
US 20190318023A1
(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2019 / 0318023 A1

Hayzen (43) Pub . Date : Oct . 17 , 2019

(54) EFFICIENT DATA PROCESSING
(71) Applicant : Computational Systems , Inc . ,

Knoxville , TN (US)

(52) U . S . CI .
CPC G06F 17 / 30336 (2013 . 01) ; G06F 17303

(2013 . 01) ; G06F 17730091 (2013 . 01) ; G06F
17130076 (2013 . 01) ; G06F 7 / 08 (2013 . 01)

(72) Inventor : Anthony J . Hayzen , Knoxville , TN
(US) (57) ABSTRACT

(73) Assignee : Computational Systems , Inc . ,
Knoxville , TN (US)

(21) Appl . No . : 15 / 953 , 815
(22) Filed : Apr . 16 , 2018

A method for improving the operation of a computer by
transferring data from an SQL database in a storage unit to
a memory by copying the data from the SQL database to a
binary file in the storage unit , where the binary file having
a data structure and a data type . A data file having the data
structure and the data type is configured within the memory ,
and the binary file in the storage unit is copied to the data file
in the memory with a single read / write operation .

Publication Classification
Int . Ci .
G06F 1730 (2006 . 01)
G06F 7 / 08 (2006 . 01)

(51)

SQL Database 200 Fields 202

Field 1 Field 2 Field 3 Field M

Var 1 , M Record 1
Record 2
Record 3

Var 1 , 1
Var 2 , 1
Var 3 , 1 Records 204

Var 1 , 2
Var 2 , 2
Var 3 , 2

Var 1 , 3
Var 2 , 3 Var 2 , M

| Var 3 , 3 Var 3 , M

Record N Var N , 1 Var N , 2 | Var N3 Var NM

Binary File 210 Fields 202

Field 3 Field M Field 1
Var 1 , 1
Var 2 , 1

Field 2
Var 1 , 2
Var 2 , 2

Var 1 , 3 Record 1
Record 2
Record 3

Var 1 , M

Var 2 , 3 Var 2 , M Records 204 Var 3 , 1 Var 3 , 2 Var 3 , 3 Var 3 . M

Record N Var N1 Var N , 2 Var N , 3 Var NM

Data File 220 Fields 202

Field 1 Field 3 Field M

Var 1 , 1 Var 1 , M Record 1
Record 2
Record 3

Field 2
Var 1 , 2
Var 2 , 2
Var 3 , 2

Var 2 , 1 Records 204
Var 1 , 3
Var 2 , 3
Var 3 , 3

Var 2 , M
Var 3 , 1 Var 3 , M

Record N Var N , 1 Var N , 2 Var N , 3 . . . Var NM

Patent Application Publication Oct . 17 , 2019 Sheet 1 of 8 US 2019 / 0318023 A1

Asset
110

Sensor
112

100 ADC
114

Interface
122

Processor
116

Memory
120

Storage
118

Fig . 1

Patent Application Publication Oct . 17 , 2019 Sheet 2 of 8 US 2019 / 0318023 A1

SQL Database 200 Fields 202

Field 1 Field 2 Field 3 Field M

Record 1 Var 1 , 1 Var 1 , 2 Var 1 , 3 Var 1 , M
Var 2 , M Records 204 Record 2

Record 3
Var 2 , 1

Var 3 , 1
Var 2 , 2
Var 3 , 2

Var 2 , 3
Var 3 , 3 Var 3 , M

Record N Var N , 1 Var N , 2 Var N , 3 . . . | Var N , M

Binary File 210 Fields 202

| Field 1
Var 1 , 1

| Field 2
Var 1 , 2 Record 1

| Field 3
Var 1 , 3
Var 2 , 3

Field M .
Var 1 . M
Var 2 , 1
Var 3 . M

Record 2 Records 204 Var 2 , 1
Var 3 , 1

Var 2 , 2
Var 3 , 2 Record 3 | Var 3 , 3

Record N Var N , 1 Var N , 2 Var N , 3 Var NM

Data File 220 Fields 202

Field 1 Field 2 Field 3 Field M
Record 1 Var 1 , 1 Var 1 , M Var 1 , 2

Var 2 , 2
Var 1 , 3

| Var 2 , 3 Record 2 Var 2 , 1 Var 2 , M Records 204 | Record 3 Var 3 . 1 Var 3 . 2 Var 3 . 3 Var 3 , M

U Record N Var N , 1 | Var N , 2 | Var 1 , 3 l . . . Var N , M

Fig . 2 .

Patent Application Publication Oct . 17 , 2019 Sheet 3 of 8 US 2019 / 0318023 A1

Create Database
302

Record Data in
Database

304

Create Binary File
306

Create Data File
308

Block Read / Write
Binary file to Data

File 310

Fig . 3

Data File 220

Fields 202

wwwwwwwwwwwwwwww

410

Field M

Patent Application Publication

Var 1 . M

Field 1 | Field 2 | Field 3
Record 1 Var 1 , 1 Var 1 , 2 | Var 1 , 3 Record 2 | Var 2 , 1 Var 2 , 2 | Var 2 , 3

Record 3 Var 31 | Var 3 , 2 | Var 3 , 3 Record 4 Var 4 , 1 Var 4 , 2 Var 4 , 3

Variable Pointer 402 404 Var 1 , 1 Loc 1 Var 2 , 1 Loc 2 Var 3 , 1 Loc 3

Var 2 M Var 3 , M Var 4 . M . Var 5 , M Var 6 , M .

Record 5

Var 5 , 1

Var 5 , 2

Var 5 , 3

Records 204

Record 6 Record 7 Record 8 Record 9

Var 7 , M

Var 6 , 1 Var 6 , 2 | Var 6 , 3 Var 7 , 1 Var 7 , 2 | Var 7 , 3
Var 8 , 1 | Var 8 , 2 | Var 8 , 3

Var 9 , 1 Var 9 , 2 Var 9 , 3

Oct . 17 , 2019 Sheet 4 of 8

Var 8 , M Var 9 M

Record N

Var N1

Var N , 2

Var N , 3

.

Var N , M

US 2019 / 0318023 A1

Fig . 4

Patent Application Publication Oct . 17 , 2019 Sheet 5 of 8 US 2019 / 0318023 A1

Create Data
Access Structure

502

Read Data File
One Time
504

Populate Data
Access Structure

506

Use Data Access
Structure to Enter

Data File
508

Fig . 5

Data File 220

Fields 202

610

Field M

L 410
Variable Pointer 402 404 Var 11 Loc 1 Var 2 , 1 Loc 2 | Var 3 , 1 / Loc 3 |

Patent Application Publication

Var 1 , 1 Var 2 , M Var 3 . M Var 4M

Field 1 | Field 2 Field 3 Record 1 Var 1 , 1 Var 1 , 2 | Var 1 , 3
Record 2 / Var 2 , 1 Var 2 , 2 Var 2 , 3 Record 3 Var 3 , 1 Var 3 , 2 Var 3 , 3 Record 4 Var 4 , 1 Var 4 , 2 Var 4 , 3 Record 5 Var 5 , 1 Var 5 , 2 | Var 5 , 3 Record 6 Var 6 , 1 | Var 6 , 2 Var 6 , 3 Record 7 Var 7 , 1 Var 7 , 2 | Var 7 , 3 Record 8 Var 8 , 1 Var 8 , 2 | Var 8 , 3 Record 9 Var 9 , 1 Var 9 , 2 Var 9 , 3

Var 5 M

Records 204

Var 6 , M Var 7M

Oct . 17 , 2019 Sheet 6 of 8

Var 8 , M Var 9 , M

Record N

Var N , 1 Var N , 2 | Var N , 3

Var NM

US 2019 / 0318023 A1

Fig . 6

Patent Application Publication Oct . 17 , 2019 Sheet 7 of 8 US 2019 / 0318023 A1

Create Data
Access Structure

702

Create Pointer
Structure

704

Read Data File
One Time

706

Populate Data
Access Structure &

Data Pointer
Structure

708

Use Data Access
Structure and

Pointer Structure to
Read Data File

710

Fig . 7

X = Var 1

X = Var 2

X = Var 3

X = Var . . .

X = Var M

Patent Application Publication

| 2x - x) -)

{ (x : - 8) -)

[(x - 2) 61 – 1)

- *) 2

y = Var 1

(* : -) () ; - ;) (2 - x) 2 20 . - 12

Unity

E -
{ « ; -) () : - 1)

20 - 12 { 6 - >) - 1

20 - { « ; - $) (0) -)

* - >

c - =

y = Var 2

Duplicate

Unity

o - »

{ o - >

Eur - 732 [(* : - + 90 : -)
£ * = =) 20 -)

[C * : - 1) 0) -))

y = Var 3

Duplicate

Oct . 17 , 2019 Sheet 8 of 8

Duplicate

Unity

{ 0 , - - 26 * -) 0 : -)

y = Var . . .

Duplicate

Duplicate

Duplicate

Unity

E on = >

y = Var M

Duplicate

Duplicate

Duplicate

Duplicate

Unity

US 2019 / 0318023 A1

810

Fig . 8

US 2019 / 0318023 A1 Oct . 17 , 2019

EFFICIENT DATA PROCESSING
FIELD

[0001] This invention relates to the field of data process
ing . More particularly , this invention relates to improving
the operation of a computer by providing more efficient
reading and locating of data , particularly database data
stored in a storage unit of a computer .

INTRODUCTION

[0009] When the records of the data file are sorted , some
embodiments also include reading through the entire data
file only once to find record positions for data containing
predetermined data characteristics . A pointer table is created
in the memory , where the pointer table includes a single
record position for a first instance of each of the predeter
mined data characteristics within the data file . The data file
is read starting at the record position in the pointer table that
corresponds to a desired one of the predetermined data
characteristics .
[0010) When the records of the data file are unsorted ,
some embodiments also include reading through the entire
data file only once to find record positions for data contain
ing predetermined data characteristics . A first pointer table is
created in the memory , where the first pointer table includes
a single record position for a first instance of each of the
predetermined data characteristics within the data file . A
second pointer table is created in the memory , where the
second pointer table includes , in association with the record
position for the first instance of each of the predetermined
data characteristics , a subsequent record position for a next
subsequent instance of each of the predetermined data
characteristics within the data file . The data file is read
starting at the record position in the first pointer table that
corresponds to a desired one of the predetermined data
characteristics , and if the data in the record position does not
contain the desired data , the data file is iteratively read at the
record position associated with the next subsequent instance
in the second pointer table , until the desired data is found .
[0011] Some embodiments for correlating variables in the
data file include the steps of reading the data file a first time
to determine averages x and y for each x and y variable pair
to be correlated . The data file is read a second time to
determine , for each x ; and y ; variable , the following three
values , where i represents the number of variables ,

Ez (x , - x) (- 7) ,
V2 , (1 –) ? , and
V2 , V : -) ?

[0012] Each of the three values is stored in a cell of an
array designated for the x , and y , variable pair . Using the
three values in the array for each combination of x ; and yi
variables , the correlation value r is computed according to
the formula

[0002] Many systems and methods produce the collection
and storage of large amounts of data . With modern relational
databases , the preservation of large quantities of data within
a storage unit , such as on magnetic or optical storage media ,
is not a problem . However , accessing this data can be very
time consuming . For example , reading six million records
from a structured query language (SQL) database on a
storage unit can take as long as thirty seconds . Thirty
seconds might not seem too long , but if there were 600
million records it would take fifty minutes to read all the
data , which in many applications is too long .
[0003] When only a relatively small number of records are
needed , this length of time is acceptable , and a standard SOL
management system can be used to interrogate the database .
However , when analyses are to be performed on large blocks
of data , or when different configurations of the data are
required , the standard interrogation of a database is much
too slow , and the issues described above become more
pronounced .
[0004] As a specific example , it is common to gather
vibration information on rotating equipment so that prob
lems that are manifested with vibration signatures can be
quickly detected and resolved . Capturing a live stream of
such information produces large amounts of data for even a
single asset . However , for companies that have many such
assets , the amount of information that is produced is
extremely large . That large amount of information is then
further compounded by keeping and adding to the data over
long periods of time .
[0005] Because these databases of information are so large
and take so long to interrogate , many who would otherwise
desire to do so are dissuaded from accessing them unless the
need is dire or the amount of data to be read is relatively
small , and so they do not interrogate them for all the
analyses that might be of use to them .
[0006] What is needed , therefore , are computer systems
improvements that tend to reduce issues such as those
described above , at least in part .

m

(* : – F) (y ; - y)
VE : () : - 1) ? VE : () ; - y) 2 SUMMARY

[0007] The above and other needs are met by a method for
transferring data from an SQL database in a storage unit to
a memory by copying the data from the SQL database to a
binary file in the storage unit , where the binary file having
a data structure and a data type . A data file having the data
structure and the data type is configured within the memory ,
and the binary file in the storage unit is copied to the data file
in the memory with a single read / write operation .
[0008] In some embodiments according to this aspect of
the invention , the data structure includes records and fields ,
with a number of records and a number of fields for each
record . In some embodiments , the data type comprises at
least one of real , integer , and word length .

[0013] According to another aspect of the invention there
is described a method for reading a data file of records in a
memory by reading through the entire data file only once to
find record positions for data containing predetermined data
characteristics . A pointer table is created in the memory , the
pointer table including a single record position for a first
instance of each of the predetermined data characteristics
within the data file . The data file is read starting at the record
position in the pointer table that corresponds to a desired one
of the predetermined data characteristics .
[0014] In some embodiments , each record in the data file
includes a plurality of fields , and all the fields are sorted

US 2019 / 0318023 A1 Oct . 17 , 2019

according to a predetermined order . In some embodiments ,
each record of the data file includes a plurality of fields , all
the fields are sorted according to a predetermined order , and
the pointer table includes , for each of the fields , a single
record position associated with a first instance for each of the
predetermined data characteristics for each field .
[0015] According to another aspect of the present inven
tion there is described a method for reading a data file of
unsorted records to locate desired data by reading through
the entire data file only once to find record positions for data
containing predetermined data characteristics . A first pointer
table is created in the memory , where the first pointer table
includes a single record position for a first instance of each
of the predetermined data characteristics within the data file .
A second pointer table is created in the memory , where the
second pointer table includes , in association with the record
position for the first instance of each of the predetermined
data characteristics , a subsequent record position for a next
subsequent instance of each of the predetermined data
characteristics within the data file . The data file is read
starting at the record position in the first pointer table that
corresponds to a desired one of the predetermined data
characteristics , and if the data in the record position does not
contain the desired data , iteratively reading the data file at
the record position associated with the next subsequent
instance in the second pointer table , until the desired data is
found .
[0016] . In some embodiments according to this aspect of
the present invention , a first pointer table and a second
pointer table are created for each field within the data file .
10017] . According to yet another aspect of the present
invention there is described a method for correlating vari
ables in a data file by reading the data file a first time to
determine averages x and y for each x and y variable pair to
be correlated . The data file is read a second time to deter
mine , for each x ; and y ; variable the following three values ,
where i represents the number of variables ,

Ef (x -) (: -)) ,
VE , (; - X) ? , and

more clearly show the details , wherein like reference num
bers indicate like elements throughout the several views , and
wherein :
[0021] FIG . 1 is a schematic representation of a computer
system for collecting and analyzing vibrational data from a
machine .
[0022] FIG . 2 is a graphical illustration of a method for
transferring data from a database in a storage unit to a data
file in a computer memory in a single read / write step .
[0023] FIG . 3 is a flow chart for the method illustrated in
FIG . 2 .
[0024] FIG . 4 is a graphical illustration of a method for
selecting data for analysis according to a second embodi
ment of the disclosure .
0025] FIG . 5 is a flow chart for the method illustrated in
FIG . 4 .
[0026] FIG . 6 is a graphical illustration of a method for
selecting data for analysis according to a third embodiment
of the disclosure .
[0027] FIG . 7 is a flow chart for the method illustrated in
FIG . 6 .
[0028] FIG . 8 is a two - dimensional array for calculating
correlation coefficients for pairs of variables in a data file
according to an embodiment of the disclosure .

DESCRIPTION

V2 : 6 –) ?
[0018] Each of the three values is stored in a cell of an
array designated for the x , and y ; variable pair . Using the
three values in the array for each combination of x , and yi
variables , the correlation value r is computed according to
the formula ,

Apparatus
[0029] FIG . 1 illustrates , schematically , a computer sys
tem 100 according to an embodiment of the present inven
tion . In some embodiments , the computer system 100 is one
of an imbedded computing device such as a Raspberry Pi , a
handheld computer such as a phone or PDA , a portable
computer such as a tablet or laptop , a desktop computer such
as a PC , and a main frame computer . In the embodiment
depicted , the computer system 100 receives data from a
sensor 112 , such as might be reading vibration data from an
asset 110 , such as a machine with a rotating element . In one
embodiment , the computer system 100 and sensor 112
constitute a handheld vibration analyzer . In other embodi
ments , the computer system 100 and sensor 112 constitute a
remote vibration analyzer that is mounted on the asset 110 .
Other embodiments are also comprehended .
0030] In some embodiments , the computer system 100
includes an analog to digital converter (ADC) 114 for
receiving analog sensor data and converting it to digital data ,
a processor 116 for performing operations on the data and
for controlling the other elements of the computer system
100 , a storage device 118 for storing data (such as on
magnetic or optical media) , a memory 120 for storing
instructions for the operation of the computer system 100 ,
and for the temporary storage of data when there are
operations to be performed on the data by the processor 116
(such as DRAM) , and an interface 112 for presenting visual
or audible information or communicating with other sys
tems .
[0031] As used herein , the term database refers to a data
structure that is stored on the data storage unit 118 , and is in
a format that is configured for reading and writing by the
database management program , such as an SQL database
program . The term binary file refers to a data file that is
stored on the data storage unit 118 and is in a flat file
configuration of records and fields . The term data file refers

r =
(xi – X) (y ; - y)

V2 ; (y ; - y) 2 VE ; (;) 2

10019] . In some embodiments , the correlation value r is
only calculated for unique combinations of the x ; and yi
variables .

DRAWINGS

[0020] Further advantages of the invention are apparent by
reference to the detailed description when considered in
conjunction with the figures , which are not to scale so as to

US 2019 / 0318023 A1 Oct . 17 , 2019

to data that is stored on the memory 120 , and is in a flat file
configuration of records and fields .
[0032] To overcome the lengthy read times for databases
disposed on the storage unit 118 , as described above , all or
a portion of the data can be written into and optionally
maintained as a structured binary file in the storage 118 for
rapid transfer into the memory 120 . In one embodiment , the
time required to copy the structured binary file from the
storage 118 to the memory 120 was 2 , 000 time faster than
using an SQL management program to read an SQL database
on the storage unit 118 into the memory 120 . For example ,
if reading the SQL database takes thirty seconds to copy the
data , copying the data from the binary file of the same data
on the storage unit 118 only takes fifteen milliseconds to
read . This is accomplished with a single block read / write
operation from the binary file to the data file . Thus , if there
were 100 times more data than this , the binary file approach
would only take 1 . 5 seconds , which would be far more
practical than the fifty minutes needed to read the SQL
database .
10033] As a part of this process , the data file in the memory
120 and the binary file in the storage unit 118 are both
configured according to the properties of the data that is
extracted from the SQL database . It is appreciated that in
some embodiments all the data in the SQL database is to be
extracted , and in other embodiments only a portion of the
data in the SQL database is to be extracted . However , as the
amount of data to be extracted increases , the benefits of the
embodiments of the present invention are more fully real
ized .

memory 120 of the appropriate size , so that when data is
eventually read into the data file 220 , it can all be done in
one continuous read / write operation . In some embodiments
the structure of the binary file 210 is constructed first , and in
other embodiments the structure of the data file 220 is
constructed first .
[0037] The data is then read out from the SQL database
200 and into the binary file 210 . During this process , the
structure of data as contained in the SQL database 200 is
modified to the flat file structure of the binary file 210 . This
might take some length of time , but it only need be done
once , and then the binary file 210 can be retained and even
updated on the storage unit 118 , as desired . As new data is
entered into the SQL database 200 , it can also be added to
the binary file 210 .
[0038] When the data from the SQL database 200 needs to
be loaded into the memory 120 for analysis , such as might
be determined by some sort of event driven trigger , the
numbers N and M of records 204 and fields 202 are
determined and an array of the required size is created in the
memory 120 as the starting point for the data file 220 . Using
a single read / write operation , the data in the binary file 210
is read directly into the array of the data file 220 in the
memory 120 . As the structure of the data in the binary file
210 and the data file 220 are the same , no additional data
conversion is required . This makes for a very efficient
transfer of the data in the binary file 210 into the data file 220
and saves a considerable amount of time in acquiring the
data .
10039] The overall system flow 300 is shown in FIG . 3 . As
given in block 302 , the database 200 is first created on the
storage unit 118 , and data is recorded in the database 200 as
given in block 304 . In various embodiments , the data is
vibrational data that is received from one or more of
different sources , such as a portable vibration analyzer and
an online vibration analyzer . The binary file 210 is created
in the storage unit 118 , as given in block 306 . At a desired
point in time , the data file 220 is created in the memory 120 ,
and is created to have the same characteristics as the binary
file 210 , such as by using the metadata . Finally , the data from
the binary file 210 is copied into the data file 220 in the
memory 120 with a single continuous read / write operation ,
as given in block 310 . The number N of records and number
M of fields in the binary file 210 may also recorded as an
entry in the binary file 210 and the data file 220 .
[0040] In this manner there is provided a method for
performing a much quicker read of data from the storage unit
118 to the memory 120 .

Data Transfer
[0034] FIG . 2 graphically illustrates a method for copying
the data in the SQL database 200 on the storage unit 118 to
the binary file 210 on the storage unit 118 and then into the
data file 220 in the memory 120 . In this example , the
database 200 on the storage unit 118 is comprised of a
number N of records 204 that include a number M of fields
202 , in which different variables are recorded . It is appre
ciated that the SQL database 200 can include any number of
records 204 and fields 202 , and that the numbers M and N
depicted in FIG . 2 are representative only . The data as
depicted in the SOL database 200 of FIG . 2 is formatted as
a flat file . However , this depiction is used for clarity in the
description , and such flat file formatting would typically not
be used in an SQL database 200 , but rather a relational
formatting would typically be used .
[0035] In addition to the actual data that is contained in the
SQL database 200 , there is also metadata . That metadata
includes , for example , the number N of records 204 , the
number M of fields 202 in each record 204 , the type of data
in each field 202 , and the length of each field 202 . The type
of data includes designations such as integer , small integer ,
real , and so forth . The length of each field 202 is , in most
embodiments , measured in bytes of data . As used herein ,
data structure refers to such metadata as the number N of
records 204 and the number M of fields 202 in each record
204 . As used herein , data type refers to such metadata as the
type of data in each field 202 , and the length of each field
202 .
[0036] The metadata from the SQL database 200 is used to
construct both the binary file 210 on the storage unit 118 and
the data file 220 in the memory 120 . This involves a
configuration processes such as mapping out a block in the

Data Access I

[0041] Some data sets can be sorted in one manner or
another according to one or more fields , and this makes them
more easily analyzed than does the order in which the data
was originally generated . This first data access method is in
regard to such data sets .
10042] . According to this method , the data file 220 in the
memory 120 is sorted according to some desired criteria ,
such as numerically ascending values of the variable in the
first field 202 . For example , if the variables in the first field
of the data file 220 were four - digit integers , the sorting
operation described above would result in all of the variables
that started with the number 1 being first in the data file 220 ,
then all of the variables that started with 2 being next , and

US 2019 / 0318023 A1 Oct . 17 , 2019

so forth . Likewise , there would be some number of variables
starting with 1 , another number of variables starting with 2 ,
and so on .
[0043] If it were desired to perform an analysis on those
records 204 having variables in the first field 202 that started
with the number 8 , for example , a prior art system would
have to read down through the records 204 in the data file
220 until the 8 ' s were encountered in the first field 202 . If
there were millions of records 204 in the data file 220 , this
might waste a tremendous amount of time , in relative terms ,
especially if this operation needed to be performed multiple
times .
(0044) Therefore , according to an embodiment according
to the present invention , the data file 220 is read through one
time , and an indexing pointer table 410 is created , as
depicted in FIG . 4 . The pointer table 410 contains , for
example , a minimum of two fields for each record in the
pointer table 410 . In the first field 402 are the various
indexed values of the variables of the first field 202 of the
data file 220 , to continue the example from above . Thus , this
portion 402 of the pointer table 410 would contain one of the
numbers 0 - 9 in each of the records . In a field 404 of the
pointer table 410 are descriptions of the position of the first
instance in the data file 220 of the desired value . This
position descriptor can be something such as the number of
a record 204 or an address in the memory 120 at which the
first instance of the desired data is stored . The lines from
table 410 to data file 220 are graphical indications of the
location of the records that include the first instance of the
desired variable .
[0045] Again continuing the example from above , if vari
ables starting with the number 8 are desired for analysis , the
pointer table 410 is interrogated to find the number 8 in the
first column , and then the memory location for the first
instance of the desired variable is read from the pointer table
410 , and then that information is used to start a read of the
data file 220 . In this manner , the time associated with
reading through unwanted data is saved .

Data Access II
[0048] In some embodiments , however , the data might be
received according to multiple contiguous sequences having
structures that are not immediately reflected in the received
data . For example , different variables 202 are received in
records 204 , but neither the variables 202 nor the records
204 reflect the sequence into which the data is organized ,
otherwise referred to herein as a data trend , and there might
be value in analyzing different data trends separately , with
out disturbing the order in which the data is received .
0049] . In such an embodiment , a marker such as a trend
identification can be added to the data to identify the data
trends one from another . For example , all of the records 204
belonging to the first data trend could be identified with a 1 ,
all the records 204 in the second data trend identified with
a 2 , and so forth , with the data trend identification stored , for
example , in a new variable 202 field . Then the pointer table
410 is constructed with the data trend identifier in column
402 , which is used to enter a desired data trend in the same
manner as described above .
[0050] The pointers 404 in table 410 enable a computer to
rapidly sequence through the data in the data file 220 , and
can also be used to provide an order in which the data is to
be processed . Using this approach , trend data may be
accessed in a very efficient and timely manner . Computer
performance tests using six million records of vibrational
trend data , according to the embodiment of FIGS . 4 and 5 ,
produced a one order of magnitude increase in computer
performance on a standalone computer system . A network
with multiple users could be expected to provide an even
greater performance improvement using these methods .

Data Access III

[004] In a further embodiment , the pointer table 410 is
also read to determine the memory location of the first
instance of the next succeeding variable value , which to
continue the example would be the number 9 . With this
memory location know , the read of the data file 220 can
automatically be stopped when the last 8 variable has been
read . In this manner , the knowledge of the exact size of the
read prior to the start of the read can have some benefits ,
such as an elimination of the analysis of the data as it is read
out to determine the stop of the read , and also such as
mapping out in advance a portion of the memory 120 with
a predetermined size in which to place the read variables , as
desired .
[0047] FIG . 5 provides a simplified flow chart of this
method . The first step is to create the data access structure
410 , as given in block 502 . As discussed above , this can be
accomplished with a single read of the data file 220 , as given
in block 504 . The data access structure 410 is then populated
with the information gathered from the data file 220 , as
given in block 506 . Thereafter , the data access structure 410
is used to enter the data file 220 , as given in block 508 ,
which removes the need to read down through the data file
220 starting at the top whenever new data is to be retrieved
from the data file 220 .

10051] In some applications , it may be necessary to ana
lyze the data in the order in which it is received , and so the
data cannot be sorted according to the embodiments of Data
Access I . The goal is to find and access all instances of a
particular variable value . One embodiment , as depicted in
FIG . 6 , is to leave the data file 220 in the order in which the
data was originally created , such as a time series , read the
data file 220 through once , and while so doing , create the
pointer table 410 as given above that includes in field 404
the first instance for given variables 202 and the associated
memory position in field 402 for each .
[0052] . A second pointer table 610 is created in memory
120 to provide a subsequent record position or memory
location that is associated with a subsequent instance of the
desired variable 602 . This is represented in FIG . 6 as pointer
table 610 , where arrows represent additional entry points
into the data file 220 in which subsequent instances of the
desired variable 602 are located . Thus , there would be a
separate table 610 for each of the variables indexed in the
data access structure 410 . In this manner , data that is
associated with the desired variable value can be relatively
quickly located in an unsorted data file 220 , without the need
to read the data file 220 down from the top multiple times .
[0053] FIG . 7 depicts a method for this embodiment ,
where a memory location for the data access structure 410
is created , as given in block 702 . A memory location for the
pointer table 610 is also created , as given in block 704 . The
data file 220 is read through a single time , as given in block
706 , and the data access structure 410 and the data pointer
table 610 are populated with the data as described above , as

US 2019 / 0318023 A1 Oct . 17 , 2019

given in block 708 . Thereafter , the data file 220 is interro
gated using the data access structure 410 and the pointer
table 610 , as given in block 710 .

In the first pass through the database , average values x and
y for each x and y variable 202 pair to be correlated are
determined . The database is then read a second time to
determine for each x ; and y ; variable the following three
values :

E : (* ; - #) (y - 7) ,
V2 , (x2 - x) ?

Variable Correlation
[0054] Finding the correlation that might exist between
one variable 202 in a given set of records 204 and another
variable 202 in the given set of records 204 enables an
analyst to discover additional insight into the behavior of the
system that created the data . The variables 202 may include
vibration data characteristics for a machine , machine char
acteristics , or a combination of machine and vibration char
acteristics for the machine .
[0055] With reference to FIG . 8 , there is depicted a
graphical depiction for how this is done . Such a task can be
visualized by listing each of the variables 202 across the top
of the matrix 810 , and then also listing those same variables
202 down the left side of the matrix 810 . The variables 202
across the columns are designated as X? , where i varies from
one to M (the total number of variables being analyzed) , and
the variables 202 down the rows are designated as y ; . The
box at the intersection of a given row and column represents
the correlation between the two variables 202 represented by
the intersecting row and column .
[0056 Obviously , each of the variables 202 correlates
perfectly with itself , and so the boxes on the chart that are
at the intersection of a row and column that each represent
the same variable 202 (x , and y , for example) are repre
sented by unity , and so no computation for correlation for
that intersection need be made . Further , all of those boxes on
one side of the unity diagonal represent the exact same
correlation as those boxes on the other side of the unity line
(the correlation between x and y2 is the same as the
correlation between x , and y .) , and thus are duplicates that
need not be calculated . Therefore , if there are M variables
202 to be correlated , one need only do the computations for

V = ; (: -)) ?
[0060] Each of the three values for the above formulas is
independently stored in the memory 120 in an array desig
nated for each x ; and y ; variable pair as shown in FIG . 8 .
After these three portions of the overall correlation equation
have been computed individually and stored in the memory
120 in association with a given x ; and y ; variable 202 pair ,
the three portions are combined for each combination of x ;
and y ; variables 202 to produce the correlation value r
according to the standard formula given below , with no
further passes down through the records of the data :

r = (* ; - 3) (y ; – 5)
V2 : (y ; - y) 2 V 2 ; (y ; - y) 2

unique variable 202 pairs .
[0057] The correlation r between each unique combination
of two variables 202 x and y is determined by solving the
following equation :

[0061] In a test case of 274 variables 202 (fields) and six
million data points (records 204) , calculations according to
the prior art (FIG . 7) required reading down through all the
data 274x274 times . However , using the procedure
described above , the data was read down through only twice .
The first approach took 1 . 5 hours to calculate all the corre
lation coefficients , while the second approach only took
eighteen seconds , which is an increase of over 2 , 000 times
in computer performance . It will be appreciated that the
foregoing procedure may be adapted for evaluating corre
lation coefficients for more than two variables 202 (higher
order interactions) , with even greater savings in computa
tional efficiency .
[0062] The foregoing description of embodiments for this
invention has been presented for purposes of illustration and
description . It is not intended to be exhaustive or to limit the
invention to the precise form disclosed . Obvious modifica
tions or variations are possible in light of the above teach
ings . The embodiments are chosen and described in an effort
to provide illustrations of the principles of the invention and
its practical application , and to thereby enable one of ordi
nary skill in the art to utilize the invention in various
embodiments and with various modifications as are suited to
the particular use contemplated . All such modifications and
variations are within the scope of the invention as deter
mined by the appended claims when interpreted in accor
dance with the breadth to which they are fairly , legally , and
equitably entitled .

1 . A method for improving the operation of a computer by
transferring data from an SQL database in a storage unit to
a memory , the method comprising the steps of :

copying the data from the SQL database to a binary file in
the storage unit , the binary file having a data structure
and a data type ,

configuring within the memory a data file having the data
structure and the data type , and

/ =
. (x ; – x) (y ; - y)

V2 ; (y ; - y) 2 V 2 ; (y ; – 5) 2

[0058] However , this equation has traditionally required
several passes through every record of the database in order
to compute the value for one given correlation pair . Thus ,
computing the correlation coefficients for a large number of
records 204 , where each record 204 has a large number of
variables 202 , can be very time consuming . For example ,
calculating the correlations for six million records 204 with
274 variables 202 each took 1 . 5 hours , which is far too long
for many applications .
[0059] According to one embodiment , all correlation coef
ficients between two unique pairs of variables 202 can be
determined by using only two passes through the database .

US 2019 / 0318023 A1 Oct . 17 , 2019

using the three values in the array for each combination of
X ; and y ; variables , computing the correlation value r
according to the formula

(x ; – 7) (y ; - y)
V2 ; (y) 2 V 2 ; (v : -)) ?

copying the binary file in the storage unit to the data file
in the memory with a single read / write operation .

2 . The method of claim 1 , wherein the data structure
comprises records and fields , with a number of records and
a number of fields for each record .

3 . The method of claim 1 , wherein the data type comprises
at least one of real , integer , and word length .

4 . A method for reading the data file produced by the
method of claim 1 , when the records of the data file are
sorted , comprising :

reading through the entire data file only once to find
record positions for data containing predetermined data
characteristics ,

creating a pointer table in the memory , the pointer table
including a single record position for a first instance of
each of the predetermined data characteristics within
the data file , and

reading the data file starting at the record position in the
pointer table that corresponds to a desired one of the
predetermined data characteristics .

5 . A method for reading the data file produced by the
method of claim 1 to locate desired data , when the records
of the data file are unsorted , comprising :

reading through the entire data file only once to find
record positions for data containing predetermined data
characteristics ,

creating a first pointer table in the memory , the first
pointer table including a single record position for a
first instance of each of the predetermined data char
acteristics within the data file ,

creating a second pointer table in the memory , the second
pointer table including , in association with the record
position for the first instance of each of the predeter
mined data characteristics , a subsequent record position
for a next subsequent instance of each of the predeter
mined data characteristics within the data file , and

reading the data file starting at the record position in the
first pointer table that corresponds to a desired one of
the predetermined data characteristics , and if the data in
the record position does not contain the desired data ,
iteratively reading the data file at the record position
associated with the next subsequent instance in the
second pointer table , until the desired data is found .

6 . A method for correlating variables in the data file
produced by the method of claim 1 , the method comprising
the steps of :

reading the data file a first time to determine averages X
and y for each x and y variable pair to be correlated ,

reading the data file a second time to determine for each
X ; and y ; variable the following three values , where i
represents the number of variables ,
2 / (x - 7) (y : -)) ,
VE , (x - 7) ,

7 . A method for improving the operation of a computer by
reading a data file of records in a memory , the method
comprising :

reading through the entire data file only once to find
record positions for data containing predetermined data
characteristics ,

creating a pointer table in the memory , the pointer table
including a single record position for a first instance of
each of the predetermined data characteristics within
the data file , and

reading the data file starting at the record position in the
pointer table that corresponds to a desired one of the
predetermined data characteristics .

8 . The method of claim 7 , wherein each record in the data
file comprises a plurality of fields , and all the fields are
sorted according to a predetermined order .

9 . The method of claim 7 , wherein each record of the data
file comprises a plurality of fields , all the fields are sorted
according to a predetermined order , and the pointer table
includes , for each of the fields , a single record position
associated with a first instance for each of the predetermined
data characteristics for each field .

10 . A method for improving the operation of a computer
by reading a data file of unsorted records to locate desired
data , the method comprising :

reading through the entire data file only once to find
record positions for data containing predetermined data
characteristics ,

creating a first pointer table in the memory , the first
pointer table including a single record position for a
first instance of each of the predetermined data char
acteristics within the data file ,

creating a second pointer table in the memory , the second
pointer table including , in association with the record
position for the first instance of each of the predeter
mined data characteristics , a subsequent record position
for a next subsequent instance of each of the predeter
mined data characteristics within the data file , and

reading the data file starting at the record position in the
first pointer table that corresponds to a desired one of
the predetermined data characteristics , and if the data in
the record position does not contain the desired data ,
iteratively reading the data file at the record position
associated with the next subsequent instance in the
second pointer table , until the desired data is found .

11 . The method of claim 11 , wherein a first pointer table
and a second pointer table are created for each field within
the data file .

12 . A method for improving the operation of a computer
by correlating variables in a data file , the method comprising
the steps of :

reading the data file a first time to determine averages x
and y for each x and y variable pair to be correlated ,

V2 : 0 : - y) ? ,
storing each of the three values in a cell of an array

designated for the x , and y ; variable pair , and

US 2019 / 0318023 A1 Oct . 17 , 2019

reading the data file a second time to determine for each
X ; and y ; variable the following three values , where i
represents the number of variables ,

Ex (x2 - x) (y - 7) ,
VE , (4 ; - x) ?
V2 ; (: - D) ? ,

storing each of the three values in a cell of an array
designated for the x , and y ; variable pair , and

using the three values in the array for each combination of
X ; and y ; variables , computing the correlation value r
according to the formula ,

=
(x ;) (y ; – 5)

VE ; (y ; – J) ? VE ; (y ; – 5) 2

13 . The method of claim 12 , wherein the correlation value
ris only calculated for unique combinations of the x ; and y ;
variables .

* * * * *

