
US 20200358842A1
IN

(19) United States
(12) Patent Application Publication Publication (10) Pub . No .: US 2020/0358842 A1

Wuest et al . (43) Pub . Date : Nov. 12 , 2020

(54) CLOUD INTELLIGENCE DATA MODEL AND
FRAMEWORK

(71) Applicant : Sonrai Security Inc. , New York , NY
(US)

(52) U.S. CI .
CPC H04L 67/025 (2013.01) ; H04L 67/1097

(2013.01) ; G06F 16/2457 (2019.01) ; G06F
11/34 (2013.01) ; H04L 67/22 (2013.01) ; H04L

67/306 (2013.01) ; H04L 67/16 (2013.01) ;
H04L 67/36 (2013.01)

(72) Inventors : Ben Wuest , Fredericton (CA) ; William
Bird , Fredericton (CA) ; Brad Peters ,
Fredericton (CA) ; Albert Lockett ,
Fredericton (CA) (57) ABSTRACT

(73) Assignee : Sonrai Security Inc. , New York , NY
(US)

(21) Appl . No .: 16 / 939,890
(22) Filed : Jul . 27 , 2020

Related U.S. Application Data
(63) Continuation of application No. 16 / 505,038 , filed or

Jul . 8 , 2019 , now Pat . No. 10,728,307 .
(60) Provisional application No. 62 / 742,747 , filed on Oct.

8 , 2018 .

A network - accessible service provides an enterprise with a
view of all identity and data activity in the enterprise's cloud
accounts . The service enables distinct cloud provider man
agement models to be normalized with centralized analytics
and views across large numbers of cloud accounts . The
service enables an enterprise to model all activity and
relationships across cloud vendors , accounts and third party
stores . Display views of this information preferably can
pivot on cloud provider , country , cloud accounts , application
or data store . Using a domain - specific query language , the
system enables rapid interrogation of a complete and cen
tralized data model of all data and identity relationships .
User reports may be generated showing all privileges and
data to which a particular identity has access . Similarly , data
reports shown all entities having access to an asset can be
generated . Using the display views , a user can pivot all
functions across teams , applications and data , geography ,
provider and compliance mandates , and the like .

Publication Classification
(51) Int . Cl .

H04L 29/08 (2006.01)
GOOF 16/2457 (2006.01)
GOOF 11/34 (2006.01)

102 104 112 116

DEPENDS ON DEPENDS ON REPORTING
SDK

BOOTSTRAP
FRAMEWORK

INTELLIGENCE
BOOTSTRAPPER QUERY SERVER

DEPENDS ON INITIALIZES

F100 READS 1 CLOUD AUTOGENERATES + INTELLIGENCE 1
1 MODEL 1

LOADED BY
T
1 DYNAMIC
1 INTELLIGENCE

| ACCESS FRAMEWORK 1
INTELLIGENCE

GRAPH 117
DEPENDS

ON DEPENDS ON LOADS
108

DEPENDS ON DEPENDS ON PROCESSING
FRAMEWORK

INTELLIGENCE
PROCESSOR -114 T INPUT

106
-

GENERATES INTELLIGENCE
REPORTING
ASSETS

INTELLIGENCE
BUNDLES

SDK / FRAMEWORK
MODEL
COMPONENT
DATA -115

110

116

102 LI REPORTING SDK

104

112

I

7 DEPENDS ON BOOTSTRAP DEPENDS ON INTELLIGENCE FRAMEWORK

BOOTSTRAPPER

L

J

DEPENDS ON

INITIALIZES

Patent Application Publication

QUERY SERVER
LOADED BY

100

READS

CLOUD

AUTOGENERATES
4 INTELLIGENCE I
I MODEL

INTELLIGENCE GRAPH

DYNAMIC INTELLIGENCE | ACCESS FRAMEWORK I

- 117

L

DEPENDS ON

LOADS

108

DEPENDS ONI

DEPENDS ON

PROCESSING FRAMEWORK
DEPENDS ON

INTELLIGENCE PROCESSOR

Nov. 12 , 2020 Sheet 1 of 10

114

INPUT

106 GENERATES

INTELLIGENCE REPORTING ASSETS

INTELLIGENCE BUNDLES

SDK / FRAMEWORK MODEL COMPONENT DATA

115

110

FIG . 1

US 2020/0358842 A1

200

202

204

206

PROPERTY :

ENTITY :

• name : name

INTERFACE :
• label : Entity

queryName : Entities properties : • name : id • name label • label : Resource
queryName : Resources Interfaces :

• Entity
properties :

CONNECTION :
• label : isMemberOf

relationships : • from : Identity to : Group

reverseName : hasMember

Patent Application Publication

type : String • name : label type : String .name : created Date
type : Long onNode : true queryType : Date

.name : type type : String .name : id type : Long

• label : User

queryName : Users
interfaces : • Identity properties : • name : type values : • User • Service

• name : Password LastUsed • name : username
• label : Group

queryName : Groups
interfaces : • Identity properties : • name : type

208

• name : name

Nov. 12 , 2020 Sheet 2 of 10

INDEX :

• label : NameIndex type : composite keys :

• allowCreate : false
allowUpdate : false

.name : createdDate • name : active label : Identity
queryName : Identities Interfaces : • Resource

• name
freetext : true

values • Group • ADGroup

US 2020/0358842 A1

FIG . 2

Patent Application Publication Nov. 12 , 2020 Sheet 3 of 10 US 2020/0358842 A1

306
CLOUD CLOUD

304
ACCOUNT AccountReporter

STATIC
+

SERVICE Service Reporter
302

ENTITY DYNAMICALLY GENERATED
ENTITY REPORTER 300

FIG . 3

DYNAMICALLY

public class UserReporter extends Identity Reporter < User Reporter > implements IReporter

{

public enum Type {
User , Service }

GENERATED ON

1

ED

GENERATED
RESTRICTION ON TYPE I

Patent Application Publication

L

public User Reporter (String uniqueName , Service Reporter Service Reporter)

throws InvalidBuildArgumentException {
super (EntityType.User , uniqueName , Service Reporter) :

}

? - -

public User Reporter withPasswordLastUsed (java.lang.Long value) { this.setProperty (Property Type.passwordLastUsed , value) ;

return this ;

}

DYNAMICALLY GENERATED FROM PROPERTIES READ FROM INTELLIGENCE |
MODEL

1

public User Reporter withUserName (java.lang.String value) { this.setProperty (Property Type.userName , value) ;

return this ;

}

public UserReporter with Type (Type value) { this.setProperty (Property Type.type , value) ;

return this ;

Nov. 12 , 2020 Sheet 4 of 10

L

US 2020/0358842 A1

}

FIG . 4

Patent Application Publication Nov. 12 , 2020 Sheet 5 of 10 US 2020/0358842 A1

502 504

SCHEMA MODEL : DATA MODEL : 1
500 1 • DATA QUERY

SPECIFICATIONS 1
1
1 • DATA STORAGE

SPECIFICATIONS
DATA CONFORMING

TO THE
DEFINED MODEL

I 1 • VERSION
SPECIFICATIONS

L

FIG . 5

hasTo / From CONNECTION has Type

INDEX ENTITY extends hasTo / From CONNECTION TYPE H hasProperty hasProperty

PROPERTY hasProperty INTERFACE

extends

FIG . 6

Patent Application Publication Nov. 12 , 2020 Sheet 6 of 10 US 2020/0358842 A1 2

702 IDENTITY

2
performed

ACTION has 704

1
1 performed on

RESOURCE 706

is part of
SERVICE has - 708

has
is part of

ACCOUNT
1 710

is part of
CLOUD

1

A Azure aws
712

GoogleCloud
contains contains

Service Type Action Type
714 716

has has

SERVICE
CLASSIFICATION

ACTION
CLASSIFICATION

718 720
725

UNIFIED CLASSIFICATION MODEL

FIG . 7

Patent Application Publication Nov. 12 , 2020 Sheet 7 of 10 US 2020/0358842 A1

Policy
800

has

Policy Version 802

has

PolicyEntry
804

has

PermissionList 806

allows / denies

PERMISSION

808

has has

Service Type Action Type
810 812

has has

SERVICE
CLASSIFICATION

ACTION
CLASSIFICATION 1 814 816

825
UNIFIED CLASSIFICATION MODEL

FIG . 8

Patent Application Publication Nov. 12 , 2020 Sheet 8 of 10 US 2020/0358842 A1

DELETE MESSAGE CREATE
ACTIVITY
ACTION
READ

STOP
AUDIT
START

CONFIGURE

ARCHIVE
RESTORE

AUTHENTICATION
ACCEPT

RESUME
ANALYTIC
LOGIN
FAILURE
LOGOUT UPDATE

FIG . 9

Mounted Disk SQL
MIGRATION

AI
VirtualHost

Security Service
SERVICE
DATA

ObjectStore
ANALYTIC

GEOLOCATION
CONFIGURATION

EMAIL

STREAMING
TRANSFER

Business Process
Operating System
DIRECTORY
Time Series
LOCATION

INDEX
HDFS

FileSystem

VPS
MediaProcessing
MESSAGING
WAREHOUSE
App Development

FIG . 10

Patent Application Publication Nov. 12 , 2020 Sheet 9 of 10 US 2020/0358842 A1

1108 has 1110

PermissionList PolicyEntry
ResourceFilter
IdentityFilter
CONDITIONS 1112 allows / denies

PERMISSION
1122 1106 has

RESOURCE Policy Version 1114 1118 has has OO
Service Type Action Type FILES 1104 has Has

Attached
POLICY

has has

Has
Attached

SERVICE
CLASSIFICATION

ACTION
CLASSIFICATION

GROUP WRITE has
Write
Access

1102 1116 1120

Has
Attached isMemberOf

IDENTITY

1100

BOB

FIG . 11

Patent Application Publication Nov. 12 , 2020 Sheet 10 of 10 US 2020/0358842 A1

{ " type " : " Entity " ,
" name " : " john.doe " ,
" author " : " audit " ,
" properties " : {
" name " : " john.doe " ,
" active " : true ,
" type " : " User "

} ,
" objectType " : " User " ,
" createdDate " : 1532722273000 ,
" cloud " : " aws " ,
" service " : " service " ,
" account " : " 456234566655 "

}

FIG . 12

US 2020/0358842 Al Nov. 12 , 2020
1

BRIEF SUMMARY CLOUD INTELLIGENCE DATA MODEL AND
FRAMEWORK

BACKGROUND

Technical Field

[0001] This application relates generally to cloud compute
infrastructures and , in particular , to techniques to model and
manage data across multiple cloud deployments .

[0006] This disclosure provides a cloud data control intel
ligence framework for modeling , reporting , storing and
querying cloud resources and the connections among them .
The framework preferably leverages a unified cloud intelli
gence data model . The framework is dynamic in that adjust
ments are made to the intelligence data model based on
changes occurring in the underlying cloud resources . Fur
ther , key assets related to the reporting , storing and querying
of resources dynamically update to reflect changes in the
underlying intelligence model . In one embodiment , the
framework provides a cloud risk control system that pro
vides an enterprise the ability to continuously manage and
interact with modern cloud environments , even as such
environments themselves change and evolve .
[0007] The foregoing has outlined some of the more
pertinent features of the disclosed subject matter . These
features should be construed to be merely illustrative . Many
other beneficial results can be attained by applying the
disclosed subject matter in a different manner or by modi
fying the invention as will be described .

Brief Description of the Related Art
[0002] Cloud computing is an information technology
delivery model by which shared resources , software and
information are provided on - demand over a network (e.g. ,
the publicly - routed Internet) to computers and other devices .
This type of delivery model has significant advantages in
that it reduces information technology costs and complexi
ties , while at the same time improving workload optimiza
tion and service delivery . In a typical use case , an application
is hosted from network - based resources and is accessible
through a conventional browser or mobile application .
Cloud compute resources typically are deployed and sup
ported in data centers that run one or more network appli
cations , typically using a virtualized architecture wherein
applications run inside virtual servers , or virtual machines ,
which are mapped onto physical servers in the data center .
The virtual machines typically run on top of a hypervisor ,
which allocates physical resources to the virtual machines .
[0003] Enterprises moving to cloud deployments typically
use multiple cloud accounts across a number of providers
(e.g. , Amazon Web Services , Microsoft® Azure and
Google Cloud Platform) in a number of ways . They
migrate existing workloads to reduce costs , build new cus
tomer facing applications , and move employee backend
processes to a continuous integrations / continuous delivery
model . Large data science workloads also are transitioning
to the cloud in all sizes of companies , and the processing of
such workloads requires large clusters of compute and
storage , sometimes for short time periods .
[0004] The rapid adoption of cloud technology has left
Security , Compliance and Development Operations (De
vOps) teams struggling to keep pace . Indeed , securing cloud
data across a single cloud provider is hard enough , but
securing data across a multi - cloud deployment is a signifi
cant challenge to even the most talented Security and DevOp
teams . Making the problem even more of a challenge is that
the agility of the cloud quickly leads to an explosion of cloud
accounts , data stores , and data movement . Unfortunately ,
existing low - level tools lack a cohesive security model for
identities and data movement , and none work across mul
tiple cloud providers . Further , hackers have not overlooked
the new attack vectors introduced by rapid cloud adoption .
Every day , the media reports stories of significant cloud
vulnerabilities and data breaches . Compounding this prob
lem further , is that business often have to comply with not
one , but potentially multiple government or industry regu
lations around data security . Moreover , rapid growth in the
cloud has lead to mind - numbing complexities and ineffi
ciencies for DevOps and Security teams alike .
[0005] Accordingly , there is a need to provide tools and
methods that enable enterprises that use multi - cloud deploy
ments to obtain a comprehensive view of all identity and
data activity across the enterprise's cloud accounts .

BRIEF DESCRIPTION OF THE DRAWINGS
[0008] For a more complete understanding of the subject
matter and the advantages thereof , reference is now made to
the following descriptions taken in conjunction with the
accompanying drawings , in which :
[0009] FIG . 1 depicts a framework architecture for a cloud
risk intelligence platform according to this disclosure ;
[0010] FIG . 2 is a representative data model implemented
in one embodiment ;
[0011] FIG . 3 depicts a representative base reporting
framework ;
[0012] FIG . 4 depicts a representative user entity reporter ;
[0013] FIG . 5 depicts a representative data store ;
[0014] FIG . 6 depicts a representative data model schema ;
[0015] FIG . 7 depicts how a unified classification model
ties to specific service and action types , and the correspond
ing actions from a given cloud provider ;
[0016] FIG . 8 depicts how the unified classification model
ties to a permission model in a cloud intelligence model ;
[0017] FIG . 9 lists examples of normalized action types ;
[0018] FIG . 10 lists examples of normalized service types ;
[0019) FIG . 11 depicts a representative example of how
normalized pathing analytics are used to distill information
from the cloud intelligence model down to deliverable cloud
intelligence ; and
[0020] FIG . 12 depicts an example of a JSON code
fragment generated by dynamic entity generation code in
one embodiment .

DETAILED DESCRIPTION

[0021] As described , cloud computing is a model of ser
vice delivery for enabling on - demand network access to a
shared pool of configurable computing resources (e.g. net
works , network bandwidth , servers , processing , memory ,
storage , applications , virtual machines , and services) that
can be rapidly provisioned and released with minimal man
agement effort or interaction with a provider of the service .
Available services models that may be leveraged in whole or
in part include : Software as a Service (SaaS) (the provider's
applications running on cloud infrastructure) ; Platform as a
service (PaaS) (the customer deploys applications that may

US 2020/0358842 A1 Nov. 12 , 2020
2

be created using provider tools onto the cloud infrastruc
ture) ; Infrastructure as a Service (IaaS) (customer provisions
its own processing , storage , networks and other computing
resources and can deploy and run operating systems and
applications) . Typically , a cloud computing infrastructure
may comprise co - located hardware and software resources ,
or resources that are physically , logically , virtually and / or
geographically distinct . Communication networks used to
communicate to and from the platform services may be
packet - based , non - packet based , and secure or non - secure ,
or some combination thereof . Typically , the cloud comput
ing environment has a set of high level functional compo
nents that include a front end identity manager , a business
support services (BSS) function component , an operational
support services (OSS) function component , and the com
pute cloud components themselves .
[0022] According to this disclosure , the services platform
described below may itself be part of the cloud compute
infrastructure , or it may operate as a standalone service that
executes in association with third party cloud compute
services , such as Amazon® AWS , Microsoft® Azure , IBM®
SoftLayer® , and others .
[0023] Each of the functions described herein may be
implemented in a hardware processor , as a set of one or more
computer program instructions that are executed by the
processor (s) and operative to provide the described function .
[0024] The server - side processing is implemented in
whole or in part by one or more web servers , application
servers , database services , and associated databases , data
structures , and the like .
[0025] More generally , the techniques described herein are
provided using a set of one or more computing - related
entities (systems , machines , processes , programs , libraries ,
functions , or the like) that together facilitate or provide the
described functionality described above . In a typical imple
mentation , a representative machine on which the software
executes comprises commodity hardware , an operating sys
tem , an application runtime environment , and a set of
applications or processes and associated data , networking
technologies , etc. , that together provide the functionality of
a given system or subsystem . As described , the functionality
may be implemented in a standalone machine , or across a
distributed set of machines .
[0026] A front - end of the below - described infrastructure
(e.g. , a customer console or portal) is also representative of
a web site (e.g. , a set of one or more pages formatted
according to a markup language) . Interaction with the portal
may also take place in an automated manner , or program
matically , and the portal may interoperate with other identity
management devices and systems .
[0027] As will be described below , and in a representative
use case , an enterprise has relationships with multiple cloud
providers , with each cloud provider typically implementing
a network - accessible cloud computing infrastructure . This is
sometimes referred to herein as a “ multi - cloud ” deployment .
An enterprise multi - cloud deployment typically is one in
which there are multiple cloud accounts , data stores , and
data movement within and across the various cloud deploy
ments provided by the multiple cloud providers . As will be
described , and according to this disclosure , a Cloud Data
Control (CDC) service provides an enterprise (typically , a
service customer or “ subscriber ”) the ability to generate and
use a complete risk model of all identity and data relation
ships , including activity and movement across cloud

accounts , cloud providers and third party data stores . Typi
cally , the risk model is maintained by the CDC service
provider and exposed to the enterprise customer via one or
more display (s) , typically web - accessible dashboards . Using
the service , an enterprise subscriber obtains continuous
visibility into a wide range of security concerns including
multi - cloud security monitoring , data sovereignty , data
exposure detection , audit tampering and identity gover
nance . Data managed by the data model enables the service
to provide the subscriber data risk dashboards that include ,
without limitation , (i) views by cloud accounts , geography ,
data and protection , user and identity , compliance , and
public exposure ; (ii) security alerts (e.g. , over - privileged
users with access to PII , failed privilege escalation attempts ,
audit functions disabled by user , unusual data movement ,
separation of duties violations , data movement to public
network , shared credential violations , etc.) , (iii) compliance
dashboards indicating data sovereignty , data movement and
identity relationships (e.g. , GDPR , HIPAA , PCI dashboards ,
data sovereignty monitoring , data asset inventory , custom
ized controls and compliance dashboards , monitoring PII
data movement , etc.)
[0028] The CDC service typically is implemented by a
service provider “ as - a - service ” on behalf of a participating
enterprise customer . In a typical use case , the enterprise
customer subscribes to the CDCaaS solution described
herein . The enterprise includes its own on - premises infra
structure (networks , servers , endpoints , databases , etc.) ,
internal IT teams (e.g. , Security , Compliance , DevOps , etc.) ,
as well as its relationships with one or more cloud providers
that provide cloud - based infrastructure . Except to the extent
the enterprise internal systems and the cloud provider infra
structure (s) interoperate with the CDC service (typically via
data exchange) , the subscriber and cloud provider infrastruc
tures are external to the CDC service , which typically is
operated and managed separately .
[0029] FIG . 1 depicts a preferred framework architecture
for a cloud risk management platform that provides the CDC
service according to an embodiment of this disclosure . The
architecture comprises a number of software and data com
ponents or subsystems . The functional components need not
be implemented as distinct elements , as various components
may be combined with one another . Further , the components
may execute independently of one another , and they may
execute in different locations or using multiple computing
entities . Typically , a computing entity that supports a com
ponent or data store is a computer or computing system that
comprises one or more processors , storage and memory ,
network interfaces , etc. As depicted , typically the platform
comprises cloud intelligence data model 100 , a reporting
Software Development Kit (SDK) 102 , a set of one or more
code frameworks , namely a graph bootstrap framework 104 ,
an intelligence processing framework 106 , and a dynamic
intelligence framework 108 , as well as various system
components comprising intelligence reporting assets 110 , an
intelligence bootstrapper 112 , an intelligence processor 114 ,
and a query server 116. As noted , these components typi
cally are implemented in software executing on hardware
processing elements . One or more components may be
combined with one another or execute as separate processes .
The particular relationships and dependencies between and
among the various components of the framework are
depicted in FIG . 1 for explanatory purposes and are not
intended to be limiting .

US 2020/0358842 A1 Nov. 12 , 2020
3

[0030] The cloud intelligence model 100 is central to the
framework , as it enables the CDC service to provide a
subscriber a view of all identity and data activity in the
enterprise's cloud accounts . Preferably , there is a cloud
intelligence model developed and maintained for each sub
scriber to the service . Typically , this model is decoupled
from the actual technical implementation in the reporting
SDK 102 , the code frameworks , and the processing com
ponents , although each of which depend on this model
closely . In a representative , but non - limiting embodiment ,
the model 100 is a cloud environment data model for a
particular subscriber that is based on observed patterns
across multiple cloud environments . As will be described ,
this solution provides a unified approach to modelling data ,
identity , infrastructure and protection . Preferably , the model
100 comprises an object model (e.g. , all cloud entities and
their corresponding properties , the allowed connections
between and among cloud entities , and multi - level interfaces
for the cloud entities) , storage properties (e.g. , index , types ,
etc.) for all or some of the above , and query properties of the
object model .
[0031] Several of the components depicted in FIG . 1
typically are supported using computing systems and ser
vices technologies configured as follows . The cloud intelli
gence model 100 is pre - processed to generate the reporting
SDK 102 , which it then embedded into the code comprising
the intelligence reporting assets subsystem 110 ; the intelli
gence reporting assets 110 (which include the embedded
reporting SDK as auto - generated from the pre - processed
cloud intelligence model) in turn reside within the cloud
computing resources (systems , sub - systems , etc.) that are to
be monitored by the cloud intelligence system of this
disclosure . Thus , for example , the intelligence reporting
assets 110 are configured to execute within or in association
with a particular cloud computing system or resource (e.g. ,
an Amazon® container running DynamoDB , etc.) and , as a
result of that monitoring the intelligence reporting assets 110
generate the intelligence bundles 115. An intelligence
bundle 115 thus is generated for each particular cloud
compute deployment that is being monitored . The intelli
gence bundle 115 includes the information about the cloud
accounts , resources , etc. that the subscriber has provisioned
in or is other using in each such cloud compute deployment .
In a representative implementation , the service provider
deploys a Docker container or the like (that maintains the
intelligence reporting assets 110 and the embedded reporting
SDK 102) in the third party cloud computing deployment for
support of the data collection . Typically , data collection with
respect to a particular cloud deployment and for a particular
customer) occurs during an initial discovery phase , and then
runs continuously thereafter (e.g. , nightly) . As noted , the
intelligence reporting assets subsystem 110 collects that data
from the external cloud deployment (s) and generates the one
or more intelligence bundles 115. As noted , a bundle is
associated with an enterprise subscriber and encapsulates the
subscriber's data (e.g. , identity and data activity , etc.)
retrieved from each cloud deployment being used by the
subscriber . The intelligence processor 114 receives an intel
ligence bundle and processes it under the control of the
processing framework 106 , thereby generating an intelli
gence graph 117 (subscriber - specific) . Because the process
ing framework depends on the cloud intelligence model 100 ,
and because the intelligence processor 114 depends on the
processing framework 106 , the model 100 is embedded /

instantiated in the intelligence graph 117. An initial version
of the intelligence graph is initialized by the intelligence
bootstrapper 112 , and the intelligence graph is updated (by
the intelligence processor 114) as the intelligence bundle 115
is updated (by changes in the local cloud compute deploy
ment , as reported by the intelligence reporting asserts 110) .
The intelligence graph 117 is configured to be queried by a
query server 116 , which executes on an application server
subsystem and , together with a web server , preferably
exposes a query - able display interface (e.g. , as a set of web
pages) to authenticated and authorized enterprise users .
Typically , an enterprise user interacts with the query server
sub - system using a client browser or mobile app .
[0032] FIG . 1 depicts the various dependencies and inter
actions among the components and data elements that are
described above . As shown , the bootstrap framework 104 ,
the processing framework 106 and the intelligence processor
114 depend on the cloud intelligence data model 100. As
described , the intelligence processor 114 also receives as
input the intelligence bundle (s) 115 that are generated by the
cloud - deployed intelligence reporting assets subsystem 110
(which as noted also includes the embedded reporting SDK
itself generated from the model) . The processing framework
106 processes the data model in the manner described
below in more detail) and provides results of such process
ing to the intelligence processor subsystem 114 , which in
turn generates the intelligence graph 117 that is exposed to
a dynamic intelligence access framework 108 loaded by the
query server 116 to thereby respond to data queries . As noted
above , typically each cloud intelligence data model (one per
subscriber) has an associated intelligence graph 117. The
intelligence graph 117 is a knowledge - based structure of
edges and nodes that is generated by an intelligence boot
strapper component 112 , which in turn depends on a boot
strap framework 104 that receives the data model as input .
Upon initialization , the data model (and associated data) is
stored inside the intelligence graph .
[0033] Generalizing , these subsystems and data structures
interact in the manner depicted in FIG . 1 to collect , organize ,
manage and display the data to the subscriber via the
above - described query - able dashboards . Further details
regarding these components are provided below .
[0034] As noted above , and to provide the CDC service to
a participating subscriber , the system generates and manages
a cloud intelligence data model for each subscriber . As noted
above , the data model is stored inside the intelligence graph
upon startup . A representative data model schema that
supports this data model is now described .
[0035] In particular , FIG . 2 depicts a sample from the
model 100 with respect to objects referred to herein as Users
and Groups . As depicted , the model preferably defines
properties 200 , interfaces 202 , entities 204 , connections 206
and indexes 208. Within each of these definitions are pieces
of information that are collected , managed and leveraged by
the various parts of the framework . The following provides
additional examples of these representative portions of the
data model .

Property Definition
[0036] The following is a representative scheme for the
property definition (Attribute | Description) : name Name of
the property ; type the storage type for the property ; onNod
eldirects storage to either put the property on the entity or

US 2020/0358842 A1 Nov. 12 , 2020
4

not ; queryType | the type to use in the query interface (e.g. , in
FIG . 2 , the createdDate is stored as Long but queried as
Date) .

Interface Definition

[0037] Interface definitions are primarily used for report
ing and querying data . They need not be stored in the data
store . The concept of interfaces allows the hierarchy of a
query to change the entities that are stored in the actual data
store . Preferably , there are layers of inheritance that allow
the framework to look for all entities that conform to a
particular interface . For example , the sample in FIG . 2
directs the query server to return both User and Groups when
the query asks for all contained Identities .
[0038] Preferably , Interfaces can also extend Interfaces .
This is shown in FIG . 2 , where the chain of User Iden
tity - Resource — Entity is represented from an inheritance
point of view . The following is a representative scheme for
the Interface definition (Attribute | Description) : label the
name / label of the interface ; queryName the name used by
the query / access framework ; interfaceslany interfaces that
the given interface extends ; and properties any properties
that exist on the given interfaces , and any interface or entity
that extends this interface will inherit these properties .

Entity Definition
[0039] Entity definitions define entities that are used in
reporting , querying and storage . They extend Interfaces but
preferably do not extend each other . The following is a
representative scheme for the Entity definition (Attribut
e | Description) : label the name / label of the interface ; query
Name the name used by the query / access framework ; inter
faces | any interfaces that the given interface extends ; and
propertieslany properties that exist on the given interfaces ,
and any interface or entity that extends this interface will
inherit these properties .
[0040] In addendum to the properties defined above , prop
erties preferably enforce types on the reporting and query
layers . For instance , in the User entity defined in FIG . 2 , the
type is restricted to User or Service . This ensures integrity in
the reporting and query sections of the framework .

scheme for the Index definition (Attribute | Description) :
label the name of the index ; type the index type ; keys prop
erties included by the framework (must be referenced in the
property definition) ; and freetext | a flag identifying if the
index is free text or not .
[0043] As referenced above , the reporting SDK depicted
in FIG . 1 provides a means for reporting data that can be
consistently consumed by the framework . Preferably , the
reporting SDK is dynamically - generated from the intelli
gence model such that , as updates are made to the model ,
new reporting assets are easily produced using a newly
generated SDK . As implemented , typically the reporting
SDK is embedded within the intelligence reporting assets
that are deployed in the cloud compute environment to be
monitored .
[0044] Referring to FIG . 3 , at the base of the SDK
reporting framework is the notion that any entity 300 in the
data model preferably also exists as part of a service 302 , an
account 304 and a cloud 306 in the framework . This means
that an entity (see , FIG . 2 , 204) typically is reported with
respect to (in association with) a service , account and / or
cloud . As depicted , a dynamically - generated entity reporter
component exposes entity - specific information , whereas the
respective service , account and cloud - specific is exposed by
the respective Service Reporter , AccountReporter and Clou
dReporter components , which components provide static
information . Referring now to FIG . 4 , a portion of the
dynamically - generated entity reporter component is shown .
This portion (which is part of the reporting SDK 102) is
generated and embedded in the deployed intelligence report
ing assets 110. This particular portion is the SDK code used
to collect and report information regarding user identity . The
code snippets that are dynamically - generated are shown .
Thus , e.g. , there are several code snippets (“ PasswordLas
tUsed , ” “ UserName , ” “ Type ”) that (in this example) depend
on the “ properties ” that are read from the cloud intelligence
model . Taken together , FIGS . 3 and 4 depict how the
intelligence model is used to enable dynamic generation of
the reporting code for a particular cloud data source that is
to be monitored .
[0045] In operation , preferably dynamic entity generation
code reads all the Property , Interface , Entity and Connection
definitions from the intelligence model to produce a set of
reporters that produce intelligence , preferably in a JSON
standard format such as depicted below in a representative
snippet as depicted in FIG . 12 .
[0046] By reading the model , a User Entity Reporter is
produced through templates that are written in a given
computer language . As previously described , FIG . 4 is an
example reporter in the Java Programming Language .
[0047] Preferably , the dynamically - generated assets in the
reporting SDK implement a reporter interface , which inter
prets the data produced by any reporter and produces a
standard format . This allows a consistent way for the report
ing SDK to report data .
[0048] Preferably , the code frameworks that are part of the
framework provide capabilities built upon the Reporting
SDK and Object Model to bootstrap an intelligence graph
117 (see FIG . 1) according to the specifications of the cloud
intelligence model , process intelligence reported to store
that data in the intelligence graph , and enable query on the
data in the intelligence graph . As used herein , and general
izing , a code framework refers to software providing some
basic functionality that is selectively changed by additional

Connection Definition

[0041] The connection definitions allow the query frame
work to expose queries to the user , and for the storage
framework to appropriately store relationships in the data
model . Each connection preferably has a label and can
contain multiple relationships (meaning multiple entities can
use the same connection identifier) . In the above example ,
which is merely representative , a relationship between Iden
tity and Group is established , thereby defining that anything
that extends Identity can have a “ isMemberOf ” connection
with Group Entity . The following is a representative scheme
for the Connection definition (Attribute I Description) : label
I the name of the connection relationships All the relation
ships that use this connect . Each relationship entry contains
a : fromNode , a toNode , and a reverseName .

Index Definition

[0042] Index definitions are primarily used by the boot
strap and storage layers . They define what properties need to
be indexed and how to support the use cases placed on the
intelligence framework . The following is a representative

US 2020/0358842 A1 Nov. 12 , 2020
5

user - written code , thus providing application - specific soft
ware . A code framework of this type provides a mechanism
to build and deploy applications . A code framework may
include support programs , compilers , code libraries , tool
sets , and application programming interfaces (APIs) that
bring together all different components to enable develop
ment of a system .
[0049] The code frameworks , which preferably dynami
cally adjust according to the cloud intelligence model ,
provide a support mechanism underlying the other cloud risk
control system processing components , as is now described
Preferably , and as depicted in FIG . 1 , these code frameworks
comprise the data bootstrap framework 104 , the data pro
cessing framework 106 , and the dynamic data access frame
work 108 , all of which are now further described .
[0050] The bootstrap framework 104 is responsible for
building a data model from the model definition that con
tains sufficient information for the dynamic intelligence
access framework 108 to build a schema for querying the
contained data and a model to allow processing components
to store the data . A data store 500 bootstrapped by the
framework 104 preferably contains two sections (one for the
model schema 502 , and the other for the actual subscriber
specific data 504 comprising the data model) , as depicted
schematically in FIG . 5. The model schema 502 typically
comprises data query specification , data storage specifica
tions , version specifications , and so forth .
[0051] The bootstrap framework 104 preferably also pro
vides several capabilities used by the intelligence bootstrap
per component 112 to prepare a data store , namely : initial
ization of an empty data store with the model schema ,
translation of the intelligence model into the model schema ,
and initialization of the data schema based on the informa
tion in the model schema .
[0052] The model schema generated (see , e.g. , FIG . 6)
preferably is a static model used by the framework . This is
the preferred schema for which all the information provided
by the intelligence model is entered , and the various ele
ments (Property , Interface , Entity , Connection , Index) are as
specified in FIG . 2. As further described , the query frame
work (namely , the query server and the dynamic intelligence
access framework) reads this model schema to dynamically
generate a query schema used to query the data contained in
the data section of the model .
[0053] Preferably , the data processing framework 106 is
built (depends) upon the reporting SDK , which is automati
cally generated from the cloud intelligence model 100. The
processing framework 106 reads intelligence and stores it in
the framework data store . The processing framework 106
validates incoming intelligence against the framework data
store to which connects , e.g. , by examining its contained
schema model .
[0054] The dynamic intelligence access framework 108
ties these other frameworks together . Because the frame
work data store contains the schema model that tabulates all
the information from the model (including entities , connec
tions , interfaces and connections) , the dynamic data access
framework 108 builds up a domain - specific query language
based on this information , and this functionality allows the
system to reliably and efficiently query the system as the
model and / or data changes . The dynamic data access frame
work also provides the generic capability to drive system
APIs , User Interfaces and System components .

[0055] The system components (which preferably built
upon the code frameworks) provide a cohesive cloud intel
ligence control framework that reports intelligence from one
or more cloud environments , processes and store the intel
ligences , and enables querying and analysis of the data .
Because of the dynamic nature of the entire framework ,
updated components dynamically adjust to changes from the
cloud intelligence model .
[0056] The framework provides significant advantages . It
provides a unified cloud intelligence model and query
framework . A cloud risk control system that leverages the
unified cloud model can assess resources across multiple
clouds and accounts in a unified fashion . Asking questions
like “ show me over - permissioned users ” are consistent
regardless of where the intelligence comes from . The frame
work is dynamic and responds to model updates . The
techniques herein provide for updating code (e.g. , SDK
reporter code paths) and internal data and processing com
ponents as the cloud landscape evolves . The framework
allows a cloud risk control system to continually evolve as
new capabilities are introduced by cloud providers , and as
new workloads are introduced to cloud infrastructures .
[0057] Generalizing , the cloud intelligence model
described above (sometimes also referred to as a Cloud Risk
Control (CRC) data model) unifies the view of Identity ,
Data , Protection and Infrastructure across multiple clouds
and accounts . There are two components to this model that
provide context to Cloud Risk Control (CRC) . They are a
unified classification model of cloud actions and services ,
and normalized pathing analytics . Further details of these
aspects are now described .

[0058] The unified classification model allows for inter
rogation and analytics - related Cloud Risk Control to operate
across cloud policies and controls that are decoupled from
the actual individual cloud action and service types . The
language of the unified classification model can be
expressed in various ways , such as depicted in FIGS . 7-10 .
For example , FIG . 7 depicts how a unified classification
model ties to specific service and action types , and the
corresponding actions from a given cloud provider . In FIG .
7 , which is an example , Identity 702 is performed on an
Action 704 , which in turn is performed with respect to a
Resource 706 that is part of a Service 708. Service 708 is
part of an Account 710 , which in turn is an account that is
provisioned by a cloud provider 712. In this example , Action
704 has a ServiceType 714 and Action Type 716. The Ser
viceType 714 in this example has a Service Classification
718 , and the Action Type 716 has an Action Classification
720. The classifications comprise a part of a Unified Clas
sification Model that is common to the system . In another
example , FIG . 8 depicts how the unified classification model
ties to a permission model in a cloud intelligence model . In
this example , Policy 800 has a Policy Version 802 , which in
turn has a PolicyEntry 804. The PolicyEntry 804 has a
PermissionList 806 that allows or denies individual Permis
sions , which of which is represented as Permission 808. The
Permission 808 has an associated Service Type 810 and
Action Type 812 , with these types having associated Service
and Action Classifications 814 and 816. Once again , these
classifications 814 and 816 comprise part of the Unified
Classification Model . FIG . 9 lists examples of normalized
action types (e.g. , Action Type 716 in FIG . 7 , or Action Type

US 2020/0358842 A1 Nov. 12 , 2020
6

812 in FIG . 8) . FIG . 10 lists examples of normalized service
types (e.g. , ServiceType 714 , in FIG . 7 , or Service Type 810
in FIG . 8) ..
[0059] Normalized pathing analytics distill the informa
tion from the cloud intelligence model (as instantiated in the
intelligence graph) down to deliverable cloud intelligence .
FIG . 11 depicts an example of how a relation of an Identity
(Bob) is determined to have WRITE access to a Resource
(Files) . this example , Identity 1100 is a member of a
Group 1102. The Identity 1100 has an attached Policy 1104 ,
which in this example is also attached to the Group 1102 .
The Policy 1104 has a Policy Version 1106 that has a
PolicyEntry 1108. The PolicyEntry 1108 has an associated
PermissionList 1110 comprising permissions . Permission
1112 has a ServiceType 1114 having an associated Service
Classification 1116 , as well as an Action Type 1118 having an
associated Action Classification 1118. The Policy 1104 man
ages one or more resources , such as Resource 1120. Within
the collected data there are many paths (several are dis
played here) which can identify that “ BOB ” has “ WRITE ”
access to the Resource “ FILES . ” Thus , and using the above
described schema , e.g. , one path is as follows : Bob- > Poli
cy- > Policy Version Policy Entry (FILES) Permission
List (allows) - > Permission Action Type- > WRITE . Another
path is BOB - Group- > Policy Policy Version Policy
Entry (FILES) PermissionList (allows) Permission
? Action Type- > WRITE . Still another path is : FILES Poli

cy- > Policy Version Policy Entry (BOB) PermissionList
(allows) - > Permission- > Action Type- > WRITE . As is self
evident from this simple example scenario , this type of data
management can get very complicated in multi - cloud , multi
account environments .
[0060] In accordance with the techniques herein , the path
ing analytics distill this information down to enable easy
interrogation using the query server . In a preferred embodi
ment , the intelligence graph for a particular enterprise cus
tomer of the service is supported in a graph database . A
graph database uses graph structures for semantic queries
with nodes , edges and properties to represent and store data .
A graph (one or more edges and / or relationships) relates data
items in the store to a collection of nodes and edges , wherein
the edges represent the relationship between and among the
nodes . The relationships enable data in the store to be linked
together directly and , depending on the query , retrieved in
one or just a few operations . Relationships also can be
visualized using graph databases , making them useful for
heavily inter - connected data .
[0061] As previously noted , the enterprise - specific data
model and associated data is stored in the knowledge graph
initially (at startup) and then configured to be queried . As the
underlying information (in the various cloud environments
changes) , the enterprise's intelligence graph is updated ,
preferably continuously , e.g. , via the intelligence reporting
assets subsystem . At query time , the enterprise user (e.g. , an
authorized person) executes a query from the query server
116. The query server loads the dynamic intelligence access
framework , which in turn reads the intelligence graph for the
enterprise , with the graph being configured according to the
cloud model . Because the access framework contains the
schema model and thus the all of the information in the
model , the dynamic access framework can configure and use
a domain specific query language (e.g. , Cypher) based on
this information . A declarative graph query language of this
type allows for expressive and efficient querying and updat

ing of the graph . Use of declarative graph query language
users to focus on structuring queries that are domain - specific
(relevant) without having to managed underlying database
access requirements .
[0062] The techniques herein provide significant advan
tages . A representative embodiment of the framework is a
cloud data control service that finds and continuously moni
tors an enterprise's cloud - supported resources and all enti
ties with access to them . This is enabled across cloud
providers , cloud account and third party data stores . By
providing this comprehensive view , the service enables
users (e.g. DevOps and security personnel) to achieve
improved data security and reduced risk (including public
data exposure risks , configuration and privilege risks , crown
jewel monitoring , anomalous data movements , anomalous
user / developer activity , etc.) , ensure compliance (e.g. ,
GDPR compliance , data sovereignty monitoring , HIPAA ,
PCI and other compliance reporting , data asset inventory
discovery and monitoring) , and increase DevOps efficiency .
[0063] The approach provides an enterprise with a total
view of all identity and data activity in its cloud accounts .
The system enables cloud provider management models to
be normalized with centralized analytics and views across
large numbers of cloud accounts (e.g. , AWS / GCP accounts ,
Azure subscriptions / resource groups , etc.) As previously
described , a cloud data control service implemented using
the framework enables an enterprise customer to model all
activity and relationships across cloud vendors , accounts
and third party stores . Display views of this information
preferably can pivot on cloud provider , country , cloud
accounts , application or data store . Using a Cloud Query
Language (CRL) , the system enables rapid interrogation of
the complete and centralized data model of all data and
identity relationships . User reports may be generated show
ing all privileges and data to which a particular identity has
access . Similarly , data reports shown all entities having
access to an asset (and the access history) can be generated .
Using the display views , user can pivot all functions across
teams , applications and data , geography , provider and com
pliance mandates , and the like .
[0064] Using the approach herein , a cloud data control
(CDC) service provides a complete risk model of all identity
and data relationships , including activity and movement
across cloud accounts , cloud providers and third party data
stores . Data risk dashboards include , without limitation , (i)
views by cloud accounts , geography , data and protection ,
user and identity , compliance , and public exposure ; (ii)
security alerts (e.g. , over - privileged users with access to PII ,
failed privilege escalation attempts , audit functions disabled
by user , unusual data movement , separation of duties vio
lations , data movement to public network , shared credential
violations , etc.) , (iii) compliance dashboards indicating data
sovereignty , data movement and identity relationships (e.g. ,
GDPR , HIPAA , PCI dashboards , data sovereignty monitor
ing , data asset inventory , customized controls and compli
ance dashboards , monitoring PIl data movement , etc.)
[0065] While the above description sets forth a particular
order of operations performed by certain embodiments , it
should be understood that such order is exemplary , as
alternative embodiments may perform the operations in a
different order , combine certain operations , overlap certain
operations , or the like . References in the specification to a
given embodiment indicate that the embodiment described
may include a particular feature , structure , or characteristic ,

US 2020/0358842 A1 Nov. 12 , 2020
7

but every embodiment may not necessarily include the
particular feature , structure , or characteristic .
[0066] While the disclosed subject matter has been
described in the context of a method or process , the subject
disclosure also relates to apparatus for performing the opera
tions herein . This apparatus may be specially constructed for
the required purposes , or it may comprise a general - purpose
computing entity selectively activated or reconfigured by a
stored computer program stored . Such a computer program
may be stored in a computer readable storage medium , such
as , but is not limited to , any type of disk including an optical
disk , a CD - ROM , and a magnetic - optical disk , flash
memory , a read - only memory (ROM) , a random access
memory (RAM) , a magnetic or optical card , or any type of
non - transitory media suitable for storing electronic instruc
tions .
[0067] While given components of the system have been
described separately , one of ordinary skill will appreciate
that some of the functions may be combined or shared in
given instructions , program sequences , code portions , and
the like .
[0068] Agiven implementation of the computing platform
is software that executes on a hardware platform running an
operating system such as Linux . A machine implementing
the techniques herein comprises a hardware processor , and
non - transitory computer memory holding computer program
instructions that are executed by the processor to perform
the above - described methods .
[0069] The functionality may be implemented with other
application layer protocols besides HTTP / HTTPS , or any
other protocol having similar operating characteristics .
[0070] There is no limitation on the type of computing
entity that may implement the client - side or server - side of
the connection . Any computing entity (system , machine ,
device , program , process , utility , or the like) may act as the
client or the server .
[0071] While given components of the system have been
described separately , one of ordinary skill will appreciate
that some of the functions may be combined or shared in
given instructions , program sequences , code portions , and
the like . Any application or functionality described herein
may be implemented as native code , by providing hooks into
another application , by facilitating use of the mechanism as
a plug - in , by linking to the mechanism , and the like .
[0072] The platform functionality may be co - located or
various parts / components may be separately and run as
distinct functions , perhaps in one or more locations (over a
distributed network) .

[0073] The techniques herein provide for improvements to
another technology or technical field , namely , data analytics
tooling , applications and systems , as well as improvements
to cloud computing infrastructures that support such func
tions and technologies .
[0074] A cloud risk control system as described and
depicted may be implemented within a cloud compute
infrastructure , or as an adjunct to one or more third party
cloud compute infrastructures . The cloud risk control system
may be implemented in whole or in part by a service
provider on behalf of entities (e.g. , enterprise customers)
that use third party cloud computing resources . A typical
implementation provides for cloud risk control - as - a - service
in the manner described herein . Portions of the cloud risk
control system may execute in an on - premises manner
within or in association with an enterprise . The cloud risk
control system preferably comprises a web - accessible portal
(e.g. , an extranet application) that is accessible via a browser
or mobile app via HTTP / HTTPS , or other protocol .
[0075] Communications between devices and the cloud
risk control system are preferably authenticated and secure
(e.g. , over SSL / TLS) .
What is claimed is as follows :
1. A computing system accessible over a network , com

prising :
a processor ;
computer memory holding computer program instructions

executed by the processor to provide a service to one or
more subscribers , the computer program instructions
configured , with respect to each of the one or more
subscribers , to :
receive a subscriber - specific data set from each of one

or more cloud computing infrastructures , wherein
each of the cloud computing infrastructures has
cloud - specific service types or action types , the
cloud - specific service types or action types conform
ing to a unified classification model common to all of
the cloud computing infrastructures ;

initialize a data model conforming to a schema model ;
store the data model and the data set within a knowl

edge graph ;
as changes in the one or more cloud computing infra

structures occur , dynamically update the data model
and knowledge graph responsive to the changes , and

responsive to one or more queries , selectively retrieve
information from the knowledge graph .

