
US 20190056922A1
(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2019 / 0056922 A1

Cooper et al . (43) Pub . Date : Feb . 21 , 2019

(54) SYSTEM AND METHOD FOR EXTENDING
THE FUNCTIONALITY OF AN
APPLICATION

(71) Applicant : BMC Software , Inc . , Houston , TX
(US)

(72) Inventors : Adam Charles Cooper , Vancouver
(CA) ; George Thucydides , North
Vancouver (CA) ; Geoff Ross Mair ,
Vancouver (CA) ; Caleb Peter Buxton ,
Vancouver (CA)

(21) Appl . No . : 16 / 166 , 877

Publication Classification
(51) Int . Ci .

GO6F 8 / 60 (2006 . 01)
G06F 8 / 61 (2006 . 01)
G06F 8 / 65 (2006 . 01)
G06F 9 / 54 (2006 . 01)

(52) U . S . CI .
CPC G06F 8 / 60 (2013 . 01) ; G06F 8 / 61

(2013 . 01) ; G06F 9 / 541 (2013 . 01) ; G06F 8 / 65
(2013 . 01)

(57) ABSTRACT
A method of administering a computing system , including a
plurality of computing devices . The method includes select
ing an application for download to a computing device , prior
to downloading the application , decompiling the applica
tion , searching for string patterns in the decompiled appli
cation , replacing the string patterns in the decompiled appli
cation with another string pattern , the another string pattern
being configured to intercept at least one of a system event
or an Application Programming Interface (API) call , and
associating logic with the application . The logic is config
ured to interact with the application via the at least one
system event or API call , the logic is configured to provide
additional functions to the application , the logic is config
ured to be shared between the application and at least one
other application , and the logic is stored separate from the
application .

(22) Filed : Oct . 22 , 2018

(63)
Related U . S . Application Data

Continuation of application No . 15 / 385 , 216 , filed on
Dec . 20 , 2016 , now Pat . No . 10 , 133 , 564 , which is a
continuation of application No . 14 / 136 , 879 , filed on
Dec . 20 , 2013 , now Pat . No . 9 , 535 , 674 .
Provisional application No . 61 / 745 , 511 , filed on Dec .
21 , 2012 .

(60)

wajaleceniaminin residente determination et contact avec tortorte here to be invitationen

FIG . 1

.

.

.

. WE
. .

: : :

. Peter
.

. . .
.

.

.

VOUR . .
. M

P4

A

.

US 2019 / 0056922 A1 Feb . 21 , 2019 Sheet 1 of 15 Patent Application Publication

Patent Application Publication Feb . 21 , 2019 Sheet 2 of 15 US 2019 / 0056922 A1

.

.
.

.

.
.
.

.

.
.
.

.

.
.
.

Y
. -

. wa
ON

.
.

iki
. .

.

.

dow
. .

. . : : WW ADDRESSIONS : : : . . .
. . .

. .
.

. .
. .

.

.
. . .

.

. . . .

.
.

FIG . 2A FIG . 2B

wwwwwwwwwwww
www wwwwwwwwwwwrisinin

FIG . 3 Operating System / Device

.

IV 7769500 / 6107 SO SI JO € jaa4S 6107?IZ •q?n uogjeogiqnd uogeyjddy jueved

Patent Application Publication Feb . 21 , 2019 Sheet 4 of 15 US 2019 / 0056922 A1

.

.

w

.

.

.

FIG . 4

wwwwwwwwwwwwwwww

Patent Application Publication Feb . 21 , 2019 Sheet 5 of 15 US 2019 / 0056922 A1

.

.

.

.

.

.

.

FIG . SA FIG . 5B

* *

* * * * * *

* XXX * * tertittttttttt W

* * * WW

Normal Operation CONVENTIONAL ART

Blocking wasks ww

* * *

FIG , SC
jedde . M

Ligaw ERDEHORSES :

.

.

.

.

.

.

US 2019 / 0056922 A1 Feb . 21 , 2019 Sheet 6 of 15 Patent Application Publication

FIG . 5D

V

.

We

. . -

: .

.

.

. .

. .

. . .

.

.

. .

. 4

. . .

.

.

.

.

.

US 2019 / 0056922 A1 Feb . 21 , 2019 Sheet 7 of 15 Patent Application Publication

Patent Application Publication Feb . 21 , 2019 Sheet 8 of 15 US 2019 / 0056922 A1

.

.

nu

.

.
w

FIG . 6

.

.

. - . 2

.

.

. . .

35

. Y
•

Legend
wa

Patent Application Publication Feb . 21 , 2019 Sheet 9 of 15 US 2019 / 0056922 A1

. wwwwwwwwww
.

.

.

.

.

.
.

w ww .
We

w

.

. . .

wwwwww
FIG . 7A FIG . 7B

winning

Embedded Logic Application
ele

wwwwwwwww Logic in a Service

Patent Application Publication Feb . 21 , 2019 Sheet 10 of 15 US 2019 / 0056922 A1
. - .

. . .
. .

.

.
. .
. . . .

.
. .

. .
. . . .

. .
. . .

1
1

. . . .
VWLWWLWWLLLL

.

.

wwwwwwww

.

www
wit

.

.

.
.

.
. . . .
.

.

. .
.

. .

.
. .
. . .

www .

Kuivatus waniniwa XXXXXX

FIG . 70 FIG . 7D
Www

. tace

www

ininiwwwwwwwwwww nonnonminna Additional Logic in a Remote System

minimwam
Logic in an Application

800

VYYYYYYYYYYYYYYY
VYYYYYYYYYYYYYYYYYY

Patent Application Publication

810

uuuuuuuuuuuuuuuuuu

Log into the system

Selected apps are uploaded to the system

$ 32

818

open the admin console

wwwwwwwwwwwwww

Apps are scanned for malicious code and viruses

W

814

820

Feb . 21 , 2019 Sheet 11 of 15

Select apps to add to the system

Apps are published in the system and made available

men

mann

US 2019 / 0056922 A1

FIG . 8

910

Log in to system

900

912

Open admin console

Patent Application Publication

W

AAAAAAAAAAAAAAAAAAAAA

930

920

??? } et a fro Systent

Create or modifies a . group

932

Select setting to be applied to app

Select end user from system or active directory

Feb . 21 , 2019 Sheet 12 of 15

Viiiiiiiii WA

924

934

Assign app to group

Add end user to group

??????????????????????????????????

340

gwe
www Save group to system

_ 950

System applies assignmentis , to
end users

US 2019 / 0056922 A1

FIG , 9

0001

wwwwwwwwwww

1010

Log in to cient
application on the device

Patent Application Publication

VYYYY

1012

W11111111111111111111
1030

Client application connects to the System

View app details

1014

1032

Client application sends metadata to the system

Select application for installation

1034

System determines 308 list using imetadata & group assignment

Cient application retrieves application from System

Feb . 21 , 2019 Sheet 13 of 15

1018

System returns application ist to Client application

1036
ng

Client application is installed onto device

Client application displays list of applications to end user

3 . 020

1038

Client application sends install status to System

End user exits client application
1040

- , -

"

US 2019 / 0056922 A1

FIG . 10

1100

Patent Application Publication

? {
taa

1130
in

Receive an Application
Package (AP)

Receive Application Wrapper

1112

1118

Decompile the AP

Modiiy Decompiled SED Modified AP with Wrapper

1120

Perform SED Modification on Decompiled AP

Feb . 21 , 2019 Sheet 14 of 15

Compile Modified AP with Wrapper

Www

1

Publish Compiled Wrapped Application

US 2019 / 0056922 A1

FIG . 11

www

w

w

W

Development Computing

A

(12321

Patent Application Publication

VE

Petern Provider y

taitoistaisyhad rerudrednippermagedpudropumpedroodporywi
(1252)

Feb . 21 , 2019 Sheet 15 of 15

eodrometeodprtar

* * *

*

Enterprise Server 2240) Pyry

Admin congola

3 . Turi

*

VVV

* *

Wrapper De store

* * * * *

US 2019 / 0056922 A1

FIG . 12

US 2019 / 0056922 A1 Feb . 21 , 2019

SYSTEM AND METHOD FOR EXTENDING
THE FUNCTIONALITY OF AN

APPLICATION

[0001] This application is a continuation of U . S . applica
tion Ser . No . 15 / 385 , 216 , filed Dec . 20 , 2016 , entitled
“ Application Wrapping System and Method ” , which is a
continuation of U . S . application Ser . No . 14 / 136 , 879 , filed
Dec . 20 , 2013 (now U . S . Pat . No . 9 , 535 , 674) , entitled
“ Application Wrapping System and Method ” , which claims
the benefit of U . S . Provisional Patent Application 61 / 745 ,
511 filed on Dec . 21 , 2012 entitled “ Application Wrapping
System and Method ” , the entire contents of which are
incorporated herein by reference .

FIELD
[0002] Embodiments relate to software and mobile com
puting devices . More specifically , it relates to the distribu
tion and control of pre - built or commercially available
applications , and the implementation of rules and policies
associated with those applications .

cation Program Interfaces (APIs) such as copy / paste or file
sharing are allowed . Other example policies can include
when the application can run (such as , for example , day and
time of day) and the location from which it can run .
[0007] In an enterprise environment , application wrapping
increases the level of control and the ease with which control
can be applied to specific end users and applications . Appli
cation wrapping reduces the risk to the enterprise of unau
thorized or improper use of mobile applications . For
example , an administrator can take an application , add extra
security and management features to it , and then deploy it in
the enterprise as a single application package via an enter
prise app store .
[0008] Typically application wrapping methods are part of
the application compilation workflow process . There is a
need , however , for technique to wrap pre - built or commer
cial applications without the involvement of the developer .
[0009] Existing technique focuses on application security
for non - commercial applications , namely , applications
developed in - house . Nonetheless the majority of mobile
applications are commercially developed and available via
app stores . There is a need for technique to support new
license management models where the identity of an enter
prise customer can be associated with an application for the
purposes of license management , and also application autho
rization and security policy enforcement .
[0010] Existing Mobile Device Management (MDM)
technique , for example , relates to securing and managing
devices deployed across an enterprise , and does not provide
the functional benefits enabled by the present application
wrapping technique .
[0011] Other existing approaches include (a) the use of
virtual machines , (b) a developer writing the added func
tionality from scratch or using a library , and (c) having the
device itself provide the functionality .

SUMMARY

BACKGROUND
[0003] Applications developed for mobile devices are
distributed in a package containing the necessary elements
to run the application such as the program code , resources ,
assets , certificates and manifest . Typically , an application is
compiled from the source code and then packaged with the
required elements . An application package is then signed
and distributed to a device or emulator .
[0004] FIG . 1 shows an example packaging flow for an
application developed using the Android operating system
and distributed in an Android Package File (APK) . An
Android application , such as the one shown in FIG . 1 , is
typically written using the Android Software Development
Kit (SDK) and in the Java language . During compilation and
packaging , the Java code is first compiled into class files in
the Java bytecode format . Next the " dx ” tool converts the
class files containing bytecode into “ . dex ” files in the Dalvik
bytecode , where the Dalvik bytecode is the native format of
the Android operating system . If desired , the “ dex ” files can
be converted into “ smali ” files using a file format converter
called " apktool ” .
[0005) FIG . 1 shows an example application package (in
this case a “ . apk ” Android Package) comprising the program
code in “ dex ” files , resources in a resources . arsc file , plus
uncompiled resources and a manifest file (Android Manifest .
xml) . A command line tool such as Android Debug Bridge
(indicated as ADB in FIG . 1) allows the code to communi
cate with an emulator or an Android device . This may be
beneficial during application development as a way to test
and debug the application .
[0006] Application wrapping is a method of adding a layer
to an existing mobile application binary file to add features
or modify behavior , without requiring changes to the under
lying existing application . For example , native iOS or
Android applications can be wrapped to add a management
layer to the existing application . In this way , a system
administrator can exert control over an application and can
set specific rules and policies to be applied to an application
or group of applications . Example policies include whether
or not user authentication is required for a specific applica
tion , whether or not data associated with the application can
be stored on the device , and whether or not specific Appli -

[0012] One embodiment includes a method of administer
ing a computing system , including a plurality of computing
devices . The method includes selecting an application for
inclusion in a menu of applications downloadable to a
computing device and interposing a wrapper on the appli
cation before the computing device downloads the applica
tion , the wrapper being configured to control an operation of
the application . Interposing the wrapper on the application
includes decompiling the application , searching for string
patterns , and replacing the string patterns with another string
pattern , the another string pattern being configured to inter
cept at least one of a system event or an Application
Programming Interface (API) call and associating logic with
the application . The logic is configured to interact with the
application via the at least one system event or API call , the
logic is configured to provide additional functions to the
application , and the logic is stored separate from the appli
cation .
[0013] . Another embodiment includes a computing system
including a plurality of computing devices . The system
includes a menu of applications downloadable to a comput
ing device , code segments , that when executed by a proces
sor , enable the computing device to download an applica
tion , and code segments , that when executed by the
processor , administer a wrapper configured to control opera
tion of the application . The administering of the wrapper
includes decompiling the application , searching for string

US 2019 / 0056922 A1 Feb . 21 , 2019

patterns , replacing the string patterns with another string
pattern , the another string pattern being configured to inter
cept at least one of a system event or an Application
Programming Interface (API) call , and associating logic
with the application . The logic is configured to interact with
the application via the at least one system event or API call ,
the logic is configured to provide additional functions to the
application , and the logic is stored separate from the appli
cation .
[0014] Implementations can include one or more of the
following features . For example , the application can be
downloaded from the menu of applications . The download
ing can be performed indirectly via an intermediate server .
The wrapper can be configured to control distribution and
use of the application . The wrapper can be configured to
verify that the computing device can be authorized to
download the application . The wrapper can be configured to
control storage of data associated with the application in the
computing device . The data can be fetched by the applica
tion . The data can be generated by the application .
[0015] For example , the controlling of the storage of data
can include prohibiting storage of data associated with the
application in the computing device . The wrapper can be
configured to control access to the API . The API can be
configured to at least one of cut , copy and paste data between
or within applications , and the wrapper can be configured to
interact with the API in order to control one of the cut , copy
and paste data between or within applications . The API can
be configured to control file sharing between or within
applications , and the wrapper can be configured to interact
with the API in order to control file sharing between or
within applications . The wrapper can be configured to
impose at least one of day and time - of - day restrictions on
operating the application . The wrapper can be configured to
impose location - of - use restrictions on operating the appli
cation .

[0024] FIG . 7A - 7D illustrate functional block diagrams
showing where the application wrapper logic can reside in
different example embodiments .
[0025] FIGS . 8 - 11 illustrate flow charts of example work
flows according to at least one example embodiment .
[0026] FIG . 12 illustrates a block diagram showing an
example system architecture
10027] It should be noted that these Figures are intended to
illustrate the general characteristics of methods , structure
and / or materials utilized in certain example embodiments
and to supplement the written description provided below .
These drawings are not , however , to scale and may not
precisely reflect the precise structural or performance char
acteristics of any given embodiment , and should not be
interpreted as defining or limiting the range of values or
properties encompassed by example embodiments . For
example , the relative thicknesses and positioning of mol
ecules , layers , regions and / or structural elements may be
reduced or exaggerated for clarity . The use of similar or
identical reference numbers in the various drawings is
intended to indicate the presence of a similar or identical
element or feature .

DETAILED DESCRIPTION OF THE
EMBODIMENTS

Definition of Terms
[0028] Application (also known as an app) : Application
software written for computing devices .
[0029] Mobile application (also known as a mobile app or
an app) : Application software written for mobile computing
devices .
[0030] Application wrapping : A method of adding a layer
to an existing application (e . g . , mobile application) binary
code to add features or modify functionality , without requir
ing changes to the underlying existing application .
[0031] Application (or app) wrapper : A layer of code
added to existing application (e . g . , mobile application)
binary code for the purposes of adding features or modifying
behavior of the underlying application .
[0032] API : Application Programming Interface .
[0033] Application Package : Software including an appli
cation and the necessary elements to run the application such
as the program code , resources , assets , runtime , certificates
and / or manifest .

BRIEF DESCRIPTION OF THE DRAWINGS
[0016 Example embodiments will become more fully
understood from the detailed description given herein below
and the accompanying drawings , wherein like elements are
represented by like reference numerals , which are given by
way of illustration only and thus are not limiting of the
example embodiments and wherein :
[0017] FIG . 1 illustrates a representative packaging flow
diagram for an application that is developed using existing
techniques .
[0018] FIGS . 2A and 2B illustrate block diagrams show
ing principal components of application wrapping according
to at least one example embodiment .
[0019] FIG . 3 illustrates an interception of system calls by
the application wrapper according to at least one example
embodiment .
[0020] FIG . 4 illustrates an application lifecycle according
to at least one example embodiment .
[0021] FIG . 5A illustrate a processing of system calls for
normal operation according to conventional art .
[0022] FIGS . 5B - 5D illustrate a processing of system calls
for interception , blocking and simulation , respectively
according to at least one example embodiment .
[0023] FIG . 6 illustrates an example application wrapping
workflow according to at least one example embodiment .

DESCRIPTION
[0034] While example embodiments may include various
modifications and alternative forms , embodiments thereof
are shown by way of example in the drawings and will
herein be described in detail . It should be understood ,
however , that there is no intent to limit example embodi
ments to the particular forms disclosed , but on the contrary ,
example embodiments are to cover all modifications ,
equivalents , and alternatives falling within the scope of the
claims . Like numbers refer to like elements throughout the
description of the figures .
[0035] FIGS . 2A and 2B are block diagrams showing
principal components of application wrapping , with added
functionality inside and outside the application package ,
respectively . FIGS . 2A and 2B illustrate that the components
can be combined in an application package using an appli
cation (or app) wrapping process .

US 2019 / 0056922 A1 Feb . 21 , 2019

[0036] FIGS . 2A and 2B show an application package ,
before app wrapping , which includes the original application
code . In this example implementation , an app wrapper and
optionally some additional functionality may be inserted
into the application package . FIG . 2A then shows an appli
cation package after app wrapping . The modified application
package includes the original application code along with
the app wrapper and added functionality . In one or more
example implementations , the app wrapper and added func
tionality may be inserted into a pre - built or commercial
application without the involvement of the original applica
tion developer .
[0037] FIG . 2B shows an application package , after app
wrapping , which includes the original application code
along with the app wrapper , and the added functionality
residing outside the application package . The added func
tionality may communicate with the application via the app
wrapper . Accordingly , in some example implementations ,
the added functionality can be updated or otherwise modi
fied without requiring re - wrapping .
[0038] As a result , example app wrapping techniques may
be applicable to (a) app wrapping where functionality is
added to the application package and resides inside the
application package , and (b) app wrapping where some or all
or the added functionality resides outside the application
package and can be updated without re - wrapping .

exposed to components of example app wrapping techniques
by implementing a method callback , for example .
[0043] The app wrapper can , for example , intercept an
" onResume ” system event and perform checking to verify a
user is permitted to run the application . At an “ onPause "
system event , the app wrapper can intercept the event and
write secure data before the application is terminated , for
example . Secure data can be written , for example , on a disk
or in cloud storage .
[0044] FIGS . 5A through 5D illustrate the processing of
system calls for normal operation , interception , blocking and
simulation , respectively . In general , interception of system
events and API calls involves capturing the event (or call) ,
performing a function , and then delegating the event (or call)
to its original destination .
[0045] FIG . 5A illustrates conventional interaction
between system and application during normal operation .
System events and API calls are passed between the system
and the application as shown .
[0046] FIG . 5B illustrates the interception of system
events and API calls by the app wrapper . In FIG . 5B , the
system generates a system event in response to a user event
or another system event . For example , the system may
generate a “ launch app " event in response to the user tapping
on an app in the user interface on the device . The event is
intercepted (or captured) by the app wrapper . The app
wrapper may perform a function before delegating the
system event to its original destination in the application .
Also in FIG . 5B , the application generates a system API call .
The call is intercepted by the app wrapper . The app wrapper
may perform a function before delegating the API call to its
original destination in the system .
[0047] FIG . 5C illustrates the interception and blocking of
system events and API calls by the app wrapper . Blocking
prevents propagation of the event or call beyond the app
wrapper . Blocking can be based on business logic in the app
wrapper , for example . Consider an example scenario in
which the system generates an " onResume ” event and the
event is intercepted by the app wrapper . If the logic in the
app wrapper determines that the application is not autho
rized to resume , then the app wrapper blocks the event and
refuses to delegate it to a forward destination such as , for
example , its original destination in the application .
[0048] FIG . 5D illustrates the interception and modifica
tion / simulation of system events and API calls by the app
wrapper . In this scenario , an app wrapper can send one or
more simulated or modified events to an application , or one
or more simulated or modified API calls to the system . The
scenario can be triggered by the interception of a system
event or API call , or can be initiated by the app wrapper .
Simulated events and API calls may not necessarily be
related to actual events generated by the system or API calls
made by the application .

Interception of Events and API Calls

[0039] FIG . 3 illustrates the interception of system calls by
the app wrapper . As shown in FIG . 3 , intercepted system
calls can be either (a) system events or (b) system API calls .
The app wrapper can broker system events and system API
calls . System events are generated in the operating system
and called into the application . System API calls originate in
the application and call into the operating system . In at least
on example implementation , app wrapping techniques
enable intercepting system events and API calls without the
involvement of the developer . Typically , system events and
API calls are done under the control of the developer via the
original application code . Using the technique described
herein , pre - built or commercial applications can be app
wrapped , and the app wrapper can intercept or broker system
events and API calls without using or modifying the original
application code .
[0040] FIG . 4 shows an example application lifecycle . The
lifecycle shown in FIG . 4 is typical of an Android applica
tion lifecycle , for example .
[0041] FIG . 4 shows some example types of system events
and when they occur in the lifecycle of the application . In the
example shown in FIG . 4 , the types of system events are
" onStart " , " onResume ” , “ onPause ” and “ onTerminate ” . In
the same example , the application can be in one of two
states “ stopped ” or “ active ” . System events " onStart ” and
" onResume ” occur after a user has started or re - started a
stopped application . Once started (or resumed) , the appli
cation is active . When a user leaves the application , there is
an “ onPause " system event . When the system shuts down
the application , there is an " on Terminate ” system event , and
the application is stopped .
0042] The app wrapper from FIG . 3 can intercept a
system event (such as the ones shown in FIG . 4) , and
perform a different type of interception based on the appli -
cation state , time or other factor . System events may be

Application Wrapping Workflow and Configuration
[0049] FIG . 6 shows an example application wrapping
workflow . The present application wrapping technique has
an app wrapping approach that allows different types of
functionality to be injected into a pre - built or commercial
mobile application without the involvement of the devel
oper . Examples of different types of functionality include ,
but are not limited to , license checking and verification ,

US 2019 / 0056922 A1 Feb . 21 , 2019

app wrapper logic can be upgraded without requiring the
application (s) to be re - wrapped .
[0059] FIG . 7D illustrates a case where the app wrapper
logic is split between two systems — a device and a remote
system . This approach can be used in the 3 cases illustrated
in FIG . 7A through 7C . FIG . 7D illustrates an approach for
the " embedded logic ” scenario shown in FIG . 7A .
10060] FIG . 7D shows an application package residing on
a user computing device (e . g . , mobile device) and including
an application , an app wrapper framework and app wrapper
logic . The app wrapper logic on the device can communicate
with app wrapper logic residing on a remote system , as
shown in FIG . 7D . The app wrapper logic on the remote
system can be upgraded without requiring re - wrapping of
the application on the user computing device .

security sandboxing , and data encryption . Other examples of
added functionality can include usage tracking , reporting ,
and analytics .
[0050] The present app wrapping technique can bind the
identity of a company to a commercial application , thereby
licensing the application for use by the company , and
issuing , retracting , and re - issuing application licenses . The
system , or system administrator , can perform and enforce
these actions .
[0051] The injection process follows a similar workflow
for each type of functionality added to the application .
Details of the steps may vary depending on the functionality .
FIG . 6 shows a workflow for injecting additional function
ality into a third party application .
[0052] Before step 1 in the workflow shown in FIG . 6 ,
code containing the additional functionality is converted to
a low level (e . g . , assembly) language format . For example ,
the code containing the additional functionality may be
converted from “ dex ” format to " smali ” via a tool such as
the apktool . At step 1 in FIG . 6 , the third party application
package is decompiled using a suitable tool . In the example
embodiment shown in FIG . 6 , the third party application is
an Android . apk package , and can be decompiled using the
apktool to produce “ smali ” files . At step 2 in FIG . 6 , the
decompiled files can be modified to facilitate the third party
application calling into the additional functionality being
provided by the app wrapper . This step may vary depending
on the type of functionality being added by the app wrapper .
[0053] At step 3 , the app wrapper files are merged with the
decompiled (and modified) third party application files . At
step 4 , the wrapped application is re - compiled into an
unsigned application package . For example , in the case of an
Android application , the wrapped application is re - compiled
into an . apk file .
[0054] At step 5 in FIG . 6 , the app package is signed using
the app wrapper developer ' s key .
[0055] FIGS . 7A through 7D are functional block dia
grams showing where the app wrapper logic can reside in
different example embodiments . The upgrade path for the
app wrapper logic may vary depending on where the logic
resides .
[0056] FIG . 7A illustrates a case where the app wrapper
logic is contained in the application package . FIG . 7A shows
the application package comprising an application , an app
wrapper framework and app wrapper logic .
[0057] FIG . 7B illustrates a case where the app wrapper
logic is provided by a service . FIG . 7B shows a service
residing on the user computing device (e . g . , mobile device)
and including app wrapper logic . FIG . 7B also shows two
different application packages each including an application
and an app wrapper framework . The app wrapper logic is
shared by the two applications . In general , the logic can be
associated with one application , or can be shared by two or
more different applications . The benefit of this configuration
is that the app wrapper logic can be upgraded without
requiring the application (s) to be re - wrapped .
[0058] FIG . 7C illustrates a case where the app wrapper
logic is part of an application residing on a mobile device .
FIG . 7C shows an example in which the app wrapper logic
is shared between two different applications , each including
an application and an app wrapper framework . FIG . 7C
shows an application package including an application and
app wrapper logic . Like the case shown in FIG . 7B , the
benefits of the configuration shown in FIG . 7C are that the

Use Cases / Example Workflows
[0061] FIGS . 8 - 11 are flow charts of methods according to
example embodiments . The steps described with regard to
FIGS . 8 - 11 may be performed due to the execution of
software code stored in a memory (e . g . , one or more of the
memories shown in FIG . 12) associated with an apparatus
(e . g . , as shown in FIG . 12) and executed by at least one
processor (e . g . , one or more of the CPU ' s shown in FIG . 12)
associated with the apparatus . However , alternative embodi
ments are contemplated such as a system embodied as a
special purpose processor . Although the steps described
below are described as being executed by a processor , the
steps are not necessarily executed by a same processor . In
other words , at least one processor may execute the steps
described below with regard to FIGS . 8 - 11 .
[0062] FIG . 8 is a flow chart describing an example
workflow method according to an example embodiment . In
the example described with regard to method 800 , the
method may apply to a development computing device (e . g . ,
as used by a developer of an application) when an applica
tion is uploaded and published for distribution to one or
more user computing devices . Using the development com
puting device a developer can publish an app as an appli
cation package with compiled code and other resources as
required or desired . After that , the development computing
device (and as a result the developer) is not involved in the
app wrapping process related to the described app wrapping
techniques .
[0063] Method 800 begins at step 810 , where a develop
ment computing device logs in to the system . For example ,
a user (e . g . , an application developer) using the development
computing device 1210 logs into the platform provider
system 1250 . The method proceeds to step 812 where an
admin console is opened . After the admin console is open ,
the method proceeds to step 814 where apps are selected to
add to the system . The method proceeds to step 816 where
the selected apps are uploaded to the system . For example ,
admin console 1258 is opened and applications stored on
development computing device 1210 are selected for addi
tion to application datastore 1260 . In step 818 the apps are
scanned for malicious code and viruses . Once the scanning
is complete , the method proceeds to step 820 where the apps
are published in the system and made available to system
administrators .
[0064] FIG . 9 is a flow chart describing an example
workflow method according to an example embodiment . In
the example described with regard to method 900 , the
method may apply to a platform provider system (e . g . , as

US 2019 / 0056922 A1 Feb . 21 , 2019

managed by a system administrator) when used for manag
ing and configuring the apps that have been uploaded to the
system by , for example , a development computing device .
This can include creating and modifying groups of end
users , and assigning apps to groups . The app wrapping
technique described herein enables the platform provider
system to implement rules and policies related to the pub
lished apps . Rules and policies can be implemented in an
automatic fashion by the system without the direct involve
ment of a system administrator . Alternatively , and / or in
addition to , the system administrator may set rules and
policies using , for example , a set of menus provided by the
platform provider system .
[0065] Method 900 is for a platform provider system (e . g . ,
platform provider system 1250) to make changes to groups
and to assign apps to end users . The steps described with
regard to method 900 may be performed by a system
administrator and / or automatically when , for example , an
application is added to the system . Method 900 starts at step
910 where the administrator logs into the system and pro
ceeds to step 912 where the administrator opens an admin
console . If the system administrator would like to assign
apps to a group , then the method proceeds to step 914 where
the administrator selects apps from the system . The method
then proceeds to step 916 where the administrator selects the
settings to be applied to each of the apps selected in step 914 .
The method proceeds to step 918 where the administrator
assigns the selected apps to a group , and then proceeds to
step 940 .
[0066] If the system administrator would like to make
changes to groups , then the method proceeds directly from
step 912 to step 930 where the administrator creates or
modifies a group . The method then proceeds first to step 932
where the administrator selects an end user from the active
directory and then to step 934 where the administrator adds
the selected user to the group . Steps 932 and 934 are
repeated until the desired end users have been added to the
group . The method then proceeds to step 940 .
[0067] At step 940 , the administrator saves the group
(including end users , apps and app settings) to the system .
The method proceeds to step 950 where the system applies
the assignments to the end users .
[0068] FIG . 10 is a flow chart describing an example
workflow from the perspective of a user computing device
(e . g . , user computing device 1230) . The app wrapping
technique is transparent to a user the user computing device .
The user can be presented (e . g . , on a display of the user
computing device) with a list of applications available to the
user , and can select which ones to install . The present app
wrapping technique described herein allows a platform
provider system (e . g . , platform provider system 1250) to
control and manage the distribution and use of the available
apps through app wrapping logic .
[0069] The workflow is described by a method shown in
FIG . 10 . The method begins at step 1010 where the user logs
in to the client application on the user computing device
(e . g . , user computing device 1230) , and the method proceeds
to step 1012 . At step 1012 , the client application (e . g . , an
application configured to select and install other application ,
for example , an app store) connects to the platform provider
system and the method proceeds to step 1014 . At step 1014 ,
the client application sends metadata to the platform pro
vider system and the method proceeds to step 1016 where
the platform provider system determines the list of applica

tions using metadata and knowledge of the assignment of the
end user to a group . The method proceeds to step 1018
where the platform provider system returns the application
list to the client application . The method then proceeds to
step 1020 where the client application displays a list of
applications on a display of the user computing device .
[0070] At this point , the end user can take one of two
actions — either tap on an application (as displayed on a
display of the user computing device) to view details , in
which case the method proceeds to step 1030 , or exit the
client application , in which case the method proceeds to
1040 , the end user exits the client application and the
method completes . If the method proceeds to step 1030 , then
tapping on the application will cause the method to proceed
to step 1032 where the end user can select the application for
installation (e . g . , tap the install button) . The method pro
ceeds to steps 1034 , 1036 and 1038 in sequence at which the
client application retrieves the selected application from the
platform provider system , installs the application on the
device and sends an install status to the platform provider
system .
[0071] Steps 1030 through 1038 can be repeated for
multiple applications selected by the end user .
[0072] FIG . 11 is a flow chart describing an example
workflow method according to an example embodiment . In
the example application wrapping workflow of FIG . 11 , an
application wrapper is interposed on a pre - written applica
tion before allowing a user computing device to download
the pre - written application . As discussed in more detail
above , the application wrapper may be configured to control
an operation of the pre - written application .
[0073] In step 1110 an application package is received . For
example , platform provider system 1250 may receive an
application package (e . g . , an . apk file for an Android appli
cation package) . The application package may be received
from a development computing device 1210 . The applica
tion package may include the application ' s code (e . g . , . dex
files) , resources , assets , and manifest file . The application
package may be stored in the application datastore 1258 .
[0074] In step 1112 the application is decompiled . For
example , wrapper module 1262 may decompile the appli
cation using a suitable tool . For example , wrapper module
1262 may read the . apx file (of an Android application) from
the application datastore 1258 and decompile the using the
apktool to produce “ smali ” files .
[0075] In step 1114 a stream editor (SED) is used to
modify the decompiled application package . For example ,
the SED may be used to search for string patterns and
replace the string patterns with another string pattern in
preparation for interposing the application wrapper . The
SED may perform a line by line search and replace . The
SED may modify the decompiled application package to
facilitate calling the additional functionality being provided
by the app wrapper . This step may vary depending on the
type of functionality being added by the app wrapper .
[0076] In step 1116 an application wrapper is received . For
example , platform provider system 1250 may receive an
application wrapper . The application wrapper may be
received from development computing device 1210 and / or
an aggregator computing device 1220 . The application
wrapper may include the application wrapper code including
code implementing additional functionality . The application
wrapper code , containing the additional functionality , may
be converted to a low level (e . g . , assembly) language format .

US 2019 / 0056922 A1 Feb . 21 , 2019

For example , the code containing the additional functional
ity may be converted from “ . dex ” format to " smali ” via a
tool such as the apktool . The application wrapper may be
stored in the wrapper datastore 1260 .
[0077] In step 1118 the decompiled modified application
package is modified (e . g . , merged) with the application
wrapper code . For example , the app wrapper files are
merged with the decompiled (and modified) application
files .
[0078] In step 1120 application package and the wrapper
code are compiled . For example , the wrapped application
may be re - compiled into an unsigned application package .
For example , in the case of an Android application , the
wrapped application is re - compiled into an . apk file .
[0079] In step 1122 the compiled wrapped application is
published . For example , the unsigned wrapped application
package is signed using the app wrapper developer ' s key
and exposed for download by user computing devices (e . g . ,
user computing device 1230) .

OTHER EMBODIMENTS
[0080] In another embodiment of the present app wrap
ping technique , an app wrapper class can be made part of an
activity in the application lifecycle . This may mean the class
can modify an original activity . For example , in an iOS
application , the class can be at the operating system level
and can manage the hand - off to the original activity .
[0081] Yet another embodiment of the present app wrap
ping technique is to modify the class directly , namely , to
change the existing application code or add new code . This
approach can involve modifying code in more than place
and may be less scalable than other approaches described
here .
[0082] In yet another embodiment , a customer (e . g . an
enterprise) can add its own code to a pre - built or commercial
application , and then app wrap it using the present app
wrapping technique described here .
[0083] In other embodiments , the client may be running a
user interface only , the application not residing on the
device .

module 1216 may be an integrated development environ
ment (IDE) supporting any number of programming lan
guages and configured to develop (e . g . , code and compile)
applications . The development computing device 1210 may
be , for example , an element of any computing device (e . g . ,
personal computer , a laptop computer and the like) .
[0086] The aggregator computing device 1220 includes at
least one processor 1222 , an operating system 1224 , an
aggregator module 1226 , and at least one memory 1228 . The
at least one processor 1220 and the at least one memory
1228 are communicatively coupled via a bus (not shown) .
The at least one processor 1220 and the at least one memory
1228 may be hardware (e . g . , silicon based) physical devices .
According to example implementations , the operating sys
tem 1224 manages hardware resources associated with
aggregator computing device 1220 and provides common
services for computer programs executing on aggregator
computing device 1220 . According to example implemen
tations , the aggregator module 1226 may include a datastore
of a plurality of applications and a mechanism to make the
plurality of web applications available to other computing
devices . The aggregator computing device 1220 may be , for
example , an element of any computing device (e . g . , a server ,
a cloud computing device , a personal computer , and the
like) .
[0087] The user computing device 1230 includes at least
one processor 1232 , an operating system 1234 , an applica
tion module 1236 , and at least one memory 1238 . The at
least one processor 1230 and the at least one memory 1238
are communicatively coupled via a bus (not shown) . The at
least one processor 1230 and the at least one memory 1238
may be hardware (e . g . , silicon based) physical devices .
According to example implementations , the operating sys
tem 1234 manages hardware resources associated with user
computing device 1230 and provides common services for
computer programs executing on user computing device
1230 . According to example implementations , the applica
tion module 1216 may include a datastore including at least
one application the tools to execute applications (e . g . , a
runtime) and a mechanism used to acquire / update applica
tions . The user computing device 1230 may be , for example ,
an element of any computing device (e . g . , personal com
puter , a laptop computer and the like) .
[0088] The (optional) enterprise server 1240 includes at
least one processor 1242 , an operating system 1244 , an
application server 1246 , and at least one memory 1418 . The
at least one processor 1240 and the at least one memory
1248 are communicatively coupled via a bus (not shown) .
The at least one processor 1240 and the at least one memory
1248 may be hardware (e . g . , silicon based) physical devices .
According to example implementations , the operating sys
tem 1244 manages hardware resources associated with
enterprise server 1240 and provides common services for
computer programs executing on enterprise server 1240 .
According to example implementations , the application
server 1246 may be configured to enable a user device to
indirectly download the applications associated with the
platform provider . The enterprise server 1240 may be , for
example , an element of any computing device (e . g . , a
networked computer , a cloud computer , and the like) .
[0089] The platform provider system 1250 includes at
least one processor 1252 , an operating system 1254 , an
application server 1256 , an application datastore 1258 , a
wrapper datastore 1260 , a wrapper module 1262 and at least

Example Architecture
[0084] FIG . 12 is a block diagram showing an example
system architecture . The example system 1200 architecture
includes a development computing device 1210 , an aggre
gator computing device 1220 , a user computing device
1230 , a platform provider system 1250 , an (optional) enter
prise server 1240 , and a network 1202 . As will be appreci
ated the system 1200 may include one or more of each of
these devices .
[0085] The development computing device 1210 includes
at least one processor 1212 , an operating system 1214 , an
application developer module 1216 , and at least one
memory 1218 . The at least one processor 1210 and the at
least one memory 1218 are communicatively coupled via a
bus (not shown) . The at least one processor 1210 and the at
least one memory 1218 may be hardware (e . g . , silicon
based) physical devices . According to example implemen
tations , the operating system 1214 manages hardware
resources associated with development computing device
1210 and provides common services for computer programs
executing on development computing device 1210 . Accord
ing to example implementations , the application developer

US 2019 / 0056922 A1 Feb . 21 , 2019

one memory 1258 . The at least one processor 1250 and the
at least one memory 1258 are communicatively coupled via
a bus (not shown) . The at least one processor 1250 and the
at least one memory 1258 may be hardware (e . g . , silicon
based) physical devices . According to example implemen
tations , the operating system 1254 manages hardware
resources associated with platform provider system 1250
and provides common services for computer programs
executing on platform provider system 1250 . The platform
provider system 1250 may be , for example , an element of
any computing device (e . g . , a networked computer , a cloud
computer , and the like) .
[0090] According to example implementations , the appli
cation server 1256 may be configured to enable a user device
to download the applications associated with the platform
provider . The application datastore 1258 and the wrapper
datastore 1260 may be configured to store application pack
ages and application wrappers , respectively . The wrapper
module 1262 may be configured to interpose an application
wrapper on a pre - written application before allowing a user
computing device to download the pre - written application as
discussed throughout this disclosure .
[0091] An administrator as a platform provider using the
platform provider system 1250 may select pre - written appli
cations supplied by developers via the development com
puting device 1210 and aggregators via the aggregator
computing device 1220 , and may present the applications in
a marketplace hosted by the platform provider system 1250 .
An IT administrator can purchase applications and assign
them to end - users operating the user computing device
1230 . The platform provider system 1250 can use the system
and methods described herein to wrap the purchased appli
cations and then make them available for download to the
user computing device 1230 . In some embodiments , the user
computing device 1230 can download the applications
directly from the platform provider system 1250 . In other
embodiments , the user computing device 1230 can down
load the applications from a separate server , for example an
enterprise server 1240 maintained by the IT administrator .
10092] For example , a company with a mobile workforce
may wish to provide its mobile employees with an app that
enables remote access to their personal computer (PC)
desktops from a mobile device . In this example , let ' s assume
an Information Technology (IT) administrator wishes to
purchase multiple licenses of the remote desktop application
for use by the company ' s employees . Using the system and
method described herein , the IT administrator can view
available applications and purchase a quantity of licenses
using a credit card or purchase order . Once the application
is purchased and made available to the IT administrator ,
along with the specified number of licenses , the IT admin
istrator can assign the application to the employees .
[0093] The systems and methods described herein can
automatically wrap the purchased application as part of the
purchase process . The IT administrator can assign the pur
chased application to a group of employees and / or to indi
vidual employees . The application can be presented to the
employee via the native iOS / Android device client and can
allow the employee to install the application onto their
mobile device . Once the application is assigned to the
employees , via a group assignment or directly , the system
can track and display the number of licenses that have been
assigned to the employees . As each employee installs the
application onto their mobile device and / or another device ,

the system can track and display the number of consumed
licenses . If the employee leaves the company or decommis
sions their device , the system can disable the application so
that it can no longer be used . The system can then recoup the
license , and add it back to the number of available licenses
for the application .
10094] Some of the above example embodiments are
described as processes or methods depicted as flowcharts .
Although the flowcharts describe the operations as sequen
tial processes , many of the operations may be performed in
parallel , concurrently or simultaneously . In addition , the
order of operations may be re - arranged . The processes may
be terminated when their operations are completed , but may
also have additional steps not included in the figure . The
processes may correspond to methods , functions , proce
dures , subroutines , subprograms , etc .
100951 . Methods discussed above , some of which are illus
trated by the flow charts , may be implemented by hardware ,
software , firmware , middleware , microcode , hardware
description languages , or any combination thereof . When
implemented in software , firmware , middleware or micro
code , the program code or code segments to perform the
necessary tasks may be stored in a machine or computer
readable medium such as a storage medium . A processor (s)
may perform the necessary tasks .
[0096] Specific structural and functional details disclosed
herein are merely representative for purposes of describing
example embodiments . Example embodiments , however , be
embodied in many alternate forms and should not be con
strued as limited to only the embodiments set forth herein .
[0097] It will be understood that , although the terms first ,
second , etc . may be used herein to describe various ele
ments , these elements should not be limited by these terms .
These terms are only used to distinguish one element from
another . For example , a first element could be termed a
second element , and , similarly , a second element could be
termed a first element , without departing from the scope of
example embodiments . As used herein , the term “ and / or ”
includes any and all combinations of one or more of the
associated listed items .
[0098] It will be understood that when an element is
referred to as being " connected ” or “ coupled ” to another
element , it can be directly connected or coupled to the other
element or intervening elements may be present . In contrast ,
when an element is referred to as being " directly connected ”
or " directly coupled ” to another element , there are no
intervening elements present . Other words used to describe
the relationship between elements should be interpreted in a
like fashion (e . g . , “ between ” versus " directly between , ”
“ adjacent versus “ directly adjacent , ” etc .) .
[0099] The terminology used herein is for the purpose of
describing particular embodiments only and is not intended
to be limiting of example embodiments . As used herein , the
singular forms " a , " " an " and " the " are intended to include
the plural forms as well , unless the context clearly indicates
otherwise . It will be further understood that the terms
“ comprises , " " comprising , " " includes ” and / or “ including , "
when used herein , specify the presence of stated features ,
integers , steps , operations , elements and / or components , but
do not preclude the presence or addition of one or more other
features , integers , steps , operations , elements , components
and / or groups thereof .
0100] It should also be noted that in some alternative
implementations , the functions / acts noted may occur out of

US 2019 / 0056922 A1 Feb . 21 , 2019

the order noted in the figures . For example , two figures
shown in succession may in fact be executed concurrently or
may sometimes be executed in the reverse order , depending
upon the functionality / acts involved .
[0101] Unless otherwise defined , all terms (including tech
nical and scientific terms) used herein have the same mean
ing as commonly understood by one of ordinary skill in the
art to which example embodiments belong . It will be further
understood that terms , e . g . , those defined in commonly used
dictionaries , should be interpreted as having a meaning that
is consistent with their meaning in the context of the relevant
art and will not be interpreted in an idealized or overly
formal sense unless expressly so defined herein .
[0102] Portions of the above example embodiments and
corresponding detailed description are presented in terms of
software , or algorithms and symbolic representations of
operation on data bits within a computer memory . These
descriptions and representations are the ones by which those
of ordinary skill in the art effectively convey the substance
of their work to others of ordinary skill in the art . An
algorithm , as the term is used here , and as it is used
generally , is conceived to be a self - consistent sequence of
steps leading to a desired result . The steps are those requir
ing physical manipulations of physical quantities . Usually ,
though not necessarily , these quantities take the form of
optical , electrical , or magnetic signals capable of being
stored , transferred , combined , compared , and otherwise
manipulated . It has proven convenient at times , principally
for reasons of common usage , to refer to these signals as
bits , values , elements , symbols , characters , terms , numbers ,
or the like .
[0103] In the above illustrative embodiments , reference to
acts and symbolic representations of operations (e . g . , in the
form of flowcharts) that may be implemented as program
modules or functional processes include routines , programs ,
objects , components , data structures , etc . , that perform par
ticular tasks or implement particular abstract data types and
may be described and / or implemented using existing hard
ware at existing structural elements . Such existing hardware
may include one or more Central Processing Units (CPUs) ,
digital signal processors (DSPs) , application - specific - inte
grated - circuits , field programmable gate arrays (FPGAs)
computers or the like .
[0104] It should be borne in mind , however , that all of
these and similar terms are to be associated with the appro
priate physical quantities and are merely convenient labels
applied to these quantities . Unless specifically stated other
wise , or as is apparent from the discussion , terms such as
" processing " or " computing " or " calculating ” or “ determin
ing ” of “ displaying ” or the like , refer to the action and
processes of a computer system , or similar electronic com
puting device , that manipulates and transforms data repre
sented as physical , electronic quantities within the computer
system ' s registers and memories into other data similarly
represented as physical quantities within the computer sys
tem memories or registers or other such information storage ,
transmission or display devices .
[0105] Note also that the software implemented aspects of
the example embodiments are typically encoded on some
form of non - transitory program storage medium or imple
mented over some type of transmission medium . The pro
gram storage medium may be magnetic (e . g . , a floppy disk
or a hard drive) or optical (e . g . , a compact disk read only
memory , or “ CD ROM ”) , and may be read only or random

access . Similarly , the transmission medium may be twisted
wire pairs , coaxial cable , optical fiber , or some other suitable
transmission medium known to the art . The example
embodiments not limited by these aspects of any given
implementation .
[0106] Lastly , it should also be noted that whilst the
accompanying claims set out particular combinations of
features described herein , the scope of the present disclosure
is not limited to the particular combinations hereafter
claimed , but instead extends to encompass any combination
of features or embodiments herein disclosed irrespective of
whether or not that particular combination has been specifi
cally enumerated in the accompanying claims at this time .

1 . A method , comprising :
selecting an application for download to a computing

device ;
prior to downloading the application , decompiling the

application ;
searching for string patterns in the decompiled applica

tion ;
replacing the string patterns in the decompiled application
with another string pattern , the another string pattern
being configured to intercept at least one of a system
event or an Application Programming Interface (API)
call ; and

associating logic with the application , wherein
the logic is configured to interact with the application

via the at least one system event or API call ,
the logic is configured to provide additional functions

to the application ,
the logic is configured to be shared between the appli

cation and at least one other application , and
the logic is stored separate from the application .

2 . The method of claim 1 , wherein the application is
selected from a menu of applications .

3 . The method of claim 1 , wherein the downloading is
performed indirectly via an intermediate server .

4 . The method of claim 1 , wherein the logic is configured
to verify that the computing device is authorized to down
load the application .

5 . The method of claim 1 , wherein the logic is configured
to control storage of data associated with the application in
the computing device .

6 . The method of claim 5 , wherein the data is fetched by
the application .

7 . The method of claim 5 , wherein the data is generated
by the application .

8 . The method of claim 5 , wherein the controlling of the
storage of data includes prohibiting storage of data associ
ated with the application in the computing device .

9 . The method of claim 8 , wherein
the API is configured to at least one of cut , copy and paste

data between or within applications , and
the logic is configured to interact with the API in order to

control one of the cut , copy and paste data between or
within applications .

10 . The method of claim 8 , wherein
the API is configured to control file sharing between or

within applications , and
the logic is configured to interact with the API in order to

control file sharing between or within applications .
11 . A computing system including at least one computing

device , the system comprising :

US 2019 / 0056922 A1 Feb . 21 , 2019

a processor ; and
code segments , that when executed by the processor ,

enable the computing device to :
select an application for download to a computing

device ,
prior to downloading the application , decompiling the

application ,
search for string patterns in the decompiled application ,
replace the string patterns in the decompiled applica

tion with another string pattern , the another string
pattern being configured to intercept at least one of
a system event or an Application Programming Inter
face (API) call , and

associate logic with the application , wherein
the logic is configured to interact with the application

via the at least one system event or API call ,
the logic is configured to provide additional func

tions to the application ,
the logic is configured to be shared between the

application and at least one other application , and
the logic is stored separate from the application .

12 . The system of claim 11 , wherein the application is
selected from a menu of applications .

13 . The system of claim 11 , wherein the downloading is
performed indirectly via an intermediate server .

14 . The system of claim 11 , wherein the logic is config
ured to verify that the computing device is authorized to
download the application .

15 . The system of claim 11 , wherein the logic is config
ured to control storage of data associated with the applica
tion in the computing device .

16 . The system of claim 11 , wherein the logic is config
ured to prohibit storage of data associated with the applica
tion in the computing device .

17 . The system of claim 11 , wherein the logic is config
ured to control access to the API .

18 . The system of claim 11 , wherein
the API is configured to at least one of cut , copy and paste

data between or within applications , and
the logic is configured to interact with the API in order to

control one of the cut , copy and paste data between or
within applications .

19 . The system of claim 11 , wherein
the API is configured to control file sharing between or

within applications , and
the logic is configured to interact with the API in order to

control file sharing between or within applications .
20 . A non - transitory computer - readable storage medium

having stored thereon computer executable program code
which , when executed on a computer system , causes the
computer system to perform steps comprising :

selecting an application for download to a computing
device ;

prior to downloading the application , decompiling the
application ;

searching for string patterns in the decompiled applica
tion ;

replacing the string patterns in the decompiled application
with another string pattern , the another string pattern
being configured to intercept at least one of a system
event or an Application Programming Interface (API)
call ; and

associating logic with the application , wherein
the logic is configured to interact with the application

via the at least one system event or API call ,
the logic is configured to provide additional functions

to the application ,
the logic is configured to be shared between the appli

cation and at least one other application , and
the logic is stored separate from the application .

* * * *

