US 20150339157A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2015/0339157 A1l

Lent et al. 43) Pub. Date: Nov. 26, 2015
(54) SYSTEM AND METHOD FOR STORAGE AND (52) US.CL
DEPLOYMENT OF VIRTUAL MACHINES IN CPC ... GOG6F 9/4868 (2013.01); GO6F 9/45558
A VIRTUAL SERVER ENVIRONMENT (2013.01); GOGF 9/5027 (2013.01); GO6F
2009/45562 (2013.01)
(71) Applicant: NETAPP, INC., Sunnyvale, CA (US)
(72) Inventors: Arthur F. Lent, Sunnyvale, CA (US);
Peter M. Morrissette, Sunnyvale, CA &7 ABSTRACT
(US); Timothy J. Clayton-Luce,
Sunnyvale, CA (US)
(73) Assignee: NETAPP, INC., Sunnyvale, CA (US) Described herein are systems and methods for storage and
) deployment of VMs in a virtual server environment. A VM
(21) Appl. No.: 14/605,235 deployment module executing on a server may produce VM
(22) Filed: Jan. 26. 2015 container objects representing VMs, a VM container object
’ comprising VM data describing a VM and vdisk configura-
Related U.S. Application Data tion data. The VM deployment module may also later produce
VM ing the VM contai bjects. The VM
(63) Continuation of application No. 12/501,348, filed on S Of @ server USIg the comatier objects. e
Tul. 10. 2009 Pat. No. 8.943.203 deployment module may do so by producing a vdisk from a
w2 » how Fat. NO. 8,953,283. VM container object, the vdisk comprising the VM and vdisk
Publication Classification configuration data. Rather than configuring the vdisk as typi-
cally done to make the vdisk useable to the server, the vdisk
(51) Int.CL configuration data is used to make the vdisk useable and the
GO6F 9/48 (2006.01) VM data on the vdisk immediately accessible to the server. As
GOG6F 9/50 (2006.01) such, the VM data may be immediately read to produce a VM
GOG6F 9/455 (2006.01) on the server, thus providing rapid deployment of VMs.
90
Client Client Client Client Client .ee a~
160 160 160 160 160
165
Server System Server System Server System .coe
110 110 110

—
I~

Storage System
100

US 2015/0339157 A1l

Nov. 26,2015 Sheet1o0f17

Patent Application Publication

06

S e —

wesAg abeioig

0t

[

13

WoIsAg JonIag WaISAg JBAIeS W8ISAG UG
091 091 091 091 091
usiD welD juslD usiD welD

US 2015/0339157 A1l

Nov. 26,2015 Sheet2 of 17

Patent Application Publication

dlL Old

(SMOAaNIMm)
B0LE HIAYIS

U7 wdm

L2 p
WOPEY0
AROOM

191

(7

HI LG
13METHLT

{waH o
HIBLAYY L3DHYL
WHOPAL AN

HE 1YY
AP HOLE

et
H3LAFIY
ML AN

oz
VIZLBAS
SHNELYH 30
FEWHOLS

Fri AMOWEW

00l WALSAS 3OVHOLS

&
£y
=

1
W

HOESEOOMA

o

US 2015/0339157 A1l

Nov. 26,2015 Sheet 3 of 17

Patent Application Publication

¢ Ol

HAAHO
el

FOVHOLS
A

P 1Na0v ¥SI0A

597
CW3LSAS 3

09z

" 5530044 $5300V

INGHVYSENYHL

JYI00W LIOUY1 1508

744
diiH

410

LY I

00 81z
gy | 53V0

552

#ILSAS
NCOLLYZIIOLHIA

US 2015/0339157 A1l

Nov. 26,2015 Sheet4 of 17

Patent Application Publication

| ST1 |
| - — |
| eee| OCL ocl 0ET |
__ - - < “
001
walsAg abeloig

¢ 9ld

NOT | WalsAg Jones

TOTT walsAg Janleg

9011 WalsAg JaAIeS

NTTT JosiaJedAH It JosinIBdAH oTTE JOSIAJIBdAH
[X N mlom L X N) % % see M|OM” mlom
WA NA WA WA WA
oor | ...| oo oar (0<]8 oar
w10 uslD uaID u3IID JUBIID

US 2015/0339157 A1l

Nov. 26,2015 Sheet 50f17

Patent Application Publication

¥ "Old

[X N J g a
— eled NA ereq NA
4%
Jaydepy — =5t
sbe.ois 44 abeloig Jonlag
JETNEIS Jaydepy YJOMISN JoAIag
r4%
— (s)Jossaoold
e 08¢ BTN TS
G0g sulbugy/snpoy 1WwawAio|dsq WA
WA
WA —
[T JosiaedAH
ENA —
01¢ SO BAIsg

Q¢ Alowspy Jonieg

01T WalsAg JoAlog

[9¥¢

US 2015/0339157 A1l
L0

01
X JaugjluoD WA

Nov. 26,2015 Sheet 6 of 17

[}
; 505 SWNIOA
H
:
[}
]
[]
[}
[}
m wa)sAs obeloig
:
[}
[}
[}
H
GIg 153
eee | ANAJOL | XIAA IO
eled WA eled NA
Z6< aberioig JonIog

08¢

suibug/enpopy uswioidag WA

€ SO J9AIeS

[T JosiaiadAH
01e

01T W3)SAG I9AIOS

Patent Application Publication

Vs Old

US 2015/0339157 A1l

Nov. 26,2015 Sheet 7 of 17

Patent Application Publication

fe.
[sp
—

01S G1G

X JauleluoD WA X MUSIPA

GOG sWnN[OA

001
woysAg obelioig

CIg SIS
ees | ANAIOL || XNAIO)
BIEQ NA || €¥ed WA

Z6€ ob6el0)g Joneg

08¢
auibug/enpoy wawAo|daqg INA

T1S JosiaiedAH

01l€ SO J9Ales

01T WalsAg Joniag m m] MV _ H_

US 2015/0339157 A1l

Nov. 26,2015 Sheet 8 of 17

Patent Application Publication

Gl
X ASIPA

Gel
018
X J8UlBJUOD A
GOG awn|jop
001
weisAg mmm_oww\
Glg
eoe| XWAIO) G1G (:A) XOASIPA
ejled WA
Z6¢€ abelo1s Janiag

08¢
sulbug/enpopy wswAioidsg WA

1S JosiasadAy
01€

T SO JonIag

D1 T WaISAG JOAIDS

9

Old

US 2015/0339157 A1l

Nov. 26,2015 Sheet 9 of 17

Patent Application Publication

gel
T% ST Ges SIg
Bjeq uoneInByuon X A 10} lg--] | & uogenByuod X INA o}
X ASIPA Blea WA XASIPA FIEd WA
015 X J8ulejuod WA S1G X ASIPA
—_— “ﬂ
0G awn|oA P
0o
wgiehs abelo)g
= 4] GIg
gle
L-1- eleq uoneinbyuo) X WA 1o}
sose X WA 10} X YSIPA ee
£jeq WA i °a WA
- SIS (: Sl
— GTS (:A) X ISIPA
abei01g JBAIeS

08¢
suibug/einpoyy uswAoidag WA

3 JosinladAH

(53
01€ SO JonSS

01T WaishAg Jonlag

ds old

US 2015/0339157 A1l

Nov. 26,2015 Sheet 10 of 17

Patent Application Publication

el
GG GIE
eje(uoneinbyuo) X WA 10J
X ASIPA eled NA

01G X Jsuieluod WA

G0G QWN|OA

001
wa)sAg abelolg

oIg gIg
eee| ANAIOL || X INA IO
Bleg WA Bleq WA

Z6€ obeloig JoAIeg

08¢
asuiBug/einpo wewAiodeaq WA

TIE JosiaedAH

0l€ SO J8n8g

D11 WaisAs JoAleg

3G "Old

Patent Application Publication Nov. 26,2015 Sheet 11 0of 17 US 2015/0339157 A1l

600
-~
Receive administrative command that initiates staging technique
for specified VM X
\ 4 pannll 604
Produce VM container file X on storage system for VM X data
that represents VM X
\ 4 — 606
Produce vdisk X on storage system from VM container file X
\ 4 — 608
Export and map vdisk X to server
\ 4 — 610
Bring vdisk X online and configure vdisk X on server and store vdisk configuration
data to vdisk X (which is reflected in the VM container file X)
\ 4 — 612
Copy VM X data on server to vdisk X (which is reflected in the VM container file X)
v — 614
Unmap and destroy vdisk X

FIG. 6

US 2015/0339157 A1l

Nov. 26,2015 Sheet 12 of 17

Patent Application Publication

gl
44 Slg
el uoneinbyuon X WA 10}
X SIPA eleg WA

016 X Jouiejuod WA

0G saWnjoa

001
wasAg abeloig

Z6¢ 9be.0)1g JaAI8S

08¢
auiBugsenpoyy JuswAo|deqg WA

T1€ JosinedAH

01l€ SO 8nIes

DI T WalsAg IsAIeg

V. 9ld

US 2015/0339157 A1l

Nov. 26,2015 Sheet 13 of 17

Patent Application Publication

acl
525 gIe 74 153
eleq CO_u_m.SD_uEOQ X A 10} | _ Bled CO_HN._SD_EOO X INA 104
X ASIPA Bleqd WA XSIPA e1leq WA
01G X Jauleuod WA GIG X MSIPA
GOG swn|oA
001

waysAg abelolg

Z6¢ abelo)s lanies

08¢
auibug/enpopy wawAiodeq WA

TTE JosialadAH
01€ SO Jenisg

DI T WoaisAg JoAIdg

d/ 9l

US 2015/0339157 A1l

Nov. 26,2015 Sheet 14 of 17

Patent Application Publication

ccl
7 (45 24 SIE

ejeq uoneinbyuog X WA 10} ejeq uoneinbiyuon X WA 104

X MSIPA ejleq WA X ASIPA e1led WA

013G X JauiBjuod WA GIG X YSIPA

T0G SWNJOA
007, .+
Emuw\nm&mﬁoaw

G116
CA)
X SIPA

Z6¢ obelois Joniag

08¢
aubugysinpopyy JuswAhoidag WA

TI€ JosiaedAH

0Lt SO Jonds

011 WwoisAg Joalag

o/ "Old

US 2015/0339157 A1l

Nov. 26,2015 Sheet 15 0f17

Sel
[s£44 [13 [44 GIg
ejeq uonesnbyuon X WA Jo) ejeq uoneinByuo) X WA 10}
X ASIPA eleg WA XISIPA E1ed WA
01§ X Jauleluod WA G1G X ASIPA
G0OG swn|oA
001
waysAg abeloig
[3hs}
A
X ASIPA
Z6¢ 9beI0]S J8Aleg
08¢
auiBug/anpojy 1uawAiodag WA
GOt
p— X WA

IS JosinedAH

0l€ SO Jsnss

01T Wo1sAg 1oAIDS D N - mu _ H_

Patent Application Publication

US 2015/0339157 A1l

Nov. 26,2015 Sheet 16 of 17

Patent Application Publication

cel
{44 Clg
ejeq uoneinbyuo) X WA 10}
XASIPA eleq WA
016G X Jouieluod AA
G0G awn|oA
00l
woisAg obelioig
26€ obeuoyg Joniag

08¢
suibugya|npopy Juswioidag WA

T1E€ JosiaiadAYy

L€ SO 1eAag

D1 T WoISAG JOAIDS

i/ 9Old

Patent Application Publication Nov. 26,2015 Sheet 17 0f17 US 2015/0339157 A1l

800
a~

_— 802

Receive administrative command that initiates deployment technique for specified

VM X using VM container file X that represents VM X

\ 4 — 806

Produce vdisk X from VM container file X on storage system, the vdisk X and VM

container file X containing VM X data and vdisk X configuration data
v — 308
Export and map vdisk X to server
\ 4 — 810
Bring vdisk X online on server but do not configure vdisk X on server but rather
use vdisk X configuration data to make vdisk X useable to server

\ 4 — 812

Produce VM X on the server by importing VM X data to make the VM X visible on

the server
v /‘ 814
Upon the VM X no-longer running and in use on server, remove VM X and
unmap and destroy vdisk X

FIG. 8

US 2015/0339157 Al

SYSTEM AND METHOD FOR STORAGE AND
DEPLOYMENT OF VIRTUAL MACHINES IN
A VIRTUAL SERVER ENVIRONMENT

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of, claims benefit
of'and priority to U.S. patent application Ser. No. 12/501,348,
entitled “SYSTEM AND METHOD FOR STORAGE AND
DEPLOYMENT OF VIRTUAL MACHINES IN A VIR-
TUAL SERVER ENVIRONMENT” filed Jul. 10, 2009, the
subject matter of which is incorporated herein by reference in
its entirety.

FIELD OF THE INVENTION

[0002] The present invention relates to virtual server envi-
ronments and, more specifically, to storage and deployment
of virtual machines in a virtual server environment.

BACKGROUND OF THE INVENTION

[0003] A storagesystem is a computer that provides storage
service relating to the organization of information on writable
persistent storage devices, such as memories, tapes or disks.
The storage system is commonly deployed within a storage
area network (SAN) or a network attached storage (NAS)
environment. When used within a NAS environment, the
storage system may be embodied as a file server including an
operating system that implements a file system to logically
organize the information as a hierarchical structure of direc-
tories and files on, e.g. the disks. Each “on-disk™ file may be
implemented as a set of data structures, e.g., disk blocks,
configured to store information, such as the actual data for the
file. A directory, on the other hand, may be implemented as a
specially formatted file in which information about other files
and directories are stored.

[0004] The storage system may be further configured to
allow many server systems to access shared resources, such as
files, stored on storage devices of the storage system. Sharing
of files is a hallmark of a NAS system, which is enabled
because of its semantic

[0005] level of access to files and file systems. Storage of
information on a NAS system is typically deployed over a
computer network comprising a geographically distributed
collection of interconnected communication links, such as
Ethernet, that allow servers to remotely access the informa-
tion (files) on the storage system. The servers typically com-
municate with the storage system by exchanging discrete
frames or packets of data according to pre-defined protocols,
such as the Transmission Control Protocol/Internet Protocol
(TCP/1P).

[0006] NAS systems generally utilize file-based access
protocols; therefore, each server may request the services of
the storage system by issuing file system protocol messages
(in the form of packets) to the file system over the network
identifying one or more files to be accessed without regard to
specific locations, e.g., blocks, in which the data are stored on
disk. By supporting a plurality of file system protocols, such
as the conventional Common Internet File System (CIFS), the
Network File System (NFS) and the Direct Access File Sys-
tem (DAFS) protocols, the utility of the storage system may
be enhanced for networking servers.

[0007] A SAN is a high-speed network that enables estab-
lishment of direct connections between a storage system and

Nov. 26, 2015

its storage devices. The SAN may thus be viewed as an
extension to a storage bus and, as such, an operating system of
the storage system enables access to stored information using
block-based access protocols over the “extended bus™. In this
context, the extended bus is typically embodied as Fibre
Channel (FC) or Ethernet media adapted to operate with
block access protocols, such as Small Computer Systems
Interface (SCSI) protocol encapsulation over FC or TCP/IP/
Ethernet.

[0008] A SAN arrangement or deployment allows decou-
pling of storage from the storage system, such as an applica-
tion server, and some level of information storage sharing at
the application server level. There are, however, environ-
ments wherein a SAN is dedicated to a single server. In some
SAN deployments, the information is organized in the form
of databases, while in others a file-based organization is
employed. Where the information is organized as files, the
server requesting the information maintains file mappings
and manages file semantics, while its requests (and server
responses) address the information in terms of block address-
ing on disk using, e.g., a logical unit number (LUN). Some
SAN arrangements utilize storage systems that implement
virtual disks (vdisks), which are encapsulated data containers
stored within a file system.

[0009] In multi-protocol storage systems that utilize both
block-based and file-protocols, typically the block-based pro-
tocol utilizes a high-speed transport mechanism, such as
Fibre Channel (FC) or InfiniBand (IB). Conversely, file-based
protocol connections often utilize, for example, the NFS pro-
tocol operating over TCP/IP. The file-based systems typically
include additional network overhead due to the nature of the
file-based protocols, e.g., NFS or User Datagram Protocol
(UDP), involved. This additional network overhead, from, for
example, file mapping and management of file semantics,
significantly reduces the data throughput available over the
file-based protocol network connection.

[0010] Users typically desire the ecase of use of a file-based
protocol, especially the use of the file-based protocol
namespace wherein the files are referenced through a conven-
tional drive/volume/path/file name mechanism. In contrast, in
a SAN or other block-based environment, data is accessed by
reference to a set number of blocks spread among the disks
storing the data for the data set, which imposes a greater
administrative burden on a user for using SAN-based sys-
tems. However, a noted disadvantage of the use of the file-
based protocols is the above-mentioned additional network
overhead required for the use of such protocols. This addi-
tional network overhead makes the use of these file-based
protocols impractical for certain high-performance and data-
intensive transfer operations, such as database management
systems (DBMS). Many users thus desire the ease of use of a
file-based protocol namespace, while needing the high-speed
data throughput available from a block-based protocol.

[0011] A virtual server environment may typically include
multiple physical servers accessing the storage system having
multiple storage devices for storing client data. Each server
may include multiple virtual machines (VMs) that reside and
execute on the server. Each VM (sometimes referred to as a
virtual server or virtual desktop) may comprise a separate
encapsulation or instance of a separate operating system and
one or more applications that execute on the server. As such,
each VM on a server may have its own operating system and

US 2015/0339157 Al

set of applications and function as a self-contained package
on the server and multiple operating systems may execute
simultaneously on the server.

[0012] Each VM on aserver may be configured to share the
hardware resources of the server. Each server may include a
VM monitor module/engine (sometimes referred to as a
hypervisor module/engine) that executes on the server to
produce and manage the VMs. The VM monitor module/
engine (hypervisor) may also virtualize the hardware and/or
software resources of the servers for use by the VMs. The
operating system of each VM may utilize and communicate
with the resources of the server via the VM monitor/hypervi-
sor engine. The virtual server environment may also include a
plurality of clients connected with each server for accessing
client data stored on the storage system. Each client may
connect and interface/interact with a particular VM of a server
to access client data of the storage system. From the view-
point of a client, the VM may comprise a virtual server that
appears and behaves as an actual physical server or behaves as
an actual desktop machine. For example, a single server may
by “virtualized” into 1, 2, 4, 8, or more virtual servers or
virtual desktops, each running their own operating systems,
and each able to support one or more applications.

[0013] A storage system may be configured to allow servers
to access its data, for example, to read or write data to the
storage system. A server may execute an application that
“connects” to the storage system over a computer network
such as a shared local area network (LAN), a wide area
network (WAN), or a virtual private network (VPN) imple-
mented over a public network such as the Internet. The appli-
cation may send an access request (read or write request) to
the storage system for accessing particular data stored on the
storage system. Each server may also include multiple VMs,
each VM being used by and connected with a client through a
computer network. Each VM may also execute an application
for sending read/write requests (received from the connected
client) for accessing data on the storage system. The VM
applications executing on the server may service the con-
nected clients by receiving the client access requests and
submitting the access requests to the storage system for
execution.

[0014] There are several advantages in implementing VMs
on a server. Having multiple VMs on a single server enables
multiple clients to use multiple different operating systems
executing simultaneously on the single server. Also, multiple
VMs executing their own applications may be logically sepa-
rated and isolated within a server to avoid conflicts or inter-
ference between the applications of the different VMs. As
each VM is separated and isolated from other VMs, a security
issue or application crash in one VM does not affect the other
VMs on the same server. Also, VMs can rapidly and seam-
lessly be shifted from one physical server to any other server,
and optimally utilize the resources without affecting the
applications. Such a virtualization of the servers, and/or vir-
tualization of the storage network environment, allows for
efficiency and performance gains to be realized.

[0015] Each VM may be represented by data that describes
the VM (referred to herein as “VM data”). VM data fora VM
may be used for later producing and deploying the VM on a
server. VM data for multiple VMs need to be stored efficiently
with minimal use of valuable storage resources. Also, the VM
data should be stored in way that allows for fast deployment
of the VMs on a server when needed.

Nov. 26, 2015

SUMMARY OF THE INVENTION

[0016] Described herein are systems and methods for stor-
age and deployment of VMs in a virtual server environment.
In some embodiments, a VM deployment module/engine
residing and executing on a server may perform (or cause to
be performed) a “staging technique” to produce VM con-
tainer objects representing VMs, a VM container object com-
prising VM data describing a VM and vdisk configuration
data. The VM deployment module may also perform (or
cause to be performed) a “deployment technique” to later
deploy/produce VMs on a server using VM container objects
produced by the staging technique. The VM deployment
module may do so by producing a vdisk from a VM container
object, the vdisk comprising the VM and vdisk configuration
data. Rather than configuring (e.g., partitioning and format-
ting) the vdisk as typically done to make the vdisk useable to
the server, the vdisk configuration data is used and read by the
server operating system to make the vdisk useable and make
the VM data on the vdisk immediately accessible to the
server. As such, the VM data may be immediately imported to
produce a VM on the server, thus providing rapid deployment
of VMs on servers.

[0017] In the staging technique, a server may produce and
store VM data for one or more VMs, VM data representing
and describing a VM (e.g., specifying hardware and/or soft-
ware resources used by the VM on the server and/or storage
system). Upon initiation of the staging technique for a par-
ticular VM, an empty VM container object (e.g., container
file) for VM data of the VM is produced on the storage system.
A vdiskis then produced from the empty VM container file on
the storage system using a file to vdisk conversion process.
The vdisk is then exported and mapped from the storage
system to the server and the server brings the vdisk online.
[0018] The server then configures the vdisk by partitioning
and formatting the vdisk to make the vdisk useable by the
server operating system so data and files may be stored to and
read from the vdisk. Formatting of the vdisk may include
providing a file system on the vdisk that will allow the server
operating system to use to store and read files from the vdisk.
The end result of the configuring operations (partitioning and
formatting) on the vdisk may be described/specified by data
that describes the resulting configuration of the vdisk (i.e., the
result of each configuring operation on the vdisk), referred to
herein as “vdisk configuration data.” After configuring the
vdisk, the server operating system may store the vdisk con-
figuration data to the vdisk. Typically any data stored in the
vdisk is typically reflected in and made accessible through the
corresponding VM container file used to produce the vdisk. In
general then, the vdisk 515 and corresponding VM container
file may each be considered as containing the vdisk configu-
ration data, since accessing either the vdisk or the VM con-
tainer file will provide access to the vdisk configuration data.
The VM data stored on the server is then copied to the vdisk,
which is then also reflected and accessible through the corre-
sponding VM container file on the storage system.

[0019] The vdisk then unmaps and destroys/removes the
vdisk on the storage system. The VM container file, however,
does not get destroyed and remains in the storage system, the
VM container file containing the VM data for the VM and the
vdisk configuration data (or contains meta-data pointers to
such data). As such, the VM data for the VM and the vdisk
configuration data is still accessible through the VM con-
tainer file for using later to quickly deploy the VM in the
deployment technique. Typically there is a limited number of

US 2015/0339157 Al

vdisks that can exist in the volume at the same time. As such,
by destroying/removing the vdisk and storing the VM data
and the vdisk configuration data on a container file, the num-
ber of allowed vdisks on the volume are not used by the
staging technique and valuable storage resources are not con-
sumed unnecessarily on the storage system.

[0020] A deployment technique may be used to produce
VMs on a server using the VM container objects representing
VMs (that were produced in the staging technique). Upon
initiation of the deployment technique for a particular VM
that is represented by a particular VM container file (contain-
ing VM data and vdisk configuration data), a new vdisk is
produced from the VM container file on the storage system
using a file to vdisk conversion process. In producing the new
vdisk from the VM container file, the data contents of the VM
container file are copied to the vdisk. Thus the vdisk will also
contain the VM data and vdisk configuration data. The vdisk
is then exported and mapped from the storage system to the
server and the server brings the vdisk online.

[0021] In some embodiments, however, configuring of the
vdisk by the server operating system is omitted. Configuring
of'the vdisk by the server operating system is typically done
to make the vdisk useable by the server operating system (so
data and files may be stored to and read from the vdisk).
Rather, in these embodiments, the vdisk configuration data
contained in the vdisk is used to make the vdisk useable by the
server operating system so that configuration operations on
the vdisk may be omitted. As such, the VM data on the vdisk
may be immediately accessible by the server operating sys-
tem and used for rapidly deploying the VM. The VM may then
be produced on the server using the VM data to make the VM
visible on the server and ready for client usage. As such, the
VM data may be read immediately from the vdisk without
waiting for the server operating system to configure the vdisk
(by using the vdisk configuration data).

BRIEF DESCRIPTION OF THE DRAWINGS

[0022] The novel features are set forth in the appended
claims. However, for purpose of explanation, several embodi-
ments of the invention are set forth in the following figures.
[0023] FIG. 1A is a block diagram of an exemplary virtual
server environment in which some embodiments operate;
[0024] FIG. 1B is a schematic block diagram of a multi-
protocol storage system used in some embodiments;

[0025] FIG.2isaschematic block diagram of an exemplary
storage operating system used in some embodiments;
[0026] FIG. 3 shows a conceptual diagram of a virtual
server environment comprising a plurality of clients and a
plurality of physical servers accessing a storage system;

[0027] FIG. 4 is a diagram illustrating components of a
server system within a virtual server environment;

[0028] FIGS. 5A-5E conceptually illustrate steps of a stag-
ing method;
[0029] FIG. 6 is a flowchart of a staging method for pro-

ducing VM container objects, in accordance with some
embodiments;

[0030] FIGS. 7A-7E conceptually illustrate steps of a
deployment method; and

[0031] FIG. 8 is a flowchart of a deployment method for
deploying VMs using VM container files, in accordance with
some embodiments.

Nov. 26, 2015

DETAILED DESCRIPTION

[0032] In the following description, numerous details are
set forth for purpose of explanation. However, one of ordinary
skill in the art will realize that the embodiments described
herein may be practiced without the use of these specific
details. In other instances, well-known structures and devices
are shown in block diagram form in order to not obscure the
description with unnecessary detail.

[0033] The description that follows is divided into four
sections. Section I describes a virtual server environment in
which some embodiments operate. Section II describes a
system for storage and deployment of VMs in virtual server
environments. Section III describes a staging technique for
producing VM container objects. Section IV describes a
deployment technique for producing VMs using VM con-
tainer objects.

1. Virtual Server Environment

[0034] FIG. 1A is a block diagram of an exemplary virtual
server environment 90 in which some embodiments operate.
The environment 90 comprises a set of two or more server
systems 110 connected to one or more client systems 160 via
a network 165. The server systems 110 may each access one
or more storage systems 100 that are connected to the server
systems 110 via a network 167. A storage system 100 may
comprise a set of storage devices 130 for storing client data,
the storage devices 130 comprising a shared storage 135 of
the storage system 100. Note that the server systems 110 are
also connected to each other (e.g., via network 165 or network
167) for communicating with each other (e.g., for working
collectively to provide data-access service to the client sys-
tems 160 and for collectively hosting a plurality of virtual
machines as described herein).

[0035] A client system 160 may comprise a computer sys-
tem that may execute a client application that interacts with a
server system 110 for submitting configuration and/or read/
write access requests and for receiving or transmitting data
from or to the server systems 110 over the network 165. In a
virtual server environment, a client system 160 may comprise
a terminal that may execute a client terminal application that
interacts over the network 165 with one or more virtual
machines (VMs) executing on a server system 110 for sub-
mitting configuration and/or read/write access requests and
for receiving or transmitting data from or to the storage sys-
tem 100 over the network 167. A user may interface with the
client application (e.g., through a user interface of the client
application) to submit configuration and/or access requests.
[0036] A server system 110 may comprise a computer sys-
tem that may execute a server application that interacts with
the client systems 160 for receiving configuration and/or
read/write access requests from, and for receiving or trans-
mitting data from or to the client systems 160 over the net-
work 165. A server system 110 may be connected to the client
systems 160 over a network 165 such as a local area network
(LAN), an Ethernet subnet, a PCI or PCle subnet, a switched
PCle subnet, a wide area network (WAN), a metropolitan area
network (MAN), the Internet, or the like. In some embodi-
ments, a server system 110 may comprise a chassis hosting
multiple instances of server systems 110, each server system
110 hosting multiple client systems embodied as virtual
machines, one virtual machine per each client system 160.
The network 165 and/or subnets of networks 165 may be
physically embodied within such a chassis.

US 2015/0339157 Al

[0037] A server application executing on a server system
110 may provide data-access services to client systems 160
by receiving and processing access requests from the client
systems 160 for data from the storage system(s) 100. In turn,
a server application utilizes the services of the storage system
100 to access, store, and manage data in a set of storage
devices 130. A storage system 100 may be coupled locally to
a server system 110 over a network 167 such as a local area
network (LAN), an Ethernet subnet, a PCI or PCle subnet, a
switched PCle subnet, a wide area network (WAN), a metro-
politan area network (MAN), the Internet, or the like. In some
embodiments, a server system 110 may comprise a chassis
hosting multiple instances of server systems 110 within a
single chassis (e.g., a blade server chassis), with each instance
of a server system 110 in communication with each other
instance of a server system 110 in the chassis via network 167.
[0038] Interaction between the server systems 110 and the
storage system(s) 100 can enable the provision of storage
services. That is, the server systems 110 may request the
services of the storage system(s) 100 (by submitting configu-
ration and/or read/write access requests), and the storage
system(s) 100 may respond to configuration and/or read/write
access requests of the server systems 110 by receiving or
transmitting data to the server systems 110 over the network
167 (e.g., by exchanging data packets through a connection
over the network 167).

[0039] Communications between a storage system 100 and
any of server systems 110 are typically embodied as packets
sent over the computer network 167. A server system 110 may
send an access request (a configuration and/or read/write
access request) to the storage system 100 for accessing par-
ticular data stored on the storage system. The server system
110 may request the services of the storage system 100 by
issuing storage-access protocol messages formatted in accor-
dance with a conventional storage-access protocol for access-
ing storage devices (such as CIFS, NFS, etc.). Access requests
(e.g., configuration and/or read/write access requests) may be
implemented by issuing packets using file-based access pro-
tocols—such as the Common Internet File System (CIFS)
protocol or Network File System (NFS) protocol—over the
Transmission Control Protocol/Internet Protocol (TCP/IP)
when accessing data in the form of files and directories.
Alternatively, the server system 110 may issue access
requests by issuing packets using block-based access proto-
cols—such as the Fibre Channel Protocol (FCP), or Internet
Small Computer System Interface (iSCSI) Storage Area Net-
work (SAN) access—when accessing data in the form of
blocks.

[0040] A server system 110 utilizes services of a storage
system 100 to store and manage data. The storage system 100
may comprise a computer system that stores data in a set of
one or more storage devices 130. A storage device 130 may
comprise writable storage device media such as disk devices,
video tape, optical devices, DVD, magnetic tape, flash
memory, Magnetic Random Access Memory (MRAM),
Phase Change RAM (PRAM), or any other similar media
adapted to store information (including data and parity infor-
mation).

[0041] As known in the art, a storage device 130 may have
one or more storage volumes, where each volume has a file
system implemented on the volume. A file system imple-
mented on the storage devices 130 may provide multiple
directories in a single volume, each directory containing zero
or more filenames. A file system provides a logical represen-

Nov. 26, 2015

tation of how data (files) are organized on a volume where
data (files) are represented as filenames that are organized
into one or more directories. Examples of common file sys-
tems include New Technology File System (NTFS), File
Allocation Table (FAT), Hierarchical File System (HFS),
Universal Storage Device Format (UDF), UNIX® file sys-
tem, and the like. For the Data ONTAP® storage operating
system (available from NetApp, Inc. of Sunnyvale, Calif.)
which may implement a Write Anywhere File Layout
(WAFL®) file system, there is typically a WAFL file system
within each volume, and within a WAFL file system, there
may be one or more logical units (LUs).

A. Multi-Protocol Storage System

[0042] FIG. 1B is a schematic block diagram of a multi-
protocol storage system 100 configured to provide storage
service relating to the organization of information on storage
devices, such as disks 130. The storage system 100 is illus-
tratively embodied as a storage system comprising a proces-
sor 122, a memory 124, a plurality of network adapters 125,
126 and a storage adapter 128 interconnected by a system bus
123. The multi-protocol storage system 100 also includes a
storage operating system 200 that provides a virtualization
system (and, in particular, a file system) to logically organize
the information as a hierarchical structure of named directory,
file and virtual disk (vdisk) storage objects on the disks 130.
[0043] Whereas servers of a NAS-based network environ-
ment have a storage viewpoint of files, the servers of a SAN-
based network environment have a storage viewpoint of
blocks or disks. To that end, the multi-protocol storage system
100 presents (exports) disks to SAN servers through the cre-
ation of vdisk objects. A vdisk object (hereinafter “vdisk™) is
a special file type that is implemented by the virtualization
system and translated into an emulated disk as viewed by the
SAN servers. The multi-protocol storage system thereafter
makes these emulated disks accessible to the SAN servers
through controlled exports, as described further herein. A
vdisk may also be referred to as a logical unit (LLU) having an
associated logical unit number (LUN) that uniquely identifies
the vdisk/L.U within a volume of the storage system. In some
embodiments, a volume may only contain a limited number
of vdisks/LLUs up to a maximum number of allowed vdisks/
LUs.

[0044] In the illustrative embodiment, the memory 124
comprises storage locations that are addressable by the pro-
cessor and adapters for storing software program code and
data structures. The processor and adapters may, in turn,
comprise processing elements and/or logic circuitry config-
ured to execute the software code and manipulate the various
data structures. The storage operating system 200, portions of
which are typically resident in memory 124 and executed by
the processing elements, functionally organizes the storage
system by, inter alia, invoking storage operations in support of
the storage service implemented by the storage system. It will
be apparent to those skilled in the art that other processing and
memory implementations, including various computer read-
able media, may be used for storing and executing program
instructions pertaining to the inventive system and method
described herein.

[0045] Thenetwork adapter 125 couples the storage system
to a plurality of servers 110a,b over point-to-point links, wide
area networks, virtual private networks implemented over a
public network (Internet) or a shared local area network,
hereinafter referred to as an illustrative Ethernet network 167.

US 2015/0339157 Al

Therefore, the network adapter 125 may comprise a network
interface card (NIC) having the mechanical, electrical and
signaling circuitry needed to connect the storage system to a
network switch, such as a conventional Ethernet switch 170.
For this NAS-based network environment, the servers are
configured to access information stored on the multi-protocol
storage system as files. The servers 110 communicate with
the storage system over network 167 by exchanging discrete
frames or packets of data according to pre-defined protocols,
such as the Transmission Control Protocol/Internet Protocol
(TCP/1P).

[0046] The servers 110 may be general-purpose computers
configured to execute applications over a variety of operating
systems, including the UNIX® and Microsoft Windows®
operating systems. Server systems generally utilize file-based
access protocols when accessing information (in the form of
files and directories) over a NAS-based network. Therefore,
each server 110 may request the services of the storage sys-
tem 100 by issuing file access protocol messages (in the form
of packets) to the storage system over the network 167. For
example, a server 110a running the Windows operating sys-
tem may communicate with the storage system 100 using the
Common Internet File System (CIFS) protocol. On the other
hand, a server 1105 running the UNIX operating system may
communicate with the multi-protocol storage system using
the Network File System (NFS) protocol 164 over TCP/IP
162. It will be apparent to those skilled in the art that other
servers running other types of operating systems may also
communicate with the integrated multi-protocol storage sys-
tem using other file access protocols.

[0047] The storage network “target” adapter 126 also
couples the multi-protocol storage system 100 to servers 110
that may be further configured to access the stored informa-
tion as blocks or disks. For this SAN-based network environ-
ment, the storage system is coupled to an illustrative Fibre
Channel (FC) network 185. FC is a networking standard
describing a suite of protocols and media that is primarily
found in SAN deployments. The network target adapter 126
may comprise a FC host bus adapter (HBA) having the
mechanical, electrical and signaling circuitry needed to con-
nect the storage system 100 to a SAN network switch, such as
a conventional FC switch 180. In addition to providing FC
access, the FC HBA may offload fibre channel network pro-
cessing operations for the storage system.

[0048] The servers 110 generally utilize block-based
access protocols, such as the Small Computer Systems Inter-
face (SCSI) protocol, when accessing information (in the
form of blocks, disks or vdisks) over a SAN-based network.
SCSlis an input/output (I/0) interface with a standard, device
independent protocol that allows different peripheral devices,
such as disks 130, to attach to the storage system 100. In SCSI
terminology, servers 110 operating ina SAN environment are
initiators that initiate requests and commands for data. The
multi-protocol storage system is thus a target configured to
respond to the requests issued by the initiators in accordance
with a request/response protocol. The initiators and targets
have endpoint addresses that, in accordance with the FC
protocol, comprise worldwide names (WWN). A WWN is a
unique identifier, e.g., a node name or a port name, consisting
of an 8-byte number.

[0049] The multi-protocol storage system 100 supports
various SCSI-based protocols used in SAN deployments,
including SCSI encapsulated over TCP (iSCSI), SCSI encap-
sulated over FC (FCP), and Fibre Channel Over Ethernet

Nov. 26, 2015

(FCoE). The initiators (hereinafter servers 110) may thus
request the services of the target (hereinafter storage system
100) by issuing iSCSI and FCP messages over the network
167, 185 to access information stored on the disks. It will be
apparent to those skilled in the art that the servers may also
request the services of the integrated multi-protocol storage
system using other block access protocols. By supporting a
plurality of block access protocols, the multi-protocol storage
system provides a unified and coherent access solution to
vdisks/LUs in a heterogeneous SAN environment.

[0050] The storage adapter 128 cooperates with the storage
operating system 200 executing on the storage system to
access information requested by the servers. The information
may be stored on the disks 130 or other similar media adapted
to store information. The storage adapter includes 1/O inter-
face circuitry that couples to the disks over an 1/O intercon-
nect arrangement, such as a conventional high-performance,
FC serial link topology. The information is retrieved by the
storage adapter and, if necessary, processed by the processor
122 (or the adapter 128 itself) prior to being forwarded over
the system bus 123 to the network adapters 125, 126, where
the information is formatted into packets or messages and
returned to the servers.

[0051] Storage of information on the storage system 100 is
preferably implemented as one or more storage volumes that
comprise a cluster of physical storage disks 130, defining an
overall logical arrangement of disk space. The disks within a
volume are typically organized as one or more groups of
Redundant Array of Independent (or Inexpensive) Disks
(RAID). RAID implementations enhance the reliability/in-
tegrity of data storage through the writing of data “stripes”
across a given number of physical disks in the RAID group,
and the appropriate storing of redundant information with
respectto the striped data. The redundant information enables
recovery of data lost when a storage device fails. It will be
apparent to those skilled in the art that other redundancy
techniques, such as mirroring, may be used in accordance
with the present invention.

[0052] In accordance with an illustrative embodiment of
the present invention, a server 1105 includes various software
layers or modules executing thereon. For example, the server
1105 may be executing a Network File System (NFS) layer
164 that implements the NFS protocol and cooperates with a
TCP/IP layer 162 to enable the server to access files stored on
the storage system using the NFS protocol. The server 1105
may also include a Fibre Channel (FC) driver 168 for com-
municating with the storage system utilizing the Fibre Chan-
nel protocol.

[0053] A server 1105 may also execute, in an illustrative
embodiment, a mount daemon 166 which interacts with the
storage operating system 200 of the storage system 100 to
enable transparent access to blocks, such as vdisks, stored on
a storage system using a file-based protocol such as NFS. The
mount daemon 166 operates in conjunction with the NFS
Proxy layer, described further below, to provide appropriate
device addresses to the storage system 100. The mount dae-
mon 166 may be implemented as a background process,
thread or may be a remotely callable library of procedures that
performs the various functionality described below. A
method and apparatus for allowing a server transparent access
to blocks, such as vdisks, stored on a storage system using a
file-based protocol is further described in U.S. Pat. No. 7,181,
439, entitled SYSTEM AND METHOD FOR TRANSPAR-
ENTLY ACCESSING A VIRTUAL DISK USING A FILE-

US 2015/0339157 Al

BASED PROTOCOL, by Lent et al., the contents of which are
hereby incorporated by reference. The process of allowing a
server transparent access to a vdisk using a file-based protocol
may sometimes be referred to herein as “transparent access
process/technique.”

[0054] It should be noted that the software layers that are
shown for server 1105 are exemplary only and that they may
be varied without departing from the spirit and scope of the
invention. Additionally, it should be noted that the NFS layer
164 is shown for exemplary purposes only. Any file-based
protocol may be utilized in accordance with the teachings of
the present invention, including, for example CIFS.

B. Storage System Operating System

[0055] To facilitate access to the disks 130, the storage
operating system 200 implements a write-anywhere file sys-
tem of a virtualization system that “virtualizes” the storage
space provided by disks 130. The file system logically orga-
nizes the information as a hierarchical structure of named
directory and file objects (hereinafter “directories” and
“files”) on the disks. Each “on-disk” file may be implemented
as set of disk blocks configured to store information, such as
data, whereas the directory may be implemented as a spe-
cially formatted file in which names and links to other files
and directories are stored. The virtualization system allows
the file system to further logically organize information as a
hierarchical structure of named vdisks on the disks, thereby
providing an integrated NAS and SAN storage system
approach to storage by enabling file-based (NAS) access to
the named files and directories, while further enabling block-
based (SAN) access to the named vdisks on a file system
based storage platform. The file system simplifies the com-
plexity of management of the underlying physical storage in
SAN deployments.

[0056] As noted, a vdisk is a special file type in a volume
that derives from a normal (regular) file, but that has associ-
ated export controls and operation restrictions that support
emulation of a disk. Unlike a file that can be created by a
server using, e.g., the NFS or CIFS protocol, a vdisk is created
on the multi-protocol storage system via, e.g. a user interface
(UI) as a special typed file (object). Illustratively, the vdisk is
amulti-inode object comprising a special file inode that holds
data and at least one associated stream inode that holds
attributes, including security information. The special file
inode functions as a main container for storing data, such as
application data, associated with the emulated disk. The
stream inode stores attributes that allow LUNs and exports to
persist over, e.g., reboot operations, while also enabling man-
agement of the vdisk as a single disk object in relation to NAS
servers.

[0057] Intheillustrative embodiment, the storage operating
system 200 may comprise Data ONTAP® storage operating
system, available from NetApp, Inc. of Sunnyvale, Calif.,
which implements a Write Anywhere File Layout (WAFL®)
file system. However, it is expressly contemplated that any
appropriate storage operating system, including a write in-
place file system, may be enhanced for use in accordance with
embodiments described herein. As such, where the term
“WAFL” is employed, it should be taken broadly to refer to
any storage operating system that is otherwise adaptable to
the teachings of this embodiment.

[0058] As used herein, the term “storage operating system”
generally refers to the computer-executable code operable on
a computer that manages data access and may, in the case of

Nov. 26, 2015

a multi-protocol storage system, implement data access
semantics, such as the Data ONTAP® storage operating sys-
tem, which is implemented as a microkernel. The storage
operating system can also be implemented as an application
program operating over a general-purpose operating system,
such as UNIX® or Windows®, or as a general-purpose oper-
ating system with configurable functionality, which is con-
figured for storage applications as described herein.

[0059] In addition, it will be understood to those skilled in
the art that the inventive system and method described herein
may apply to any type of special-purpose (e.g., storage serv-
ing storage system) or general-purpose computer, including a
standalone computer or portion thereof, embodied as or
including a storage system. Moreover, the teachings of this
embodiment can be adapted to a variety of storage system
architectures including, but not limited to, a network-attached
storage environment, a storage area network and disk assem-
bly directly-attached to a server or host computer. The term
“storage system” should therefore be taken broadly to include
such arrangements in addition to any subsystems configured
to perform a storage function and associated with other equip-
ment or systems.

[0060] FIG. 2 isaschematic block diagram of an exemplary
storage operating system 200 used in some embodiments.
The storage operating system comprises a series of software
layers organized to form an integrated network protocol stack
or, more generally, a multi-protocol engine that provides data
paths for servers to access information stored on the multi-
protocol storage system using block and file access protocols.
The protocol stack includes a media access layer 210 of
network drivers (e.g., gigabit Ethernet drivers) that interfaces
to network protocol layers, such as the IP layer 212 and its
supporting transport mechanisms, the TCP layer 214 and the
User Datagram Protocol (UDP) layer 216. A file system pro-
tocol layer provides multi-protocol file access and, to that
end, includes support for the DAFS protocol 218, the NFS
protocol 220, the CIFS protocol 222 and the Hypertext Trans-
fer Protocol (HTTP) protocol 224. A VI layer 226 implements
the VI architecture to provide direct access transport (DAT)
capabilities, such as remote direct memory access (RDMA),
as required by the DAFS protocol 218.

[0061] The file system protocol layer also includes, in the
illustrative embodiment a NFS proxy layer 222. In some
embodiments, the NFS proxy layer 222 examines each NFS
Open or look up commands received from a server to deter-
mine if the command is to utilize the transparent access tech-
nique. The NFS proxy layer 222 performs this function by
examining the filename field of the received Open command,
described further below. It should be noted that an NFS proxy
layer is shown for exemplary purposes only. The teachings of
the present embodiment may be utilized with any file-based
protocol including, for example CIFS or HTTP. In such alter-
nate embodiments, an appropriate proxy layer would be
implemented within the storage operating system.

[0062] An iSCSI driver layer 228 provides block protocol
access over the TCP/IP network protocol layers, while a FC
driver layer 230 operates with the FC HBA 126 to receive and
transmit block access requests and responses to and from the
integrated storage system. The FC and iSCSI drivers provide
FC-specific and iSCSI-specific access control to the LUs
(vdisks) and, thus, manage exports of vdisks to either iISCSI
or FCP or, alternatively, to both iSCSI and FCP when access-
ing a vdisk on the multi-protocol storage system. In addition,
the storage operating system includes a disk storage layer 240

US 2015/0339157 Al

that implements a disk storage protocol, such as a RAID
protocol, and a disk driver layer 250 that implements a disk
access protocol such as, e.g., a SCSI protocol.

C. Transparent Access Process Components of Storage
Operating System

[0063] Bridgingthe disk software layers with the integrated
network protocol stack layers is a virtualization system 255.
The virtualization system 255 is implemented, in the illustra-
tive embodiment, by a file system 265 cooperating with vir-
tualization modules illustratively embodied as, e.g., vdisk
module 270 and SCSI target module 260. It should be noted
that the vdisk module 270, file system 265 and SCSI target
module 260 can be implemented in software, hardware, firm-
ware, or a combination thereof.

[0064] The vdisk module 270 interacts with the file system
265 to provide a data path from the block-based SCSI target
module to blocks managed by the file system. In essence, the
vdisk module 270 manages SAN deployments by, among
other things, implementing a comprehensive set of vdisk
(LU) commands that are converted to primitive file system
operations (“primitives”) and that interact with the file system
265 and the SCSI target module 260 to implement the vdisks.

[0065] The SCSI target module 260, in turn, initiates emu-
lation of a disk or LU by providing a mapping procedure that
translates logical block access to LUs specified in access
requests into virtual block access to the special vdisk file
types and, for responses to the requests, vdisks into LUs. The
SCSI target module is illustratively disposed between the
iSCSI and FC drivers 228, 230 and the file system 265 to
thereby provide a translation layer of the virtualization sys-
tem 255 between the SAN block (LU) space and the file
system space, where L.Us are represented as vdisks.

[0066] In addition, the SCSI target module 260 includes
one or more transparent access processes 261. The transpar-
ent access processes 261, described further below, enable
servers to transparently access a vdisk by utilizing a file-based
protocol. These transparent processes 261 cooperate with the
mount daemon 166 executing on the server to implement the
novel system and method for transparently accessing vdisks
using a file-based protocol.

[0067] The file system 265 illustratively implements the
WAFL file system having an on-disk format representation
that is block-based using, e.g., 4 kilobyte (KB) blocks and
using inodes to describe the files. The WAFL file system uses
files to store metadata describing the layout of its file system;
these metadata files include, among others, an inode file. A
file handle, i.e., an identifier that includes an inode number, is
used to retrieve an inode from disk.

[0068] Broadly stated, all inodes of the file system are
organized into the inode file. A file system (FS) info block
specifies the layout of information in the file system and
includes an inode of a file that includes all other inodes of the
file system. Each volume has an FS info block that is prefer-
ably stored at a fixed location within, e.g., a RAID group of
the file system. The inode of the root FS info block may
directly reference (point to) blocks of the inode file or may
reference indirect blocks of the inode file that, in turn, refer-
ence direct blocks of the inode file. Within each direct block
of the inode file are embedded inodes, each of which may
reference indirect blocks that, in turn, reference data blocks of
a file or vdisk.

Nov. 26, 2015

D. Transparent Access Process

[0069] As described above, the transparent access process/
technique may enable a server application to issue a file-based
protocol Open command and transparently access a virtual
disk stored on a storage system using a block-based protocol.
The server may utilize the convenient namespace of the file-
based protocol, while obtaining the performance benefits of
the high-speed data access path associated with the vdisk. The
server may execute a mount daemon 166 that interacts with a
NFS proxy layer 222 (or other file-based protocol proxy
layer) executing on the storage system 100.

[0070] The transparent access is initiated by prepending a
predetermined and special prefix to a filename contained in an
Open command sent through the file-based protocol. The
NFS proxy layer 222, executing within the storage operating
system 200 of the storage system, identifies that the Open
command is directed to a filename that contains the predeter-
mined prefix and initiates the transparent access process (file
to vdisk conversion). The NFS proxy layer 222, in conjunc-
tion with the SCSItarget module 260 of the storage operating
system, ensures that the file requested to be opened is repre-
sented as a vdisk which is exported to the requesting server. If
the file to be opened is not already a vdisk, the procedure also
converts it to one using conventional file to vdisk conversion
routines. The storage system 100 then communicates with the
mount daemon 166 executing on the server 110. The mount
daemon ensures that the exported vdisk is mapped to the
server and, if it is not already, causes the server 110 to rescan
the SCSI devices connected thereto to identify the newly
mounted vdisk. Thus, a server may open a vdisk utilizing a
file-based protocol and its associated namespace but perform
later data access operations using a block-based protocol data
path.

[0071] Thus, applications and clients 160/users of servers
110 served by the storage system 100 may utilize the
namespace available from the file-based protocol, while ben-
efiting from the high-speed data connection provided by an
underlying transport media, such as Fibre Channel, con-
nected to the vdisk. This enables an application executing on
a server of the storage system to issue an Open command to
access the vdisk using a conventional file-based protocol,
such as the NFS protocol. The application may invoke the use
of a transparent access process executing on the storage sys-
tem by prepending a predetermined and special prefix to the
filename in the Open command.

[0072] A NFS proxy layer 222 of a storage operating sys-
tem 200 checks the filename sent in the filename field of the
Open command. If the filename does not include the special
prefix, then the storage operating system processes the
request using the conventional file-based protocol. However,
if the file name includes the predetermined and special prefix,
then the NFS proxy layer 222 maps the vdisk associated with
the file to be opened to the server that issued the Open com-
mand. A logical unit number (LUN) associated with this
vdisk is also mapped to the server by the NFS proxy layer. The
NFS proxy layer also, via a remote procedure call (RPC) or
similar application-to-application communication method,
communicates with a mount daemon 166 executing on the
server.

[0073] The mount daemon 166 communicates to the stor-
age system a set of major and minor device numbers to be
associated with a newly created character device instance. A
character device is a block-level interface that permits an
arbitrary number of bytes to be written to a device. Typically,

US 2015/0339157 Al

the number of bytes written is a multiple of the size of the data
blocks on the storage device. Using the returned major/minor
numbers, the NFS proxy layer generates a response to the
Open command and returns that response to the server. The
server, upon receiving the response, generates a new instance
of a character device using the major/minor device numbers.
The server then returns a file descriptor to the issuing appli-
cation.

[0074] Thus, to the issuing application, and users thereof,
the file has been opened using conventional NFS or other
file-based protocol commands and its associated namespace.
However, the NFS proxy layer, in conjunction with the mount
daemon has generated a new character device on the server
that enables the server to read and write raw data over the
Fibre Channel or other block-based network infrastructure.
Thus, a server experiences the ease of use of the file-based
namespace, while benefiting from the performance of the
block-based network infrastructure.

[0075] Further detail for a method and apparatus for allow-
ing transparent access to vdisks using a file-based protocol is
provided in the above-referenced U.S. Pat. No. 7,181,439,
entitted SYSTEM AND METHOD FOR TRANSPAR-
ENTLY ACCESSING A VIRTUAL DISK USING A FILE-
BASED PROTOCOL.

II. System for Deployment of VMs in a Virtual Server
Environment

A. Virtual Server Environment

[0076] In some embodiments, the storage system 100 is
used in a virtual server environment. FIG. 3 shows a concep-
tual diagram of a virtual server environment comprising a
plurality of clients 160 and a plurality of physical servers
110,, 110, . . . 110, accessing a storage system 100. The
storage system 100 may comprise a set of storage devices 130
for storing client data, the storage devices 130 comprising a
shared storage 135 ofthe storage system 100. Each server 110
may include one or more virtual machines 305 (VMs) that
reside and execute on the server 110. Each VM 305 may
comprise a separate encapsulation or instance of a separate
operating system and one or more applications that execute
on the server. As such, each VM 305 on a server 110 may have
its own operating system and set of applications and function
as a self-contained package on the server and multiple oper-
ating systems may execute simultaneously on the server.
[0077] Each VM 305 on a server 110 may be configured to
share the hardware resources of the server. Each server may
also include a VM monitor module/engine 311 (sometimes
referred to as a hypervisor module/engine 311) that executes
on the server to produce and manage the VMs. The VM
monitor module/engine 311 (hypervisor 311) may also virtu-
alize the hardware and/or software resources of the servers for
use by the VMs 305. The operating system of each VM may
utilize and communicate with the resources of the server via
the VM monitor/hypervisor engine. For illustrative purposes,
in the description below, the VM monitor module/engine
comprises a hypervisor module/engine 311 (e.g., 311,, 311,
311,). In other embodiments, however, a different type of VM
monitor module/engine may be used other than the hypervi-
sor module/engine.

[0078] The virtual server environment may also include a
plurality of clients 160 connected with each server 110 for
accessing client data stored on the storage system 100. Each
client 160 may connect and interface/interact with a particu-

Nov. 26, 2015

lar VM 305 of a server 110 to access client data of the storage
system. From the viewpoint of a client 160, the VM 305 may
comprise a virtual server that appears and behaves as an actual
physical server or behaves as an actual desktop machine.

[0079] A storage system 100 may be configured to allow
servers 110 to access its data, for example, to read or write
data to the storage system. A server 110 may execute an
application that “connects” to the storage system over a com-
puter network 167 to send an access request (read or write
request) to the storage system for accessing particular data
stored on the storage system. Each server 110 may also
include multiple VMs, each VM 305 being used by and con-
nected with a client 160 through a computer network. Each
VM 305 may also execute an application for sending read/
write requests (received from the connected client 160) for
accessing data on the storage system. The VM applications
executing on the server may service the connected clients 160
by receiving the client access requests and submitting the
access requests to the storage system 100 for execution.

B. Server Components

[0080] FIG. 4 is a diagram illustrating components of a
server system 110 within a virtual server environment. As
shown in FIG. 3, a server system 110 may comprise one or
more server processor(s) 326, server memory 328, one or
more server network adapters 342, one or more server storage
adapters 344, server storage 392, and other devices or periph-
erals (not shown) coupled to the processor by a bus 346.

[0081] The server processors are the central processing
units (CPUs) of the server system 110 and, thus, control the
overall operation of the server system 110. Server processors
may include one or more programmable general-purpose or
special-purpose microprocessors, digital signal processors
(DSPs), programmable controllers, application specific inte-
grated circuits (ASICs), programmable logic devices (PLDs),
or the like, or a combination of such devices.

[0082] A server network adapter 342 may comprise
mechanical, electrical, and signaling circuitry needed to con-
nect the server system 110 to the network and to receive and
transmit data over the network. The server network adapter
342 may comprise a network port controller (e.g., Ethernet
cards), specialized network adapters, or any other physical
device that controls the receiving and transmitting of data
over a network. A server network adapter 342 may provide
one or more network ports (i.e., data-access ports) for cou-
pling the server system 110 to one or more other client sys-
tems 160 through a network 165. A connection with a client
system 160 may be established using a network port of the
server network adapter 342 to receive and transmit data
though the network 165.

[0083] Server memory 328 comprises storage locations
that are addressable by the processor and adapters (e.g., a
server network), as well as other devices for storing software
program code such as the software described herein. The
server processor and server adapters may, in turn, comprise
processing elements and/or logic circuitry configured to
execute the software code. Server memory 328 can be a
random access memory (RAM), aread-only memory (ROM),
or the like, or a combination of such devices. It will be
apparent to those skilled in the art that other processing and
memory means, including various computer readable media,
may be used for storing and executing program instructions
pertaining to the invention described herein.

US 2015/0339157 Al

[0084] Server memory 328 is for storing software program
instructions and data structures such as a server operating
system 310 (having a hypervisor module 311), a VM deploy-
ment module/engine 280, and one or more virtual machines
305 (as described above). A server system 110 loads infor-
mation, instructions, par, and data structures into server
memory 328 from which they are accessed and executed or
processed by server processors 326 via a bus 346.

[0085] The server operating system 310 and hypervisor 311
may be, for example, VMware™ ESX, Microsoft™ Hyper-V,
Microsoft™ Virtual Server, NetApp SnapShot™, NetApp
SnapMirror™, Citrix XenServer™, UNIX®, Windows
NT®, Linux®, or any other operating system and hypervisor
capable of producing and configuring one or more virtual
machines. The server operating system 310 may further
include components discussed above in relation to FIG. 1B,
such as mount daemon 166, Fibre Channel (FC) driver 168,
TCP/IP 162, Network File System (NFS) layer 164 (not
shown).

[0086] Server storage 392 may comprise a local writable
storage device, such as disk devices, video tape, optical
devices, DVD, magnetic tape, flash memory, Magnetic Ran-
dom Access Memory (MRAM), Phase Change RAM
(PRAM), or any other similar media adapted to store infor-
mation (including data and parity information). As shown in
the example of F1G. 4, server storage 392 may store VM data
315.

[0087] AVM 305 may berepresented by data that describes
the VM (referred to herein as “VM data” 315). In the example
shown in FIG. 4, the server storage 392 may store VM data
315 for one or more VMs 305. In other embodiments, how-
ever, the VM data 315 may be stored elsewhere (e.g., on the
storage system). In some embodiments, VM data 315 that
represents a particular VM comprises a set of one or more VM
files that describe the VM. VM data 315 may be stored and
used later for producing and deploying the VM 305 repre-
sented by the VM data 315 on a server 110. VM data for
multiple VMs needs to be stored efficiently with minimal use
of valuable storage resources. Also, the VM data should be
stored in way that allows for fast deployment of the VMs on
a server when needed.

C. VM Deployment Module/Engine

[0088] Insomeembodiments, the VM deployment module/
engine 280 (residing and executing on the server operating
system 310 of a server 110) allows for efficient storing of VM
data 315 and fast deployment of VMs 305 onto servers 110. In
some embodiments, the VM deployment module/engine 280
may use some components of the transparent access tech-
nique (described above) along with additional components
(described below) to store VM data 315 and deploy VMs 305
onto servers 110. In some embodiments, the VM deployment
module/engine 280 may comprise a software module or
engine that resides and executes outside the server 110 (e.g.,
resides and executes on the storage system 100 or a client
system 160).

[0089] The VM deployment module/engine 280 may be
configured to operate in conjunction with other components
of the server system 110 (e.g., server operating system 310,
hypervisor 311, mount daemon 166, Fibre Channel (FC)
driver 168, TCP/IP 162, Network File System (NFS) layer
164, etc.) and components of the storage system 100 (e.g.,
storage system operating system 200, NFS proxy layer 222,
vdisk module 270, SCSI target module 260, etc.) to collec-

Nov. 26, 2015

tively perform the embodiments described herein. The VM
deployment module/engine 280 may produce, manipulate,
modify, and/or destroy/remove storage objects (e.g. files,
vdisks/LUs, etc.) on the storage system 100 and map/unmap
storage objects onto various servers 100 to perform embodi-
ments herein. In some embodiments, the VM deployment
module/engine 280 may comprise PowerShell™ cmdlets
used ina Windows PowerShell™ environment. The Windows
PowerShell™ command interface runtime may invoke these
cmdlets within the context of automation scripts that are
provided at the command-line, as well as invoking them pro-
grammatically through Windows PowerShell™ APIs.
[0090] Insomeembodiments, the VM deployment module/
engine 280 performs a “staging technique” to produce VM
container objects representing VMs. A VM container object
representing a particular VM may comprise VM data describ-
ing the VM and vdisk configuration data (discussed below).
In these embodiments, after receiving an administrative com-
mand initiating the staging technique for one or more particu-
lar VMs, the VM deployment module/engine 280 produces a
VM container object(s) representing the VM(s). After receiv-
ing the initiating administrative command specifying a par-
ticular VM, the VM deployment module/engine 280 may do
so automatically, without further human initiation, interac-
tion, or intervention.

[0091] Insomeembodiments, the VM deployment module/
engine 280 also performs a “deployment technique” to
deploy/produce VMs on a server 110 using the VM container
objects produced in the staging technique (discussed below).
In these embodiments, after receiving an administrative com-
mand initiating the deployment technique for one or more
particular VMs, the VM deployment module/engine 280 pro-
duces a VM(s) using the VM container object(s) representing
the VM(s). After receiving the initiating administrative com-
mand specifying a particular VM, the VM deployment mod-
ule/engine 280 may do so automatically, without further
human initiation, interaction, or intervention.

II1. Staging Technique for Producing VM Container Objects

[0092] Insomeembodiments, the VM deployment module/
engine 280 performs a “staging technique” to produce VM
container objects representing VMs. A VM container object
representing a particular VM may comprise VM data describ-
ing the VM and vdisk configuration data (discussed below).
FIG. 6 is a flowchart of a staging method for producing VM
container objects, in accordance with some embodiments.
The method 600 of FIG. 6 is described in relation to FIGS.
5A-5E which conceptually illustrate steps of the staging
method 600. In some embodiments, after initiation of the
method 600 for a particular VM (e.g., by receiving an admin-
istrative command), the method 600 may produce a VM con-
tainer object representing the VM automatically, without fur-
ther human initiation, interaction, or intervention. The order
and number of steps of the method 600 are for illustrative
purposes only and, in other embodiments, a different order
and/or number of steps are used. For illustrative purposes, the
container object is described below as a container file having
a filename. In other embodiments, however, the container
object may comprise another type of storage container.

[0093] In some embodiments, some of the steps of the
method 600 are performed or caused to be performed by a VM
deployment module/engine 280 executing on a server 110.
The VM deployment module/engine 280 may perform the
staging technique by sending requests/commands to various

US 2015/0339157 Al

components of the server operating system 310 of the server
system 110 (e.g., hypervisor 311, mount daemon 166, Fibre
Channel (FC) driver 168, TCP/IP 162, Network File System
(NFS) layer 164, etc.) and various components of the storage
system operating system 200 of the storage system 100 (e.g.,
NFS proxy layer 222, vdisk module 270, SCSI target module
260, etc.) to perform specified operations. The various com-
ponents of the server operating system 310 and storage sys-
tem operating system 200 may receive and execute/perform
such commands to collectively perform the staging technique
of method 600.

[0094] FIG. 5A shows a conceptual diagram of a virtual
server environment upon initiation of the staging technique.
As shownin FIG. 5A, aserver 100 stores VM data 315 for one
or more VMs (shown as “VM data for VM X,” “VM data for
VMY,” etc.) on local server storage 392. The VM data for a
VM may be produced by a hypervisor engine 311 executing
on the server 100 which generates the VM data and stores to
the local server storage 392. In other embodiments, however,
the VM data 315 may be stored elsewhere (e.g., on the storage
system).

[0095] VM data 315 may represent and describe a VM 305.
In some embodiments, VM data 315 for a VM specifies hard-
ware and/or software resources on a server and/or storage
system that the VM uses during operation. As such, a VM may
be viewed as being composed of the specified hardware and/
or software resources. The VM data 315 for a VM may com-
prise a set of one or more VM files that describes hardware
and/or software resources used by the VM. For example, the
set of VM files may comprise a VM configuration file speci-
fying various components that the VM uses, such as an oper-
ating system, network adaptor, IP address, hard disks, etc.
The set of VM files may also comprise one or more virtual
hard disk (VHD) files specifying virtual hard disks that the
VM uses (e.g., C, E, F drives).

[0096] As shown in FIG. 6, the method 600 begins upon
receiving (at 602) at the server an administrative command
that initiates the staging technique for a particular VM. The
administrative command may specify thata VM container file
be produced for a particular VM (e.g., “Produce VM con-
tainer file for VM X”). In response, the method 600 then
automatically performs the below steps to produce a VM
container file for VM X, the VM container file storing the VM
data and vdisk configuration data for the VM.

[0097] The method 600 produces (at 604) an empty VM
container file 510 for VM data (referred to herein as “VM X
data”) that represents VM X on a volume 505 of the shared
storage 135 of the storage system 100. The method 600 may
do so by examining the VM X data 315 and producing an
empty VM container file 510 (named VM container file X)
that has enough storage space to hold all VM X data along
with extra storage space to store vdisk configuration data for
VM X (discussed below). The extra storage space may com-
prise a predetermined amount of storage space. For example,
the produced VM container file may have enough storage
space to hold all the VM data plus an additional 10% more
storage space to store the vdisk configuration data. The
method 600 may produce (at 604) the empty VM container
file 510 on the storage system 100 by sending a “new con-
tainer” command/request from the server 110 to the storage
system 100, the command specifying the container filename
(X) and size. Upon receiving the “new container” command,
the storage operating system 200 of the storage system 100
performs the command to produce empty VM container file X

Nov. 26, 2015

on a volume 505 of the storage system 100 (which is concep-
tually shown in FIG. 5A by the dashed arrow line).

[0098] The method 600 then produces (at 606) a vdisk/LU
515 (vdisk X) from the VM container file X on the volume 505
of the storage system 100. The method 600 may do so by
sending a “new vdisk from container” command/request
from the server 110 to the storage system 100, the command
specifying the vdisk name (X) and container filename X.
Upon receiving the “new vdisk from container” command,
the storage operating system 200 of the storage system 100
performs the command to produce the vdisk 515 (vdisk X) on
the storage system 100 (which is conceptually shown in FIG.
5B by the dashed arrow line).

[0099] The command may be accomplished using conven-
tional storage operating system procedures for converting a
file into a vdisk. One example of such a procedure is described
in U.S. Pat. No. 7,383,378, issued Jun. 3, 2008, entitled SYS-
TEM AND METHOD FOR SUPPORTING FILE AND
BLOCK ACCESS TO STORAGE OBJECT ON A STOR-
AGE APPLIANCE by Vijayan Rajan et al., the contents of
which are hereby incorporated by reference. As known in the
art, when producing a vdisk, the vdisk may be block aligned
by the storage system by assigning a vdisk type to vdisk based
on the server operating system it will be exported to. Upon
exporting the properly aligned vdisk to the server, the vdisk is
partitioned and formatted by the server. Aligning a vdisk to a
block boundary (e.g., 32 KB boundary offset) of the server
operating system may provide better vdisk performance dur-
ing later reads/writes. Also note that the storage space of
vdisk X will be as large as the storage space for container file
X, thus ensuring that vdisk X can hold the VM data for VM X
and still have additional storage space for the vdisk configu-
ration data.

[0100] Atstep 608, the method 600 exports the vdisk X 515
from the storage system to the server and maps the vdisk to the
server. The method 600 may do so by sending an “export
vdisk” command/request from the server 110 to the storage
system, the command specifying the vdisk name (X). Upon
receiving the “export vdisk” command, the storage operating
system 200 of the storage system 100 exports vdisk X to the
server 110 (which is conceptually shown in FIG. 5C by the
dashed arrow line) to make vdisk X 515 visible to the server
110. Upon receiving exported vdisk X, the server operating
system 310 of the server 110 maps vdisk X 515 using con-
ventional vdisk masking/mapping techniques. For example,
the server operating system 310 may rescan the SCSI devices
associated with the server 110 to locate the newly mapped
vdisk and create a major/minor device number to be associ-
ated with the vdisk to uniquely identify the instantiation of a
raw character device to be associated with the vdisk. Mapping
of'the vdisk 515 may ensure that the server 110 has identified
the vdisk associated with the file and may begin configuring
the vdisk.

[0101] Atstep 610, the method 600 then brings the vdisk X
515 online on the server, configures the vdisk X 515 on the
server 110, and stores vdisk configuration data on the vdisk X
515 (which is reflected in the VM container file X 510). As
used herein, “configuring” a vdisk may comprise the opera-
tions of partitioning and/or formatting the vdisk. “Configur-
ing” a vdisk may comprise any or all of these operations. The
method 600 may do so by sending “partition” and/or “format™
commands to the server operation system 310, the command
(s) specifying the vdisk name (X). Upon receiving the com-
mand(s), the server operating system 310 performs the com-

US 2015/0339157 Al

mands using conventional vdisk partitioning and formatting
techniques. Configuring of the vdisk may be performed to
make the vdisk useable by the server operating system 310
(i.e., so data and files may be stored to and read from the
vdisk). Prior to configuring of the vdisk, the server operating
system 310 may be unable to access data or files from the
vdisk. After vdisk X 515 is configured, it is now visible and
useable by the server operating system which assigns a drive
name to the vdisk X (e.g., drive V as shown in FIG. 5C).

[0102] As known in the art, formatting a vdisk comprises
low-level formatting to divide the vdisk into basic elements
(e.g., tracks, sectors, cylinders) and high level formatting
(logical formatting) to create a file system on the vdisk that
will allow the server operating system to use the vdisk space
to store and access files. As known in the art, partitioning a
vdisk comprises creating areas on the vdisk where data will
not be mixed (used, for example, to install different operating
systems that do not use the same file system). Partitioning
may also include other operations such as creating a master
boot record (MBR) partition.

[0103] The end result of each of the configuring operations
(partitioning and formatting) on the vdisk may be described/
specified by data that describes the result of each operation
(referred to herein as “vdisk configuration data” 525). After
configuring the vdisk X 515, the server operating system 310
may store the vdisk X configuration data 525 on the vdisk X
515 (drive V:), which is conceptually shown in FIG. 5D by the
dashed arrow line. Note that any data contents in the vdisk X
515 is typically copied to the corresponding VM container file
X 510 by the storage operating system 200, so the VM con-
tainer file X 510 will also contain the vdisk configuration data
525 (which is conceptually shown in FIG. 5D by the dashed
arrow line).

[0104] Inother embodiments, the data contents in the vdisk
X 515 may not be directly copied to the corresponding VM
container file X 510, but rather the vdisk 515 and the corre-
sponding VM container file X may be configured by the
storage operating system 200 to have meta-data pointers that
point to the same data, thereby allowing both to access the
same data. As such, any data stored in the vdisk X 515 may be
reflected in the corresponding VM container file X (which is
conceptually shown in FIG. 5D by the dashed arrow line) and
made accessible through the corresponding VM container file
X (i.e., the container file used to produce the vdisk X). In
general then, the vdisk X 515 and corresponding VM con-
tainer file X may each be considered as containing/storing the
vdisk configuration data 525, since accessing either the vdisk
X or the VM container file X will allow access to the vdisk
configuration data 525.

[0105] For example, the vdisk configuration data 525 may
comprise formatting data that describes/specifies the division
of the vdisk into basic elements (low-level formatting) and
describes/specifies the file system formatting for the file sys-
tem that was created on the vdisk (logical formatting). The
vdisk configuration data 525 may further comprise partition-
ing data that describes/specifies the areas created on the vdisk
where data will not be mixed and/or master boot record
(MBR) partition data. As a further example, vdisk configura-
tion data 525 may also comprise drive signature data,
whereby a server operating system may generate a Globally
Unique IDentifier (GUID) to represent the disk and write the
GUID to the disk as part of its configuration data for the disk,
the GUID comprising the drive signature.

Nov. 26, 2015

[0106] Note that the server operating system 310 will con-
figure the vdisk according to its own partitioning and format-
ting procedures and requirements/parameters so that the
vdisk is useable by the server operating system 310 (so data
and files may be stored to and read from the vdisk by the
server operating system 310). As such, different server oper-
ating systems may configure a vdisk differently according to
its own partitioning and formatting procedures and param-
eters. Thus, a vdisk configured by one server operating sys-
tem (using a first set of configuration procedures and param-
eters) may be un-useable by a second different server
operating system (using a second different set of configura-
tion procedures and parameters). As such, the vdisk configu-
ration data 525 may also be based on the partitioning and
formatting procedures and parameters of the specific server
operating system that configures the vdisk. Thus, the vdisk
configuration data 525 produced by the different server oper-
ating systems may also be different.

[0107] Atstep 612,the method 600 then copies the VM data
for VM X (“VM X data”) stored on the server 110 to the vdisk
X 515 (which is reflected in the corresponding VM container
file X 510) on the storage system 100 (which are conceptually
shown in FI1G. 5D by the dashed arrow lines). The method 600
may copy VM X data to the vdisk X 515 by sending a copy
command to the server operation system 310, the command
specifying the drive name (V:) assigned to vdisk X 515 and
VM X data to be copied to the drive. Upon receiving the
command, the server operating system 310 copies VM X data
to vdisk X 515. As discussed above, data contents in the vdisk
X 515 is typically reflected in the corresponding VM con-
tainer file X (which is conceptually shown in FIG. 5D by the
dashed arrow line) and made accessible through the corre-
sponding VM container file X as well. As such, the corre-
sponding VM container file X 510 will also contain the VM X
data 315 (as shown in FIG. 5D).

[0108] At step 614, the method 600 then unmaps and
destroys the vdisk X 515 on the storage system 100 (which is
conceptually shown in FIG. 5E by the now absent vdisk 515).
The method 600 may do so by sending an “remove vdisk map
and remove vdisk” command to the storage operating system
200, the command specifying the vdisk to be destroyed. As
known in the art, a vdisk may comprise a logical unit (LU)
having an associated logical unit number (vdisk) that
uniquely identifies the vdisk/LLU within a volume of the stor-
age system. However, typically there is a limited number of
vdisks/LUs that can exist in the volume at the same time. As
such, by destroying the vdisk, the number of allowed vdisks
on the volume are not used up by staging technique and
valuable storage resources are not consumed unnecessarily
on the storage system 100. The method 600 then ends.

[0109] As shown in FIG. 5E, however, the VM container
file X 510 does not get destroyed and remains in the shared
storage 135. Note that the VM container file X 510 contains
the VM data for VM X and the vdisk X configuration data 525
(or contains meta-data pointers to such data). As such, all the
data needed to later quickly deploy the VM X is accessible
through the VM container file X 510. This is because, at the
deployment stage, a vdisk (representing a VM) is later pro-
duced on the server using the VM container file and the vdisk
configuration data 525 may be used to specify the configura-
tion of the vdisk. This avoids having the server to configure
the vdisk which allows for rapid deployment of the vdisk/
VM.

US 2015/0339157 Al

[0110] Note that in the staging technique described above,
avdisk may be configured (partitioned, formatted, etc.) by the
server operating system to produce vdisk configuration data
525. A file, however, can not typically be configured (parti-
tioned, formatted, etc.) in the same manner as a vdisk by the
server operating system and configuration data can not be
produced using a file. As such, in some embodiments, a vdisk
is configured and used to produce configuration data 525. As
described above, however, there is typically a limited number
of vdisks that can exist in the volume at the same time and use
of vdisks to hold VM data for VMs may quickly use up the
number of allowed vdisks. As such, in some embodiments, by
destroying the vdisk and keeping only the VM container file
(having the VM data 315 and the vdisk configuration data
525), the number of allowed vdisks are not consumed unnec-
essarily. In this manner, VM data 315 and vdisk configuration
data 525 may be stored efficiently and be used later to provide
rapid deployment of VMs.

IV. Deployment Technique for Producing VMs

[0111] Insomeembodiments, the VM deployment module/
engine 280 performs a “deployment technique” to deploy/
produce VMs on a server 110 using the VM container objects
representing VMs (that were produced in the staging tech-
nique). FIG. 8 is a flowchart of a deployment method for
deploying VMs using VM container files, in accordance with
some embodiments. The method 800 of FIG. 8 is described in
relation to FIGS. 7A-7E which conceptually illustrate steps of
the deployment method 800. In some embodiments, after
initiation of the method 800 for a particular VM (e.g., by
receiving an administrative command), the method 800 may
deploy/produce the specified VM automatically, without fur-
ther human initiation, interaction, or intervention. The order
and number of steps of the method 800 are for illustrative
purposes only and, in other embodiments, a different order
and/or number of steps are used. For illustrative purposes, the
container object is described below as a container file having
a filename. In other embodiments, however, the container
object may comprise another type of storage container.
[0112] In some embodiments, some of the steps of the
method 800 are performed or caused to be performed by aVM
deployment module/engine 280 executing on a server 110.
The VM deployment module/engine 280 may perform the
deployment technique by sending requests/commands to
various components of the server operating system 310 of the
server system 110 (e.g., hypervisor 311, mount daemon 188,
Fibre Channel (FC) driver 188, TCP/IP 182, Network File
System (NFS) layer 184, etc.) and various components of the
storage system operating system 200 of the storage system
100 (e.g., NFS proxy layer 222, vdisk module 270, SCSI
target module 280, etc.) to perform specified operations. The
various components of the server operating system 310 and
storage system operating system 200 may receive and
execute/perform such commands to collectively perform the
deployment technique of method 800.

[0113] FIG. 7A shows a conceptual diagram of a virtual
server environment before initiation of the deployment tech-
nique. As shown in FIG. 7A, a VM container file X 510
representing VM X is stored on the storage system 100. The
VM container file X contains VM X data 315 (describing VM
X) and vdisk X configuration data 525 (specifying the con-
figuration of a vdisk that was previously configured by the
server operating system 310 according to the specific con-
figuration procedures and parameters of the server operating

Nov. 26, 2015

system 310). As such, any vdisk containing the vdisk X con-
figuration data 525 would be immediately useable by the
server operating system 310 for storing and reading data and
files (such as the VM data) stored on the vdisk, without the
server operating system 310 having to actually configure the
vdisk to do so.

[0114] Note that the server 110 used in the deployment
technique may be the same server 110 as used in the staging
technique or may be a different server. If the servers 110 are
different, as long as both servers are using the same type of
server operating systems 310, the vdisk configuration data
525 would be compatible with both servers and a vdisk con-
taining the vdisk configuration data 525 produced by one
server operating system would be immediately useable by the
other server operating system 310 for storing and reading data
and files.

[0115] As shown in FIG. 8, the method 800 begins upon
receiving (at 802) an administrative command that initiates
the deployment technique for a particular VM. The adminis-
trative command may specify the VM to be deployed and the
VM container file that represents the VM (e.g., “Deploy VM
X using VM container file X”). In response, the method 800
then automatically performs the below steps to deploy the
VM.

[0116] The method 800 produces (at 806) a vdisk 515
(vdisk X) from the VM container file X, the vdisk X being
produced on a volume 505 of the storage system 100 and
containing the VM X data 315 and vdisk X configuration data
525 stored in the VM container file X. The method 800 may
do so by sending a “new vdisk from container” command/
request from the server 110 to the storage system 100, the
command specifying the vdisk name (X) and container file-
name X. Upon receiving the “new vdisk from container”
command, the storage operating system 200 of the storage
system 100 performs the command to produce the vdisk 515
(vdisk X) on the storage system 100 (which is conceptually
shown in FIG. 7B by the dashed arrow line). The command
may be accomplished using conventional storage operating
system procedures for converting a file into a vdisk. In con-
ventional procedures for converting a file into a vdisk, the
contents of the file is typically copied/imported to the created
vdisk as well. As such, the vdisk X 515 produced on the
storage system 100 will contain the VM X data 315 and vdisk
X configuration data 525 in the VM container file X.

[0117] The method 800 then exports and maps (at 808) the
vdisk X 515 from the storage system to the server. The
method 800 may do so by sending an “export vdisk” com-
mand/request from the server 110 to the storage system, the
command specifying the vdisk name (X). Upon receiving the
“export vdisk” command, the storage operating system 200 of
the storage system 100 exports vdisk X to the server 110
(which is conceptually shown in FIG. 7C by the dashed arrow
line) to make vdisk X 515 visible to the server 110. Upon
receiving vdisk X, the server operating system 310 of the
server 110 maps vdisk X 515 using conventional vdisk mask-
ing/mapping techniques.

[0118] The method 800 then brings the vdisk X 515 online
(at 810) on the server 110. In some embodiments, configuring
of the vdisk X 515 (partitioning and formatting the vdisk X
515) by the server operating system 310 is omitted. As
described above, configuring of the vdisk by the server oper-
ating system 310 is typically done to make the vdisk useable
by the server operating system 310 (i.e., so data and files may
be stored to and read from the vdisk). Prior to configuring of

US 2015/0339157 Al

the vdisk, the server operating system 310 may be unable to
access data or files from the vdisk.

[0119] However, since the vdisk X already contains the
vdisk X configuration data 525, the vdisk X is already, in
effect, configured and useable by the server operating system
310. The vdisk X configuration data may be read by the server
operating system to make the vdisk useable. For example, the
vdisk X configuration data 525 will already specify and pro-
vide a file system for the vdisk X so the server operating
system 310 may immediately use the file system to access
files (e.g., VM files describing the VM to be deployed) in the
vdisk X. Thus the vdisk X configuration data 525 may be used
to make the vdisk X immediately useable by the server oper-
ating system 310 and may be used to forego the configuring
(partitioning and formatting) of the vdisk X. As such, mod-
ules of the server operating system 310, such as the hypervi-
sor 311, may immediately read data and files (such as the VM
X data 315 comprising VM files) stored on the vdisk X.
[0120] Atstep 812, the method 800 then produces VM X on
the server by importing the VM X data to make the VM X
visible on the server 110 (which is conceptually shown in
FIG. 7D by “VM X 305” on the server 110). The method 800
may do so by sending a read command to the hypervisor
module/engine 311 in the server operation system 310, the
command specifying the VM X data to be read. Upon receiv-
ing the command, the hypervisor module/engine 311 may
read/import the VM X data 315 and produce VM X (based on
the VM X data 315) on the server 110. The hypervisor mod-
ule/engine 311 may then activate/start the VM X 305 for use
by aclient 160. As such, since the hypervisor module/engine
311 may read the VM X data 315 immediately from the vdisk
X, the hypervisor module/engine 311 may produce the VM X
rapidly on the server without waiting for the server operating
system 310 to configure the vdisk X.

[0121] Note that the VM X 305 may be run and maintained
from the storage system and the vdisk X 515 may be mapped
on the storage system and in use as long as VM X 305 is
running and in use on the server 110 by a client 160. At step
814, upon the VM X 305 no-longer running and in use on the
server 110 by a client 160, the method 800 then decommis-
sions/removes the VM X 305 on the server 110, and unmaps
and destroys the vdisk X 515 on the storage system 100
(which is conceptually shown in FIG. 7E by the now absent
VMX 305 and vdisk 515). The method 800 may do so by
sending an “remove vdisk map and remove vdisk” command
to the storage operating system 200, the command specitying
the vdisk to be destroyed. The method 800 then ends.

[0122] In further embodiments, in addition to the above
steps, the method 800 may also perform the optional step of
using a clone vdisk as a precaution to ensure the data in the
VM container file X 510 is not inadvertently modified. In
these embodiments, after the vdisk X 515 (“original” vdisk) is
produced from the VM container file X 510 (at step 806), a
snapshot image may be taken of the volume 505 that contains
the vdisk X 515 and the VM container file X 510. A snapshot
image may comprise a persistent pointin time (PPT) image of
the data of the volume that enables quick recovery of data
after data has been corrupted, lost, or altered. The snapshot
image may be produced using Snapshot™ technology pro-
vided by NetApp, Inc. of Sunnyvale, Calif. A clone of the
vdisk X 515 may then be produced from the snapshot image.
The clone vdisk may be produced using Flexclone™ technol-
ogy provided by NetApp, Inc. of Sunnyvale, Calif. The origi-
nal vdisk may then be destroyed. The clone vdisk may then be

Nov. 26, 2015

exported and mapped (at 808) to the server and the remaining
steps of the method 800 proceed as before. If the original
vdisk X 515 is exported and mapped to server, changes in the
contents of the vdisk may be reflected in the VM container file
X 510, thus modifying the data of the VM container file X
510. To avoid this, the clone vdisk may be exported and
mapped to the server and the original vdisk destroyed.
[0123] Some embodiments may be conveniently imple-
mented using a conventional general purpose or a specialized
digital computer or microprocessor programmed according
to the teachings herein, as will be apparent to those skilled in
the computer art. Appropriate software coding may be pre-
pared by programmers based on the teachings herein, as will
be apparent to those skilled in the software art. Some embodi-
ments may also be implemented by the preparation of appli-
cation-specific integrated circuits or by interconnecting an
appropriate network of conventional component circuits, as
will be readily apparent to those skilled in the art. Those of
skill in the art would understand that information and signals
may be represented using any of a variety of different tech-
nologies and techniques. For example, data, instructions,
requests, information, signals, bits, symbols, and chips that
may be referenced throughout the above description may be
represented by voltages, currents, electromagnetic waves,
magnetic fields or particles, optical fields or particles, or any
combination thereof.

[0124] Some embodiments include a computer program
product comprising a computer readable medium (media)
having instructions stored thereon/in and, when executed
(e.g., by a processor), perform methods, techniques, or
embodiments described herein, the computer readable
medium comprising sets of instructions for performing vari-
ous steps of the methods, techniques, or embodiments
described herein. The computer readable medium may com-
prise a storage medium having instructions stored thereon/in
which may be used to control, or cause, a computer to perform
any of the processes of an embodiment. The storage medium
may include, without limitation, any type of disk including
floppy disks, mini disks (MDs), optical disks, DVDs, CD-
ROMs, micro-drives, and magneto-optical disks, ROMs,
RAMs, EPROMs, EEPROMs, DRAMs, VRAMs, flash
memory devices (including flash cards), magnetic or optical
cards, nanosystems (including molecular memory ICs),
RAID devices, remote data storage/archive/warehousing, or
any other type of media or device suitable for storing instruc-
tions and/or data thereon/in.

[0125] Stored on any one of the computer readable medium
(media), some embodiments include software instructions for
controlling both the hardware of the general purpose or spe-
cialized computer or microprocessor, and for enabling the
computer or microprocessor to interact with a human user
and/or other mechanism using the results of an embodiment.
Such software may include without limitation device drivers,
operating systems, and user applications. Ultimately, such
computer readable media further includes software instruc-
tions for performing embodiments described herein. Included
in the programming (software) of the general-purpose/spe-
cialized computer or microprocessor are software modules
for implementing some embodiments.

[0126] Those of skill would further appreciate that the vari-
ous illustrative logical blocks, modules, circuits, techniques,
or method steps of embodiments described herein may be
implemented as electronic hardware, computer software, or
combinations of both. To illustrate this interchangeability of

US 2015/0339157 Al

hardware and software, various illustrative components,
blocks, modules, circuits, and steps have been described
herein generally in terms of their functionality. Whether such
functionality is implemented as hardware or software
depends upon the particular application and design con-
straints imposed on the overall system. Skilled artisans may
implement the described functionality in varying ways for
each particular application, but such implementation deci-
sions should not be interpreted as causing a departure from
the embodiments described herein.

[0127] Thevarious illustrative logical blocks, modules, and
circuits described in connection with the embodiments dis-
closed herein may be implemented or performed with a gen-
eral-purpose processor, a digital signal processor (DSP), an
application-specific integrated circuit (ASIC), a field pro-
grammable gate array (FPGA) or other programmable logic
device, discrete gate or transistor logic, discrete hardware
components, or any combination thereof designed to perform
the functions described herein. A general-purpose processor
may be a microprocessor, but in the alternative, the processor
may be any conventional processor, controller, microcontrol-
ler, or state machine. A processor may also be implemented as
a combination of computing devices, e.g., a combination of a
DSP and a microprocessor, a plurality of microprocessors,
one or more microprocessors in conjunction with a DSP core,
or any other such configuration.

[0128] The techniques or steps of a method described in
connection with the embodiments disclosed herein may be
embodied directly in hardware, in software executed by a
processor, or in a combination of the two. In some embodi-
ments, any software module or software layer described
herein may comprise an engine comprising firmware or soft-
ware and hardware configured to perform embodiments
described herein. In general, functions of a software module
or software layer described herein may be embodied directly
in hardware, or embodied as software executed by a proces-

Nov. 26, 2015

sor, or embodied as a combination of the two. A software
module may reside in RAM memory, flash memory, ROM
memory, EPROM memory, EEPROM memory, registers,
hard disk, a removable disk, a CD-ROM, or any other form of
storage medium known in the art. An exemplary storage
medium is coupled to the processor such that the processor
can read data from, and write data to, the storage medium. In
the alternative, the storage medium may be integral to the
processor. The processor and the storage medium may reside
in an ASIC. The ASIC may reside in a user device. In the
alternative, the processor and the storage medium may reside
as discrete components in a user device.
[0129] While the embodiments described herein have been
described with reference to numerous specific details, one of
ordinary skill in the art will recognize that the embodiments
can be embodied in other specific forms without departing
from the spirit of the embodiments. Thus, one of ordinary
skill in the art would understand that the embodiments
described herein are not to be limited by the foregoing illus-
trative details, but rather are to be defined by the appended
claims.
We claim:
1. A system for producing a virtual machine (VM) on a
server, the system comprising:
a VM manager engine configured for:
producing a virtual disk (vdisk) from a container object
comprising VM data and vdisk configuration data, the
vdisk comprising the VM data and vdisk configura-
tion data, the VM data describing a VM
exporting the vdisk to the server;
using the vdisk configuration data on the vdisk for mak-
ing the VM data on the vdisk accessible to the server;
and
producing the VM on the server using the VM data.

#* #* #* #* #*

