
US 20200117512A1
INT IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2020/0117512 A1

Chen (43) Pub . Date : Apr. 16 , 2020

(54) ALLOCATING COMPUTING RESOURCES
TO A CONTAINER IN A COMPUTING
ENVIRONMENT

(71) Applicant : Red Hat , Inc. , Raleigh , NC (US)

(72) Inventor : Huamin Chen , Westboro , MA (US)

(21) Appl . No .: 16 / 711,587

(22) Filed : Dec. 12 , 2019

(52) U.S. Cl .
CPC GO6F 9/5038 (2013.01)

(57) ABSTRACT
Computing resources can be allocated to a container in a
computing environment . For example , a computing device
can determine that a dependent computing resource is to be
allocated to the container . The dependent computing
resource can depend on another computing resource being
allocated to the container before the dependent computing
resource is allocated to the container . The computing device
can determine a parameter value for a backoff process for
checking the availability of the dependent computing
resource . The parameter value can be determined using
another parameter value for another backoff process for
checking the availability of the other computing resource .
The computing device can then determine that the dependent
computing resource is available by executing the backoff
process using the parameter value . In response to determin
ing that the dependent computing resource is available , the
computing device can allocate the dependent computing
resource to the container .

Related U.S. Application Data
(63) Continuation of application No. 15 / 852,079 , filed on

Dec. 22 , 2017 , now Pat . No. 10,540,208 .

Publication Classification
(51) Int . Ci .

GO6F 9/50 (2006.01)

202
Processing Device 200 2200

Memory Device 204

Instructions 206

Backoff Process 210a Dependent
Computing

Resource 208a Parameter Value 212ai

Backoff Process 210b Other
Computing

Resource 208b Parameter Value 212bi

Container 104

110a

Computing Device 102 .

Parameter A - A1 Parameter B = B1

1

Patent Application Publication

Parameter N - N1

Container 104

110b

Computing Resource 1062

Backoff Process 108a

Parameter A
A2

Parameter B = B2

N

??

Configuration Data 108

Computing Resource 106b

Backoff Process 108b

Parameter N = N2

Apr. 16 , 2020 Sheet 1 of 3

+

Computing Resource 106C

Backoff Process 1080

Parameter A = A3 Parameter BB3
I

Parameter N = N3

US 2020/0117512 A1

FIG . 1

-1100

Patent Application Publication Apr. 16 , 2020 Sheet 2 of 3 US 2020/0117512 A1

202
Processing Device -200

Memory Device 204

Instructions 206

Backoff Process 210a Dependent
Computing

Resource 208a
1
Parameter Value 212a1

Backoff Process 210b Other
Computing

Resource 208b Parameter Value 212b

Container 104

FIG . 2

Patent Application Publication Apr. 16 , 2020 Sheet 3 of 3 US 2020/0117512 A1

302
Determine that a dependent computing resource is to be allocated to
a container , wherein the dependent computing resource depends on
another computing resource being allocated to the container before

the dependent computing resource is allocated to the container

Determine a parameter value for a backoff process for checking the
availability of the dependent computing resource , the parameter
value being determined using another parameter value for another
backoff process for checking the availability of the other computing

resource

306
Determine that the dependent computing resource is available by

executing the backoff process using the parameter value

308
In response to determining that the dependent computing resource is

available , allocate the dependent computing resource to the
container

FIG . 3

US 2020/0117512 Al Apr. 16 , 2020

DETAILED DESCRIPTION ALLOCATING COMPUTING RESOURCES
TO A CONTAINER IN A COMPUTING

ENVIRONMENT

REFERENCE TO RELATED APPLICATION

[0001] This is a continuation of co - pending U.S. patent
application Ser . No. 15 / 852,079 , titled “ Allocating Comput
ing Resources to a Container in a Computing Environment ”
and filed on Dec. 22 , 2017 , the entirety of which is hereby
incorporated by reference herein .

TECHNICAL FIELD

[0002] The present disclosure relates generally to allocat
ing computer resources . More specifically , but not by way of
limitation , this disclosure relates to allocating computer
resources to a container in a computing environment .

BACKGROUND

[0003] A computing device may attempt to allocate com
puting resources to a container (e.g. , an isolated virtual
environment) to deploy the container . Examples of the
computing resources can include memory , processing
power , and network resources . But some or all of the
computing resources may not be immediately available for
allocation to the container . For example , a computing
resource may already be in use , may depend on another
computing resource being allocated to the container first , or
may otherwise be unavailable for allocation . If a computing
resource cannot be immediately allocated to the container ,
the computing device may implement a backoff process to
repeatedly check if the computing resource is available (e.g. ,
is capable of being allocated to the container) . For example ,
the computing device can wait for an initial time - duration ,
and then check again to see if the computing resource is
available . If not , the computing device can repeatedly check
at exponentially increasing time intervals to see if the
computing resource is available . For example , with each
failed attempt , the computing device can double the time
interval until the next check . This process can continue until
the computing resource becomes available or a maximum
time - duration is reached . The initial time - duration , the time
interval between checks , and the maximum time - duration
can be referred to as backoff parameters .
[0004] Often , there are several computing resources that
are not immediately available for allocation to the container .
So , the computing device can execute the backoff process
independently for each computing resource . And the back
off - parameter values for one computing resource will be
independent of the backoff - parameter values for another
computing resource .

[0008] There can be disadvantages to a computing device
determining backoff - parameter values for one backoff pro
cess independently of other backoff - parameter values for
another backoff process . For example , this can ignore the
interdependency between the computing resources for
which the backoff processes are being performed , which can
increase the overall amount of time (e.g. , the latency) for all
of the computing resources to be allocated to a container .
More specifically , at least one of the computing resources
can be a dependent computing resource . A dependent com
puting resource can require at least one other computing
resource (e.g. , another dependent or independent computing
resource) to be allocated to the container prior the
dependent computing resource being allocated to the con
tainer . But if this dependency is ignored , the computing
device will repeatedly check the availability of the depen
dent computing resource , even while the computing
resource is waiting for the other computing resource (s) to be
allocated , only to find that the dependent computing
resource is not yet available . And with each failed attempt ,
the time interval until the next check will double in size ,
until the time interval has exponentially grown to a very
large value . This can dramatically increase the amount of
time it takes for the dependent computing resource to
ultimately be allocated to a container , thereby increasing the
overall startup latency of the container .
[0009] Some examples of the present disclosure overcome
one or more of the abovementioned issues by determining a
backoff - parameter value for a dependent computing
resource based on another back - off parameter value for
another computing resource (e.g. , on which the dependent
computing resource depends) . This can help prevent , for
example , the time - interval value for the backoff process
from exponentially increasing to a very large value , thereby
reducing the overall startup latency for the container .
[0010] As a particular example , part of deploying a con
tainer may involve allocating a statefulset to the container .
A statefulset can be workload application programming
interface (API) object for managing stateful applications .
The statefulset can be a dependent computing resource ,
which may require one or more other computing resources
to be allocated to the container prior to allocating the
statefulset to the container . For example , the statefulset may
require a persistent volume and a network service port to be
allocated to the container prior to allocating the statefulset to
the container . But the persistent volume and the network
service port may be unavailable for immediate allocation .
So , the computing device can execute a backoff process for
the persistent volume having an initial - delay value of 1
second (s) , a time - interval value of 100 milliseconds (ms) ,
and a maximum - duration value of 30 s . The computing
device can also execute a separate backoff process for the
network service port having an initial - delay value of 2 s , a
time - interval value of 500 ms , and a maximum - duration
value of 30 s .
[0011] After determining the backoff - parameter values for
the persistent volume and the network service port , the
computing device can then use them to determine one or
more backoff - parameter values for a backoff process for the
statefulset . For example , the computing device can deter
mine that the initial - delay value for the statefulset's backoff
process is a sum of the initial - delay values for the persistent
volume and the network service port (e.g. , 1 s + 2 s = 3 s) . This

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] FIG . 1 is a block diagram of an example of a
computing device for allocating computing resources to a
container according to some aspects .
[0006] FIG . 2 is a block diagram of an example of a
system for allocating computing resources to a container in
a computing environment according to some aspects .
[0007] FIG . 3 is a flow chart of an example of a process
for allocating computing resources to a container in a
computing environment according to some aspects .

US 2020/0117512 A1 Apr. 16 , 2020
2

can help ensure that both of these initial delays have lapsed
(e.g. , and an attempt has been made to allocate those
resources) prior to the initial delay for the statefulset's
backoff process lapsing . As another example , the computing
device can determine that the time - interval value for the
statefulset’s backoff process is a maximum (e.g. , 500 ms) of
the time - interval values for the persistent volume and the
network service port . This can help ensure that both these
time intervals have lapsed (e.g. , and another attempt has
been made to allocate those resources) prior to the stateful
set's time - interval lapsing . As another example , the com
puting device can determine that the maximum - duration
value for the statefulset's backoff process is a sum of the
maximum - duration values for the persistent volume and the
network service port (e.g. , 30 s + 30 s = 60 s) . This can help
ensure that the maximum number of allowed allocation
attempts have been made for the persistent volume and the
network service port prior to the statefulset's maximum
duration lapsing . In some examples , configuring the state
fulset's backoff parameters based on the backoff parameters
for the persistent volume and the network service port can
reduce the number of failed attempts to allocate the state
fulset to the container . This can prevent the time - interval
value for the statefulset from exponentially increasing to a
very large value , and thereby reduce the overall startup
latency for the container .
[0012] These illustrative examples are given to introduce
the reader to the general subject matter discussed here and
are not intended to limit the scope of the disclosed concepts .
The following sections describe various additional features
and examples with reference to the drawings in which like
numerals indicate like elements but , like the illustrative
examples , should not be used to limit the present disclosure .
[0013] FIG . 1 is a block diagram of an example of a
computing device 102 for allocating computing resources
106a - c to a container 104 according to some aspects . The
computing device 102 can include a laptop computer , a
desktop computer , a server , a mobile device , a node in a
cloud computing environment or cluster , or any combination
of these .

[0014] The computing device 102 can allocate (or attempt
to allocate) one or more computing resources , such as
computing resources 106a - c , to the container 104. In this
example , computing resources 106a - c are shown as being
part of the computing device 102 , but in other examples ,
some or all of the computing resources 106a - c can be
supplied by one or more remote computing devices , such as
by other nodes in a cloud computing environment .
[0015] The computing resources can include any number
and combination of dependent computing resources .
Examples of dependent computing resources can include a
statefulset and a pod . A pod can be a group of containers
with shared storage , network components , and specifica
tions . The computing resources can additionally or alterna
tively include any number and combination of independent
computing resources . Independent computing resources can
be computing resources that do not require any other com
puting resources to be allocated to the container 104 prior to
the independent computing resource being allocated to the
container 104. Examples of independent computing
resources can include processing power , memory , a network
interface component , a service port , a persistent volume , a
persistent - volume attachment , or any combination of these .

[0016] The computing device 102 can access configura
tion data 108 to determine one or more relationships
between the computing resources 106a - c (e.g. , to determine
if any of the computing resources 106a - c are dependent
computing resources) . In some examples , the configuration
data 108 can be stored locally in a local memory of the
computing device 102. In other examples , the configuration
data 108 can be stored remotely and accessed via a network ,
such as the Internet . The configuration data 108 can be in the
form of a lookup table or database indicating the one or more
relationships between the computing resources 106a - c . The
computing device 102 can access the configuration data 108
and determine , for example , that the computing resource
106a depends on computing resources 106b - c .
[0017] The computing device 102 can implement backoff
processes for some or all of the computing resources 106a - c .
For example , the computing device 102 can determine that
computing resources 106a - c are unavailable for allocation to
the container 104. So , the computing device 102 can imple
ment backoff processes for the computing resources 106a - c .
If the computing resource 106a depends on computing
resources 106b - c , the computing device 102 can begin by
determining parameter values 110b - c for the backoff pro
cesses 108b - c . In this example , the parameter values 1106 - c
for Parameters A - N shown in the dashed circles in FIG . 1 .
Examples of the Parameters A - N can include can include the
initial time - duration , the time interval between checks , the
maximum time - duration , or any combination of these . The
computing device 102 can then use these parameter values
110b - c to determine parameter values 110a for the backoff
process 108a associated with the computing resource 106a .
This is indicated by the dashed arrow . For example , the
value of Parameter A (e.g. , Al) in the backoff process 108a
can be determined by taking the sum , average , median ,
mode , or maximum of A2 and A3 . Additionally or alterna
tively , the value of Parameter B (e.g. , B1) in the backoff
process 108a can be determined by taking the sum , average ,
median , mode , or maximum of B2 and B3 . Additionally or
alternatively , the value of Parameter N (e.g. , N1) in the
backoff process 108a can be determined by taking the sum ,
average , median , mode , or maximum (e.g. , larger) of N2 and
N3 . The computing device 102 can determine any number
and combination of parameter values 110a for the backoff
process 108a using any number and combination of param
eter values for other backoff processes associated with any
number and combination of other computing resources .
[0018] After determining the parameter values 110a - c for
the backoff processes 108a - c , the computing device 102 can
execute the backoff processes 108a - c using their respective
parameter values 110a - c . While executing the backoff pro
cess 108a , in some examples , the computing device 102 can
update some or all of the parameter values 110a based on (i)
the parameter values 110b - c corresponding to the other
backoff processes 108b - c , (ii) the availability of the other
computing resources 106b - c , or (ii) both . For example , for
each iteration of the backoff process 108a (e.g. , each failed
attempt to allocate the computing resource 106a) , the com
puting device 102 can adjust one or more parameter values
110a for the backoff process 108a based on the availability
of the other computing resources 106b - c .
[0019] As a particular example , the computing resource
106a can be a statefulset to be allocated to the container 104 .
The statefulset can depend on a persistent volume having
backoff - parameter values designated as [initial_delay_PV ,

US 2020/0117512 A1 Apr. 16 , 2020
3

time_interval_PV , max_duration_PV] . The statefulset can
also depend on a persistent volume attachment having
backoff - parameter values designated as [initial_delay_PVA ,
time_interval_PVA , max_duration_PVA] . The statefulset
can further depend on a network service port having back
off - parameter values designated as [initial_delay_SVP ,
time_interval_SPV , max_duration_SPV] . Since the persis
tent volume , persistent volume attachment , and network
service port may be initially available , the initial parameter
values for the statefulset can be [max (initial_delay_PV ,
initial_delay_PVA , initial_delay_SVP) , max (time_interval_
PV , time_interval_PVA , time_interval_SPV) , max (max_du
ration_PV , max_duration_PVA , max_duration_SPV)] ,
where max (X , Y , Z) indicates the maximum value of X , Y ,
and Z. After each time the computing device 102 checks for
the availability of the statefulset , the parameter values for
the backoff process 108a can be updated based on the
availability of the persistent volume , persistent volume
attachment , and network service port . For example , if the
persistent volume becomes available , the next time - interval
for the backoff process 108a can be set as max (max_
duration_PVA , max_duration_SPV) . This process can
repeat until the persistent volume attachment and network
service port also become available .
[0020] While executing the backoff processes 108a - c ,
some or all of the computing resources 108a - c may even
tually become available . If this happens , the computing
device 102 can allocate the computing resources 106a - c to
the container 104 and deploy the container 104 .
[0021] Although some examples of the present disclosure
involve allocating computer resources to a container , in
other examples , the computing resource can be allocated to
another software component . For example , the computing
device 102 may attempt to allocate computing resources
106a - c to another software component , but the computing
resources 106a - c may not be immediately available . So , the
computing device 102 can implement the backoff processes
108a - c for the computing resources 106a - c using similar
methods as discussed above .
[0022] FIG . 2 is a block diagram of an ample of
system 200 for allocating computing resources 208a - b to a
container 104 in a computing environment according to
some aspects . In this example , the system 200 includes a
processing device 202 communicatively coupled to a
memory device 204. The processing device 202 can include
one processing device or multiple processing devices . Non
limiting examples of the processing device 202 include a
Field - Programmable Gate Array (FPGA) , an application
specific integrated circuit (ASIC) , a microprocessor , etc. The
processing device 202 can execute one or more operations
for allocating computing resources . The processing device
202 can execute instructions 206 stored in the memory
device 204 to perform the operations . In some examples , the
instructions 206 can include processor - specific instructions
generated by a compiler or an interpreter from code written
in any suitable computer - programming language , such as C ,
C ++ , C # , etc.
[0023] Memory device 204 can include one memory
device or multiple memory devices . The memory device 204
can be non - volatile and may include any type of memory
device that retains stored information when powered off .
Non - limiting examples of the memory device 204 include
electrically erasable and programmable read - only memory
(EEPROM) , flash memory , or any other type of non - volatile

memory . In some examples , at least some of the memory
device can include a medium from which the processing
device 202 can read instructions 206. A computer - readable
medium can include electronic , optical , magnetic , or other
storage devices capable of providing the processing device
with computer - readable instructions or other program code .
Non - limiting examples of a computer - readable medium
include magnetic disk (s) , memory chip (s) , ROM , random
access memory (RAM) , an ASIC , a configured processor ,
optical storage , or any other medium from which a computer
processor can read instructions 206 .
[0024] The memory device 204 can include instructions
for a backoff process 210a corresponding to a dependent
computing resource 208a . The memory device 204 can also
have instructions for another backoff process 210b for
another computing resource 208 on which the dependent
computing resource 208a depends . The processing device
202 can execute the instructions to implement the backoff
processes 210a - b .
[0025] In some examples , the processing device 202 can
determine a parameter value 212a for the backoff process
210a based on another parameter value 212b for the other
backoff process 210b . Examples of the parameter value 212a
can include at least one of (i) an initial - delay value indicat
ing an initial time delay for which to wait before checking
the availability of the dependent computing resource 208a ,
(ii) a time - interval value indicating an amount of time to
wait between a prior check and a next check of the avail
ability of the dependent computing resource 208a , or (iii) a
maximum - duration value indicating a maximum time dura
tion for which to check for the availability of the dependent
computing resource 208a . The processing device 202 can
determine the parameter value 212a by , for example , adding
a constant to the other parameter value 212b . In some
examples , the constant can be yet another parameter value
for yet another backoff process for yet another computing
resource .

[0026] Although the other computing resource 208b is
shown as a single box in FIG . 2 for simplicity , the other
computing resource 208b can represent any number and
combination of other computing resources on which the
dependent computing resource 208a depends . Similarly ,
although the other backoff process 210b is shown as a single
box in FIG . 2 for simplicity , the backoff process 210b can
represent any number and combination of backoff processes
corresponding to the computing resources on which the
dependent computing resource 208a depends .
[0027] For example , the other computing resource 208b
can include a first computing resource and a second com
puting resource . And the backoff process 210b can include
a first backoff - process and a second backoff - process for the
first computing resource and the second computing resource ,
respectively . In some examples , the processing device 202
can determine the parameter value 212a for the backoff
process 210a using (i) a first parameter - value for the first
backoff - process corresponding to the first computing
resource , and (ii) a second parameter - value for the second
backoff - process corresponding to the second computing
resource . As a particular example , the processing device 202
can determine that the parameter value 212a is the sum ,
average , or larger of the first parameter - value and the second
parameter - value .
[0028] After determining the parameter value 212a for the
backoff process 210a , the processing device 202 can execute

US 2020/0117512 A1 Apr. 16 , 2020
4

the backoff process 210a . The processing device 202 may
eventually determine , using the backoff process 210a , that
the dependent computing resource 208a is available . Once
available , the processing device 202 can allocate the depen
dent computing resource 208a to the container 104 , as
indicated by the dashed line from the dependent computing
resource 208a to the container 104. In some examples , prior
to allocating the dependent computing resource 208a to the
container 104 , the processing device 202 may also execute
the backoff process 210b for the other computing resource
208b , determine that the other computing resource 208b is
available , and allocate the other computing resource 2086 to
the container 104. This is indicated by the dashed line from
the other computing resource 208b to the container 104 .
[0029] In some examples , the processing device 202 can
perform one or more of the steps shown in FIG . 3 to allocate
computing resources . In other examples , the processing
device 202 can implement more steps , fewer steps , different
steps , or a different order of the steps depicted in FIG . 3. The
steps of FIG . 3 are described below with reference to
components discussed above .
[0030] In block 302 , the processing device 202 determines
that a dependent computing resource 208a is to be allocated
to a container 104. The dependent computing resource 208a
can depend on another computing resource 2086 being
allocated to the container 104 before the dependent com
puting resource 208a is allocated to the container 104. For
example , the processing device 202 can receive a request to
deploy the container 104. In response , the processing device
202 can determine multiple computing resources to allocate
to the container 104 in order to deploy the container 104 .
The processing device 202 can then determine one or more
relationships among the one or more computing resources ,
for example , by using the configuration data 108 of FIG . 1 .
At least one of the relationships can involve a dependent
relationship between the dependent computing resource
208a and the other computing resource 208b .
[0031] In block 304 , the processing device 202 determines
a parameter value 212a for a backoff process 210a for
checking the availability of the dependent computing
resource 208a . The parameter value 212a can be determined
using another parameter value 212b for another backoff
process 210b for checking the availability of the other
computing resource 208b . For example , the processing
device 202 can determine the parameter value 212a by
calculating the maximum , sum , or average of the other
parameter value 212b and yet another parameter value (e.g. ,
for yet another backoff process for yet another computing
resource)
[0032] In block 306 , the processing device 202 determines
that the dependent computing resource 208a is available by
executing the backoff process 210a using the parameter
value 212a . For example , the processing device 202 can wait
for an initial time - duration , and then check again to see if the
dependent computing resource 208a is available . If not , the
processing device 202 can repeatedly check to see if the
dependent computing resource 208a is available . The pro
cessing device 202 repeatedly check at constant , increasing ,
or decreasing time intervals . In some examples , with each
failed check , the processing device 202 can modify the time
interval until the next check (e.g. , can double the time
interval , adjust the time interval based on the availability of
the other computing resource 208b , etc.) . This process can
continue until the dependent computing resource 208a

becomes available or a maximum time - duration is reached .
In some examples , the parameter value 212a can include the
initial time - duration , time interval between checks , the
maximum time - duration , or any combination of these .
[0033] In block 308 , the processing device 202 allocates
the dependent computing resource 208a to the container 104
in response to determining that the dependent computing
resource 208a is available . This may involve transmitting an
electronic command to a remote computing device supply
ing the dependent computing resource 208a , for example , if
the processing device 202 is in one server and the dependent
computing resource 208a is at least partially supplied by
another server .
[0034] The foregoing description of certain examples ,
including illustrated examples , has been presented only for
the purpose of illustration and description and is not
intended to be exhaustive or to limit the disclosure to the
precise forms disclosed . Numerous modifications , adapta
tions , and uses thereof will be apparent to those skilled in the
art without departing from the scope of the disclosure . Some
examples can be combined with other examples to yield
further examples .

1. A method comprising :
determining , by a processing device , that a dependent

computing resource is to be allocated to a software
component , wherein the dependent computing resource
depends on another computing resource being allocated
to the software component before the dependent com
puting resource is allocated to the software component ;

determining , by the processing device , a parameter value
for a backoff process for checking an availability of the
dependent computing resource , the parameter value
being determined using another parameter value for
another backoff process for checking the availability of
the other computing resource ;

determining , by the processing device , that the dependent
computing resource is available by executing the back
off process using the parameter value ; and

in response to determining that the dependent computing
resource is available , allocating , by the processing
device , the dependent computing resource to the soft
ware component .

2. The method of claim 1 , wherein the parameter value is
at least one of (i) an initial - delay value indicating an initial
time delay for which to wait before checking the availability
of the dependent computing resource , (ii) a time - interval
value indicating an amount of time to wait between a prior
check and a next check of the availability of the dependent
computing resource , or (iii) a maximum - duration value
indicating a maximum time duration for which to check for
the availability of the dependent computing resource .

3. The method of claim 1 , wherein the other computing
resource comprises a first computing resource and a second
computing resource , and further comprising determining the
parameter value for the backoff process using (i) a first
parameter - value for a first backoff - process corresponding to
the first computing resource , and (ii) a second parameter
value for a second backoff - process corresponding to the
second computing resource .

4. The method of claim 3 , wherein the parameter value for
the backoff process is a sum of the first parameter - value and
the second parameter - value .

US 2020/0117512 A1 Apr. 16 , 2020
5

5. The method of claim 3 , wherein the parameter value for
the backoff process is an average of the first parameter - value
and the second parameter - value .

6. The method of claim 3 , wherein the parameter value for
the backoff process is the larger of the first parameter - value
and the second parameter - value .

7. The method of claim 1 , wherein the other computing
resource comprises a first computing resource and a second
computing resource , and wherein determining the parameter
value for the backoff process comprises :

determining a first - parameter value for the backoff pro
cess using (i) a first value of a first parameter in a first
backoff - process for the first computing resource , and
(ii) a second value of the first parameter in a second
backoff - process for the second computing resource ;

determining a second - parameter value for the backoff
process using (i) a first value of a second parameter in
the first backoff - process , and (ii) a second value of the
second parameter in the second backoff - process ; and

determining a third - parameter value for the backoff pro
cess using (i) a first value of a third parameter in the
first backoff - process , and (ii) a second value of the third
parameter in the second backoff - process .

8. The method of claim 1 , further comprising :
checking the availability of the dependent computing

resource during the backoff process ; and
subsequent to checking the availability of the dependent

computing resource during the backoff process , updat
ing the parameter value for the backoff process based
on the availability of the other computing resource .

9. A system comprising :
a processing device ; and
a memory device having instructions that are executable
by the processing device for causing the processing
device to :
determine that a dependent computing resource is to be

allocated to a software component , wherein the
dependent computing resource depends on another
computing resource being allocated to the software
component before the dependent computing resource
is allocated to the software component ;

determine a parameter value for a backoff process for
checking an availability of the dependent computing
resource , the parameter value being determined
using another parameter value for another backoff
process for checking the availability of the other
computing resource ;

determine that the dependent computing resource is
available by executing the backoff process using the
parameter value ; and

in response to determining that the dependent comput
ing resource is available , allocate the dependent
computing resource to the software component .

10. The system of claim 9 , wherein the parameter value is
at least one of (i) an initial - delay value indicating an initial
time delay for which to wait before checking the availability
of the dependent computing resource , (ii) a time - interval
value indicating an amount of time to wait between a prior
check and a next check of the availability of the dependent
computing resource , or (iii) a maximum - duration value
indicating a maximum time duration for which to check for
the availability of the dependent computing resource .

11. The system of claim 9 , wherein the other computing
resource comprises a first computing resource and a second

computing resource , and wherein the memory device further
comprises instructions that are executable by the processing
device for causing the processing device to determine the
parameter value for the backoff process using (i) a first
parameter - value for a first backoff - process corresponding to
the first computing resource , and (ii) a second parameter
value for a second backoff - process corresponding to the
second computing resource .

12. The system of claim 11 , wherein the parameter value
for the backoff process is a sum of the first parameter - value
and the second parameter - value or the larger of the first
parameter - value and the second parameter - value .

13. The system of claim 9 , wherein the other computing
resource comprises a first computing resource and a second
computing resource , and wherein the memory device further
comprises instructions that are executable by the processing
device for causing the processing device to determine the
parameter value for the backoff process by :

determining a first - parameter value for the backoff pro
cess using (i) a first value of a first parameter in a first
backoff - process for the first computing resource , and
(ii) a second value of the first parameter in a second
backoff - process for the second computing resource ;

determining a second - parameter value for the backoff
process using (i) a first value of a second parameter in
the first backoff - process , and (ii) a second value of the
second parameter in the second backoff - process ; and

determining a third - parameter value for the backoff pro
cess using (i) a first value of a third parameter in the
first backoff - process , and (ii) a second value of the third
parameter in the second backoff - process .

14. The system of claim 9 , wherein the memory device
further comprises instructions that are executable by the
processing device for causing the processing device to :

check the availability of the dependent computing
resource during the backoff process ; and

subsequent to checking the availability of the dependent
computing resource during the backoff process , update
the parameter value for the backoff process based on
the availability of the other computing resource .

15. A non - transitory computer - readable medium compris
ing program code that is executable by a processing device
for causing the processing device to :
determine that a dependent computing resource is to be

allocated to a software component , wherein the depen
dent computing resource depends on another comput
ing resource being allocated to the software component
before the dependent computing resource is allocated to
the software component ;

determine a parameter value for a backoff process for
checking an availability of the dependent computing
resource , the parameter value being determined using
another parameter value for another backoff process for
checking the availability of the other computing
resource ;

determine that the dependent computing resource is avail
able by executing the backoff process using the param
eter value ; and

in response to determining that the dependent computing
resource is available , allocate the dependent computing
resource to the software component .

16. The non - transitory computer - readable medium of
claim 15 , wherein the parameter value is at least one of (i)
an initial - delay value indicating an initial time delay for

US 2020/0117512 A1 Apr. 16 , 2020
6

which to wait before checking the availability of the depen
dent computing resource , (ii) a time - interval value indicat
ing an amount of time to wait between a prior check and a
next check of the availability of the dependent computing
resource , or (iii) a maximum - duration value indicating a
maximum time duration for which to check for the avail
ability of the dependent computing resource .

17. The non - transitory computer - readable medium of
claim 15 , wherein the other computing resource comprises
a first computing resource and a second computing resource ,
and further comprising program code that is executable by
the processing device for causing the processing device to
determine the parameter value for the backoff process using
(i) a first parameter - value for a first backoff - process corre
sponding to the first computing resource , and (ii) a second
parameter - value for a second backoff - process corresponding
to the second computing resource .

18. The non - transitory computer - readable medium of
claim 17 , wherein the parameter value for the backoff
process is a sum of the first parameter - value and the second
parameter - value or the larger of the first parameter - value and
the second parameter - value .

19. The non - transitory computer - readable medium of
claim 15 , wherein the other computing resource comprises
a first computing resource and a second computing resource ,
and further comprising program code that is executable by

the processing device for causing the processing device to
determine the parameter value for the backoff process by :

determining a first - parameter value for the backoff pro
cess using (i) a first value of a first parameter in a first
backoff - process for the first computing resource , and
(ii) a second value of the first parameter in a second
backoff - process for the second computing resource ;

determining a second - parameter value for the backoff
process using (i) a first value of a second parameter in
the first backoff - process , and (ii) a second value of the
second parameter in the second backoff - process ; and

determining a third - parameter value for the backoff pro
cess using (i) a first value of a third parameter in the
first backoff - process , and (ii) a second value of the third
parameter in the second backoff - process .

20. The non - transitory computer - readable medium of
claim 15 , further comprising program code that is execut
able by the processing device for causing the processing
device to :

check the availability of the dependent computing
resource during the backoff process ; and

subsequent to checking the availability of the dependent
computing resource during the backoff process , update
the parameter value for the backoff process based on
the availability of the other computing resource .

