US 20200314183A1

a2y Patent Application Publication o) Pub. No.: US 2020/0314183 A1

a9y United States

McLaughlin et al.

43) Pub. Date: Oct. 1, 2020

(54) DATA DISTRIBUTION METHOD FOR A
PROCESS AUTOMATION AND INTERNET
OF THINGS SYSTEM

(71) Applicant: Honeywell International, Morris
Plains, NJ (US)

(72) Inventors: Paul McLaughlin, Ambler, PA (US);
Joseph Pradeep Felix, Coopersburg,
PA (US); Christopher Michael
Gilbert, Wavell Heights (AU); David
Barry Granatelli, Lilyfield (AU);
James A. Strilich, Phoenix, AZ (US)

(21) Appl. No.: 16/372,025

(22) Filed: Apr. 1, 2019
24 26 28
AN /
N \ f . / \
22 18 /16
N, Ve
N y
N,

Publication Classification

(51) Int. CL
HO4L 29/08 (2006.01)
HO4L 29/06 (2006.01)
HO4L 9/06 (2006.01)
(52) US.CL
CPC HO4L 67/125 (2013.01); HO4L 65/4076

(2013.01); HO4L 67/36 (2013.01); HO4L
9/0643 (2013.01); HO4L 67/2847 (2013.01);
HO4L 63/0236 (2013.01)

(57) ABSTRACT

A distribution system that provides for multicast transmis-
sion of the most important data that is of highest interest and
value to client applications including HMI stations, histori-
ans, trend views, alarm management functions, advanced
process controls, peer-peer communications and supervisory
control. A blast list containing the types of data that are to
be collected is formulated and stored in a system server and
sent to embedded controllers which then multicasts that data
to the system server and all console stations in the system.

US 2020/0314183 Al

Oct. 1,2020 Sheet 1 of 4

Patent Application Publication

T 314

Patent Application Publication Oct. 1,2020 Sheet 2 of 4 US 2020/0314183 A1

70

64 .

ks
7

FIG. 2

Patent Application Publication Oct. 1,2020 Sheet 3 of 4 US 2020/0314183 A1

o (o] (o] Q Q O
™ 421 o (¢2] o o
(]
]N
o] wn
on o
i i
)
¥
A}
1
o~
Lt
(Fp!
i O
i
o
O
.
o Qo
e w Q@
— —i
LA
i
i
[
o~
Loa}

US 2020/0314183 Al

¥ 'Ol

—
I
i i o
i i e
i i i
i o o
i i o
e O e e
o e et
i P o
s e
i e -

Oct. 1,2020 Sheet 4 of 4

o]
o~

0L¢

08¢

78T

Patent Application Publication

US 2020/0314183 Al

DATA DISTRIBUTION METHOD FOR A
PROCESS AUTOMATION AND INTERNET
OF THINGS SYSTEM

[0001] Many process facilities (e.g., a manufacturing
plant, a mineral or crude oil refinery, etc.) are managed using
distributed control systems. Typical contemporary control
systems include numerous modules tailored to monitor
and/or control various processes of the facility. Conven-
tional means link these modules together to produce the
distributed nature of the control system. This affords
increased performance and a capability to expand or reduce
the control system to satisfy changing facility needs.
[0002] Process facility management providers, such as
Honeywell, Inc., develop control systems that can be tai-
lored to satisfy wide ranges of process requirements (e.g.,
global, local or otherwise) and facility types (e.g., manufac-
turing, warehousing, refining, etc.). Such providers have two
principle objectives. The first objective is to coordinate
control of as many processes as possible to improve an
overall efficiency of the facility. The second objective is to
support a common interface that communicates data among
various modules controlling or monitoring the processes,
and also with any modules supervising the process or
displaying process data in an operator center.

[0003] Each process, or group of associated processes, has
one or more input characteristics (e.g., flow, feed, power,
etc.) and one or more output characteristics (e.g., tempera-
ture, pressure, etc.) associated with it.

[0004] The distributed control systems used to monitor
and control a process are frequently linked by common
communication pathways, such as by a local area network
(LAN) architecture or by a wide area network (WAN)
architecture. When a requesting node needs a datum from a
responding node, it issues a request for the datum across the
network and the responding node then returns the datum
back across the network. Many process control systems use
a supervisory control LAN or WAN integrated with one or
more process control networks. The process control net-
works contain the basic raw data required by the supervisory
control network and other process control networks.
[0005] Typically, a supervisory controller is linked to a
flexible array of processor controllers using communication
drivers matched to the specific processor controller being
interfaced. The supervisory controller maps the essential
data of these process controllers into a homogeneous data-
base controlled by the supervisory controller for consistent
storage and access by individual process controller or by any
client application being executed by the supervisory con-
troller.

[0006] Generally, a supervisory control network joins pro-
cess control network(s) by polling (scanning) at a fixed or
flexible interval for all data that is mapped by user configu-
ration to the supervisory control systems database. One or
more server nodes and one or more console station nodes
physically join the supervisory control local and wide area
networks to the process control network(s). These server
nodes are the primary data repositories for all client access
among the supervisory client nodes. The console station
nodes are the primary data repositories for operational
display access, thereby allowing operators to perform their
critical supervisory role.

[0007] A DCS is a system of sensors, controllers, and
associated computers that are distributed throughout a plant.
Each of these elements serves a unique purpose such as data

Oct. 1, 2020

acquisition, process control, as well as data storage and
graphical display. These individual elements communicate
with each other through the plant’s local area network—
often referred to as a control network. As the ‘brain’ of the
plant, the DCS makes automated decisions based on pro-
duction trends it sees in real-time throughout a plant. An
embedded controller is a specialized processor/computer
with all the hardware and software to do a specific automa-
tion task, such as running a plant/factory.

[0008] Conventional distributed control systems (DCS)
use methods such as publish/subscribe and request/response
to move data from embedded controllers to clients and
applications at the supervisory level. These approaches
generally work well enough but are constrained by the
limited resources available in these embedded devices. In
addition, each client running on a separate computer node
consumes additional resources from the controllers. Conse-
quently, the controllers are only able to publish a small
fraction of the available parameter data and often data
collection schemes must be carefully constructed to balance
the needs of interactive human operators, process engineers,
historical data collection and application needs.

[0009] This invention proposes adding a third data access
mechanism based on broadcasting a significant percentage
of the high value parameter data. The engineer has a variety
of methods to quickly establish a list of high value param-
eters and then the embedded controller will efficiently
multicast this list of parameter data every second (or faster).
It can then be received by numerous clients on a multitude
of computer nodes without any additional burden on the
controller.

SUMMARY OF THE INVENTION

[0010] The invention provides a system for moving data
from a group of embedded controllers to supervisory level
clients, displays and applications. The system comprises a
system server connected to a group of embedded controllers.
The system server contains a blast list definition of param-
eters to be communicated to the group of embedded con-
trollers. The group of embedded controllers comprises an
execution environment, the blast list and a blast hub having
multicasting communication capabilities to multicast data
meeting the blast list definition of parameters to the system
server and to at least one console station; and at least one
console station comprising a blast CDA server to receive the
data meeting the blast list definition of parameters and a
blast service to store said data meeting the blast list defini-
tion of parameters to a dynamic cache where it may then be
retrieved and shown on an operational display. The param-
eters in the blast list are selected from one or more recom-
mended parameters contained in programmable elements
within at least one of the controllers; are identified by a set
of parameters contained in a fast history subsystem or the
parameters in the blast list are additional parameters that are
selected on an ad hoc basis. The system server contains a
blast service to form the blast list and to pass the blast list
to a blast CDA server where the blast list is scattered into
individual blast lists for each controller and then these
scattered blast lists are transmitted to said embedded con-
trollers. The blast CDA server will then receive the multicast
data meeting the blast list definition of parameters and then
pass the data onto the blast service which will then store said
data into a dynamic cache that is accessible by one or more
process displays, a fast history collection and outside appli-

US 2020/0314183 Al

cations. The blast CDA server can handle communication
with the embedded controllers, send parts of the blast list to
each of said embedded controllers and receive and process
multicast messages received from said embedded control-
lers. The multicast messages comprise handle packets
describing a layout and meta data of the parameters being
multicast and data packets containing a current parameter
value and status for each parameter in the blast list. The
handle packets are configured to be sent each time a new
blast list is defined or a new client, being a system server or
console station, is connected to said embedded controllers.

[0011] The invention also comprises a process of collect-
ing data by defining a blast list comprising at least one
parameter on a system server; sending the blast list from the
system server to each controller in a group of controllers;
collecting data comprising said at least one parameter on
each controller; sending the data from each controller to the
system server and each console station within a group of
console stations by a multicast of data; the data on the
system server is then made available to one or more clients
outside of said system server. The blast list is first defined,
then stored on the system server and made ready to be
readily accessed by one or more components inside or
outside of a system. The definition of the blast list may be
stored in a database file on the system server. The blast list
comprises all the parameters that are determined to be of
highest importance to collect for analysis. Each of the
controllers contain a blast list and a blast hub for transmit-
ting data comprising said at least one parameter. There are
one or more clients that are selected from the group con-
sisting of one or more of display screens, outside computers
or servers, applications to analyze said data and a history of
said data collected over a defined period of time. Each of the
controllers is divided into a communication module to
handle incoming and outgoing network messages and one or
more execution environments to execute function block
logic. The execution environment as employed in the present
invention comprises a blast hub and a blast list wherein a
definition for the blast list is communicated from said
system server and wherein upon receiving said blast list the
blast hub multicasts a series of handle packets that describe
the layout and meta data of the blast list for all clients
comprising a system server and at least one console station.
After the multicast of the series of handle packets is com-
plete, the blast hub shifts to multicasting the values and
status of the parameters in the blast list to all clients. Each
time a new client is connected to said embedded controllers,
the handle packets are resent by multicasting to all clients.
The parameters in said blast list may be selected from one
or more recommended parameters contained in program-
mable elements within at least one of the controllers. The
blast list may be identified by a set of parameters to be
collected by a fast history subsystem. A portion of the
parameters in the blast list may be additional parameters that
are selected on an ad hoc basis by the operator of the system
server. An efficient process to protect the security of the
system is by having the packets defining the blast list and the
handle packets from the controllers to be cryptographically
verified. The data packets from the controllers will use
computationally simpler tamper detection schemes. A sys-
tem of white listing the origin of all packets will be
employed to ensure that the embedded controllers can trust
the blast list definitions and so that the system server and all

Oct. 1, 2020

console stations can trust the handle and data packets
multicast from the embedded controllers.

Key Terminology for the Invention

[0012] Blast list—a list of parameters that the embedded
controllers will publish via multicast network packets and
then received simultaneously by all listening client nodes.
[0013] Blast hub—a software component that executes in
the embedded controllers and which progressively publishes
the parameters in the blast list using multicast network
packets at a defined regular interval of time.

[0014] Blast CDA server—software component that
executes on each system server and console station node and
which handles all transmission and reception of blast list
related network packets to and from the embedded control-
lers

[0015] Blast service—software component that executes
on each system server and console station node and which
performs the critical functions of blast list definition and
storing all received parameter data into the dynamic cache.
[0016] Dynamic cache—existing software construct that
shields the embedded controllers from the numerous con-
sumers of parameter data from said embedded controllers.
[0017] Multicasting—an existing network technology that
allows a single network packet to be sent out and received
by multiple clients; while a powerful concept, it is tradi-
tionally not used because it does not guarantee delivery or
even arrival of packets in the original sequence.

BRIEF DESCRIPTION OF THE FIGURES

[0018] FIG. 1 shows an overview of the architecture of the
distribution of data in the system of the invention.

[0019] FIG. 2 is a flowchart of the data distribution from
the viewpoint of the system server as well as the connection
to outside clients and to the controllers.

[0020] FIG. 3 shows the data distribution architecture with
regards to a console station as communicating with a group
of controllers.

[0021] FIG. 4 shows the data distribution architecture with
relation to embedded controllers as they communicate with
the system server and console stations.

DETAILED DESCRIPTION OF THE
INVENTION

[0022] An embedded controller is composed of software
logically divided into a communication module plus one or
more execution environments. The communication module
handles all incoming and outgoing network messages while
the execution environments are concerned with the execu-
tion of function block logic. The communication module is
responsible for fetching the parameter data from the execu-
tion environments to satisfy all publish/subscribe and
request/response traffic.

[0023] Embedded controllers monitor associated pro-
cesses and operate to varying degrees in accordance with
supervisory data to control the associated processes, and,
more particularly, to modify one or more processes and
improve the monitored characteristics and the facility as a
whole. For example, an embedded controller may read
physical parameter data from a process, such as temperature,
pressure, flow rate, and the like, and use some or all of that

US 2020/0314183 Al

process data and, perhaps, some supervisory data to control
the process. This is particularly true in a feedback-controlled
process.

[0024] In the simplest embodiments, an exemplary
embedded controller may be a micro-controller circuit fab-
ricated on a circuit board and integrated into one of the
processes (i.e., part of a separator, washer, or grinder) that is
being controlled. In other embodiments, an exemplary
embedded controller may be a stand-alone device, that is
remote from the controlled process and coupled to it by a bus
architecture.

[0025] An exemplary embedded controller is physically
constrained in terms of computing power and resources. It
will typically be low power which helps it to operate in
challenging thermal environments and it will have fixed
memory and storage resources. An embedded controller is
typically viewed as a fixed asset in the plant/factory and is
expected to work without hardware upgrade for at least one
or more decades.

[0026] Process data may be transferred directly between
embedded controllers in a peer-to-peer relationship, as in a
LAN network. For example, a process controller, which
controls a washer, may request process data from three
embedded controllers, which control three grinders, in order
to determine the rate at which ground raw material is being
output from the three grinders. The washer may thereby
adjust the rate at which it washes the ground material. For
example, the washer may reduce the amount of power that
it uses to wash the ground raw material when the amount of
ground raw material being sent to the washer is relatively
low. It may even temporarily shut down in order to “hold and
wait” for a suitable amount of ground raw material to
accumulate before it resumes washing.

[0027] Insome embodiments of the present invention, one
or more client applications are executed on various nodes of
the network architecture. The nodes may be, for example,
personal computers (PCs) or other embedded controllers.
The client applications may all require the same process data
and supervisory data to be transferred at regular intervals
from the process controllers. Alternately, the client applica-
tions may require different but over-lapping subsets of the
process data and supervisory data to be transferred at regular
intervals from the process controllers.

[0028] The existing system has a dynamic cache that
shields the embedded controllers from the numerous indi-
vidual requests of the various clients (both in system and
external) that want to consume parameter data from said
embedded controllers. In the existing system, the term
“dynamic”, when used to refer to the cache, refers to the
ability of the cache to hold parameter data and/or supervi-
sory data of current or recent interest to the client applica-
tions communicating with the domain of the controllers.
[0029] The present invention uses multicasting to effi-
ciently communicate data from the embedded controllers to
the console stations and system server. With regular trans-
mission technologies like TCP, the embedded controllers
would need to send each data packet multiple times; once to
the system server and then again for each individual console
station. With multicasting technology, the data packets are
transmitted once by each embedded controller, but the
system server and the console stations will all receive the
same data packets. This invention reduces the communica-
tion workload and frees up resources in the embedded
controllers. The data packets are then processed and ulti-

Oct. 1, 2020

mately stored in the dynamic cache on the system server and
each console station whereby subsequent clients can then
access the available data without having to make any
explicit requests to the embedded controllers.

[0030] The data distribution invention augments the exist-
ing embedded controller architecture by adding a blast hub
and blast list to each execution environment within said
embedded controller. The definition of the blast list for each
execution environment is supplied from the system server to
the communication module which places it onto a shared
queue for retrieval by the blast hub. Once the blast hub has
its blast list, it will multicast out a series of handle packets
that describe the layout and metadata of the blast list for all
clients. The blast hub then shifts to rapidly multicasting the
values and status of the parameters in the blast list within
data packets. Anytime a new client connects, the blast hubs
will resend the handle packets that contain the layout and
metadata information.

[0031] Each controller can be packed with tens of thou-
sands of parameters. It is not feasible for resource con-
strained embedded controllers to be able to publish the data
for all these parameters every second. Instead there must be
a way for an engineer to define the list of high value
parameters that will be collected at this rapid rate.

[0032] The following list formation methods have been
defined and they can be used individually or in combination
at the engineer’s discretion. Where the same parameter
would be selected by more than one method, that parameter
will still only appear once in the final blast list. Modern
controllers implement control logic through programmable
elements known as function blocks. The engineering tools
allow the selection, layout and interconnections between
these function blocks. Each function block defines several
input, output and internal parameters. The designers of each
type of function block can make a recommendation as to
which parameters from each function block will most likely
be of high value to customers.

[0033] In the first method, an engineer may choose to
allow the data distribution blast list to be formed from the
recommendations of the engineering tools and the function
blocks.

[0034] Supervisory control systems currently allow the
user to define the set of parameters to be collected by a fast
history subsystem. Fast history subsystems are generally
configured to collect the specified parameters every 1-5
seconds.

[0035] In the second method, an engineer may choose to
have the data distribution blast list composed of parameters
already configured to be collected by a fast history subsys-
tem. Due to the increased efficiency of the data distribution
mechanism, customer would likely configure more param-
eters to be collected via the fast history subsystem.

[0036] In the unlikely event that additional parameters are
required to be collected via the efficient data distribution
mechanism and are not already specified by either the first
or the second method, then a third method allows for the
specification of an ad hoc list of parameters.

[0037] Relevant aspects of security and reliability are
handled between the blast CDA server and the embedded
controllers.

[0038] The need to limit the computational workload of
the embedded controllers means that cryptography is applied
selectively and only where it is considered most important.
The packets sent to the controllers that define the blast list

US 2020/0314183 Al

are cryptographically verified as well as the handle packets
published from the controllers via multicasting.

[0039] All clients validate that multicast packets are
received from an expected ‘white list” of controllers in the
system. The multicast data packets use a light-weight hash
for detection of tampering.

[0040] In FIG. 1 is shown an example of an overview of
the data distribution of a system contemplated by the present
invention. There is at least one system server 10 for man-
aging the overall system. System server 10 is both in
communication with other elements in the system by a
conventional connection 12 as well as an additional com-
munication 14 that is sending a definition of a blast list as
defined in the present invention from system server 10 to
embedded controllers 30. In a plant such as a refinery that
contains the system of the present invention, there will
typically be fifty to a hundred or more embedded controllers,
but to illustrate the invention, a small group of embedded
controllers 30 is shown in the Figures. Embedded controllers
multicast data 32 defined by the parameters in the blast list
to the system server 10 and a series of console stations 20
which may include a display for an operator to observe the
data and make changes to the operation as needed to
maintain the operations within specified parameters. Several
streams of data are shown being communicated in data
streams 16, 18 and 22 being sent to an analytics function 28,
a historical collection of data over a period of time 26 and
to other applications as shown at applications 24.

[0041] InFIG. 2 is shown the data distribution architecture
in relation to the system server and those software compo-
nents that are necessary to explain the present invention. For
comparison, elements in the current system that handle
traditional communication 64 are shown as GDA manager
62 and CDA server 66. In the present invention, system
server 10 has a block configuration 50 supplying block type
information to a block list 52, adjunct list 54 and history list
56, that separately or in combination function to provide a
list of parameters to blast list 58. The blast list 58 is
communicated from blast service 60 to blast CDA server 68
which then scatters the blast list into individual blast lists for
each controller 30. The individual controller blast lists are
then transmitted by the blast CDA server 68 to the control-
lers 30. Controllers 30, having received their blast list of
parameters, multicast the data from those parameters to blast
CDA server 68 and then to be sent to blast service 60 and
then stored within the dynamic cache 74 from which the data
may be retrieved for fast history 76, displays 78 or appli-
cations 80. A system repository 72 also is shown in relation
to GDA manager, blast service 60, CDA server 66 and blast
CDA server 68. The system repository 72 translates the
named representation of data parameters into compact
numerical handle representations used by controllers 30.
This translation is also performed in reverse.

[0042] InFIG. 3 is shown the data distribution architecture
with regards to a console station 20. Data from controllers
30 is sent to both CDA server 130 and blast CDA server 135.
As shown in FIGS. 1 and 2, data meeting the parameters
defined by the blast list are multicast to blast CDA server
135 and then converted and sent to blast service 100 to be
stored in dynamic cache 115 and displayable on displays
120. As in FIG. 2 the system repository 105 provides name
to handle translation services and vice-versa. GDA manager
110 and CDA server 130 are shown to provide context of the
current system using regular networking technology.

Oct. 1, 2020

[0043] In FIG. 4 is shown an embedded controller 30 and
its position and function in the system of the present
invention. Embedded controller 30 is shown with CDA
communication module 200 that receives instructions from
system server 270 including the blast list definition and
instructions on being connected to the components in the
system. CDA communication module 200 is shown com-
municating to shared memory queues 210 and then to a
series of four execution environments 220, 230, 240 and 250
each of which have their specific parts of the blast list
defining the parameters that are being measured and multi-
cast at 260 to system server 270 and console stations 280,
282 and 284. The number of console stations will vary as
required by the particular plant and there may be additional
system servers to communicate with different parts of a
plant. Controller 30, as shown, includes a platform environ-
ment 220, control execution environment 230, and two 10
link environments 240 and 250.

1. A system for moving data from a group of embedded
controllers to supervisory level clients and applications, said
system comprising

a. a system server connected to a group of embedded
controllers, wherein said system server contains a blast
list definition of parameters to be communicated to said
group of embedded controllers;

b. the group of embedded controllers comprising an
execution environment, the blast list and a blast hub
having multicasting communication capabilities to
multicast data meeting said blast list definition of
parameters to said system server and to at least one
console station; and

c. a system server and at least one console station com-
prising a blast CDA server to receive said data meeting
said blast list definition of parameters and a blast
service to store said data meeting said blast list defi-
nition of parameters to a dynamic cache where said
data can be made available to displays, fast history
subsystem or outside applications and analytics.

2. The system of claim 1 wherein the parameters in said
blast list are selected from one or more recommended
parameters contained in programmable elements within at
least one of said controllers; are identified by a set of
parameters contained in a fast history subsystem or the
parameters in said blast list are additional parameters that
are selected on an ad hoc basis.

3. The system of claim 1 wherein said system server
contains a blast service to form the blast list and to pass the
blast list to a blast CDA server and a dynamic cache to store
parameter value and status data that is accessible by one or
more process displays, a fast history collection and outside
applications.

4. The system of claim 3 wherein said blast CDA server
can handle communication with said embedded controllers,
send parts of the blast list to each of said embedded
controllers and receive and process multicast messages
received from said embedded controllers.

5. The system of claim 4 wherein said multicast messages
comprise handle packets describing a layout and meta data
of the parameters being multicast and data packets contain-
ing a current parameter value and status for each parameter
in the blast list.

6. The system of claim 5 wherein said handle packets are
configured to be sent each time a new client is connected to
said embedded controller.

US 2020/0314183 Al

7. The system of claim 1 wherein each of said controllers
is divided into a communication module capable of handling
incoming and outgoing network messages and one or more
execution environments to execute function block logic.

8. The system of claim 7 wherein said execution envi-
ronment comprises a blast hub and a blast list wherein a
definition for said blast list is communicated from said
system server and wherein upon receiving said blast list said
blast hub is capable of multicasting a series of handle
packets that describe a layout and meta data of the blast list
for all clients and wherein during said multicast said handle
packets are received by the system server and each console
station.

9. A process of collecting data comprising;

a. defining a blast list comprising at least one parameter

on a system server;

b. sending the blast list from the system server to each
controller in a group of controllers;

c. collecting data comprising said at least one parameter
on each controller;

d. sending said data from each controller to the system
server and to each console station within a group of
console stations by a multicast of data and

e. then sending said data from said system server to one
or more clients outside of said system server.

10. The process of claim 9 wherein said blast list is first
defined, then stored on said system server and made ready
to be readily accessed by one or more components inside or
outside of a system.

11. The process of claim 9 wherein the blast list comprises
all of the parameters that are determined to be of highest
importance to collect for analysis.

12. The process of claim 9 wherein each of said control-
lers contains a blast hub for transmitting data comprising
said at least one parameter of a blast list.

13. The process of claim 9 wherein said one or more
clients are selected from the group consisting of one or more
of display screens, outside computers or servers, applica-
tions to analyze said data and a history of said data collected
over a defined period of time.

Oct. 1, 2020

14. The process of claim 9 wherein each of said control-
lers is divided into a communication module to handle
incoming and outgoing network messages and one or more
execution environment to execute function block logic.

15. The process of claim 14 wherein said execution
environment comprises a blast hub and a blast list wherein
a definition for said blast list is communicated from said
system server and wherein upon receiving said blast list said
blast hub multicasts a series of handle packets that describe
a layout and meta data of the blast list for all clients and
wherein during said multicast said handle packets are
received by the system server and each console station.

16. The process of 15 wherein once the multicast of the
series of the handle packets is complete, the blast hub shifts
to multicasting values and status of the parameters in the
blast list to all clients.

17. The process of 16 wherein each time a new client is
connected to said controllers, the handle packets are resent
by multicasting to all clients before resuming the multicast-
ing of said values and status of the parameters in the blast list
to all clients.

18. The process of claim 9 wherein the parameters in said
blast list are selected from one or more recommended
parameters contained in programmable elements within at
least one of said controllers.

19. The process of claim 9 wherein the parameters in said
blast list are identified by a set of parameters to be collected
by a fast history subsystem or the parameters in said blast list
are additional parameters that are selected on an ad hoc
basis.

20. The process of claim 9 wherein packets defining the
blast list from the system server and the handle packets from
the controllers are cryptographically verified; wherein the
data packets containing the values and status of parameters
from the blast list use a light-weight hash for tamper
detection; wherein the origin of all packets in the system are
checked against a known white list of communicating nodes
comprising the system server, console stations and embed-
ded controllers.

