US 20200311081A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2020/0311081 A1l

Merx et al. 43) Pub. Date: Oct. 1, 2020
(54) SELECTIVELY ALLOWING QUERY (52) US. CL
OPTIMIZATION IN QUERY PROCESSING CPC .. GO6F 16/24542 (2019.01); GO6F 16/24537
2019.01
(71) Applicant: SAP SE, Walldorf (DE) ()
. 57 ABSTRACT
(72) Inventors: Johannes Merx, Heidelberg (DE);
Taehyung Lee, Seoul (KR); Sung Implementations of the present disclosure include receiving,
Heun Wi, Gyeonggi (KR); Jin Uk Bae, by a query processing server, a first query, the first query
Seoul (KR); Ki Hong Kim, Seoul including a syntax indicating that precision loss is allowed,
(KR); Stefan Baeuerle, Rauenberg processing, by the query processing server, the first query to
(DE); Florian Scheid, Wiesloch (DE) provide a first QEP, optimization of which would result in
precision loss in a generated query result, determining that
(21) Appl. No.: 16/371,276 the syntax is provided, and in response, optimizing the first
. QEP to provide an optimized QEP, executing the optimized
(22) Filed: Apr. 1, 2019 QEP to generate a query result that includes data stored
A . . within a database system, the query result having reduced
Publication Classification accuracy relative to a query result that would be generated
(51) Int. CL based on the first QEP, and providing the query result as
GO6F 16/2453 (2006.01) output from the database system.

e NN W

3
Network j

g
J
4

" ﬁ(\\

Y

(

V4
\
{
AN

Y
\
!

N
)
\
(

106

7
\
e
.

e ‘\"’\"“W'__ A e e e o o e

b

F
s

Patent Application Publication Oct. 1,2020 Sheet 1 of 4 US 2020/0311081 A1

104

I
t
t
}
}
}
}

}
!
f
}
t
f

,uwmuwmuu
S A
s
]
i
NP

FiG. 1

100“‘“’\4

US 2020/0311081 A1

Oct. 1,2020 Sheet 2 of 4

Patent Application Publication

¢ ‘Oid

\ Jnsey N
fiany \ -

007

subug

10880014 Aol

ezundy -

UORNOBKS

N
N&m

L

/ §0¢

jasied e

(902

N

m;mwm

(o)
vf 4174

Patent Application Publication

300

—

Oct. 1,2020 Sheet 3 of 4

¥

)”“ 302
Receive guery

Parse gquery to provide
QEP

I 304

¥

{ptimize QEP 1o
provide oplimized QEP

306
,/F

¥

Execute optimized QEP

j ~308

¥

Output query result

Ié‘?@

US 2020/0311081 A1

FIG. 3

Patent Application Publication Oct. 1,2020 Sheet 4 of 4 US 2020/0311081 A1

/) E
\ B
‘\ Nl 3
(o] SIololIQie Q
\\\\E\GHB il ﬁ/a/ / 9
| &
\\\ ‘1\ Ii / / =
- \
kY AN
\ e
A AN
\ AN
3 N W
4 N 2
\
“\ < Q
\ 5 ; N
k A P
' o Y
\ {11 B -
i H e 8
% : H
\ T~ N g PO
¥ L T » = mmmmmmfg
5 1T =
HE il 2:;
[N g
LT P
HE il
T~ - 4 - e
J
1T ~
- P
el 8 =
8 T 7 N
g L o &
S b £
/ 5 $ 1 |
/ & &
et £3 4
,/ o b - \

US 2020/0311081 Al

SELECTIVELY ALLOWING QUERY
OPTIMIZATION IN QUERY PROCESSING

BACKGROUND

[0001] Database systems store data that can be queried.
For example, a query can be submitted to a database system,
which processes the query and provides a query result.
Queries are written in a query language. An example query
language includes, without limitation, the structured query
language (SQL), which can be described as a standard
database language that is used to create, maintain and
retrieve data stored in a relational database (e.g., a database,
in which data is stored in relational tables).

[0002] Processing of the query includes creating a query
execution plan (QEP) that is executed by an execution
engine to provide a query result. In some examples, an
optimizer determines the QEP that is to be executed based
on one or more costs. Example costs can include, time,
processing, and/or memory to execute the QEP and provide
the query result. Accordingly, the optimizer selects the QEP
that minimizes one or more costs, as an optimized QEP.
However, in some instances, the optimized QEP can result
in reduced precision in the query result. In such instances,
the optimizer is not used, and a non-optimized QEP is
executed to provide a more precise query result than an
optimized QEP would provide, but at a greater cost.

SUMMARY

[0003] Implementations of the present disclosure include
computer-implemented methods for executing queries in
database systems. More particularly, implementations of the
present disclosure are directed to selectively enabling opti-
mization of query execution plans (QEPs).

[0004] In some implementations, actions include receiv-
ing, by a query processing server, a first query, the first query
including a syntax indicating that precision loss is allowed,
processing, by the query processing server, the first query to
provide a first QEP, optimization of which would result in
precision loss in a generated query result, determining that
the syntax is provided, and in response, optimizing the first
QEP to provide an optimized QEP, executing the optimized
QEP to generate a query result that includes data stored
within a database system, the query result having reduced
accuracy relative to a query result that would be generated
based on the first QEP, and providing the query result as
output from the database system. Other implementations
include corresponding systems, apparatus, and computer
programs, configured to perform the actions of the methods,
encoded on computer storage devices.

[0005] These and other implementations may each option-
ally include one or more of the following features: deter-
mining that the syntax is provided includes determining that
a node of the first QEP includes a parameter that indicates
that precision loss is allowed; the parameter is associated
with the node by a parser that parses the first query to
provide the first QEP; optimizing the first QEP includes
applying at least one rewriting of a set of rewritings to the
node, the optimized QEP including the at least one rewriting,
the at least one rewriting reducing an accuracy of the query
result; the set of rewritings includes round, floor, ceiling, and
aggregation reordering; actions further include: receiving,
by the query processing server, a second query, the second
query being absent the syntax, processing, by the query

Oct. 1, 2020

processing server, the second query to provide a second
QEP, optimization of which would result in precision loss in
a generated query result, and determining that the syntax is
absent from the second query, and in response, executing the
second QEP to generate a second query result; and the query
processing server includes a structured query language
(SQL) server.

[0006] The present disclosure also provides one or more
non-transitory computer-readable storage media coupled to
one or more processors and having instructions stored
thereon which, when executed by the one or more proces-
sors, cause the one or more processors to perform operations
in accordance with implementations of the methods pro-
vided herein.

[0007] The present disclosure further provides a system
for implementing the methods provided herein. The system
includes one or more processors, and a computer-readable
storage medium coupled to the one or more processors
having instructions stored thereon which, when executed by
the one or more processors, cause the one or more proces-
sors to perform operations in accordance with implementa-
tions of the methods provided herein.

[0008] It is appreciated that methods in accordance with
the present disclosure may include any combination of the
aspects and features described herein. That is, methods in
accordance with the present disclosure are not limited to the
combinations of aspects and features specifically described
herein, but also include any combination of the aspects and
features provided.

[0009] The details of one or more implementations of the
present disclosure are set forth in the accompanying draw-
ings and the description below. Other features and advan-
tages of the present disclosure will be apparent from the
description and drawings, and from the claims.

DESCRIPTION OF DRAWINGS

[0010] FIG. 1 depicts an example environment that can be
used to execute implementations of the present disclosure.
[0011] FIG. 2 depicts an example query processing flow in
accordance with implementations of the present disclosure.
[0012] FIG. 3 depicts an example process that can be
executed in accordance with implementations of the present
disclosure.

[0013] FIG. 4 is a schematic illustration of example com-
puter systems that can be used to execute implementations
of the present disclosure.

[0014] Like reference symbols in the various drawings
indicate like elements.

DETAILED DESCRIPTION

[0015] Implementations of the present disclosure are gen-
erally directed to processing queries in database systems.
More particularly, implementations of the present disclosure
are directed to selectively enabling optimization of query
execution plans (QEPs). In some implementations, actions
include receiving, by a query processing server, a first query,
the first query including a syntax indicating that precision
loss is allowed, processing, by the query processing server,
the first query to provide a first QEP, optimization of which
would result in precision loss in a generated query result,
determining that the syntax is provided, and in response,
optimizing the first QEP to provide an optimized QEP,
executing the optimized QEP to generate a query result that

US 2020/0311081 Al

includes data stored within a database system, the query
result having reduced accuracy relative to a query result that
would be generated based on the first QEP, and providing the
query result as output from the database system.

[0016] Implementations of the present disclosure are
described in further detail with reference to an example
query language. The example query language includes the
structured query language (SQL) as the language that is used
to query the database system. It is contemplated, however,
that implementations of the present disclosure can be real-
ized with any appropriate query language.

[0017] FIG. 1 depicts an example architecture 100 in
accordance with implementations of the present disclosure.
In the depicted example, the example architecture 100
includes a client device 102, a network 106, and a server
system 104. The server system 104 includes one or more
server devices and databases 108 (e.g., processors,
memory). In the depicted example, a user 112 interacts with
the client device 102.

[0018] In some examples, the client device 102 can com-
municate with the server system 104 over the network 106.
In some examples, the client device 102 includes any
appropriate type of computing device such as a desktop
computer, a laptop computer, a handheld computer, a tablet
computer, a personal digital assistant (PDA), a cellular
telephone, a network appliance, a camera, a smart phone, an
enhanced general packet radio service (EGPRS) mobile
phone, a media player, a navigation device, an email device,
a game console, or an appropriate combination of any two
or more of these devices or other data processing devices. In
some implementations, the network 106 can include a large
computer network, such as a local area network (LAN), a
wide area network (WAN), the Internet, a cellular network,
a telephone network (e.g., PSTN) or an appropriate combi-
nation thereof connecting any number of communication
devices, mobile computing devices, fixed computing
devices and server systems.

[0019] In some implementations, the server system 104
includes at least one server and at least one data store. In the
example of FIG. 1, the server system 104 is intended to
represent various forms of servers including, but not limited
to a web server, an application server, a proxy server, a
network server, and/or a server pool. In general, server
systems accept requests for application services and pro-
vides such services to any number of client devices (e.g., the
client device 102 over the network 106).

[0020] In accordance with implementations of the present
disclosure, the server system 104 can host a database sys-
tem. For example, the server system 104 can host an
in-memory database system. An example in-memory data-
base system includes SAP HANA provided by SAP SE of
Walldorf, Germany. In general, an in-memory database
system uses main memory for data storage. Main memory
may include one or more types of memory (e.g., DRAM,
NVM) that communicates with one or more processors (e.g.,
CPU(s)) over a memory bus. An in-memory database system
may be contrasted with database management systems that
employ a disk storage mechanism. In some examples, in-
memory database systems may be faster than disk storage
databases, because internal optimization algorithms may be
simpler and execute fewer instructions. In some examples,
accessing data in an in-memory database system may reduce
or eliminate seek time when querying the data, providing
faster and more predictable performance than disk-storage

Oct. 1, 2020

databases. As described herein, the database system can
receive a query (e.g., from a client-side application) and can
process the query to provide a query result.

[0021] FIG. 2 depicts an example query processing tlow
200 in accordance with implementations of the present
disclosure. In the example of FIG. 2, a query 202 is
processed to provide a query result 204 that is based on data
stored within a database system. In the depicted example, a
parser 206, an optimizer 208, and an execution engine 210
are provided. In some examples, the parser 206, the opti-
mizer 208, and the execution engine 210 can each be
provided within a query processor 212. In general, and as
described in further detail herein, the query processor 212
receives the query 202, determines a QEP for executing the
query within the database system, executes the QEP, and
provides the query result 204. In accordance with imple-
mentations of the present disclosure, the QEP can be an
optimized QEP, or a non-optimized QEP.

[0022] In further detail, the query 202 is submitted to be
processed by the query processor 212. For example, the
query 202 is submitted to a SQL server and is written in
SQL, described herein. Because SQL is a declarative query
language, the query 202 defines what data is to be retrieved
from the database system (e.g., as opposed to an imperative
language that describes steps to be performed to retrieve the
data). In view of this, the query processor 212 determines a
QEP that is to be executed. In some examples, the QEP is
determined to be the most-efficient QEP (e.g., in terms of
one or more of the above-introduced costs) for providing the
query result 204, while providing reduced accuracy of the
query result 204. In some examples, the QEP is determined
to be not the most-efficient QEP (e.g., in terms of one or
more of the above-introduced costs) for providing the query
result 204, while providing improved accuracy of the query
result 204.

[0023] In some implementations, the parser 206 processes
the query 202 to provide a parse tree. In some examples, the
parser 206 performs parsing and binding to provide the parse
tree. In some examples, the parse tree can be described as a
logical tree having multiple nodes, each node representing a
logical operation that is to be performed to provide the query
result 204. Example operations include, without limitation,
reading data from a specified table, and performing an
inner/outer join. In further detail, parsing includes ensuring
that the query 202 has a valid syntax and translating the
query 202 into the parse tree.

[0024] Initially, the logical operators of the parse tree are
closely related to the original syntax of the query (e.g., “get
data from the REGION table,” “get data from the FACTS
table,” “perform an OUTER JOIN). Different tree represen-
tations of the query are generated during optimization, and
operators of the various logical trees may receive different
names. Binding generally refers to name resolution, during
which it is ensured that all of the object names provided in
the query 202 exist in the database system, and each table
name and column name in the parse tree is associated with
a respective database object. The output of binding is
referred to as an algebraized tree, which is output as the
parse tree by the parser 206. The parse tree output by the
parser 206 can be considered a non-optimized QEP.

[0025] In some implementations, and as described in
further detail herein, it can be determined that optimization
of the QEP would result in reduced accuracy of the query
result 204. Consequently, the QEP output from the parser

US 2020/0311081 Al

206 can be passed to the execution engine 210 for execution.
However, and in accordance with implementations of the
present disclosure, it can be determined that, although
optimization of the QEP would result in reduced accuracy of
the query result 204, the query 202 indicates that the QEP is
to be anyway optimized. That is, and as described in further
detail herein, the query 202 can force optimization of at least
a portion of a QEP that would not be otherwise optimized.
[0026] In some implementations, the optimizer 208 gen-
erates a set of QEPs based on the QEP received from the
parser 206. Each QEP in the set of QEPs represents a
respective set of operations that can be performed to execute
the query 202. In some examples, the set of QEPs includes
the QEP provided by the parser 206. Each QEP can be
considered a set of physical operations (e.g., index seek,
nested loop join) that can be performed within the database
system to produce the query result 204. In some examples,
for each QEP in the set of QEPs, the optimizer 208 deter-
mines one or more costs (e.g., resource cost, time cost). The
optimizer 208 selects the QEP having the lowest cost as the
optimized QEP, which is provided to the execution engine
210.

[0027] As introduced above, implementations of the pres-
ent disclosure are directed to selectively forcing QEP opti-
mization even if the optimized QEP would result in reduced
accuracy of the query result. To provide further context for
implementations of the present disclosure, and as introduced
above, applications execute on database systems to provide
functionality including, for example, data analytics. In some
examples, applications interact with the database system
through queries. Data within the database system can be
stored as data objects with data populating tables, and
applications can interact with the database system through
pre-defined views, table functions and tables, for example.
In database systems, a view can define a result set of a stored
query on data stored within the database system. A view can
be described as a pre-established query command that is
stored in the database system. Application objects can pro-
vide semantics and base functionalities by describing data
models and providing calculation definitions. In some data-
base systems, clients (e.g., applications interacting with the
database system) can dynamically select, filter and aggre-
gate columns of the views based on end-user interaction, for
example.

[0028] In some examples, database objects delivered with
the database system can provide a consistent and datatype
harmonized semantical layer on top of base data and cus-
tomer-provided data. Accordingly, semantical layers can
include functionality for type harmonization and use type
conversion and rounding functions. For example, SQL func-
tions like ROUND, FLOOR, CEILING or decimal type
casts may frequently be used by those objects. However,
utilizing aggregation functions and filtering together with
rounding or type conversion can easily become performance
critical in production systems. This performance issue is
enhanced with relatively large data sizes. Performance can
be in terms of time to process queries, precision of query
results, and/or technical resources (e.g., processors,
memory) expended.

[0029] Due to a possible precision loss, execution of a
query optimizer (e.g., the optimizer 208 of FIG. 2) is,
traditionally, strictly disallowed to apply certain types of
query rewritings (e.g., if rounding or type conversions are
used). In such cases, some transformations (e.g., aggregation

Oct. 1, 2020

reordering/pushdown) are restricted. This can have a sig-
nificant impact on query performance and memory con-
sumption during execution of QEPs in production systems.

[0030]
be considered:

To highlight this, the following example code can

CREATE TABLE REGION (ID INT PRIMARY KEY, REGION
VARCHAR(10), COUNRTY VARCHAR(20));

INSERT INTO REGION VALUES
INSERT INTO REGION VALUES
INSERT INTO REGION VALUES
INSERT INTO REGION VALUES
INSERT INTO REGION VALUES
INSERT INTO REGION VALUES

(1, '"AMER’, 'US");

(2, '"AMER’, 'Canada’);
(3, 'EMEA, 'Germany');
(4, 'EMEA, 'France');
(5, 'APJ', 'South Korea');
(6, 'APJ', 'Tapan');

CREATE TABLE FACTS (KEYFIGURE FLOAT, REGION_ID INT);
INSERT INTO FACTS VALUES (133435.002111805, 1);
INSERT INTO FACTS VALUES (1459223.31433322222, 1);
INSERT INTO FACTS VALUES (15376.033423439, 2);
INSERT INTO FACTS VALUES (222356.34233431, 3);
INSERT INTO FACTS VALUES (242354.13433342, 4);
INSERT INTO FACTS VALUES (182354.123444, 5);
INSERT INTO FACTS VALUES (432376.34210331, 2);
CREATE OR REPLACE VIEW KEYFIGURES_PER_REGION AS
(
SELECT ROUND(KEYFIGURE, 3) AS KEYFIGURE, REGION,
COUNRTY

FROM (

SELECT KEYFIGURE, REGION, COUNRTY FROM FACTS
LEFT OUTER JOIN REGION ON REGION_ID = ID

)
);

In the example code, a table REGION and a table FACTS
are created, and a view (KEYFIGURES_PER_REGION) is
defined, which provides the calculation definition of differ-
ent key figures together with additional functionalities,
which can be queried by clients depending on the user
interaction. To display consistent datatypes and precision,
the view additionally includes type casting and rounding
functions. A query (e.g., SELECT * FROM KEYFIGURES _
PER _REGION) can be submitted to display all calculated
key figure values per country and region. For example:

TABLE 1

Example Query Result

KEYFIGURE REGION COUNTRY
1 135,435,002 AMER Us
2 1,459,223,314 AMER Us
3 15,376,033 AMER Canada
4 222,356,342 EMEA Germany
5 242,354,1234 EMEA France
6 182,354,123 APJ South Korea
7 432,376,342 AMER Canada
[0031] In some examples, a query (e.g., SELECT SUM

(KEY FIGURE), REGION FROM KEYFIGURES_PER
_REGION GROUP BY REGION) can be submitted to
aggregate the key figures and group the result by all existing
regions. For example:

US 2020/0311081 Al

TABLE 2

Example Query Result (Aggregation)

SUM(KEYFIGURE) REGION
1 2,040,410,691 AMER
2 464,710,476 EMEA
3 182,354,123 APJ

[0032] A declarative query plan typically enables different
subsets of relational transformations (e.g., QEP alterna-
tives), which provide the same query result. However, the
cost in terms of execution time, CPU time and memory
consumption may significantly differ among the QEP alter-
natives. Accordingly, a task of the optimizer is to consider
and estimate different plan variants and to choose a QEP
with minimal cost. Continuing with the examples above, an
optimizer might, for example, enumerate an alternative QEP
by reordering the aggregation and pre-aggregating the input
data of the join. Pre-aggregating of j oin inputs often
provides better performance for the given data distribution.
The example optimized query can be provided:

SELECT ROUND(SUM(KEYFIGURE), 3) AS PROFITABILITY,
REGION

FROM (

SELECT SUM(KEYFIGURE) AS KEYFIGURE, REGION

FROM (SELECT SUM(KEYFIGURE) AS KEYFIGURE, REGION_ID
FROM FACTS GROUP BY REGION_ID)

LEFT OUTER JOIN (SELECT DISTINCT * FROM REGION)

ON REGION_ID = ID

GROUP BY REGION) GROUP BY REGION;

Execution of this QEP can provide the following query
result:

TABLE 3

Example Query Result (Optimized QEP)

PROFITABILITY REGION
1 2,040,410,692 AMER

2 464,710,477 EMEA

3 182,354,123 APJ

[0033] However, and comparing the example query results
provided in Table 2 to the query results provided in Table,
the optimized QEP results in reduced precision of the result
values. More particularly, because of the rounding, it is not
possible to apply the reordering and pre-aggregation without
precision loss of the result values. Traditionally, the opti-
mizer is strictly not allowed to rewrite the QEP if the
optimized QEP would result in reduced precision of the
query results. More generally, rounding and casting func-
tions (e.g., ROUND, FLOOR, CEILING) and type casting
are problematic for query optimization, because they block
many relational transformations. Consequently, in such
instances, the query optimization potential of submitted
queries can be significantly restricted. This highlights a
tension, because such rounding and cast functions are an
important base functionality of views provided with data-
base systems, while they limit the optimization potential for
the optimizer by reducing the number of possible plan
transformations.

Oct. 1, 2020

[0034] In view of this, and as introduced above, imple-
mentations of the present disclosure enable queries that
explicitly ignore a potential precision loss through optimi-
zation and benefit from better performance and less memory
consumption in query processing. More particularly, imple-
mentations of the present disclosure enable annotations to
queries to indicate that precision loss is allowed. In
response, an optimizer (e.g., the optimizer 208 of FIG. 2)
may apply query rewritings to achieve QEPs with improved
query performance. To achieve this, implementations of the
present disclosure provide a syntax extension to decorate a
query indicating that optimization is allowed. In some
examples, the syntax is provided as:

[0035] ALLOW_PRECISION_LOSS(<expression>)

In some examples, and as described herein, the syntax of the
present disclosure can be used by users and clients to control
the optimization behavior and enable the optimizer freedom
during query optimization. Giving this information to the
optimizer may ignore a potential precision loss and apply
query rewritings to achieve better query performance.

[0036] Insome implementations, the syntax of the present
disclosure signals that the optimizer can reorder expressions,
for example, as part of optimization. In some examples,
expressions that can be reordered can include SUM aggre-
gation and inner expressions. In this manner, additional
rewritings (e.g., aggregation pushdowns) can be included in
an optimized QEP.

[0037] In further detail, the parser (e.g., the parser 206 of
FIG. 2) is programmed to recognize the syntax (ALLOW
PRECISION LOSS (<expression>)) within received que-
ries. In some implementations, and in response to inclusion
of the syntax within a query, the parser sets a parameter in
respective nodes of the parse tree. In some examples, the
parameter indicates that a logical operation (e.g., aggrega-
tion) of the respective node can be optimized, even though
this would result in a reduced precision of the eventual query
result. The optimizer (e.g., the optimizer 208 of FIG. 2)
receives the parse tree and is programmed to recognize
instances, in which the parameter is set in one or more
nodes. In response to the parameter, the optimizer includes
rewritings during QEP optimization that would otherwise
not have been included, absent the syntax. Example rewrit-
ings include, without limitation, rounding and aggregation
reordering.

[0038] The following provides an example in accordance
with implementations of the present disclosure:

SELECT ALLOW_PRECISION_LOSS (SUM(CAST(ROUND(Keyfig-

ure,
2) AS DECIMAL(15,2))))

FROM ...

-

SELECT CAST(ROUND(SUM(Keyfigure), 2) AS DECIMAL(15,2))
FROM ...

[0039] Referring again to the examples above, using the
syntax ALLOW_PRECISION_LOSS of the present disclo-
sure may result in the same plan and same result set (Table
3) as provided above. For example, the following example
query can be provided:

US 2020/0311081 Al

SELECT ALLOW_PRECISION_LOSS(SUM(KEYFIGURE)), REGION
from KEYFIGURES_PER_REGION GROUP BY REGION;

[0040] Accordingly, implementations of the present dis-
closure enable improved (e.g., sped up, reduced resource
consumption) query processing in application views. In
some examples, such improvements can be selectively
implemented in scenarios where precision loss is acceptable.
As described herein, users can dynamically choose whether
precision loss is allowed in order to benefit from a better
performance and less memory consumption of their queries.
In this manner, the availability to ignore precision loss gives
the optimizer significantly more freedom during query opti-
mization and the possibility to support completely new types
of query rewritings.

[0041] FIG. 3 depicts an example process 300 that can be
executed in accordance with implementations of the present
disclosure. In some implementations, the example process
300 may be performed using one or more computer-execut-
able programs executed using one or more computing
devices. The example process 300 can be performed for
processing queries to provide query results from database
systems.

[0042] A query is received (302). For example, a query
processing server (e.g., SQL server) receives the query. In
some examples, the query includes a syntax indicating that
precision loss is allowed. The query is parsed to provide a
QEP (304). For example, a parser parses the query to
provide a QEP as a parse tree. In some examples, optimi-
zation of the QEP would result in precision loss in a
generated query result. For example, optimization would
result in functions that, if executed, would result in reduced
accuracy of the generated query result. The QEP is opti-
mized to provide an optimized QEP (306). For example, it
can be determined that the syntax had been provided in the
query, and in response, the QEP is optimized to provide the
optimized QEP. In some examples, determining that the
syntax had been provided includes determining that a node
of'the QEP includes a parameter that indicates that precision
loss is allowed. In some examples, the parameter is associ-
ated with the node by the parser. In some examples, opti-
mizing the QEP includes applying at least one rewriting of
a set of rewritings to the node, the optimized QEP including
the at least one rewriting, the at least one rewriting reducing
an accuracy of the query result. In some examples, the set of
rewritings includes round, floor, ceiling, and aggregation
reordering. The optimized QEP is executed (308). For
example, the optimized QEP is executed to generate a query
result that includes data stored within a database system. In
some examples, the query result has reduced accuracy
relative to a query result that would be generated based on
the QEP had it not been optimized. The query result is output
from the database system (310).

[0043] Referring now to FIG. 4, a schematic diagram of an
example computing system 400 is provided. The system 400
can be used for the operations described in association with
the implementations described herein. For example, the
system 400 may be included in any or all of the server
components discussed herein. The system 400 includes a
processor 410, a memory 420, a storage device 430, and an
input/output device 440. The components 410, 420, 430, 440
are interconnected using a system bus 450. The processor
410 is capable of processing instructions for execution

Oct. 1, 2020

within the system 400. In some implementations, the pro-
cessor 410 is a single-threaded processor. In some imple-
mentations, the processor 410 is a multi-threaded processor.
The processor 410 is capable of processing instructions
stored in the memory 420 or on the storage device 430 to
display graphical information for a user interface on the
input/output device 440.

[0044] The memory 420 stores information within the
system 400. In some implementations, the memory 420 is a
computer-readable medium. In some implementations, the
memory 420 is a volatile memory unit. In some implemen-
tations, the memory 420 is a non-volatile memory unit. The
storage device 430 is capable of providing mass storage for
the system 400. In some implementations, the storage device
430 is a computer-readable medium. In some implementa-
tions, the storage device 430 may be a floppy disk device, a
hard disk device, an optical disk device, or a tape device.
The input/output device 440 provides input/output opera-
tions for the system 400. In some implementations, the
input/output device 440 includes a keyboard and/or pointing
device. In some implementations, the input/output device
440 includes a display unit for displaying graphical user
interfaces.

[0045] Implementations of the subject matter and the
actions and operations described in this specification can be
implemented in digital electronic circuitry, in tangibly-
embodied computer software or firmware, in computer hard-
ware, including the structures disclosed in this specification
and their structural equivalents, or in combinations of one or
more of them. Implementations of the subject matter
described in this specification can be implemented as one or
more computer programs, e.g., one or more modules of
computer program instructions, encoded on a computer
program carrier, for execution by, or to control the operation
of, data processing apparatus. The carrier may be a tangible
non-transitory computer storage medium. Alternatively, or
in addition, the carrier may be an artificially-generated
propagated signal, e.g., a machine-generated electrical, opti-
cal, or electromagnetic signal, that is generated to encode
information for transmission to suitable receiver apparatus
for execution by a data processing apparatus. The computer
storage medium can be or be part of a machine-readable
storage device, a machine-readable storage substrate, a
random or serial access memory device, or a combination of
one or more of them. A computer storage medium is not a
propagated signal.

[0046] The term “data processing apparatus” encompasses
all kinds of apparatus, devices, and machines for processing
data, including by way of example a programmable proces-
sor, a computer, or multiple processors or computers. Data
processing apparatus can include special-purpose logic cir-
cuitry, e.g., an FPGA (field programmable gate array), an
ASIC (application-specific integrated circuit), or a GPU
(graphics processing unit). The apparatus can also include,
in addition to hardware, code that creates an execution
environment for computer programs, e.g., code that consti-
tutes processor firmware, a protocol stack, a database man-
agement system, an operating system, or a combination of
one or more of them.

[0047] A computer program, which may also be referred
to or described as a program, software, a software applica-
tion, an app, a module, a software module, an engine, a
script, or code, can be written in any form of programming
language, including compiled or interpreted languages, or

US 2020/0311081 Al

declarative or procedural languages; and it can be deployed
in any form, including as a stand-alone program or as a
module, component, engine, subroutine, or other unit suit-
able for executing in a computing environment, which
environment may include one or more computers intercon-
nected by a data communication network in one or more
locations.

[0048] A computer program may, but need not, correspond
to a file in a file system. A computer program can be stored
in a portion of a file that holds other programs or data, e.g.,
one or more scripts stored in a markup language document,
in a single file dedicated to the program in question, or in
multiple coordinated files, e.g., files that store one or more
modules, sub-programs, or portions of code.

[0049] The processes and logic flows described in this
specification can be performed by one or more computers
executing one or more computer programs to perform opera-
tions by operating on input data and generating output. The
processes and logic flows can also be performed by special-
purpose logic circuitry, e.g., an FPGA, an ASIC, or a GPU,
or by a combination of special-purpose logic circuitry and
one or more programmed computers.

[0050] Computers suitable for the execution of a computer
program can be based on general or special-purpose micro-
processors or both, or any other kind of central processing
unit. Generally, a central processing unit will receive
instructions and data from a read-only memory or a random
access memory or both. Elements of a computer can include
a central processing unit for executing instructions and one
or more memory devices for storing instructions and data.
The central processing unit and the memory can be supple-
mented by, or incorporated in, special-purpose logic cir-
cuitry.

[0051] Generally, a computer will also include, or be
operatively coupled to receive data from or transfer data to
one or more mass storage devices. The mass storage devices
can be, for example, magnetic, magneto-optical, or optical
disks, or solid state drives. However, a computer need not
have such devices. Moreover, a computer can be embedded
in another device, e.g., a mobile telephone, a personal digital
assistant (PDA), a mobile audio or video player, a game
console, a Global Positioning System (GPS) receiver, or a
portable storage device, e.g., a universal serial bus (USB)
flash drive, to name just a few.

[0052] To provide for interaction with a user, implemen-
tations of the subject matter described in this specification
can be implemented on, or configured to communicate with,
a computer having a display device, e.g., a LCD (liquid
crystal display) monitor, for displaying information to the
user, and an input device by which the user can provide input
to the computer, e.g., a keyboard and a pointing device, e.g.,
a mouse, a trackball or touchpad. Other kinds of devices can
be used to provide for interaction with a user as well; for
example, feedback provided to the user can be any form of
sensory feedback, e.g., visual feedback, auditory feedback,
or tactile feedback; and input from the user can be received
in any form, including acoustic, speech, or tactile input. In
addition, a computer can interact with a user by sending
documents to and receiving documents from a device that is
used by the user; for example, by sending web pages to a
web browser on a user’s device in response to requests
received from the web browser, or by interacting with an app
running on a user device, e.g., a smartphone or electronic
tablet. Also, a computer can interact with a user by sending

Oct. 1, 2020

text messages or other forms of message to a personal
device, e.g., a smartphone that is running a messaging
application, and receiving responsive messages from the
user in return.

[0053] This specification uses the term “configured to” in
connection with systems, apparatus, and computer program
components. For a system of one or more computers to be
configured to perform particular operations or actions means
that the system has installed on it software, firmware,
hardware, or a combination of them that in operation cause
the system to perform the operations or actions. For one or
more computer programs to be configured to perform par-
ticular operations or actions means that the one or more
programs include instructions that, when executed by data
processing apparatus, cause the apparatus to perform the
operations or actions. For special-purpose logic circuitry to
be configured to perform particular operations or actions
means that the circuitry has electronic logic that performs
the operations or actions.

[0054] While this specification contains many specific
implementation details, these should not be construed as
limitations on the scope of what is being claimed, which is
defined by the claims themselves, but rather as descriptions
of features that may be specific to particular implementa-
tions. Certain features that are described in this specification
in the context of separate implementations can also be
realized in combination in a single implementation. Con-
versely, various features that are described in the context of
a single implementations can also be realized in multiple
implementations separately or in any suitable subcombina-
tion. Moreover, although features may be described above as
acting in certain combinations and even initially be claimed
as such, one or more features from a claimed combination
can in some cases be excised from the combination, and the
claim may be directed to a subcombination or variation of a
sub combination.

[0055] Similarly, while operations are depicted in the
drawings and recited in the claims in a particular order, this
should not be understood as requiring that such operations
be performed in the particular order shown or in sequential
order, or that all illustrated operations be performed, to
achieve desirable results. In certain circumstances, multi-
tasking and parallel processing may be advantageous. More-
over, the separation of various system modules and compo-
nents in the implementations described above should not be
understood as requiring such separation in all implementa-
tions, and it should be understood that the described program
components and systems can generally be integrated
together in a single software product or packaged into
multiple software products.

[0056] Particular implementations of the subject matter
have been described. Other implementations are within the
scope of the following claims. For example, the actions
recited in the claims can be performed in a different order
and still achieve desirable results. As one example, the
processes depicted in the accompanying figures do not
necessarily require the particular order shown, or sequential
order, to achieve desirable results. In some cases, multitask-
ing and parallel processing may be advantageous.

What is claimed is:

1. A computer-implemented method for processing que-
ries to provide query results from database systems, the
method comprising:

US 2020/0311081 Al

receiving, by a query processing server, a first query, the
first query comprising a syntax indicating that precision
loss is allowed;

processing, by the query processing server, the first query

to provide a first query execution plan (QEP), optimi-
zation of which would result in precision loss in a
generated query result;
determining that the syntax is provided, and in response,
optimizing the first QEP to provide an optimized QEP;

executing the optimized QEP to generate a query result
that includes data stored within a database system, the
query result having reduced accuracy relative to a
query result that would be generated based on the first
QEP; and

providing the query result as output from the database

system.

2. The method of claim 1, wherein determining that the
syntax is provided comprises determining that a node of the
first QEP includes a parameter that indicates that precision
loss is allowed.

3. The method of claim 2, wherein the parameter is
associated with the node by a parser that parses the first
query to provide the first QEP.

4. The method of claim 2, wherein optimizing the first
QEP comprises applying at least one rewriting of a set of
rewritings to the node, the optimized QEP including the at
least one rewriting, the at least one rewriting reducing an
accuracy of the query result.

5. The method of claim 4, wherein the set of rewritings
comprises round, floor, ceiling, and aggregation reordering.

6. The method of claim 1, further comprising:

receiving, by the query processing server, a second query,

the second query being absent the syntax;

processing, by the query processing server, the second

query to provide a second QEP, optimization of which
would result in precision loss in a generated query
result; and

determining that the syntax is absent from the second

query, and in response, executing the second QEP to
generate a second query result.

7. The method of claim 1, wherein the query processing
server comprises a structured query language (SQL) server.

8. A non-transitory computer-readable storage medium
coupled to one or more processors and having instructions
stored thereon which, when executed by the one or more
processors, cause the one or more processors to perform
operations for processing queries to provide query results
from database systems, the operations comprising:

receiving, by a query processing server, a first query, the

first query comprising a syntax indicating that precision
loss is allowed;

processing, by the query processing server, the first query

to provide a first query execution plan (QEP), optimi-
zation of which would result in precision loss in a
generated query result;
determining that the syntax is provided, and in response,
optimizing the first QEP to provide an optimized QEP;

executing the optimized QEP to generate a query result
that includes data stored within a database system, the
query result having reduced accuracy relative to a
query result that would be generated based on the first
QEP; and

providing the query result as output from the database

system.

Oct. 1, 2020

9. The computer-readable storage medium of claim 8,
wherein determining that the syntax is provided comprises
determining that a node of'the first QEP includes a parameter
that indicates that precision loss is allowed.

10. The computer-readable storage medium of claim 9,
wherein the parameter is associated with the node by a
parser that parses the first query to provide the first QEP.

11. The computer-readable storage medium of claim 9,
wherein optimizing the first QEP comprises applying at least
one rewriting of a set of rewritings to the node, the optimized
QEP including the at least one rewriting, the at least one
rewriting reducing an accuracy of the query result.

12. The computer-readable storage medium of claim 11,
wherein the set of rewritings comprises round, floor, ceiling,
and aggregation reordering.

13. The computer-readable storage medium of claim 8,
wherein operations further comprise:

receiving, by the query processing server, a second query,

the second query being absent the syntax;

processing, by the query processing server, the second

query to provide a second QEP, optimization of which
would result in precision loss in a generated query
result; and

determining that the syntax is absent from the second

query, and in response, executing the second QEP to
generate a second query result.

14. The method of claim 1, wherein the query processing
server comprises a structured query language (SQL) server.

15. A system, comprising:

one or more computers; and

a computer-readable storage device coupled to the com-

puting device and having instructions stored thereon

which, when executed by the computing device, cause

the computing device to perform operations for pro-

cessing queries to provide query results from database

systems, the operations comprising:

receiving, by a query processing server, a first query,
the first query comprising a syntax indicating that
precision loss is allowed;

processing, by the query processing server, the first
query to provide a first query execution plan (QEP),
optimization of which would result in precision loss
in a generated query result;

determining that the syntax is provided, and in
response, optimizing the first QEP to provide an
optimized QEP;

executing the optimized QEP to generate a query result
that includes data stored within a database system,
the query result having reduced accuracy relative to
a query result that would be generated based on the
first QEP; and

providing the query result as output from the database
system.

16. The system of claim 15, wherein determining that the
syntax is provided comprises determining that a node of the
first QEP includes a parameter that indicates that precision
loss is allowed.

17. The system of claim 16, wherein the parameter is
associated with the node by a parser that parses the first
query to provide the first QEP.

18. The system of claim 16, wherein optimizing the first
QEP comprises applying at least one rewriting of a set of

US 2020/0311081 Al

rewritings to the node, the optimized QEP including the at
least one rewriting, the at least one rewriting reducing an
accuracy of the query result.
19. The system of claim 18, wherein the set of rewritings
comprises round, floor, ceiling, and aggregation reordering.
20. The system of claim 15, wherein operations further
comprise:
receiving, by the query processing server, a second query,
the second query being absent the syntax;
processing, by the query processing server, the second
query to provide a second QEP, optimization of which
would result in precision loss in a generated query
result; and
determining that the syntax is absent from the second
query, and in response, executing the second QEP to
generate a second query result.

#* #* #* #* #*

Oct. 1, 2020

