US 20190313096A1

a2y Patent Application Publication o) Pub. No.: US 2019/0313096 A1

a9y United States

AN et al.

43) Pub. Date: Oct. 10, 2019

(54) METHOD OF VIDEO CODING USING
BINARY TREE BLOCK PARTITIONING

(71) Applicant: MediaTek Singapore Pte. Ltd.,
Singapore (SG)

(72) Inventors: Jicheng AN, Beijing City (CN);
Yi-Wen CHEN, Taichung City (TW);
Kai ZHANG, Beijing (CN)

(21) Appl. No.: 16/451,300

(22) Filed: Jun. 25, 2019

Related U.S. Application Data

(63) Continuation of application No. 15/801,457, filed on
Nov. 2, 2017, now Pat. No. 10,375,393, which is a
continuation of application No. 15/532,166, filed on
Jun. 1, 2017, now Pat. No. 9,843,804, filed as appli-
cation No. PCT/CN2015/096761 on Dec. 9, 2015.

(30) Foreign Application Priority Data

Dec. 10, 2014 (CN)cccceeeeee PCT/CN2014/093445

Publication Classification

(51) Int. CL
HO4N 19/119 (2006.01)
HO4N 19/96 (2006.01)
HO4N 19/176 (2006.01)
HO4N 19/174 (2006.01)
HO4N 19/147 (2006.01)
(52) US.CL
CPC ... HO4N 19/119 (2014.11); HO4N 19/96

(2014.11); GO6T 9/005 (2013.01); HO4N
19/174 (2014.11); HO4N 19/147 (2014.11);
HO4N 19/176 (2014.11)

(57) ABSTRACT

An apparatus and method for video encoding comprising
one or more electronic devices configured to: receive input
data associated with a coding unit (CU) of video data,
determine a binary tree partitioning structure corresponding
to a block partitioning process including a binary tree
partitioning process for the CU, wherein the binary tree
partitioning structure represents partitioning the CU into a
plurality of transform units (TUs), and when the binary tree
partitioning process decides to apply binary tree partition to
one given CU, said one given CU is always split into two
Tus, and apply an encoding process comprising transform
process to the CU by applying the encoding process at a
level corresponding to the TUs.

Receiving a video bitstream including coded data for _,(_ 610
a block of video data

v

Deriving, from the video bitstream, a binary tree
partitioning structure corresponding to a block
partitioning process including a binary tree
partitioning process for the block of video data,
wherein the binary tree partitioning structure in 620
represents partitioning the block of video data into
final sub-blocks, and when the binary tree
partitioning process decides to apply binary tree
partition to one given block, said one given block is
always split into two sub-blocks

v

Decoding the final sub-blocks from the video _f_ 630
bitstream

¥

Decoding the block of video data based on the final in 640
sub-blocks decoded according to the binary tree
partitioning structure derived

Patent Application Publication Oct. 10,2019 Sheet 1 of 5 US 2019/0313096 A1

Fig. 1A

-«¢— Depth 0

<¢— Depth 1

Fig. 1B

Patent Application Publication

Oct. 10,2019 Sheet 2 of 5

US 2019/0313096 A1

MxM M/2xM MxM/2 M/2xM/2
M/4xM (L) M/4xM (R) MxM/4 (U) MxM/4 (D)
Fig. 2
M/2xM MxM/2

Symmetric vertical splitting

Symmetric horizontal splitting

M/4xM (L)

M/4xM (R)

MxM/4 (U)

Fig. 3

MxMW/4 (D)

Patent Application Publication Oct. 10,2019 Sheet 3 of 5 US 2019/0313096 A1

Fig. 4A

Fig. 4B

Patent Application Publication Oct. 10,2019 Sheet 4 of 5 US 2019/0313096 A1

Patent Application Publication Oct. 10,2019 Sheet 5 of 5 US 2019/0313096 A1

Receiving a video bitstream including coded data for _f_ 610
a block of video data

v

Deriving, from the video bitstream, a binary tree
partitioning structure corresponding to a block
partitioning process including a binary tree
partitioning process for the block of video data,
wherein the binary tree partitioning structure in 620
represents partitioning the block of video data into
final sub-blocks, and when the binary tree
partitioning process decides to apply binary tree
partition to one given block, said one given block is
always split into two sub-blocks

v

Decoding the final sub-blocks from the video _f_ 630
bitstream

v

Decoding the block of video data based on the final I 640
sub-blocks decoded according to the binary tree
partitioning structure derived

Fig. 6

US 2019/0313096 Al

METHOD OF VIDEO CODING USING
BINARY TREE BLOCK PARTITIONING

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] The present application is a continuation applica-
tion of pending U.S. patent application Ser. No. 15/801,457,
filed on Nov. 2, 2017, which is a continuation of U.S. patent
application Ser. No. 15/532,166, filed Jun. 1, 2017 (now
U.S. Pat. No. 9,843,804, issued on Dec. 12, 2017), which is
a nation stage of PCT/CN2015/096761, filed Dec. 9, 2015
and claimed priority to PCT Patent Application, Serial No.
PCT/CN2014/093445, filed on Dec. 10, 2014. The entireties
of these priority applications are hereby incorporated by
reference in its entirety.

TECHNICAL FIELD

[0002] The present invention relates to video coding. In
particular, the present invention relates to coding techniques
associated with coding tree design including a binary tree
partitioning process for partitioning an image area for dif-
ferent processing such as a coding tree unit (CTU), coding
unit (CU), prediction unit (PU) and transform unit (TU).

BACKGROUND

[0003] HEVC is an advanced video coding system devel-
oped under the Joint Collaborative Team on Video Coding
(ICT-VC) group of video coding experts from ITU-T Study
Group (High Efficiency Video Coding, Recommendation
ITU-T H.265, Series H: Audiovisual And Multimedia Sys-
tems, Infrastructure of Audiovisual Services—Coding of
Moving Video, International Telecommunication Unit,
April, 2013). In HEVC, one slice is partitioned into multiple
coding tree units (CTU). For color video data, each CTU
consists of multiple coding tree blocks corresponding to the
color components. In main profile, the minimum and the
maximum sizes of CTU are specified by the syntax elements
in the sequence parameter set (SPS) among the sizes of 8x8,
16x16, 32x32, and 64x64. For each slice, a raster scan
traversing through the slice is used for processing the CTU.
[0004] The CTU is further partitioned into multiple coding
units (CU) to adapt to various local characteristics. A
quadtree denoted as the coding tree is used to partition the
CTU into multiple CUs. Let CTU size be MxM where M is
one of the values of 64, 32, or 16. The CTU can be a single
CU or can be split into four smaller units of equal sizes of
M/xM/2, which are nodes of coding tree. If units are leaf
nodes of coding tree, the units become CUs. Otherwise, the
quadtree splitting process can be iterated until the size for a
node reaches an allowed minimum CU size specified in the
SPS (sequence parameter set).

[0005] FIG. 1A illustrates an example of partitioning
result for a CU using the quadtree partition process recur-
sively. Every time when a block is partitioned by a quadtree,
the original block is split into four sub-blocks. In the next
level, the sub-block becomes a new block to be further
partitioned. The partitioning process may decide not to split
a block. In this case, the block is not further partitioned. The
partitioning process may be terminated when a minimum
quadtree block size is reached. In some cases, the partition-
ing process may be terminated when the partition depth
reaches a maximum value. The final sub-blocks in solid lines
having various block sizes as shown in FIG. 1A correspond

Oct. 10, 2019

to the boundaries of coding units generated from the parti-
tioning process. This partition process results in a recursive
structure representing the partition decisions as shown in
FIG. 1B and the tree-like structure in solid lines is called a
coding tree, where each leaf node corresponds to a CU (i.e.,
one final sub-block). The decision whether to code a picture
area using inter-picture (temporal) or intra-picture (spatial)
prediction is made at the CU level. In HEVC, the minimum
CU size can be 8x8. Therefore, the minimum granularity for
switching different prediction type is 8x8.

[0006] For prediction process (e.g. inter prediction or intra
prediction), each CU is further partitioned into one or more
prediction units (PUs). Coupled with the CU, the PU works
as a basic representative block for sharing the prediction
information. Inside one PU, the same prediction process is
applied and the relevant information is transmitted to the
decoder on a PU basis. A CU can be split into one, two or
four PUs according to the PU splitting type. HEVC defines
eight shapes for splitting a CU into one or more PUs as
shown in FIG. 2. Unlike the CU, the PU may be split only
once. In FIG. 2, the lower four partitions correspond to
asymmetric partition.

[0007] After obtaining the residual block for a CU by
applying the prediction process to the one or more PUs
generated by the splitting process, a CU can be partitioned
into transform units (TUs) according to another quadtree
structure similar to the coding tree for the CU. In FIG. 1A,
the dotted lines indicate the resulting TU boundaries by
quadtree partition of each CU. The TU is a basic represen-
tative block having residual or transform coefficients for
applying the integer transform and quantization. For each
TU, one integer transform having the same size as the TU is
applied to obtain residual coefficients. These coefficients are
transmitted to the decoder after quantization on a TU basis.
[0008] The terms, coding tree block (CTB), coding block
(CB), prediction block (PB), and transform block (TB) are
defined to specify the 2-D sample array of one color com-
ponent associated with CTU, CU, PU, and TU, respectively.
Thus, a CTU consists of one luma CTB, two chroma CTBs,
and associated syntax elements. A similar relationship is
valid for CU, PU, and TU.

[0009] The same tree partitioning is generally applied to
both luma and chroma components, although exceptions
may apply when certain minimum sizes are reached for
chroma.

[0010] The current HEVC block partitioning only uses the
quadtree based partitioning to partition a CTU to CU and to
partition a CU to TU in a recursive fashion until a limit is
reached. On the other hand, the current HEVC allowed up to
8 partition types for the PU. However, the PU partition is
only performed once for each PU. Therefore, it is desirable
to further improve the coding efficiency to meet the needs of
ever increasing storage and transmission of video contents.

SUMMARY

[0011] A method of video coding using block partitioning
process including a binary tree partitioning process is dis-
closed. The block partitioning process is applied to a block
of video data to partition the block into final sub-blocks.
Coding process including prediction process, transform pro-
cess or both for the block will be applied at the final
sub-block level. The binary tree partitioning process can be
applied to a given block recursively to generate binary tree
leaf nodes. The partitioning of one node is implicitly termi-

US 2019/0313096 Al

nated when the node reaches a minimum allowed binary tree
leaf node size or binary tree depth associated with the node
reaches a maximum allowed binary tree depth. Various
binary partition types for the binary tree partitioning process
can be used. For example, the types may consist of sym-
metric horizontal and vertical partitions. The types may also
consist of symmetric horizontal and vertical partitions and
asymmetric partitions.

[0012] A first indicator can be signaled for a given block
to indicate whether the binary partition is applied to the
given block. If the binary partition is applied to the given
block, a second indicator may be signaled to indicate the
binary partition type. In the case that the types consist of
symmetric horizontal and vertical partitions, a 1-bit flag can
be used to indicate the symmetric horizontal partition or the
symmetric vertical partition. The second indicator can be
inferred as the symmetric vertical partition when height of
the given block reaches the minimum allowed height. Simi-
larly, the second indicator can be inferred to be the sym-
metric horizontal partition when width of the given block
reaches the minimum allowed width. The minimum allowed
height and the minimum allowed width can be specified in
high level syntax such as SPS (sequence parameter set), PPS
(picture parameter set) or slice header.

[0013] The block partitioning process based on recursive
binary tree partitioning process disclosed above can be used
to partition a CTU (coding tree unit) into CUs (coding units).
In one embodiment, all generated CUs are used for predic-
tion process, transform process or both respectively without
any further explicit partitioning process. The block parti-
tioning process based on recursive binary tree partitioning
process disclosed above can also be used to partition a
picture into CTUs, a slice into CTUs, a CU into PUs, a CU
into TUs, or a PU into TUs.

[0014] The block of video data for luma and non-luma
components in an I-slice may use individual binary tree
partitioning process or the block of video data for two
chroma components in an I-slice uses individual binary tree
partitioning process. The block of video data for each color
component in an I-slice may also use its individual binary
tree partitioning process.

[0015] When the block partitioning process includes
recursive binary tree partition process, the block partitioning
process may further comprises a quadtree partitioning pro-
cess, where when the quadtree partitioning process decides
to apply quadtree partition to a second given block, the
second given block is always split into four sub-blocks. The
quadtree partitioning process can be first applied to the block
of video data recursively before the binary tree partitioning
process to generate quadtree leaf nodes. According to one
embodiment, the binary tree partitioning process is applied
to the quadtree leaf nodes recursively to generate the final
sub-blocks. The quadtree partitioning of one node can be
implicitly terminated when the node reaches a minimum
allowed quadtree leaf node size or the quadtree depth
associated with the node reaches a maximum allowed
quadtree depth. For any quadtree leaf node with a block size
not larger than a maximum allowed binary tree root node
size, the binary tree partitioning process can be further
applied to the quadtree leaf node recursively. The binary tree
partitioning of one node can be implicitly terminated when
the node reaches a minimum allowed binary tree leaf node
size or the binary tree depth associated with node reaches a
maximum allowed binary tree depth.

Oct. 10, 2019

[0016] The minimum allowed quadtree leaf node size, the
maximum allowed quadtree depth, the maximum allowed
binary tree root node size, the minimum allowed binary tree
leaf node size, and the maximum allowed binary tree depth
can be specified in high level syntax such as SPS (sequence
parameter set), PPS (picture parameter set) or slice header.
[0017] The quadtree partitioning process plus the binary
tree partitioning process as disclosed above can be applied
to partition a CTU into CUs. In one embodiment, all
generated CUs are used for prediction process, transform
process or both respectively without any further explicit
partitioning process. Also the above partitioning process can
be used to partition a picture into CTUs, a slice into CTUs,
a CU into PUs, a CU into TUs, or a PU into TUs. The block
of video data for luma and non-luma components in an
I-slice may use individual quadtree plus binary tree parti-
tioning process or the block of video data for two chroma
components in an I-slice uses individual quadtree plus
binary tree partitioning process.

BRIEF DESCRIPTION OF THE DRAWINGS

[0018] FIG. 1A illustrates an example of quadtree parti-
tioning process according to the HEVC (high efficiency
video coding) standard to partition a CTU (coding tree unit)
into CUs (coding units) as shown in solid lines and to
partition a CU into TUs (transform units) as shown in dashed
lines.

[0019] FIG. 1B illustrates an example of a partitioning tree
correspond to the partitioning structure in FIG. 1A.

[0020] FIG. 2 illustrates the available partition types for
partitioning a PU (prediction unit) according to the HEVC
(high efficiency video coding) standard.

[0021] FIG. 3 illustrates an example of available partition
types for the binary tree partitioning process according to an
embodiment of the present invention.

[0022] FIG. 4A illustrates an example of binary tree par-
titioning process according to an embodiment of the present
invention to partition a block of video data into final
sub-blocks for the coding process comprising prediction
process, transform process or both.

[0023] FIG. 4B illustrates an example of a partitioning tree
correspond to the partitioning structure in FIG. 4A.

[0024] FIG. 5A illustrates an example of quadtree parti-
tioning process plus binary tree partitioning process accord-
ing to an embodiment of the present invention to partition a
block of video data into final sub-blocks for the coding
process comprising prediction process, transform process or
both.

[0025] FIG. 5B illustrates an example of a partitioning tree
corresponding to the partitioning structure of FIG. 5A,
where the solid lines are associated with the quadtree
partitioning process and the dashed lines are associated with
the binary tree partitioning process.

[0026] FIG. 6 illustrates an exemplary flowchart for a
coding system using a block partitioning process based on a
recursive binary tree partitioning process incorporating an
embodiment of the present invention to partition a block of
video data into final sub-blocks for the coding process
comprising prediction process, transform process or both.

DETAILED DESCRIPTION

[0027] The following description is of the best-contem-
plated mode of carrying out the invention. This description

US 2019/0313096 Al

is made for the purpose of illustrating the general principles
of the invention and should not be taken in a limiting sense.
The scope of the invention is best determined by reference
to the appended claims.

[0028] In the present invention, a binary tree block parti-
tioning process is disclosed. According to one embodiment
of the present invention, the binary tree partitioning process
can be applied to a block recursively. Every time when the
binary tree partitioning process decides to partition a given
block, the given block is always split into two smaller
blocks, which are also referred as sub-blocks in this disclo-
sure. Exemplary splitting types according to one embodi-
ment are shown in FIG. 3, which includes two symmetric
binary tree partitioning types and four asymmetric binary
tree partitioning types. The symmetric horizontal and verti-
cal splitting types are the simplest splitting types and often
achieve the good coding efficiency. Therefore, in one
embodiment, only these two symmetric binary tree parti-
tioning types are used. For a given block of size MxN, a flag
can be signaled to indicate whether the block is split into two
smaller blocks. If yes, a second syntax element is signaled
to indicate which splitting type is used. If the horizontal
splitting is used then it is split into two blocks of size
MxN/2. If the vertical splitting is used, the block is split into
two blocks of size M/2xN. In the embodiment shown in FIG.
3, M is equal to N, but the present invention is not limited
thereto.

[0029] According to the present invention, the binary tree
splitting process can be iterated until the size (width or
height) for a splitting block reaches a minimum allowed
block size (width or height) or the binary tree partitioning
process reaches a maximum allowed binary tree depth. The
minimum allowed block size can be specified in high level
syntax such as SPS (sequence parameter set), PPS (picture
parameter set) or slice header. However, the present inven-
tion is not limited thereto. Since the binary tree has two
splitting types (i.e., horizontal and vertical), the minimum
allowed block width and height are both indicated. In some
cases, the second syntax element to indicate which splitting
type is used can be inferred and there is no need to signal the
second syntax element. For example, if a block with a width
equal to the minimum allowed block width is split, the
splitting type must be horizontal partition. If vertical parti-
tion were applied, it would result in sub-blocks having block
width smaller than the minimum allowed block width.
Therefore, horizontal splitting is implicit when vertical
splitting would result in a block width smaller than the
indicated minimum. Similarly, vertical splitting is implicit
when horizontal splitting would result in a block height
smaller than the indicated minimum height.

[0030] FIG. 4A illustrates an example of block partition-
ing process using binary tree to partition a block into final
sub-blocks and FIG. 4B illustrates its corresponding parti-
tioning tree (which is a binary tree in this embodiment). In
this example, the partition types consist of two types cor-
responding to symmetric horizontal partition and vertical
partition. In each splitting (i.e., non-leaf node of the binary
tree), one flag indicating the splitting type (i.e., horizontal or
vertical) is signaled, where O indicates horizontal splitting
and 1 indicates vertical splitting. Each final sub-block cor-
responds to one binary tree leaf node. In other words, the
number of final sub-blocks in FIG. 4A is the same as the
number of leaf nodes of the binary tree.

Oct. 10, 2019

[0031] The first few partition steps are shown in details. In
the first step, the binary tree partitioning process decides to
partition the initial block (i.e., the root node for the binary
tree partition) using horizontal partition, which split the
block into two sub-blocks corresponding to the upper half
and the lower half. The first horizontal partition is indicated
by a horizontal line (410a) in FIG. 4A. A “0” (4105) is
assigned to the root node to indicate the corresponding
partition process. The partition process decides not to further
split the lower half (labelled as sub-block “A” in FIG. 4A)
and the lower half is not subject to any further split.
Therefore, the sub-block “A” is a final sub-block. In the next
step, the upper half is partitioned by vertical partition (420a)
to split the upper half into an upper-left sub-block and
upper-right sub-block. A “1” (4205) is assigned to the
corresponding binary tree node to indicate the vertical
partition. In FIG. 4B, the convention has adopted to desig-
nate a left branch for a left sub-block in case of vertical
partition or an upper sub-block in case of horizontal parti-
tion. As shown in FIG. 4A, another vertical partition (430q)
is applied to the upper-left sub-block to generate sub-blocks
“B” and “C”. Since sub-blocks “B” and “C” are not subject
to further split, sub-blocks “B” and “C” are final sub-blocks.
A “1” (4305) is assigned to the corresponding binary tree
node. The sub-blocks “B” and “C” correspond to two binary
tree leaf nodes as indicated in FIG. 4B. FIG. 4A and 4B are
intended to illustrate one example of binary tree partitioning
process according to an embodiment of the present inven-
tion. The present invention is not limited to the example in
FIG. 4A and FIG. 4B.

[0032] The binary tree structure disclosed above can be
used for partitioning a block into multiple smaller blocks
(i.e., sub-blocks) such as partitioning a picture into CTUs, a
slice into CTUs, a CTU into CUs, a CU into PUs, a CU into
TUs, or a PU into TUs, and so on. In one embodiment, the
binary tree is used for partitioning a CTU into CUs, i.e., the
root node of the binary tree being a CTU and the leaf nodes
of the binary tree are CUs. The leaf nodes are further
processed by prediction and transform coding. In one
embodiment, there is no further explicit partitioning from
the CU to the PU or from the CU to the TU to simplify the
coding process. Therefore, the CU is also used as the PU and
the TU. In other words, the leaf nodes of the binary tree are
the basic units for the prediction process and transform
process. In another embodiment, the leaf nodes of the binary
tree are the basic units for the prediction process (i.e., the CU
is also used as the PU), however it requires another parti-
tioning from the CU to the TU. In yet another embodiment,
the leaf nodes of the binary tree are the basic units for the
transform process (i.e., the CU is also used as the TU), but
it requires another partitioning from the CU to the PU.

[0033] The binary tree structure is more flexible than the
quadtree structure since more partition shapes can be sup-
ported. Therefore, the binary tree structure has potential to
achieve improved coding efficiency. However, the encoding
complexity will also be increased due to the larger number
of searches needed to identify the best partition shape. In
order to balance the complexity and coding efficiency,
another embodiment of the present invention combines the
quadtree and binary tree structure, which is called as
quadtree plus binary tree (QTBT) structure in this disclo-
sure. According to the QTBT structure, a block is firstly
partitioned by a quadtree process, where the quadtree split-
ting can be iterated until the size for a splitting block reaches

US 2019/0313096 Al

the minimum allowed quadtree leaf node size or the
quadtree partitioning process reaches a maximum allowed
quadtree depth. If the leaf quadtree block is not larger than
the maximum allowed binary tree root node size, it can be
further partitioned by a binary tree partitioning process. The
binary tree splitting can be iterated until the size (width or
height) for a splitting block corresponding to a binary tree
node reaches the minimum allowed binary tree leaf node
size (width or height) or the binary tree depth reaches the
maximum allowed binary tree depth.

[0034] In the QTBT structure, the minimum allowed
quadtree leaf node size, the maximum allowed binary tree
root node size, the minimum allowed binary tree leaf node
width and height, and the maximum allowed binary tree
depth can be indicated in the high level syntax such as SPS,
PPS or slice header. However, the present invention is not
limited thereto.

[0035] FIG. 5A illustrates an example of block partition-
ing and FIG. 5B illustrates the corresponding QTBT. The
solid lines indicate quadtree splitting and dotted lines indi-
cate binary tree splitting. In each splitting (i.e., non-leaf)
node of the binary tree, one flag is signaled to indicate which
splitting type (i.e., horizontal or vertical) is used, where 0
indicates horizontal splitting and 1 indicates vertical split-
ting. For the quadtree splitting, there is no need to indicate
the splitting type since it always split a block horizontally
and vertically into 4 sub-blocks with an equal size. It is noted
that a binary tree partitioning process may result in a same
partitioning result as the QTBT process, the two processes
are different. The binary tree partitioning process allows
more flexible partitioning to better match the local charac-
teristics of underlying video data for coding process com-
prising prediction process, transform process or both.
[0036] The QTBT structure as disclosed above can be
used for partitioning a block into multiple smaller blocks
(i.e., final sub-blocks) such as partitioning a picture into
CTUs, a slice into CTUs, a CTU into CUs, a CU into PUs,
a CU into TUs, or a PU into TUs, and so on. For example,
the QTBT partitioning process can be applied to partition a
CTU into CUs, i.e., the root node of the QTBT is a CTU and
the leaf nodes of the QTBT are CUs. The CUs are further
processed by prediction and transform coding. In one
embodiment, there is no further explicit partitioning from
the CU to the PU or from the CU to the TU to simplify the
coding process. In other words, the CU is also used as the PU
and the TU. Therefore, the leaf nodes of the QTBT are the
basic units for the prediction process and transform process.
In another embodiment, the leaf nodes of the QTBT are the
basic units for the prediction process (i.e., the CU is also
used as the PU), however it requires another partitioning
from the CU to the TU. In yet another embodiment, the leaf
nodes of the QTBT are the basic units for the transform
process (i.e., the CU is also used as the TU), but it requires
another partitioning from the CU to the PU, in one example,
there is only one partition type for partitioning a CU to PUs,
so no PU partition information is needed to be signaled to
the decoder.

[0037] In one example of the QTBT partitioning process,
the CTU size is set to 128x128, the minimum allowed
quadtree leaf node size is set to 16x16, the maximum
allowed binary tree root node size is set to 64x64, the
minimum allowed binary tree leaf node width and height
both are set to 4, and the maximum allowed binary tree depth
is set to 4. The quadtree partitioning process is applied to the

Oct. 10, 2019

CTU first to generate quadtree leaf nodes. The quadtree leaf
nodes may have a size from 16x16 (i.e., the minimum
allowed quadtree leaf node size) to 128x128 (i.e., the CTU
size). If the leaf quadtree node is 128x128, it will not be
further split by the binary tree since the size exceeds the
maximum allowed binary tree root node size (i.e., 64x64).
Otherwise, the leaf quadtree node will be further split by the
binary tree. The quadtree leaf node is also the root node for
the binary tree partitioning process having the binary tree
depth as 0. When the binary tree depth reaches 4, which is
the maximum allowed binary tree depth, it implies that no
further splitting. When the binary tree node has width equal
to 4, it implies no further vertical splitting. Similarly, when
the binary tree node has height equal to 4, it implies no
further horizontal splitting. The leaf nodes of the QTBT are
further processed by prediction (e.g. intra-picture or inter-
picture prediction) and transform coding.

[0038] In one embodiment of the present invention, the
partitioning process combining the quadtree and binary tree
structure firstly partitions a block by a binary tree partition-
ing process, where the binary tree partitioning process can
be iterated until a termination criterion is met. If the size of
the leaf binary tree block complies with a size constraint, it
can be further partitioned by a quadtree partitioning process.
The quadtree partitioning process can be iterated until
another termination criterion is met. The foregoing termi-
nation criteria can be associated with the splitting block size
and/or the corresponding tree depth.

[0039] In another embodiment, a block of video data is
partitioned into final sub-blocks by a multi-level block
partitioning process. For example, a first level block parti-
tioning process is a quadtree partitioning process, a second
level block partitioning process is a binary tree partitioning
process, and a third level block partitioning process is
another quadtree partitioning process. Each level of the
block partitioning process will be terminated while the
splitting block size and/or the corresponding tree depth met
a predetermined threshold. The second partitioning pro-
cesses can be applied if the leaf block generated by the first
level block partitioning processes is not larger than a first
maximum allowed root node size, while the third partition-
ing processes can be applied if the leaf block generated by
the second level block partitioning processes is not larger
than a second maximum allowed root node size.

[0040] When the partitioning process disclosed above
(e.g. binary tree or QTBT partitioning process) is applied to
color video, separate partitioning process can be applied to
luma and chroma components for an I-slice. The same
partitioning process can be applied to both luma and chroma
components for a P and B slice except when certain mini-
mum sizes are reached for the chroma components. In other
words, in an I-slice, the luma CTB may use its QTBT
partitioning process, and the two chroma CTBs may have a
separate QTBT partitioning process. In another example, the
two chroma CTBs may also have separate QTBT partition-
ing process.

[0041] The coding performance for a system incorporating
an embodiment of the present invention is compared to a
conventional HEVC. As mentioned before, the conventional
HEVC uses quadtree partitioning process to split a CTU into
one or more CUs and a CU into one or more TUs recursively
until a termination condition is reached. Also the conven-
tional HEVC uses block partitioning process including to
symmetric horizontal or vertical partition to split a CU into

US 2019/0313096 Al

one or more PUs. The system incorporating an embodiment
of the present system uses the QTBT partitioning process to
split a CTU into one or more CUs. The CUs are used for
prediction process and transform process without further
explicit partitioning. The performance measurement is in
terms of BD-rate, which is well known performance mea-
surement in the field of video coding. Based on various text
data, the system incorporating an embodiment of the present
invention has demonstrated significant improvement over
the convention HEVC. The improvement for the luma (i.e.,
Y component) chroma component (i.e., U and V compo-
nents) under the All Intra and Random Access coding
configuration is over 3% and 8% respectively in term of
BD-Rate. However, the encoding running time also
increases noticeably while the decoding time only increase
slightly.

[0042] FIG. 6 illustrates an exemplary flowchart for a
decoding system using block partitioning process incorpo-
rating an embodiment of the present invention. The system
receives a video bitstream in step 610. The video bitstream
may be retrieved from storage such as a computer memory
of buffer (RAM or DRAM). The video bitstream may also
be received from a processor such as a processing unit or a
digital signal. A partitioning structure corresponding to a
block partitioning process including a binary tree partition-
ing process is derived for the block of video data from the
video bitstream in step 620. The partitioning structure rep-
resents partitioning the block of video data into final sub-
blocks, and when the binary tree partitioning process
decides to apply binary tree partition to one given block, said
one given block is always split into two sub-blocks. The final
sub-blocks are decoded based on the video bitstream in step
630. The block of video data is decoded based on the final
sub-blocks decoded according to the partitioning structure
derived as shown in step 640.

[0043] The flowchart shown above is intended to illustrate
examples of video coding incorporating an embodiment of
the present invention. A person skilled in the art may modify
each step, re-arranges the steps, split a step, or combine the
steps to practice the present invention without departing
from the spirit of the present invention.

[0044] The above description is presented to enable a
person of ordinary skill in the art to practice the present
invention as provided in the context of a particular applica-
tion and its requirement. Various modifications to the
described embodiments will be apparent to those with skill
in the art, and the general principles defined herein may be
applied to other embodiments. Therefore, the present inven-
tion is not intended to be limited to the particular embodi-
ments shown and described, but is to be accorded the widest
scope consistent with the principles and novel features
herein disclosed. In the above detailed description, various
specific details are illustrated in order to provide a thorough
understanding of the present invention. Nevertheless, it will
be understood by those skilled in the art that the present
invention may be practiced.

[0045] Embodiment of the present invention as described
above may be implemented in various hardware, software
codes, or a combination of both. For example, an embodi-
ment of the present invention can be one or more electronic
circuits integrated into a video compression chip or program
code integrated into video compression software to perform
the processing described herein. An embodiment of the
present invention may also be program code to be executed

Oct. 10, 2019

on a Digital Signal Processor (DSP) to perform the process-
ing described herein. The invention may also involve a
number of functions to be performed by a computer pro-
cessor, a digital signal processor, a microprocessor, or field
programmable gate array (FPGA). These processors can be
configured to perform particular tasks according to the
invention, by executing machine-readable software code or
firmware code that defines the particular methods embodied
by the invention. The software code or firmware code may
be developed in different programming languages and dif-
ferent formats or styles. The software code may also be
compiled for different target platforms. However, different
code formats, styles and languages of software codes and
other means of configuring code to perform the tasks in
accordance with the invention will not depart from the spirit
and scope of the invention.

[0046] The invention may be embodied in other specific
forms without departing from its spirit or essential charac-
teristics. The described examples are to be considered in all
respects only as illustrative and not restrictive. The scope of
the invention is therefore, indicated by the appended claims
rather than by the foregoing description. All changes which
come within the meaning and range of equivalency of the
claims are to be embraced within their scope.

1. A method of video decoding, the method comprising:

receiving a video bitstream including coded data for a

coding unit (CU);

deriving, from the video bitstream, a binary tree parti-

tioning structure corresponding to a block partitioning
process including a binary tree partitioning process for
the CU, wherein the binary tree partitioning structure
represents partitioning the CU into a plurality of trans-
form units (TUs), and when the binary tree partitioning
process decides to apply a binary tree partition to one
given CU, said one given CU is always split into two
TUs;

decoding the TUs based on the video bitstream; and

decoding the CU based on the TUs decoded according to

the binary tree partitioning structure derived,

wherein the binary tree partition for one selected CU is

inferred as not applied when a size of the selected CU
is equal to a predetermined size.

2. The method of claim 1, wherein a first indicator is
signaled for a given CU to indicate whether the binary tree
partition is applied to the given CU.

3. The method of claim 2, wherein when the first indicator
indicates that the binary tree partition is applied to the given
CU, one of a plurality of binary tree partition types is
selected for the given CU.

4. The method of claim 3, wherein said plurality of binary
tree partition types consist of symmetric horizontal partition,
symmetric vertical partition, asymmetric horizontal partition
with narrower upper side, asymmetric horizontal partition
with narrower lower side, asymmetric vertical partition with
narrower left side and asymmetric vertical partition with
narrower right side.

5. A method of video encoding, the method comprising:

receiving input data associated with a coding unit (CU) of

video data;

determining a binary tree partitioning structure corre-

sponding to a block partitioning process including a
binary tree partitioning process for the CU, wherein the
binary tree partitioning structure represents partitioning
the CU into a plurality of transform units (TUs), and

US 2019/0313096 Al

when the binary tree partitioning process decides to
apply binary tree partition to one given CU, said one
given CU is always split into two TUs; and

applying an encoding process comprising transform pro-
cess to the CU by applying the encoding process at a
level corresponding to the TUs,

wherein the binary tree partition for one selected CU is
inferred as not applied when a size of the selected CU
is equal to a predetermined size.

6. An apparatus for video decoding comprising one or

more electronic devices configured to:

receive a video bitstream including coded data for a
coding unit (CU);

derive, from the video bitstream, a binary tree partitioning
structure corresponding to a block partitioning process
including a binary tree partitioning process for the CU,
wherein the binary tree partitioning structure represents
partitioning the CU into a plurality of transform units
(TUs), and when the binary tree partitioning process
decides to apply a binary tree partition to one given CU,
said one given CU is always split into two TUs;

decode the TUs based on the video bitstream; and

decode the CU based on the TUs decoded according to the
binary tree partitioning structure derived,

Oct. 10, 2019

wherein the binary tree partition for one selected CU is
inferred as not applied when a size of the selected CU
is equal to a predetermined size.

7. An apparatus for video encoding comprising one or
more electronic devices configured to:

receive input data associated with a coding unit (CU) of
video data;

determine a binary tree partitioning structure correspond-
ing to a block partitioning process including a binary
tree partitioning process for the CU, wherein the binary
tree partitioning structure represents partitioning the
CU into a plurality of transform units (TUs), and when
the binary tree partitioning process decides to apply
binary tree partition to one given CU, said one given
CU is always split into two TUs; and

apply an encoding process comprising transform process
to the CU by applying the encoding process at a level
corresponding to the TUs,

wherein the binary tree partition for one selected CU is
inferred as not applied when a size of the selected CU
is equal to a predetermined size.

#* #* #* #* #*

