(19)

US 20180322032A1

United States

(54)

(71)

(72)

@
(22)

(1)

a2y Patent Application Publication o) Pub. No.: US 2018/0322032 A1
Thazhathekalam et al. 43) Pub. Date: Nov. 8, 2018
APP SOFTWARE AUDIENCE (52) US. CL
IMPERSONATION FOR SOFTWARE CPC GOG6F 11/3664 (2013.01); GO6F 11/3612
TESTING (2013.01)
Applicant: Microsoft Technology Licensing, LLC, 57 ABSTRACT
Redmond, WA (US) 7)
] . A machine may be configured to test an application based on
Inventors: Krlshnalf Thaz.hathekalam, Bellevue, an in-app impersonating of an audience profile. For
;{Vﬁ (US()i’ I\;lrhd SM%hISOOq’ example, the machine receives a selection of an audience
Ke hI;lon, ’ M. U 1) ’ " eTastln WA identifier via a user interface. The machine maps the audi-
UOS .n:,le:r,l. N?unt 12} del:1 errsace, le. WA ence identifier to a configuration file that includes identifiers
(U S)f YnJaIi Il;r?l ! ?;’Wifm eé ' of features of the application available for use by the
(,)’ un Lu, he inon > (US):] audience. The machine, based on the audience identifier and
Ell;lslil Rzmm;ll:,l’ 5 eaiam\%rk CAS(US)’ the configuration file, causes a display, in the user interface,
shay Gandhi, Seattle, Us) of the identifiers of the features. The machine receives, via
Appl. No.: 15/586,633 the user interface, a request to modify an operational state of
’ a feature of the application in the software context associ-
Filed: May 4, 2017 ated with the audience. The machine configures, at run-time,
Publication Classificati the application based on the audience identifier, the con-
ublication Classification figuration file, and the request to modify the operational state
Int. CL of the feature. The configuring results in the application
GO6F 11/36 (2006.01) including the feature in a modified operational state.

300 4 APPLICATION OPTIONS 304
GENERAL GENERAL SETTINGS FOR EXPERIMENTATION AND 306
DISPLAY FEATURE ROLLOUT
PROOFING [AUDIENCE q
SAVE)

LANGUAGE [comPaNY EMPLOYEES w 308 310
ADVANCED [CHANNEL I/
CUSTOMUIZE RIBBON |DEVMAIN v |'*312 314
QUICK ACCESS
TOOLBAR [USER 4
ADD-INS [aNsALIMU 316
TRUST CENTER
EXPERIMENT
302
OK CANCEL
Lok [[c

\ 318 \ 39

Patent Application Publication

100\

Nov. 8,2018 Sheet 1 of 13

US 2018/0322032 Al

TESTER DEVICE

AUDIENCE
IMPERSONATION
TOOL

106

108

AUDIENCE DATA

CONFIGURATION
FILES

APPLICATION

.
[N

FIG. 1

Patent Application Publication Nov. 8,2018 Sheet 2 of 13 US 2018/0322032 A1

200 ~

AUDIENCE IMPERSONATION SYSTEM
FEATURE STATE
202 ~ Rﬁg‘gb’tﬁe MODIFYING 208
MODULE
SERVER
204 ~ mﬁjﬁg COMMUNICATION 210
MODULE
DISPLAYING
206 MODULE
DATABASE(S) [~ 12

FIG. 2

=

b

0 .

& Ve Ol

M 0z2¢ \ 81E \

> AN AN

A TIONVO MO

-

o)

- 20¢

(=]

< A 4

7]

2 INININTdXT

i HAINID LSNYL

= 96 ANMYENY SNI-aay

m L

% ¥ ¥3sn ¥vg1001

m % A $S3J0V %2IND
43 cle NIVINA3Q NOEEN 3ZINWOLSND

=

2 L/ T13NNVHO Q3IDNVAQY

£ Em\\ 90c) A S3IIAOTdINT ANVAINOD FOVNONY]

= . INVS

p / JIDONIIANY ONI400¥d

= st LNOTION FuNLY34 J&W__ﬁ_w

] Y ANV NOILY.LNIWMIIXT €04 SONILLIS TYHINTD

(=9

= v0€g’ SNOILdO NOILYDITddy [~ 00€

E

[

=W

US 2018/0322032 Al

Nov. 8,2018 Sheet 4 of 13

Patent Application Publication

. an ge ol
AN AN
TIONYD MO 878 92¢
\ \
| 30143/0 03103738 IAOWIY || STARIYIAC TI¥ IAOWTY | | JARMIAO FMNLY34 0aV
08¢
NYI1009 357V 2 N1V
NY31009 INyL ERINED 208
\ ddAL INTVA | NTIVA JHNLVYIA JANVYN FdNLy3d \\\
y2e’] INTNRIAXT
\\ S3AMYIAO ANV INFANSISSY LHOIMA MEINTD 1S
cet] Sm(“ AWIYPNY SNIadv
¥3sn Hva100L
\\ —— SOV MOIND
"y A NIVINAZQ NO&aId IZINNOLSND
\\ 13NNVHO JIONVAQY
01€1 mom(“ A SIIAOTAINT ANVAINOD m@<:mm_v\7/ﬁ
/] 3ONIIANY ONIH00¥d
nod 1NOTI0Y FANLY3A RO
/ ANV NOILY.LNTNIMIXT 404 SONILLIS TvHINTD
70¢ 4 SNOILJO ayom [~ 00€

US 2018/0322032 Al

Nov. 8,2018 Sheet 5 of 13

Patent Application Publication

IAMYIAO AILDTTIS IAOWIY || STAMYIAC TV IAOWIY | | IAIMYIAC THNLYI4 aay
NY31004 357V Z N1V
| 1300 || Mo | nlv3d -
L/
ace 1 L] 3nTvA FuNLy34 |NLV3S 1
| IdAL INTVA| LHOIT4 INEERYE
966+ A NY31008] YAINID 1SNYL
peeAHTC ZNLY3A] INYN FunLy3d [VNV SNI-aav
g JAIMYIA0 JWNLY34 agy | 8380 ¥va1001
28811 ys e SSIDDOV MOIND
0E NOgd M IZINNOLSND
/ TINNVHO d3IONVAQY
% | JOVNONYT
/] 2 A SIAIAOTdINTG ANVAINOD
0le 80¢ —! S
/ JONIIANY ONIH00¥d
- yd 1NOT10Y FYNLY3A Awm%wm
, ANV NOLLYLNIWINTAXT MO SONILLIS TvHINTD
0¢] SNOILAO NOILVOIlddy T 00€

US 2018/0322032 Al

Nov. 8,2018 Sheet 6 of 13

Patent Application Publication

0ce \ 8¢ \ Qm. G\&
TAONYD MO 9z¢ \
JAYIAO0 A310T13S IAOWIM || STAMYIAO TV IAOWIY | | 3AYIA0 F¥NLY34 aay
NV31004 Nyl Z N1V
NVY31009 YL L 34NLY3S 206
\ AdAL ANIVA ANTVA JdNLV3A JAVN FNLY3S \
26 A
SAAHIAO ANV INFNNDISSY 1HOIT4 ININIA3dX3
/ M3INTD 1SNYL
Nmm\\ Sm(_ NAINYINY SNI-aav
/ ¥3sn yvg1001
)% DN $S30DV MOIND
1g Zie NIVINASQ NOga1d 3ZINWOLSND
/ 13NNYHD QIDONVAQY
4 g0c) A S33IA0TdINT ANVAINOD FOVNONY
_ IAVYS
/ 30N3IaNY ONIH00¥d
oot 1NOTION N1y ROVt
Y ANY NOILYLNINIYIAXT HO4 SONILLIS TYHINTD
08 SNOILAO NOILLYDITddy [~ 00€

Patent Application Publication Nov. 8,2018 Sheet 7 of 13 US 2018/0322032 A1

400
'/

RECEIVE A SELECTION OF AN AUDIENCE IDENTIFIER VIA A USER 402
INTERFACE OF A CLIENT DEVICE TOOL, THE CLIENT DEVICE TOOL
TESTING FEATURES OF AN APPLICATION, THE TESTING OF THE
FEATURES BEING PERFORMED IN A SOFTWARE APPLICATION CONTEXT
ASSOCIATED WITH AN AUDIENCE THAT USES THE APPLICATION

A4

MAP THE AUDIENCE IDENTIFIER TO A CONFIGURATION FILE, THE 0%
CONFIGURATION FILE INCLUDING IDENTIFIERS OF ONE OR MORE
FEATURES OF THE APPLICATION THAT ARE AVAILABLE FOR USE BY THE
AUDIENCE
406
CAUSE A DISPLAY, IN THE USER INTERFACE, OF THE IDENTIFIERS OF
THE ONE OR MORE FEATURES
408

RECEIVE, VIA THE USER INTERFACE, A REQUEST TO MODIFY AN
OPERATIONAL STATE OF A PARTICULAR FEATURE OF THE APPLICATION
IN THE SOFTWARE CONTEXT ASSOCIATED WITH THE AUDIENCE

CONFIGURE, AT RUN-TIME OF THE APPLICATION, THE APPLICATION {410
BASED ON THE AUDIENCE IDENTIFIER, THE CONFIGURATION FILE, AND
THE REQUEST TO MODIFY THE OPERATIONAL STATE OF THE
PARTICULAR FEATURE, THE CONFIGURING RESULTING IN THE
APPLICATION INCLUDING THE PARTICULAR FEATURE IN A MODIFIED
OPERATIONAL STATE

FIG. 4

Patent Application Publication Nov. 8,2018 Sheet 8 of 13 US 2018/0322032 A1

400
f

402
404

406
408

410

UPDATE THE USER INTERFACE OF THE CLIENT DEVICE TOOL TO INDICATE [502

A MODIFIED OPERATIONAL STATE OF THE PARTICULAR FEATURE OF THE
APPLICATION

Patent Application Publication Nov. 8,2018 Sheet 9 of 13 US 2018/0322032 A1

400
/

402
404

406
408

410N

602
GENERATING, AT RUN-TIME, A TESTING STATE FOR THE

APPLICATION RUNNING ON THE CLIENT DEVICE IN THE
SOFTWARE CONTEXT ASSOCIATED WITH THE AUDIENCE

A
Y

FIG. 6

Patent Application Publication Nov. 8,2018 Sheet 10 of 13 US 2018/0322032 A1l

400
v/

402
404

406
408

DETERMINE A FEATURE VALUE ASSOCIATED WITH THE PARTICULAR 702
FEATURE BASED ON THE REQUEST TO MODIFY THE OPERATIONAL STATE
OF THE PARTICULAR FEATURE

v

IDENTIFY, IN THE CODE OF THE APPLICATION, A CONDITIONAL STATEMENT [704
CODEPATH CORRESPONDING TO THE FEATURE VALUE ASSOCIATED WITH
THE PARTICULAR FEATURE

s

410N
MODIFY THE OPERATIONAL STATE OF THE PARTICULAR 706
FEATURE BASED ON THE CONDITIONAL STATEMENT
> CODEPATH CORRESPONDING TO THE FEATURE VALUE
ASSOCIATED WITH THE PARTICULAR FEATURE

FIG. 7

Patent Application Publication Nov. 8,2018 Sheet 11 of 13 US 2018/0322032 A1l

400
f

402
404

802
AUTOMATICALLY ENABLE THE ONE OR MORE FEATURES ASSOCIATED [

WITH THE AUDIENCE IDENTIFIER IN THE CONFIGURATION FILE BASED ON
THE RECEIVING OF THE SELECTION OF THE AUDIENCE IDENTIFIER AND
THE MAPPING OF THE AUDIENCE IDENTIFIER TO THE CONFIGURATION FILE

406
INDICATE THAT THE ONE OR MORE FEATURES ASSOCIATED |- 804
WITH THE AUDIENCE IDENTIFIER ARE ENABLED
408
410

FIG. 8

Patent Application Publication Nov. 8,2018 Sheet 12 of 13 US 2018/0322032 A1l

400
/

402
404
406
408

410

MODIFY THE OPERATIONAL STATE OF THE PARTICULAR | 902
FEATURE IN THE CONFIGURATION FILE, THE MODIFYING
RESULTING IN GENERATING AN UPDATED CONFIGURATION
FILE ASSOCIATED WITH THE AUDIENCE

h 4

GENERATE, AT RUN-TIME, A TESTING STATEFORTHE 904
APPLICATION RUNNING ON THE CLIENT DEVICE IN THE
SOFTWARE CONTEXT ASSOCIATED WITH THE AUDIENGE
BASED ON THE UPDATED CONFIGURATION FILE, THE TESTING
STATE PROVIDING A VISUALIZATION OF THE APPLICATION
INCLUDING THE PARTICULAR FEATURE IN THE MODIFIED
OPERATIONAL STATE

A

FIG. 9

Patent Application Publication Nov. 8,2018 Sheet 13 of 13 US 2018/0322032 A1l

1o
PROCESSOR < e{;ggags — 1010
1002 >
1024 A INSTRUCTIONS
) | ALPHANUMERIC
INPUT DEVICE [~ 1012
MAIN MEMORY
1104 —
. .| CONTROL
1008 DEVICE
1006 4 STATIC MEMORY "3 STORAGEUNIT | 416
MACHINE-

READABLE MEDIUM [~ 1022

A
A

INSTRUCTIONS lh 1024

NETWORK
1020 | INTERFACE >
DEVICEC SIGNAL
GENERATION |- 1018
_ DEVICE
A
ADDITIONAL
1026+ NETWORK < » INPUT 1030
COMPONENT

FIG. 10

US 2018/0322032 Al

APP SOFTWARE AUDIENCE
IMPERSONATION FOR SOFTWARE
TESTING

TECHNICAL FIELD

[0001] The present application relates generally to sys-
tems, methods, and computer program products for testing,
and, in particular but not by way of limitation, for testing of
a software application based on in-app impersonating of an
audience profile of the software application.

SUMMARY

[0002] The following presents a shortened summary of
various aspects of this disclosure in order to provide a basic
understanding of such aspects. This summary is not an
extensive overview of all contemplated aspects, and is
intended to neither identify key or critical elements nor
delineate the scope of such aspects. Its purpose is to present
some concepts of this disclosure in a compact form as a
prelude to the more detailed description that is presented
later.

[0003] A method includes receiving a selection of an
audience identifier via a user interface of an audience
impersonation tool for testing features of a software appli-
cation. The testing of the features may be performed in a
software application context associated with an audience
that uses the software application. The method also includes
mapping the audience identifier to a configuration file that
includes identifiers of features of the software application
that are available for use by the audience. The method
further includes causing a display, in the user interface, of
the identifiers of the features available for use by the
audience. The causing of the display may be based on the
audience identifier and the configuration file. The method
also includes receiving, via the user interface, a request to
modify an operational state of a particular feature of the
software application in the software context associated with
the audience, and configuring, at run-time of the software
application, the software application based on the audience
identifier, the configuration file, and the request to modify
the operational state of the particular feature. The configur-
ing may result in the software application including the
particular feature in a modified operational state.

[0004] A system includes one or more hardware proces-
sors and a machine-readable medium storing instructions
which, when executed by the one or more hardware proces-
sors, cause the one or more hardware processors to perform
operations. The operations include receiving a selection of
an audience identifier via a user interface of an audience
impersonation tool for testing features of a software appli-
cation. The testing of the features may be performed in a
software application context associated with an audience
that uses the software application. The operations also
includes mapping the audience identifier to a configuration
file that includes identifiers of features of the software
application that are available for use by the audience. The
operations further includes causing a display, in the user
interface, of the identifiers of the features available for use
by the audience. The causing of the display may be based on
the audience identifier and the configuration file. The opera-
tions also includes receiving, via the user interface, a request
to modify an operational state of a particular feature of the
software application in the software context associated with

Nov. &,2018

the audience, and configuring, at run-time of the software
application, the software application based on the audience
identifier, the configuration file, and the request to modify
the operational state of the particular feature. The configur-
ing may result in the software application including the
particular feature in a modified operational state.

[0005] A non-transitory machine-readable storage
medium includes instructions that, when executed by one or
more hardware processors of a machine, cause the one or
more hardware processors to perform operations. The opera-
tions include receiving a selection of an audience identifier
via a user interface of an audience impersonation tool for
testing features of a software application. The testing of the
features may be performed in a software application context
associated with an audience that uses the software applica-
tion. The operations also includes mapping the audience
identifier to a configuration file that includes identifiers of
features of the software application that are available for use
by the audience. The operations further includes causing a
display, in the user interface, of the identifiers of the features
available for use by the audience. The causing of the display
may be based on the audience identifier and the configura-
tion file. The operations also includes receiving, via the user
interface, a request to modify an operational state of a
particular feature of the software application in the software
context associated with the audience, and configuring, at
run-time of the software application, the software applica-
tion based on the audience identifier, the configuration file,
and the request to modify the operational state of the
particular feature. The configuring may result in the software
application including the particular feature in a modified
operational state.

BACKGROUND

[0006] Traditionally, when testing a software product, a
tester may build a certain environment on a machine, and
test how the software product (e.g., a certain version, a
certain add-in, or a certain software combination) behaves
when running in the particular environment (e.g., Windows
XP). Testing techniques may include the process of execut-
ing a program or application with the intent of finding
software bugs (e.g., errors, fault, or other defects), and to
verify that the software product is fit for use by users at
large.

[0007] In some instances, a software defect may occur
through the following processes. A programmer makes an
error, which results in a defect in the software source code.
It this defect is executed, in certain situations the system will
produce wrong results, causing a failure. A defect may turn
into a failure when the environment is changed. Examples of
these changes in environment include the software being run
on a new computer hardware platform, alterations in source
data, or interactions with different software. The common
practice of software testing is to perform testing after the
functionality is developed, before the software is shipped to
the customer. The practice of delaying the testing to the end
of the software development cycle often results in a short-
ened and, therefore, compromised period devoted to testing
the software.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] Some embodiments are illustrated by way of
example and not limitation in the figures of the accompa-
nying drawings, in which:

US 2018/0322032 Al

[0009] FIG. 1 is a diagram illustrating an audience imper-
sonation system on a device associated with a tester, accord-
ing to some example embodiments;

[0010] FIG. 2 is a block diagram illustrating components
of an audience impersonation system, according to some
example embodiments;

[0011] FIGS. 3A-3D are illustrations of a user interface of
the audience impersonation tool, according to some example
embodiments;

[0012] FIGS. 4-9 are flowcharts illustrating methods for
impersonating an audience profile of a software application
for testing the software application in a software context
pertaining to the audience, according to some example
embodiments; and

[0013] FIG. 10 is a block diagram illustrating components
of a machine, according to some example embodiments,
able to read instructions from a machine-readable medium
and perform any one or more of the methodologies dis-
cussed herein.

DETAILED DESCRIPTION

[0014] Example methods and systems for testing of a
software application based on in-app impersonating of an
audience profile of the software application, are described.
In the following description, for purposes of explanation,
numerous specific details are set forth to provide a thorough
understanding of example embodiments. It will be evident to
one skilled in the art, however, that the present subject
matter may be practiced without these specific details.
Furthermore, unless explicitly stated otherwise, components
and functions are optional and may be combined or subdi-
vided, and operations may vary in sequence or be combined
or subdivided.

[0015] Traditionally, software features of a software appli-
cation are deployed to a client device in a particular version
of the software application or, sometimes, in a software
patch released to address bugs in the particular version of the
application. Preparing a software build for release to cus-
tomers may take weeks of establishing requirements,
designing the software, implementing the software, and
testing the software. In addition, the traditional approach to
software development where testing is performed at the end
of the development cycle may result in software that
includes more bugs.

[0016] A faster approach to a feature roll-out may include
an improved approach to testing a feature roll-out where
testing is integrated throughout the software development
cycle, and where software quality issues may be identified
and solved before small, incremental, and iterative releases.
Every software product has a target audience. The testing of
the software product may include testing whether the soft-
ware product performs as intended for, and as expected by
the audience.

[0017] Some software products may have several audi-
ences. Depending on the audience, a particular software
application may have a particular set of software features
(hereinafter also “features™) activated for the use by the
members of the particular audience. For example, the audi-
ences associated with a software product such as MICRO-
SOFT OFFICE® may include a developers group (e.g., a
Microsoft engineering group that develops and/or tests the
software included in Microsoft Office), a group of users that
includes one or more (e.g., all) employees of Microsoft, a
group of “insiders” (e.g., tech-savvy users who are produc-

Nov. &,2018

tion users who opt-in to get beta features), and a group of
production users (e.g., the users who use a publicly-released
version of Microsoft Office under a license agreement).
Different users of Microsoft Office may get a different
feature set based on the audience to which they belong. The
developers audience may have access to features that are not
yet ready for exposure to any of the other audiences. The
insiders audience may be able to see features that are in a
beta state that have not yet been approved for production,
and therefore are not yet available for the production audi-
ence. Accordingly, the experiences of the users from the
various audiences with the software application may be
quite different.

[0018] Unlike the traditional approach to software releases
where a particular software version is released to the entire
population of users of the software at one time, a more agile
approach may include deploying various versions (or vari-
ous features) of a software application to various audiences
at different times. However, before the various versions or
various features are released to the various audiences, the
various versions and the various features may need to
undergo experimentations (e.g., unit testing, integration test-
ing, component interface testing, system testing, A/B test-
ing, etc.). The experimentations associated with the audi-
ences may include a validation of whether new application
features associated with the audiences function as intended
in the software application contexts associated with the
audiences. A software application context associated with a
particular audience may include a particular application and
all the application features activated for a user included in
the particular audience.

[0019] Insome example embodiments, an audience imper-
sonation tool may be used to perform in-app client software
impersonation of an audience profile (or a user of an
audience) to enable validation of an application (e.g., the
testing of a new feature in the context of a set of enabled
features associated with the audience) on a client device of
a testing user (e.g., a developer, a test engineer, etc.) before
deployment to the audience. In various example embodi-
ments, the audience impersonation tool may allow a user of
the audience impersonation tool (e.g., a developer, a test
engineer, etc.) to select an identifier of a particular audience
for the software application via a user interface displayed on
the client device of a testing user. The identifier of the
particular audience may be displayed in the user interface as
part of a group of audience identifiers from which the user
can chose an audience identifier. The audience imperson-
ation tool may also allow the user of the audience imper-
sonation tool to test a new feature of the application in the
software context pertaining to the selected audience before
the new feature is released to the particular audience.

[0020] Insome example embodiments, an audience imper-
sonation system may receive a selection of an audience
identifier via a user interface of an audience impersonation
tool. The audience impersonation tool may be used, by a
tester (e.g., a developer, a test engineer, etc.), for testing
features of a software application in a software context
associated with an audience that uses the software applica-
tion (hereinafter also “application™). The audience imper-
sonation system may map the audience identifier to a
configuration file that includes identifiers of one or more
features of the application that are available for use by the
audience. The audience impersonation system may cause a
display, in the user interface, of the identifiers of the one or

US 2018/0322032 Al

more features that are available for use by the audience. The
causing of the display, in the user interface, of the identifiers
of the one or more features may be based on the audience
identifier and the configuration file. The audience imperson-
ation system may receive, via the interface, a request (e.g.,
a command, a computer instruction, etc.) to modify an
operational state of a particular feature of the application in
the software context associated with the audience. The
audience impersonation system may configure, at run-time
of the application, the application based on the audience
identifier, the configuration file, and the request to modify
the operational state of the particular feature. The configur-
ing may result in the application including the particular
feature in a modified operational state.

[0021] For example, the audience impersonation system
receives a selection of the audience identifier corresponding
to the “insiders” audience via the user interface of the
audience impersonation tool. The audience impersonation
tool may be running on a client device associated with a
developer (or tester) of the application. The audience imper-
sonation system may map the “insiders” audience identifier
to a configuration file that includes identifiers of one or more
features of the application that are available for use by the
“insiders” audience. The audience impersonation system,
based on the “insiders” audience identifier, may cause a
display, in the user interface, of the identifiers of the one or
more features that are available for use by the “insiders”
audience. The audience impersonation system may receive,
via the user interface, a request to modify an operational
state of (e.g., enable or disable) a particular feature of the
application in the software context associated with the
“insiders” audience. The audience impersonation system
may configure, at run-time, the application based on the
“insiders” audience identifier, the configuration file, and the
request to modify the operational state of the particular
feature. The configuring may result in the application includ-
ing the particular feature in a modified operational state
(e.g., enabled or disabled).

[0022] In some example embodiments, the one or more
features are included as feature code in the software appli-
cation code of the software application. The one or more
features may each be associated with one or more opera-
tional states in the software application. In some example
embodiments, the operational states take the form of alter-
nate states, such as “enabled,” or “disabled.” For example,
for a first audience, a first set of features are enabled in the
application, at run-time of the application. For a second
audience, the first set of features is disabled in the applica-
tion, at run-time of the application. In some example
embodiments, the operational states may correspond to
treatments associated with an experimentation (e.g., an A/B
test). In A/B testing, treatments may be variants of a digital
content item that test the responses of users based on being
exposed to a particular variant of the digital content item
during the A/B test.

[0023] According to various example embodiments, the
particular feature is implemented in the software application
code of the software application based on a feature toggle for
modifying the operational state of the particular feature. A
feature toggle may include a plurality of different options
pertaining to the functionality of the particular feature. In
some example embodiments, a feature toggle represents a
binary decision. A binary decision is a choice between two
alternatives, for instance between taking some specific

Nov. &,2018

action or not taking it. Examples of binary decisions may
include: the Boolean data type, representing a value which
may be chosen to be either true or false; conditional state-
ments (e.g., if-then or if-then-else) representing binary deci-
sions about which piece of code to execute next; decision
trees and binary decision diagrams representing sequences
of binary decisions; etc.

[0024] In some example embodiments, the different
options associated with a feature toggle may be represented
by different code paths that are associated with the toggle
and that are included in the application. For example, the
toggle is a conditional statement, and the different code
paths associated with the toggle are the binary decisions
representing two possible pieces of code that could be
executed next. In some instances, the options include
enabling or disabling the particular feature. According to
another example, the different options associated with a
feature toggle include different variants pertaining to an
experimentation (e.g., an A/B test), such as “show a green
button at the bottom of the web page,” or “show a red button
at the bottom of the web page.”

[0025] The audience impersonation system may determine
a feature value associated with the particular feature based
on the request (e.g., the command or instruction) to modify
the operational state of the particular feature. In some
instances, the feature value may be a binary value: “true” or
“false.” For example, the request includes an indication to
enable the particular feature (e.g., the feature value is
“true”). The audience impersonation system may identify, in
the software application code of the software application, a
conditional statement code path corresponding to the feature
value associated with the particular feature (e.g., “if the
feature value is ‘true,” then enable the particular feature in
the application,” or “if the feature value is ‘true,” then
execute the code to display a green button at the bottom of
the web page”). The configuring of the application, at
run-time, may include modifying the operational state of the
particular feature based on the conditional statement code
path corresponding to the feature value associated with the
particular feature. For example, at run-time of the applica-
tion, the audience impersonation system enables the particu-
lar feature in the application based on the conditional
statement code path corresponding to the feature value
“true.” According to another example, at run-time of the
application, the audience impersonation system displays a
green button at the bottom of the web page.

[0026] According to certain example embodiments, the
configuration file is associated with the audience. The con-
figuring of the application, at run-time, may include, in
response to the request (e.g., a request to disable the par-
ticular feature), modifying the operational state of the par-
ticular feature (e.g., disabling the particular feature) in the
configuration file associated with the audience. In some
instances, the modifying of the operational state of the
particular feature in the configuration file associated with the
audience includes enabling the particular feature in the
configuration file. The enabling of the particular feature in
the configuration file may include adding a feature enable-
ment indicator (e.g., the binary value of “true”) in associa-
tion with an identifier of the particular feature to the con-
figuration file associated with the particular audience. In
some instances, the modifying of the operational state of the
particular feature in the configuration file associated with the
audience includes disabling the particular feature in the

US 2018/0322032 Al

configuration file. The disabling of the particular feature in
the configuration file may include adding a feature disable-
ment indicator (e.g., the binary value of “false”) in associa-
tion with an identifier of the particular feature to the con-
figuration file associated with the particular audience. The
modifying may result in generating an updated configuration
file associated with the audience.

[0027] The configuring of the application, at run-time of
the application, may further include generating, at run-time
of the application, a testing state for the application running
on the client device in the software context associated with
the audience. The generating of the testing state may be
based on the updated configuration file associated with the
audience. In some example embodiments, the generating of
the testing state based on the updated configuration file
includes, at run time, executing the software application
code of the software application on the client device based
on the updated configuration file associated with the audi-
ence. The testing state may provide a visualization of the
application including the particular feature in the modified
operational state. The testing state may represent a software
context of the application wherein a number of features of
the application may be enabled (e.g., automatically for the
particular audience, or at the request of a tester), and a
number of features of the application may be disabled (e.g.,
automatically for the particular audience, or at the request of
a tester). The generating of the testing state may also include
generating a log file of errors associated with the application.
The errors may be identified as a result of the modifying of
the operational state of the particular feature of the appli-
cation, or as a result of performing tests (e.g., compatibility
tests, integration tests, components tests, volume tests, etc.)
pertaining to the modifying of the operational state of the
particular feature of the application.

[0028] For example, the request to modify the operational
state of the particular feature of the application in the
software context associated with the particular audience was
a request to disable the particular feature in the software
context associated with the particular audience. The gener-
ating of the testing state for the application may include
displaying a user interface that is associated with the appli-
cation and that displays one or more enabled features
associated with the particular audience. The one or more
enabled features associated with the particular audience do
not include the particular feature based on the request being
a request to disable the particular feature in the software
context associated with the particular audience.

[0029] FIG. 1 is a diagram illustrating an audience imper-
sonation system 100, within which some example embodi-
ments may be deployed. In some example embodiments, a
machine (e.g., tester device 102), hereinafter also a “client
device,” hosts an audience impersonation client 104. The
audience impersonation tool 104 that enables the testing of
a software application (e.g., application 110) based on an
in-app impersonating of an audience profile of the software
application. In various example embodiments, the audience
impersonation tool 104 may allow a user of the audience
impersonation tool 104 to select an identifier of a particular
audience for the application 110, and to test a particular
feature of the application 110 in the software context per-
taining to the selected audience before the particular feature
is released to the particular audience.

[0030] The tester device 102 may host one or more
databases (e.g., database 106 or database 108). The audience

Nov. &,2018

impersonation tool 104 may access data stored in the data-
base 106 or database 107. The database 106 may store
records that include various data utilized by the audience
impersonation tool 104, such as data about which users
belong to which audiences. The database 108 may store
configuration files that include data pertaining to the various
features available to particular audiences, various experi-
mentation data, etc.

[0031] In some example embodiments, the tester device
102 may connect, via a network (e.g., the Internet), to a
server that stores an audience application. The audience
application may provide a number of audience-related func-
tions and services to the audience impersonation tool 104. In
various example embodiments, the audience application
may facilitate the access to, generation, modification, and/or
maintenance of audience profiles and membership of the
audiences. In some example embodiments, the functional-
ities provided by the audience application are provided by
the audience impersonation tool 104 hosted by the tester
device 102.

[0032] The test device 102 may provide functionality to
present information to a user (e.g., a tester, such as a
developer or a test engineer) and may communicate via a
network to exchange information with other devices. The
test device 102 may comprise a computing device that
includes at least a display and communication capabilities to
communicate with other devices via the network. The test
device 102 may comprise, but are not limited to, remote
devices, work stations, computers, general purpose comput-
ers, Internet appliances, hand-held devices, wireless devices,
portable devices, wearable computers, cellular or mobile
phones, personal digital assistants (PDAs), smart phones,
smart watches, tablets, ultrabooks, netbooks, laptops, desk-
tops, multi-processor systems, microprocessor-based or pro-
grammable consumer electronics, game consoles, set-top
boxes, network PCs, mini-computers, and the like. One or
more users of the test device 102 may be a person, a
machine, or other entity that interacts with the test device
102.

[0033] FIG. 2 is a block diagram illustrating components
of the content treatment system 200, according to some
example embodiments. As shown in FIG. 2, the audience
impersonation system 200 includes a receiving module 202,
a mapping module 204, a displaying module 206, a feature
state modifying module 208, and a server communication
module 210, all configured to communicate with each other
(e.g., via a bus, shared memory, or a switch).

[0034] According to some example embodiments, the
receiving module 202 receives a selection of an audience
identifier via a user interface of an audience impersonation
tool for testing features of an application in a software
context associated with an audience that uses the applica-
tion.

[0035] The mapping module 204 maps the audience iden-
tifier to a configuration file. The configuration file may be
associated with the audience identifier and may include
identifiers of one or more features of the application that are
available for use by the audience.

[0036] The displaying module 206 causes a display, in the
user interface, of the identifiers of the one or more features
that are available for use by the audience. The causing of the
display of the identifiers of the one or more features may be
based on the audience identifier and the configuration file.

US 2018/0322032 Al

[0037] The receiving module 202 receives, via the user
interface, a request to modify an operational state of a
particular feature of the application in the software context
associated with the audience.

[0038] The feature state modifying module 208 config-
ures, at run-time, the application based on the audience
identifier, the configuration file, and the request to modify
the operational state of the particular feature. The configur-
ing results in the application including the particular feature
in a modified operational state.

[0039] The server communication module 210 may gen-
erate, transmit, and receive communications to and from a
server (e.g., the application server 118) to obtain data
pertaining to testing of a software application based on an
in-app impersonating of an audience of the software appli-
cation.

[0040] To perform one or more of its functionalities, the
content treatment system 200 may communicate with one or
more other systems. For example, an integration system may
integrate the content treatment system 200 with one or more
email server(s), web server(s), one or more databases, or
other servers, systems, or repositories.

[0041] Any one or more of the modules described herein
may be implemented using hardware (e.g., one or more
processors of a machine) or a combination of hardware and
software. For example, any module described herein may
configure a hardware processor (e.g., among one or more
hardware processors of a machine) to perform the operations
described herein for that module. In some example embodi-
ments, any one or more of the modules described herein may
comprise one or more hardware processors and may be
configured to perform the operations described herein. In
certain example embodiments, one or more hardware pro-
cessors are configured to include any one or more of the
modules described herein.

[0042] Moreover, any two or more of these modules may
be combined into a single module, and the functions
described herein for a single module may be subdivided
among multiple modules. Furthermore, according to various
example embodiments, modules described herein as being
implemented within a single machine, database, or device
may be distributed across multiple machines, databases, or
devices. The multiple machines, databases, or devices are
communicatively coupled to enable communications
between the multiple machines, databases, or devices. The
modules themselves are communicatively coupled (e.g., via
appropriate interfaces) to each other and to various data
sources, so as to allow information to be passed between the
applications so as to allow the applications to share and
access common data. Furthermore, the modules may access
one or more databases 212 (e.g., database 106 or database
108). The functions of the modules are discussed in more
detail below.

[0043] FIGS. 3A-3D are illustrations of a user interface of
an audience impersonation tool associated with an audience
impersonation system, according to some example embodi-
ments. As shown in FIG. 3A, user interface 300 associated
with an in-app tool for validating a software product (e.g., an
application) generated by a company displays a variety of
application option tabs 302. Various audiences of users who
utilize the software product may be exposed to various sets
of features that are in various states of completion. For
example, the developers audience (e.g., the engineers who
develop or test the software product) may be exposed to

Nov. &,2018

more features that are not yet ready for release to production
than the audience that includes the employees of the com-
pany. The company employees audience, in turn, may be
exposed to more features than the production audience.
[0044] The introduction of a new feature that may have
been successfully tested in the software environment or
context (e.g., the combination of activated features) of a first
audience to the software environment or context (e.g., the
combination of activated features) of a second audience may
need to be tested using the in-app tool in order to determine
how it performs in the software environment of the second
audience. A user of the tool may want to test a particular
feature in the context of a particular audience by imperson-
ating the particular audience (e.g., a member of the particu-
lar audience).

[0045] Insome example embodiments, the user of the tool
may select (e.g., click on) the Experiment option tab from
the application option identifier 302. Based on the user’s
selection, the tool may display a number of General Settings
for Experimentation and Feature Rollout in window 304. A
user may utilize the user interface elements shown in
window 304 to impersonate a member of a particular
audience and test various features (or combinations of
features) in the software application context pertaining to the
particular audience.

[0046] In some example embodiments, user interface ele-
ment 306 identifies the title (e.g., Audience) of a group of
options listed in the drop-down menu 308. For example, if
the user selects (e.g., clicks on) the drop-down menu 308,
the tool, based on the user’s selection of the drop-down
menu 308, causes the display of a list of audience identifiers
(e.g., audience names) that identify one or more audiences.
In some instances, the list of audience identifiers includes
“Company engineers,” “Company employees,” “Insiders,”
and “Production.” The user may then select from the list of
audience identifiers a particular audience identifier that
corresponds to the audience the user would like to imper-
sonate. As shown in FIG. 3A, the user selected the “Com-
pany employees” audience identifier, and the tool caused the
“Company employees” audience identifier to be displayed in
the menu 308 of the window 304.

[0047] User interface element 310 identifies the title (e.g.,
Channel) of a group of options listed in the drop-down menu
312. For example, if the user selects (e.g., clicks on) the
drop-down menu 312, the tool, based on the user’s selection
of the drop-down menu 312, causes the display of a list of
channels (e.g., channel names) that identify one or more
channels. In some example embodiments, a channel may be
a way or means to deliver a software application to a user or
a group of users. Examples of a channel are a Universal
Resource Locator (URL), a CD, etc.

[0048] Similarly, the user interface element 314 identifies
(e.g., provides the name of) field 316 where the user may
enter a user identifier (e.g., a user name). For example, as
shown in FIG. 3A, the user has entered the user name
“anjalimu” in the field 316. The providing of a user identifier
may facilitate the impersonation of a particular user based
on the user identifier (e.g., for feature testing or debugging
purposes).

[0049] To activate the selected (or provided) options, the
user may select the OK button 318 in the user interface 300.
To cancel the selected (or provided options), the user may
select the Cancel button 320 in the user interface 300. The
selection of the OK button 318 results in the user imper-

US 2018/0322032 Al

sonating the selected audience, as shown in FIG. 3B, and
allows the user to activate or deactivate various features the
user may want to test in the software context of the particular
audience.

[0050] In some example embodiments, upon the user
selecting the audience identifier and the OK button 318, as
shown in FIG. 3A, the tool receives the selection of the
audience identifier, and maps the audience identifier to a
configuration file that is associated with the audience and
that includes identifiers of one or more features of the
application that are available for use by the audience.
[0051] FIG. 3B, in addition to illustrating the user inter-
face elements discussed above in FIG. 3A, FIG. 3B displays
in window 304 user interface element 318 which identifies
a number of flight assignments and overrides listed in table
322, and associated with the impersonated audience. In
some example embodiments, a flight may identify a particu-
lar treatment (in an A/B test) associated with a feature for the
selected audience. For example, a Feature 1 in FIG. 3B
identifies the treatment in A/B test that displays a particular
button in a user interface of a user of the Company employ-
ees audience. If the feature value of the Feature 1 is set to
“True,” then the button is displayed as a green button. If the
feature value of the Feature 1 is set to “False,” then the
button is displayed as a green button. According to another
example, if the feature value of the Feature 1 is set to
“False,” then the button is not displayed as all.

[0052] FIG. 3B also illustrates example details pertaining
to different features.

[0053] Insome example embodiments, the details pertain-
ing to a particular feature may indicate whether the feature
is activated or deactivated. For example, a “True” value
associated with a feature identifier (e.g., feature name)
indicates an enabled feature, and a “False” value indicates a
disabled feature. As shown in FIG. 3B, Feature 1 is activated
for the Company employees audience, and Feature 2 is
deactivated for the Company employees audience.

[0054] FIG. 3B also shows buttons 326, 328, and 330 that
a user of the tool may use to add a feature override, to
remove all overrides, or to remove a selected override,
respectively.

[0055] As shown in FIG. 3C, a user may add a feature
override (e.g., enable or activate a particular feature) by
selecting button 326 of the user interface 300. In response to
receiving an indication that the user selected the add feature
override button 326, the tool may display another window
332 to facilitate the specification, by the user, of the feature
details. Window 332 may include a field 334 for entering a
feature name, a drop-down menu 336 for selecting a value
type from a list of value types, and a feature value. For
example, as shown in FIG. 3C, a user may enter the name
“Feature 2” in the feature name field 334, may select the
value type “Boolean” from the value type menu 336, and
may enter the feature value “True” in the feature value field
338. By selecting the OK button in the window 332, the user
may indicate that the entered (or selected) data should be
associated with the added feature override. The selection of
the OK button in the window 332 may correspond to a
request to modify an operational state of the particular
feature of the application in the software context associated
with the audience.

[0056] In some example embodiments, in response to the
request to modify the operational state of the particular
feature, the tool then may modify the operational state of the

Nov. &,2018

particular feature in the configuration file associated with the
audience. The modifying may result in generating an
updated configuration file associated with the audience. At
the run time of the application, the tool may configure the
application based on the updated configuration file. A result
of the configuring the application based on the updated
configuration file may be that the application includes the
particular feature in the modified operation state (e.g.,
enabled or disabled).

[0057] In some example embodiments, the user may uti-
lize window 332 to deactivate a particular feature by, for
example, changing the feature value of the particular feature
(Feature 1 shown in FIG. 3B) from “True” to “False.”
[0058] FIG. 3D illustrates, in the table 324, that the
operational state of Feature 2 has been modified by the tool
based on changing a characteristic of the presentation of the
details that pertain to Feature 2. For example, as shown in
FIG. 3D, the second line in the table 324 shows the details
pertaining to Feature 2 in a bold font. The feature value of
Feature 2 has been changed to “True,” which indicates that
Feature 2 has been activated (e.g., enabled). The activation
of Feature 2 allows the user to test Feature 2 in the context
of the other enabled features that have been activated for the
Company employees audience (e.g., Feature 1).

[0059] In some example embodiments, the tool generates,
at run-time, a testing state for the application running on the
client device in the software context associated with the
audience based on the updated configuration file associated
with the audience. The testing state provides a visualization
(e.g., a visual display) of the application including an
enabled particular feature. For example, based on the added
feature override discussed above in FIGS. 3A-3D using the
in-app tool, the software application when used by the user
impersonating a member of the Company employees audi-
ence will include recently-activated Feature 2 in addition to
previously-activated Feature 1. The visualization of the
application including the activated Feature 2 and Feature 1
may allow the user to test how well Feature 2 of the software
application performs when Feature 1 of the software appli-
cation is also activated for the Company employees audi-
ence.

[0060] FIGS. 4-9 are flowcharts illustrating a method for
testing a software application based on an in-app imperson-
ating of an audience profile of the software application,
according to some example embodiments. Operations in the
method 400 illustrated in FIG. 4 (as well as FIGS. 5-9) may
be performed using modules described above with respect to
FIG. 2 or by executing, using at least one hardware proces-
sor, computer-readable instructions stored on a storage
device. As shown in FIG. 4, method 400 may include one or
more of method operations 402, 404, 406, 408, and 410,
according to some example embodiments.

[0061] At operation 402, the receiving module 202
receives a selection of an audience identifier via a user
interface of an audience impersonation tool for testing
features of an application in a software context associated
with an audience that uses the application.

[0062] At operation 404, the mapping module 204 maps
the audience identifier to a configuration file that includes
identifiers of one or more features of the application that are
available for use by the audience.

[0063] At operation 406, the displaying module 206
causes a display, in the user interface, of the identifiers of the
one or more features that are available for use by the

US 2018/0322032 Al

audience. The causing of the display of the identifiers of the
one or more features may be based on the audience identifier
and the configuration file.

[0064] At operation 408, the receiving module 202
receives, via the user interface, a request to modify an
operational state of a particular feature of the application in
the software context associated with the audience. In some
example embodiments, the receiving of the request to
modify the operational state of the particular feature of the
application is based on (e.g., is in response to) the causing
of the display, in the user interface, of the one or more
features identified in the configuration file. In certain
example embodiments, the request to modify the operational
state of the particular feature of the application includes a
request to add a feature override for the particular feature in
the software context associated with the audience.

[0065] At operation 410, the feature state modifying mod-
ule 208 configures, at run-time, the application based on the
audience identifier, the configuration file, and the request to
modify the operational state of the particular feature. The
configuring results in the application including the particular
feature in a modified operational state.

[0066] In some example embodiments, the one or more
features are included as feature code in the software appli-
cation code of the software application. The one or more
features may each be associated with one or more opera-
tional states in the software application. In some example
embodiments, the operational states take the form of alter-
nate states, such as “enabled,” or “disabled.” For example,
for a first audience, a first set of features are enabled in the
application, at run-time of the application. For a second
audience, the first set of features is disabled in the applica-
tion, at run-time of the application. In some example
embodiments, the operational states may correspond to
treatments associated with an A/B test. In A/B testing,
treatments may be variants of a digital content item that test
the responses of users based on being exposed to a particular
variant of the digital content item during the A/B test.
[0067] Further details with respect to the method opera-
tions of the method 400 are described below with respect to
FIGS. 59.

[0068] As shown in FIG. 5, the method 400 may include
method operation 502, according to some example embodi-
ments. Operation 502 may be performed after operation 410
of FIG. 4, in which the feature state modifying module 208
configures, at run-time, the application based on the audi-
ence identifier, the configuration file, and the request to
modify the operational state of the particular feature. At
operation 502, the displaying module 206 updates the user
interface of the audience impersonation tool to indicate a
modified operational state of the particular feature of the
application.

[0069] As shown in FIG. 6, the method 400 may include
method operation 602, according to some example embodi-
ments. Operation 602 may be performed as part (e.g., a
precursor task, a subroutine, or a portion) of operation 410
of FIG. 4, in which the feature state modifying module 208
configures, at run-time, the application based on the audi-
ence identifier, the configuration file, and the request to
modify the operational state of the particular feature.
[0070] At operation 602, the feature state modifying mod-
ule 208 generates, at run-time, a testing state for the appli-
cation running on the client device in the software context
associated with the audience. The testing state provides a

Nov. &,2018

visualization of the application including the particular
feature in the modified operational state.

[0071] As shown in FIG. 7, the method 400 may include
operations 702, 704, or 706, according to some example
embodiments. In some example embodiments, the particular
feature is implemented in the software application code of
the software application based on a feature toggle for
modifying the operational state of the particular feature.
Operation 702 may be performed after 408 of FIG. 4, in
which the receiving module 202 receives, via the user
interface, a request to modify an operational state of a
particular feature of the application in the software context
associated with the audience.

[0072] At operation 702, the feature state modifying mod-
ule 208 determines a feature value associated with the
particular feature based on the request to modity the opera-
tional state of the particular feature.

[0073] At operation 704, the feature state modifying mod-
ule 208 identifies, in the software application code of the
software application, a conditional statement code path
corresponding to the feature value associated with the par-
ticular feature. The conditional statement code path corre-
sponding to the feature value associated with the particular
feature may be one option of a plurality of options associated
with the feature toggle included in the software application
code of the software application.

[0074] Operation 706 may be performed as part (e.g., a
precursor task, a subroutine, or a portion) of operation 410
of FIG. 4, in which the feature state modifying module 208
configures, at run-time, the application based on the audi-
ence identifier, the configuration file, and the request to
modify the operational state of the particular feature. At
operation 706, the feature state modifying module 208
modifies the operational state of the particular feature based
on the conditional statement code path corresponding to the
feature value associated with the particular feature.

[0075] As shown in FIG. 8, the method 400 may include
operations 802 or 804, according to some example embodi-
ments. Operation 802 may be performed after operation 404
of FIG. 4, in which the mapping module 204 maps the
audience identifier to a configuration file that includes
identifiers of one or more features of the application that are
available for use by the audience. At operation 404, the
feature state modifying module 208 automatically enables
the one or more features associated with the audience
identifier in the configuration file based on the receiving of
the selection of the audience identifier and the mapping of
the audience identifier to the configuration file.

[0076] Operation 804 may be performed as part (e.g., a
precursor task, a subroutine, or a portion) of operation 406
of FIG. 4, in which the displaying module 206 causes a
display, in the user interface, of the identifiers of the one or
more features that are available for use by the audience. At
operation 804, the displaying module 206 indicates that the
one or more features associated with the audience identifier
are enabled.

[0077] As shown in FIG. 9, the method 400 may include
operations 902 or 904, according to some example embodi-
ments. In some example embodiments, the configuration file
is associated with the audience. Operation 902 may be
performed as part (e.g., a precursor task, a subroutine, or a
portion) of operation 410 of FIG. 4, in which the feature
state modifying module 208 configures, at run-time, the

US 2018/0322032 Al

application based on the audience identifier, the configura-
tion file, and the request to modify the operational state of
the particular feature.

[0078] At operation 902, the feature state modifying mod-
ule 208, in response to the request, modifies the operational
state of the particular feature in the configuration file asso-
ciated with the audience. The modifying results in generat-
ing an updated configuration file associated with the audi-
ence.

[0079] In some example embodiments, the modifying of
the operational state of the particular feature in the configu-
ration file associated with the audience includes enabling the
particular feature in the configuration file. In various
example embodiments, the enabling of the particular feature
in the configuration file includes adding a feature enable-
ment indicator in association with an identifier of the par-
ticular feature to the configuration file associated with the
particular audience.

[0080] In certain example embodiments, the modifying of
the operational state of the particular feature in the configu-
ration file associated with the audience includes disabling
the particular feature in the configuration file. In various
example embodiments, the disabling of the particular feature
in the configuration file includes adding a feature disable-
ment indicator in association with an identifier of the par-
ticular feature to the configuration file associated with the
particular audience.

[0081] At operation 904, the feature state modifying mod-
ule 208 generates, at run-time, a testing state for the appli-
cation running on the client device in the software context
associated with the audience based on the updated configu-
ration file associated with the audience. The testing state
provides a visualization of the application including the
particular feature in the modified operational state.

[0082] In some example embodiments, the generating of
the testing state based on the updated configuration file
includes, at run time, executing the software application
code of the software application on the client device based
on the updated configuration file associated with the audi-
ence.

Example Mobile Device

[0083] FIG. 10 is a block diagram illustrating a mobile
device 1000, according to an example embodiment. The
mobile device 1000 may include a processor 1002. The
processor 1002 may be any of a variety of different types of
commercially available processors 1002 suitable for mobile
devices 1000 (for example, an XScale architecture micro-
processor, a microprocessor without interlocked pipeline
stages (MIPS) architecture processor, or another type of
processor 1002). A memory 1004, such as a random access
memory (RAM), a flash memory, or other type of memory,
is typically accessible to the processor 1002. The memory
1004 may be adapted to store an operating system (OS)
1006, as well as application programs 1008, such as a mobile
location enabled application that may provide LBSs to a
user. The processor 1002 may be coupled, either directly or
via appropriate intermediary hardware, to a display 1010
and to one or more input/output (I/O) devices 1012, such as
a keypad, a touch panel sensor, a microphone, and the like.
Similarly, in some embodiments, the processor 1002 may be
coupled to a transceiver 1014 that interfaces with an antenna
1016. The transceiver 1014 may be configured to both
transmit and receive cellular network signals, wireless data

Nov. &,2018

signals, or other types of signals via the antenna 1016,
depending on the nature of the mobile device 1000. Further,
in some configurations, a GPS receiver 1018 may also make
use of the antenna 1016 to receive GPS signals.

Modules, Components and Logic

[0084] Certain embodiments are described herein as
including logic or a number of components, modules, or
mechanisms. Modules may constitute either software mod-
ules (e.g., code embodied (1) on a non-transitory machine-
readable medium or (2) in a transmission signal) or hard-
ware-implemented modules. A hardware-implemented
module is a tangible unit capable of performing certain
operations and may be configured or arranged in a certain
manner. In example embodiments, one or more computer
systems (e.g., a standalone, client or server computer sys-
tem) or one or more processors may be configured by
software (e.g., an application or application portion) as a
hardware-implemented module that operates to perform
certain operations as described herein.

[0085] In various embodiments, a hardware-implemented
module may be implemented mechanically or electronically.
For example, a hardware-implemented module may com-
prise dedicated circuitry or logic that is permanently con-
figured (e.g., as a special-purpose processor, such as a field
programmable gate array (FPGA) or an application-specific
integrated circuit (ASIC)) to perform certain operations. A
hardware-implemented module may also comprise program-
mable logic or circuitry (e.g., as encompassed within a
general-purpose processor or other programmable proces-
sor) that is temporarily configured by software to perform
certain operations. It will be appreciated that the decision to
implement a hardware-implemented module mechanically,
in dedicated and permanently configured circuitry, or in
temporarily configured circuitry (e.g., configured by soft-
ware) may be driven by cost and time considerations.
[0086] Accordingly, the term <“hardware-implemented
module” should be understood to encompass a tangible
entity, be that an entity that is physically constructed,
permanently configured (e.g., hardwired) or temporarily or
transitorily configured (e.g., programmed) to operate in a
certain manner and/or to perform certain operations
described herein. Considering embodiments in which hard-
ware-implemented modules are temporarily configured
(e.g., programmed), each of the hardware-implemented
modules need not be configured or instantiated at any one
instance in time. For example, where the hardware-imple-
mented modules comprise a general-purpose processor con-
figured using software, the general-purpose processor may
be configured as respective different hardware-implemented
modules at different times. Software may accordingly con-
figure a processor, for example, to constitute a particular
hardware-implemented module at one instance of time and
to constitute a different hardware-implemented module at a
different instance of time.

[0087] Hardware-implemented modules can provide
information to, and receive information from, other hard-
ware-implemented modules. Accordingly, the described
hardware-implemented modules may be regarded as being
communicatively coupled. Where multiple of such hard-
ware-implemented modules exist contemporaneously, com-
munications may be achieved through signal transmission
(e.g., over appropriate circuits and buses that connect the
hardware-implemented modules). In embodiments in which

US 2018/0322032 Al

multiple hardware-implemented modules are configured or
instantiated at different times, communications between
such hardware-implemented modules may be achieved, for
example, through the storage and retrieval of information in
memory structures to which the multiple hardware-imple-
mented modules have access. For example, one hardware-
implemented module may perform an operation, and store
the output of that operation in a memory device to which it
is communicatively coupled. A further hardware-imple-
mented module may then, at a later time, access the memory
device to retrieve and process the stored output. Hardware-
implemented modules may also initiate communications
with input or output devices, and can operate on a resource
(e.g., a collection of information).

[0088] The various operations of example methods
described herein may be performed, at least partially, by one
or more processors that are temporarily configured (e.g., by
software) or permanently configured to perform the relevant
operations. Whether temporarily or permanently configured,
such processors may constitute processor-implemented
modules that operate to perform one or more operations or
functions. The modules referred to herein may, in some
example embodiments, comprise processor-implemented
modules.

[0089] Similarly, the methods described herein may be at
least partially processor-implemented. For example, at least
some of the operations of a method may be performed by
one or more processors or processor-implemented modules.
The performance of certain of the operations may be dis-
tributed among the one or more processors or processor-
implemented modules, not only residing within a single
machine, but deployed across a number of machines. In
some example embodiments, the one or more processors or
processor-implemented modules may be located in a single
location (e.g., within a home environment, an office envi-
ronment or as a server farm), while in other embodiments
the one or more processors or processor-implemented mod-
ules may be distributed across a number of locations.
[0090] The one or more processors may also operate to
support performance of the relevant operations in a “cloud
computing” environment or as a “software as a service”
(SaaS). For example, at least some of the operations may be
performed by a group of computers (as examples of
machines including processors), these operations being
accessible via a network (e.g., the Internet) and via one or
more appropriate interfaces (e.g., application program inter-
faces (APIs).)

Electronic Apparatus and System

[0091] Example embodiments may be implemented in
digital electronic circuitry, or in computer hardware, firm-
ware, software, or in combinations of them. Example
embodiments may be implemented using a computer pro-
gram product, e.g., a computer program tangibly embodied
in an information carrier, e.g., in a machine-readable
medium for execution by, or to control the operation of, data
processing apparatus, e.g., a programmable processor, a
computer, or multiple computers.

[0092] A computer program can be written in any form of
programming language, including compiled or interpreted
languages, and it can be deployed in any form, including as
a stand-alone program or as a module, subroutine, or other
unit suitable for use in a computing environment. A com-
puter program can be deployed to be executed on one

Nov. &,2018

computer or on multiple computers at one site or distributed
across multiple sites and interconnected by a communication
network.

[0093] In example embodiments, operations may be per-
formed by one or more programmable processors executing
a computer program to perform functions by operating on
input data and generating output. Method operations can
also be performed by, and apparatus of example embodi-
ments may be implemented as, special purpose logic cir-
cuitry, e.g., a field programmable gate array (FPGA) or an
application-specific integrated circuit (ASIC).

[0094] The computing system can include clients and
servers. A client and server are generally remote from each
other and typically interact through a communication net-
work. The relationship of client and server arises by virtue
of computer programs running on the respective computers
and having a client-server relationship to each other. In
embodiments deploying a programmable computing system,
it will be appreciated that that both hardware and software
architectures require consideration. Specifically, it will be
appreciated that the choice of whether to implement certain
functionality in permanently configured hardware (e.g., an
ASIC), in temporarily configured hardware (e.g., a combi-
nation of software and a programmable processor), or a
combination of permanently and temporarily configured
hardware may be a design choice. Below are set out hard-
ware (e.g., machine) and software architectures that may be
deployed, in various example embodiments.

Example Machine Architecture and Machine-Readable
Medium

[0095] FIG. 11 is a block diagram illustrating components
of a machine 1100, according to some example embodi-
ments, able to read instructions 1124 from a machine-
readable medium 1122 (e.g., a non-transitory machine-
readable medium, a machine-readable storage medium, a
computer-readable storage medium, or any suitable combi-
nation thereof) and perform any one or more of the meth-
odologies discussed herein, in whole or in part. Specifically,
FIG. 11 shows the machine 1100 in the example form of a
computer system (e.g., a computer) within which the
instructions 1124 (e.g., software, a program, an application,
an applet, an app, or other executable code) for causing the
machine 1100 to perform any one or more of the method-
ologies discussed herein may be executed, in whole or in
part.

[0096] In alternative embodiments, the machine 1100
operates as a standalone device or may be connected (e.g.,
networked) to other machines. In a networked deployment,
the machine 1100 may operate in the capacity of a server
machine or a client machine in a server-client network
environment, or as a peer machine in a distributed (e.g.,
peer-to-peer) network environment. The machine 1100 may
be a server computer, a client computer, a personal computer
(PC), a tablet computer, a laptop computer, a netbook, a
cellular telephone, a smartphone, a set-top box (STB), a
personal digital assistant (PDA), a web appliance, a network
router, a network switch, a network bridge, or any machine
capable of executing the instructions 1124, sequentially or
otherwise, that specify actions to be taken by that machine.
Further, while only a single machine is illustrated, the term
“machine” shall also be taken to include any collection of
machines that individually or jointly execute the instructions

US 2018/0322032 Al

1124 to perform all or part of any one or more of the
methodologies discussed herein.

[0097] The machine 1100 includes a processor 1102 (e.g.,
a central processing unit (CPU), a graphics processing unit
(GPU), a digital signal processor (DSP), an application
specific integrated circuit (ASIC), a radio-frequency inte-
grated circuit (RFIC), or any suitable combination thereof),
a main memory 1104, and a static memory 1106, which are
configured to communicate with each other via a bus 1108.
The processor 1102 may contain microcircuits that are
configurable, temporarily or permanently, by some or all of
the instructions 1124 such that the processor 1102 is con-
figurable to perform any one or more of the methodologies
described herein, in whole or in part. For example, a set of
one or more microcircuits of the processor 1102 may be
configurable to execute one or more modules (e.g., software
modules) described herein.

[0098] The machine 1100 may further include a graphics
display 1110 (e.g., a plasma display panel (PDP), a light
emitting diode (LED) display, a liquid crystal display
(LCD), a projector, a cathode ray tube (CRT), or any other
display capable of displaying graphics or video). The
machine 1100 may also include an alphanumeric input
device 1112 (e.g., a keyboard or keypad), a cursor control
device 1114 (e.g., a mouse, a touchpad, a trackball, a
joystick, a motion sensor, an eye tracking device, or other
pointing instrument), a storage unit 1116, an audio genera-
tion device 1118 (e.g., a sound card, an amplifier, a speaker,
a headphone jack, or any suitable combination thereof), and
a network interface device 1120.

[0099] The storage unit 1116 includes the machine-read-
able medium 1122 (e.g., a tangible and non-transitory
machine-readable storage medium) on which are stored the
instructions 1124 embodying any one or more of the meth-
odologies or functions described herein. The instructions
1124 may also reside, completely or at least partially, within
the main memory 1104, within the processor 1102 (e.g.,
within the processor’s cache memory), or both, before or
during execution thereof by the machine 1100. Accordingly,
the main memory 1104 and the processor 1102 may be
considered machine-readable media (e.g., tangible and non-
transitory machine-readable media). The instructions 1124
may be transmitted or received over the network 1126 via
the network interface device 1120. For example, the network
interface device 1120 may communicate the instructions
1124 using any one or more transfer protocols (e.g., hyper-
text transfer protocol (HTTP)).

[0100] In some example embodiments, the machine 1100
may be a portable computing device, such as a smart phone
or tablet computer, and have one or more additional input
components 1130 (e.g., sensors or gauges). Examples of
such input components 1130 include an image input com-
ponent (e.g., one or more cameras), an audio input compo-
nent (e.g., a microphone), a direction input component (e.g.,
a compass), a location input component (e.g., a global
positioning system (GPS) receiver), an orientation compo-
nent (e.g., a gyroscope), a motion detection component (e.g.,
one or more accelerometers), an altitude detection compo-
nent (e.g., an altimeter), and a gas detection component (e.g.,
a gas sensor). Inputs harvested by any one or more of these
input components may be accessible and available for use by
any of the modules described herein.

[0101] As used herein, the term “memory” refers to a
machine-readable medium able to store data temporarily or

Nov. &,2018

permanently and may be taken to include, but not be limited
to, random-access memory (RAM), read-only memory
(ROM), buffer memory, flash memory, and cache memory.
While the machine-readable medium 1122 is shown in an
example embodiment to be a single medium, the term
“machine-readable medium” should be taken to include a
single medium or multiple media (e.g., a centralized or
distributed database, or associated caches and servers) able
to store instructions. The term “machine-readable medium”
shall also be taken to include any medium, or combination
of multiple media, that is capable of storing the instructions
1124 for execution by the machine 1100, such that the
instructions 1124, when executed by one or more processors
of the machine 1100 (e.g., processor 1102), cause the
machine 1100 to perform any one or more of the method-
ologies described herein, in whole or in part. Accordingly, a
“machine-readable medium” refers to a single storage appa-
ratus or device, as well as cloud-based storage systems or
storage networks that include multiple storage apparatus or
devices. The term “machine-readable medium” shall accord-
ingly be taken to include, but not be limited to, one or more
tangible (e.g., non-transitory) data repositories in the form of
a solid-state memory, an optical medium, a magnetic
medium, or any suitable combination thereof.

[0102] Throughout this specification, plural instances may
implement components, operations, or structures described
as a single instance. Although individual operations of one
or more methods are illustrated and described as separate
operations, one or more of the individual operations may be
performed concurrently, and nothing requires that the opera-
tions be performed in the order illustrated. Structures and
functionality presented as separate components in example
configurations may be implemented as a combined structure
or component. Similarly, structures and functionality pre-
sented as a single component may be implemented as
separate components. These and other variations, modifica-
tions, additions, and improvements fall within the scope of
the subject matter herein.

[0103] Certain embodiments are described herein as
including logic or a number of components, modules, or
mechanisms. Modules may constitute software modules
(e.g., code stored or otherwise embodied on a machine-
readable medium or in a transmission medium), hardware
modules, or any suitable combination thereof. A “hardware
module” is a tangible (e.g., non-transitory) unit capable of
performing certain operations and may be configured or
arranged in a certain physical manner. In various example
embodiments, one or more computer systems (e.g., a stand-
alone computer system, a client computer system, or a server
computer system) or one or more hardware modules of a
computer system (e.g., a processor or a group of processors)
may be configured by software (e.g., an application or
application portion) as a hardware module that operates to
perform certain operations as described herein.

[0104] In some embodiments, a hardware module may be
implemented mechanically, electronically, or any suitable
combination thereof. For example, a hardware module may
include dedicated circuitry or logic that is permanently
configured to perform certain operations. For example, a
hardware module may be a special-purpose processor, such
as a field programmable gate array (FPGA) or an ASIC. A
hardware module may also include programmable logic or
circuitry that is temporarily configured by software to per-
form certain operations. For example, a hardware module

US 2018/0322032 Al

may include software encompassed within a general-pur-
pose processor or other programmable processor. It will be
appreciated that the decision to implement a hardware
module mechanically, in dedicated and permanently config-
ured circuitry, or in temporarily configured circuitry (e.g.,
configured by software) may be driven by cost and time
considerations.

[0105] Accordingly, the phrase “hardware module” should
be understood to encompass a tangible entity, and such a
tangible entity may be physically constructed, permanently
configured (e.g., hardwired), or temporarily configured (e.g.,
programmed) to operate in a certain manner or to perform
certain operations described herein. As used herein, “hard-
ware-implemented module” refers to a hardware module.
Considering embodiments in which hardware modules are
temporarily configured (e.g., programmed), each of the
hardware modules need not be configured or instantiated at
any one instance in time. For example, where a hardware
module comprises a general-purpose processor configured
by software to become a special-purpose processor, the
general-purpose processor may be configured as respec-
tively different special-purpose processors (e.g., comprising
different hardware modules) at different times. Software
(e.g., a software module) may accordingly configure one or
more processors, for example, to constitute a particular
hardware module at one instance of time and to constitute a
different hardware module at a different instance of time.
[0106] Hardware modules can provide information to, and
receive information from, other hardware modules. Accord-
ingly, the described hardware modules may be regarded as
being communicatively coupled. Where multiple hardware
modules exist contemporaneously, communications may be
achieved through signal transmission (e.g., over appropriate
circuits and buses) between or among two or more of the
hardware modules. In embodiments in which multiple hard-
ware modules are configured or instantiated at different
times, communications between such hardware modules
may be achieved, for example, through the storage and
retrieval of information in memory structures to which the
multiple hardware modules have access. For example, one
hardware module may perform an operation and store the
output of that operation in a memory device to which it is
communicatively coupled. A further hardware module may
then, at a later time, access the memory device to retrieve
and process the stored output. Hardware modules may also
initiate communications with input or output devices, and
can operate on a resource (e.g., a collection of information).
[0107] The performance of certain operations may be
distributed among the one or more processors, not only
residing within a single machine, but deployed across a
number of machines. In some example embodiments, the
one or more processors or processor-implemented modules
may be located in a single geographic location (e.g., within
a home environment, an office environment, or a server
farm). In other example embodiments, the one or more
processors or processor-implemented modules may be dis-
tributed across a number of geographic locations.

[0108] Some portions of the subject matter discussed
herein may be presented in terms of algorithms or symbolic
representations of operations on data stored as bits or binary
digital signals within a machine memory (e.g., a computer
memory). Such algorithms or symbolic representations are
examples of techniques used by those of ordinary skill in the
data processing arts to convey the substance of their work to

11

Nov. &,2018

others skilled in the art. As used herein, an “algorithm” may
be a self-consistent sequence of operations or similar pro-
cessing leading to a desired result. In this context, algo-
rithms and operations involve physical manipulation of
physical quantities. Typically, but not necessarily, such
quantities may take the form of electrical, magnetic, or
optical signals capable of being stored, accessed, trans-
ferred, combined, compared, or otherwise manipulated by a
machine. It is convenient at times, principally for reasons of
common usage, to refer to such signals using words such as
“data,” “content,” “bits,” “values,” “elements,” “symbols,”
“characters,” “terms,” “numbers,” “numerals,” or the like.
These words, however, are merely convenient labels and are
to be associated with appropriate physical quantities.
[0109] Unless specifically stated otherwise, discussions
herein using words such as “processing,” “computing,”
“calculating,” “determining,” “presenting,” “displaying,” or
the like may refer to actions or processes of a machine (e.g.,
a computer) that manipulates or transforms data represented
as physical (e.g., electronic, magnetic, or optical) quantities
within one or more memories (e.g., volatile memory, non-
volatile memory, or any suitable combination thereof), reg-
isters, or other machine components that receive, store,
transmit, or display information. Furthermore, unless spe-
cifically stated otherwise, the terms “a” or “an” are herein
used, as is common in patent documents, to include one or
more than one instance. Finally, as used herein, the con-
junction “or” refers to a non-exclusive “or,” unless specifi-
cally stated otherwise.

What is claimed is:

1. A method comprising:

receiving a selection of an audience identifier via a user

interface of an audience impersonation tool, the audi-
ence impersonation tool testing features of a software
application, the testing of the features being performed
in a software application context associated with an
audience that uses the software application;

mapping the audience identifier to a configuration file, the

configuration file including identifiers of one or more
features of the software application that are available
for use by the audience;

based on the audience identifier and the configuration file,

causing a display, in the user interface, of the identifiers
of the one or more features that are available for use by
the audience;

receiving, via the user interface, a request to modify an

operational state of a particular feature of the software
application in the software context associated with the
audience; and

configuring, at run-time of the software application, the

software application based on the audience identifier,
the configuration file, and the request to modify the
operational state of the particular feature, the config-
uring resulting in the software application including the
particular feature in a modified operational state.

2. The method of claim 1, wherein the one or more
features are included in software application code of the
software application, and wherein the one or more features
are each associated with one or more operational states in the
software application.

3. The method of claim 1, further comprising:

updating the user interface of the audience impersonation

tool to indicate a modified operational state of the
particular feature of the software application.

2 2

US 2018/0322032 Al

4. The method of claim 1, wherein the configuring of the
software application includes:

generating, at run-time, a testing state for the software

application running on a client device in the software
context associated with the audience, the testing state
providing a visualization of the software application
including the particular feature in the modified opera-
tional state.

5. The method of claim 1, wherein the particular feature
is implemented in a code of the software application based
on a feature toggle for modifying the operational state of the
particular feature, the method further comprising:

determining a feature value associated with the particular

feature based on the request to modify the operational
state of the particular feature; and
identifying, in the code of the software application, a
conditional statement code path corresponding to the
feature value associated with the particular feature,

wherein the configuring of the software application, at
run-time, includes modifying the operational state of
the particular feature based on the conditional state-
ment code path corresponding to the feature value
associated with the particular feature.

6. The method of claim 1, wherein the receiving of the
request to modify the operational state of the particular
feature of the software application is based on the causing of
the display, in the user interface, of the one or more features
identified in the configuration file.

7. The method of claim 1, further comprising:

automatically enabling the one or more features associ-

ated with the audience identifier in the configuration
file based on the receiving of the selection of the
audience identifier and the mapping of the audience
identifier to the configuration file,

wherein the causing of the display, in the user interface,

of the one or more features includes indicating that the
one or more features associated with the audience
identifier are enabled.

8. The method of claim 1, wherein the configuration file
is associated with the audience, and wherein the configuring
of the software application, at run-time, includes:

in response to the request, modifying the operational state

of the particular feature in the configuration file asso-
ciated with the audience, the modifying resulting in
generating an updated configuration file associated
with the audience; and

generating, at run-time, a testing state for the software

application running on a client device in the software
context associated with the audience based on the
updated configuration file associated with the audience,
the testing state providing a visualization of the soft-
ware application including the particular feature in the
modified operational state.

9. The method of claim 8, wherein the modifying of the
operational state of the particular feature in the configuration
file associated with the audience includes enabling the
particular feature in the configuration file.

10. The method of claim 9, wherein the enabling of the
particular feature in the configuration file includes adding a
feature enablement indicator in association with an identifier
of the particular feature to the configuration file associated
with the particular audience.

11. The method of claim 8, wherein the modifying of the
operational state of the particular feature in the configuration

Nov. &,2018

file associated with the audience includes disabling the
particular feature in the configuration file.

12. The method of claim 1, wherein the request to modify
the operational state of the particular feature of the software
application includes a request to add a feature override for
the particular feature in the software context associated with
the audience.

13. A system comprising:

one or more hardware processors; and

a machine-readable medium storing instructions which,

when executed by the one or more hardware proces-
sors, cause the one or more hardware processors to
perform operations comprising:

receiving a selection of an audience identifier via a user

interface of an audience impersonation tool, the audi-
ence impersonation tool testing features of a software
application, the testing of the features being performed
in a software application context associated with an
audience that uses the software application;

mapping the audience identifier to a configuration file, the

configuration file including identifiers of one or more
features of the software application that are available
for use by the audience;

based on the audience identifier and the configuration file,

causing a display, in the user interface, of the identifiers
of the one or more features that are available for use by
the audience;

receiving, via the user interface, a request to modify an

operational state of a particular feature of the software
application in the software context associated with the
audience; and

configuring, at run-time of the software application, the

software application based on the audience identifier,
the configuration file, and the request to modify the
operational state of the particular feature, the config-
uring resulting in the software application including the
particular feature in a modified operational state.

14. The system of claim 13, wherein the configuring of the
software application includes:

generating, at run-time, a testing state for the software

application running on the client device in the software
context associated with the audience, the testing state
providing a visualization of the software application
including the particular feature in the modified opera-
tional state.

15. The system of claim 13, wherein the particular feature
is implemented in a code of the software application based
on a feature toggle for modifying the operational state of the
particular feature, wherein the operations further comprise:

determining a feature value associated with the particular

feature based on the request to modify the operational
state of the particular feature;
identifying, in the code of the software application, a
conditional statement code path corresponding to the
feature value associated with the particular feature, and

wherein the configuring of the software application, at
run-time, includes modifying the operational state of
the particular feature based on the conditional state-
ment code path corresponding to the feature value
associated with the particular feature.

16. The system of claim 13, wherein the operations further
comprise:

automatically enabling the one or more features associ-

ated with the audience identifier in the configuration

US 2018/0322032 Al

file based on the receiving of the selection of the
audience identifier and the mapping of the audience
identifier to the configuration file, and

wherein the causing of the display, in the user interface,

of the one or more features includes indicating that the
one or more features associated with the audience
identifier are enabled.

17. The system of claim 13, wherein the configuration file
is associated with the audience, and wherein the configuring
of the software application, at run-time, includes:

in response to the request, modifying the operational state

of the particular feature in the configuration file asso-
ciated with the audience, the modifying resulting in
generating an updated configuration file associated
with the audience; and

generating, at run-time, a testing state for the software

application running on the client device in the software
context associated with the audience based on the
updated configuration file associated with the audience,
the testing state providing a visualization of the soft-
ware application including the particular feature in the
modified operational state.

18. The system of claim 17, wherein the modifying of the
operational state of the particular feature in the configuration
file associated with the audience includes enabling the
particular feature in the configuration file.

19. The system of claim 13, wherein the request to modity
the operational state of the particular feature of the software
application includes a request to add a feature override for
the particular feature in the software context associated with
the audience.

Nov. &,2018

20. A non-transitory machine-readable storage medium
comprising instructions that, when executed by one or more
hardware processors of a machine, cause the one or more
hardware processors to perform operations comprising:

receiving a selection of an audience identifier via a user
interface of an audience impersonation tool, the audi-
ence impersonation tool testing features of a software
application, the testing of the features being performed
in a software application context associated with an
audience that uses the software application;

mapping the audience identifier to a configuration file, the
configuration file including identifiers of one or more
features of the software application that are available
for use by the audience;

based on the audience identifier and the configuration file,
causing a display, in the user interface, of the identifiers
of the one or more features that are available for use by
the audience;

receiving, via the user interface, a request to modify an
operational state of a particular feature of the software
application in the software context associated with the
audience; and

configuring, at run-time of the software application, the
software application based on the audience identifier,
the configuration file, and the request to modify the
operational state of the particular feature, the config-
uring resulting in the software application including the
particular feature in a modified operational state.

#* #* #* #* #*

