, the instruction
simulation method comprising:

using the instruction decoder of the processor to generate

format information of a ready-for-execution instruc-
tion;

determining by the processor whether the ready-for-ex-

ecution instruction currently executed by the processor
is a compatible instruction or an extended instruction
based on the format information of the ready-for-
execution instruction, wherein the compatible instruc-
tion is an instruction under a current instruction set of
the processor, and the extended instruction is not an
instruction under the current instruction set of the

16

Jan. 4, 2024

processor, but is an instruction under a new instruction
set or an extended instruction set, wherein the new
instruction set and the extended instruction set are
instruction sets that do not belong to a native instruc-
tion set of the processor;

translating the ready-for-execution instruction into a
simulation program corresponding to the extended
instruction wherein an execution result of the ready-
for-execution instruction is generated by means of a
simulation execution result generated by the simulation
program if the read-for-execution instruction is an
extended instruction under the new instruction set or
the extended instruction set; and

executing the ready-for-execution instruction by the pro-
cessor if the read-for-execution instruction is a com-
patible instruction;

wherein the simulation program is composed of at least
one compatible instruction of the processor.

12. The instruction simulation method according to claim
11, wherein a computer system embodied the processor
comprises a system memory, the system memory compris-
ing:

a processor-current-state store region, configured to store

a current context state of the processor;

a conversion-information store region, configured to store
temporary information in a process of translating the
ready-for-execution instruction into the corresponding
simulation program; and

an execution-result store region, configured to store the
simulation execution result after executing the simula-
tion program.

13. The instruction simulation method according to claim
11, wherein when the ready-for-execution instruction is the
extended instruction, the processor asserts an emulation flag
to obtain the corresponding simulation program by means of
an interrupt service program.

14. The instruction simulation method according to claim
11, further comprising:

calling a simulation module by an interrupt service pro-
gram to read the ready-for-execution instruction;

querying whether there is the simulation program corre-
sponding to the extended instruction by the simulation
module; and

generating the simulation execution result by executing
the simulation program by the simulation module when
the simulation program corresponding to the extended
instruction is found.

15. The instruction simulation method according to claim

14, further comprising:

reserving the simulation execution result after terminating
the calling to the simulation module; and

providing a failure result by the simulation module to the
processor and terminating the calling to the simulation
module when the simulation program corresponding to
the extended instruction is not found.

16. The instruction simulation method according to claim

15, further comprising:

reading the simulation execution result reserving by the
processor after terminating the calling to the simulation
module, or obtaining the failure result and notifying an
application program arising the ready-for-execution
instruction of the failure result.

17. The instruction simulation method according to claim

16, wherein if a subsequent ready-for-execution instruction

US 2024/0004658 Al

is an extended instruction and the subsequent ready-for-
execution instruction is converted into a simulation program
corresponding to the subsequent ready-for-execution
instruction, the reserved execution result serves as a refer-
ence when executing the simulation program of the subse-
quent ready-for-execution instruction.

18. The instruction simulation method according to claim
15, wherein the simulation module is embodied in a pro-
cessor driver, in a kernel of an operating system running on
the processor, or stored in a basic input/output system of a
computer system embodied with the processor.

19. The instruction simulation method according to claim
11, wherein the compatible instruction and the extended
instruction are both instructions under an x86 instruction set
architecture or a reduced instruction set computer (RISC)
architecture.

20. A processor instruction simulation method, compris-
ing:

using an instruction decoder of a processor to generate

format information of a ready-for-execution instruc-
tion;
determining, by the processor, whether the ready-for-
execution instruction currently executed by the proces-
sor is an extended instruction based on the format
information of the ready-for-execution instruction;

when the ready-for-execution instruction currently
executed by the processor is the extended instruction,
calling a simulation module by using an interrupt
service program to obtain a simulation program corre-
sponding to the extended instruction, wherein the
extended instruction is not an instruction under a cur-
rent instruction set of the processor, but is an instruction
under a new instruction set or an extended instruction
set, wherein the new instruction set and the extended
instruction set are instruction sets that do not belong to
a native instruction set of the processor; and

executing the simulation program to generate a simulation
execution result for simulating an execution result of
the ready-for-execution instruction.

21. The processor instruction simulation method accord-
ing to claim 20, wherein the ready-for-execution instruction
is sent as a parameter when the simulation module is called.

22. The processor instruction simulation method accord-
ing to claim 21, wherein the processor executes the simu-
lation module by means of a system call to an operating
system performing on the processor.

23. The processor instruction simulation method accord-
ing to claim 22, wherein the simulation module is in a kernel
of the operating system or is a callback function in a driver
of the processor.

24. The processor instruction simulation method accord-
ing to claim 20, wherein the simulation module and the
simulation program are stored in a basic input/output system
of a computer system embodied with the processor, and
when the computer system is turned on, the simulation
module and the simulation program are loaded into a system
memory of the computer system.

25. The processor instruction simulation method accord-
ing to claim 20, further comprising:

terminating the calling to the simulation module after

reserving a simulation execution result of the simula-
tion program in a system memory of a computer system
embodied with the processor.

Jan. 4, 2024

26. The processor instruction simulation method accord-
ing to claim 20, wherein the simulation execution result is
reserved after terminating the calling to the simulation
module, wherein if a subsequent ready-for-execution
instruction is an extended instruction and the subsequent
ready-for-execution instruction is converted into a simula-
tion program corresponding to the subsequent ready-for-
execution instruction, the reserved execution result serves as
a reference when executing the simulation program of the
subsequent ready-for-execution instruction.

27. The processor instruction simulation method accord-
ing to claim 20, wherein the simulation program is pro-
grammed by a processor designer beforehand by using at
least one compatible instruction of the processors to simu-
late the execution result of the extended instruction.

28. The processor instruction simulation method accord-
ing to claim 20, wherein a compatible instruction and the
extended instruction are both instructions under an x86
instruction set architecture or a reduced instruction set
computer (RISC) architecture.

29. A processor instruction simulation method, compris-
ing:

using an instruction decoder of a processor to generate

format information of a ready-for-execution instruc-
tion;
determining, by the processor, whether the ready-for-
execution instruction currently executed by the proces-
sor is an extended instruction based on the format
information of the ready-for-execution instruction;

when the ready-for-execution instruction currently
executed by the processor is the extended instruction,
calling an interrupt service program to obtain a simu-
lation program corresponding to the extended instruc-
tion, wherein the extended instruction is not an instruc-
tion under a current instruction set of the processor, but
is an instruction under a new instruction set or an
extended instruction set, wherein the new instruction
set and the extended instruction set are instruction sets
that do not belong to a native instruction set of the
processor; and

executing the simulation program to generate a simulation

execution result for simulating the extended instruc-
tion.

30. The processor instruction simulation method accord-
ing to claim 29, wherein the interrupt service program
obtains the simulation program corresponding to the
extended instruction by means of a system call, and the
ready-for-execution instruction is sent as a parameter when
invoking the system call.

31. The processor instruction simulation method accord-
ing to claim 30, wherein the system call invokes a simulation
module in a kernel of an operating system performing on the
processor or in a processor driver to obtain the simulation
program.

32. The processor instruction simulation method accord-
ing to claim 31, wherein the simulation module is a callback
function.

33. The processor instruction simulation method accord-
ing to claim 31, wherein the calling to the simulation module
is terminated after the simulation module executes the
simulation program to generate the simulation execution
result.

34. The processor instruction simulation method accord-
ing to claim 33, wherein the simulation execution result is

US 2024/0004658 Al Jan. 4, 2024
18

reserved after terminating the calling to the simulation
module, wherein if a subsequent ready-for-execution
instruction is determined an extended instruction and the
subsequent ready-for-execution instruction is converted into
a simulation program corresponding to the subsequent
ready-for-execution instruction, the reserved simulation
execution result serves as a reference when executing the
simulation program of the subsequent ready-for-execution
instruction.

35. The processor instruction simulation method accord-
ing to claim 29, wherein the simulation program is pro-
grammed by a processor designer beforehand by using at
least one compatible instruction of the processor to simulate
the execution result of the extended instruction.

36. The processor instruction simulation method accord-
ing to claim 29, wherein a compatible instruction and the
extended instruction are both instructions under an x86
instruction set architecture or a reduced instruction set
computer (RISC) architecture.

#* #* #* #* #*

