US 20240118808A1

a2y Patent Application Publication o) Pub. No.: US 2024/0118808 A1

a9y United States

Rauh et al.

43) Pub. Date: Apr. 11, 2024

(54) CONNECTION POOL MANAGEMENT WITH (52) US. CL
STRATEGIC CONNECTION ALLOCATION CPC ... GO6F 3/0613 (2013.01); GOGF 3/0653
TO REDUCE MEMORY CONSUMPTION OF (2013.01); GO6F 3/0673 (2013.01)
STATEMENT POOLS
57 ABSTRACT
(71) Applicant: International Business Machines A computer implemented method manages connections in a
Corporation, Armonk, NY (US) connection pool. A computer system creates a modified call
stack for a connection request in response to receiving the
(72) Inventors: Nathan Jon Rauh, Rochester, MN connection request. The modified call stack comprises ele-
(US); Alex Seitzinger Motley, ments that call prepared statements that are part of an
Rochester, MN (US); Mark Swatosh, application logic for the connection request. The computer
ROCHESTER, MN (US); James system identifies a group of potential connections from the
Stephens, Palisade, MN (US) connections in the connection pool matching the connection
request. The group of potential connections is associated
(21) Appl. No.: 18/045,627 with a group of associated modified call stacks that call the
prepared statements. The computer system determines a
(22) Filed: Oct. 11, 2022 group of weighted match scores for the group of associated
modified call stacks from a comparison of the modified call
Publication Classification stack with the group of associated mpdiﬁed call stacks. The
computer system selects a connection from the group of
(51) Int. CL potential connections based on a highest weighted match
GO6F 3/06 (2006.01) score in the group of weighted match scores.
800~ RECEIVE AREQUEST FOR A
CONNECTION FROM AN APPLICATION
Y
802 \l RETRIEVE A CALL STACK
v
804 ~| RETRIEVE A FIRST ELEMENT FROM THE
CALL STACK FOR THE CONNECTION

IS THE
RETRIEVED ELEMENT
FOR A SPECIFICATION
PACKAGE?

INCLUDE THE RETRIEVED ELEMENT

81271 INTO THE MODIFIED CALL STACK

18 ANOTHER
UNPROCESSED ELEMENT
PRESENT IN THE CALL
STACK?

RETRIEVE THE
UNPROCESSED ELEMENT
FROM THE CALL STACK

818 /I OUPUT THE MODIFIED CALL STACK

END

A
816

Patent Application Publication

Apr. 11,2024 Sheet 1 of 18

US 2024/0118808 A1

100
COMPUTER 101
PROCESSOR SET 110
120~ PROCESSING CIRCUITRY CACHE 121
111~ COMMUNICATION FABRIC
112~ VOLATILE MEMORY
PERSISTENT STORAGE 11
122~ OPERATING SYSTEM CONNECTION MANAGER 190
PERIPHERAL DEVICE SET 11
UI DEVICE IoT SENSOR
123-1 seT 124 | STORAGE SET [M125
NETWORK MODULE
103 14
N 115 REMOTE SERVER
END USER DEVICE REMOTE
DATABASE
PRIVATE CLOUD S
7 140 130
106 105 \ \
Y 104
GATEWAY
PUBLIC CLOUD
144] CLOUD ORCHESTRATION MODULE HOST PHYSICAL MACHINE SET N_1 49
143~ VIRTUAL MACHINE SET CONTAINER SET o144

FIG. 1

US 2024/0118808 A1

Apr. 11, 2024 Sheet 2 of 18

Patent Application Publication

¢ 'DId

% 1S3n03y .
NOLLO3NNOD 87z %7
\ /
NOLLOANNGO QIOHSTYHL QYYOSIA e SINTNTT3 (3 LYIO0SSY
A
9¢C N,WN > YOVLS TIVD
N G5 JIOHSRHL - QHIHIGON G3LYIO0SSY
797 S3SSINOLSLH ST S
h « . g7z aadigon SEC
NOLLOINNOD vz 424 QALYID0SSY
TWLINALOd N IOVNYI
SNOILOINNOD TVIINALOd OV ONIHOLYW os{ NOHOINGO) 1 snagm Ky on
SNOLOANNGO — YOVLS TVO QI IHION
A
ood } N 0¥z~ aaHomm o/mm
NOILOANNOD | ¥0C - ¥
| woosron <
/ 802 ¥€C | G31HOTIM LSFHOH SINIWTE N g7z
90c 4 / SF00S HOLWA G3LHOTW OVLS TVO
0lc) N
> om\m mzo:o‘yEmzH hee
SINFNILYLS ATV 812 oond
$700d 1 474
INFAGLYLS QFvdTid Y W3LSAS
SLINN ¥3LNdNOD
912" ¥0ss300ud
LNINNOYIANT
NOLLOINNGO 207 WILSAS NOILOANNOD

Ve ‘DId gt 9101

(¢GyenelurieydjedsiqapH)einosxgpuy.e|pueHdemm yurieyoledsigdpH [euueyo fewsiur eyajedsip gy swLg) oo Je
(781 | ‘erelyurpsyojedsiqdpH)un jeddeypise | ureyojedsiqdpH [suueyo [ewsjul loyojedsip dpy swwigrwoo Je

(182 eNElISOHENHINDIUBUACT U Z§ISOHIENHIAOUEBUAQ] IBSO JOUIEJUOOCOM S LLIGI WOD J8
(g¢6:eARlIBUIELIOOGEAR ISENbaYs|pLEL JBUIBIUOD TSN JBUIBJLODCEM SM LIGILIOD 18
(cg:enel praddeipmsinegsyoen issnbays|puey grieddeipps|uegsyoen) JojSS (RUIRJ UGB SMLUGIWOD 18
(1 :enelJoddepneiagayoenisenbeyaipuey leddeeiiegaoen) 10|/USSs JOUIBJLOIGEM S LLGI W0 J2

US 2024/0118808 A1

i i
' :
| |
| |
| |
| |
I |
| |
m “ (1101 el iebeuepsy|ddycpn)s ey oyonur iebeuaisyiddycenn ey JeuleLoOTRMN SIUIG W00 Je “
© _ (Lez) enel sobeugeyddydap)sieyJexonur iebeueisyiiddy o o)y JoUIBIIOOGEM SINUIGILIOO J8 |
« I (¢irrenel Jeddeippe|neg hisenbexejpuel uedde jyyejries Jo|es JEUIBIIOGEM SWWIGI WO J8 |
m I (op, enel Jeddespysinies Jisenbeye|puey isddea|Aes JojAes ISUIZJUOOGEM S WG WO 8 |
7 I (86| eneleddeipeinies)eoinies leddeyyojnIag Jo|AIes JBURJUOOGEM S WGIWoo J8 |
s I (186 enelpinagdpH)eoines oinOSARH dpy jeinies epexel 18 |
S e (0og-enefpiniesdiH)eones feihesdiH dpyees epexelie |
=} _ g1¢ L (HLEnelRIeSudoUS 00D NeSbudHs gm0l kducofuoo e |
) oom\‘“ gle A (seenefpinegbuddoys)ebedpingreeguiddous gemuoyeiors Auedwookuruioo e | |
< I o o m mm m m mm mm mmm m o |
_ y g L (68L2relenBgBuddoS JRUeq Ui e egPuIddoug gamLayB.0ls Aueduicolur oo e |
T2
8= _ _xsmo_m>m:w_amwm:_&o:wvwEQEogw.«m_amwmc_&osw ‘gamuojI0)s AueduwooAw oo EJ_ _
= I AL J
= T
W | 0le ‘_M (cotenel Aoyuanur)Asnppaie)y AojusAUT gamJuolRI0)s Auedoo A wos je M I
= | aperfuopepueiniconyua ey oaes stoppuetiiony can oS ool |
= e O
£ “ 3 o\m 90¢ ._M (7501 enel Aioyusnu JeyeqLus)ion|oo° AIojusAUT ‘gam JucLI0)s AuedooA oo ﬁm '
s LT e e e e T T T T T T T T T T T T T T e
.ml I A VOE \M (z2) -enelangq)uonseuuoDieh iiNgQ uolwo JuoleI0)s AuedwooAu woo e M |
Ml “ €0e (11 enel-aoinogejeqogprsatLonoauUo)eb 0INOSEYRoqPrSAA 2dpl edepes) smwgruos Je "
= _ (oy) enel 2onoselEqRAPrSMUOR2RULODNRD BaIN0SEIEQIAPTSI 2qpl Jejdepes suiqruoo e
m L o _ _ {ongenelebeuguogosUUe0)U0§aUL00RIE00) 19DELBNLORIoULOD OZf SPAILCO e _|

US 2024/0118808 A1

Apr. 11, 2024 Sheet 4 of 18

Patent Application Publication

d¢ ‘DId

6lE

e

- T T T T T T et ||.|||““““““““““““““““““““““““hﬂ_

P T 9N e oumeropsn e o e oo o]|
[l e suofepustiticosyhueileldsoaps SuopepusiLicoss qenyuciaios Ao woo 3] |

(gzg-enelpeaiy [Juru-pealy] ‘Bue|enelpseqenelje

(8z9:enel J0jnoax|004pesiy | Jun e opEHoIN0eXT|004peail | JusLNouoo [jn ereleseqenel je

(8Z1 1 enel10Jn0ax]|004pEauy | J4eSHOMUNI - ICINISXT |00 pesly | JuaLnouco |an eAeleseqenel e

(g z-enefl1dwreoiniegioinoex3uru eddelpie|qeuuny$|d TeoiusgIonoex 3 feLeyul Buipeay) S LGIWoo je

(1101 -enel Jebeugpjenanyopt) unt isyIopigIaBeuByaNS MMM |eWSjUI [aULBYOd0} SM WG OO Je

(956:enel JI0BRUBABNEND MO JUNY e oM JeBRUBABNaNDHON [ELIS)UI [BUURYDdO) SWLUGIIOD J2

(16:2Nel Jobeugpanan oA O dwene Jsbeugyens oA [eWSIUL BULRLYICOY SMLLGIWIOD 12
(y05:enelebeugnananyy oy e dwonisenbar iaBeussne DO [ELLISIUL eULIRYICO) SM LLGILIOD 12

(g1 eneljoeqjle0peayepiuuoRoBLUCOMN Jaje|dwco oed|[eDPeay[eRIuTUOTOSULICOMEN |eLLiB)ul LUEYoda) S WQI LoD Je
(191 renelyoedjleDpesy|eHuTUCROSULODMAN JSIONRUILILIDSI]O | PUsSs Yord|[epesy[eRiuUORISULOOMEN [eLajUl feuUeyoda) st Wigr oo Je
(126 enelyuripunoquydpiH)Apes. yurfpunoqudRH pUnoqU! [eLsjuL [sUUELD"dy S W oo Je

(09¢ el yurpunoquIdpH isenbeysseooid YurpUNOGUIARH PUNOAUI feB)UIF [SULBLY dRY SINLIGH OO J

(005 enel urjpunoqudpH hisenbeymeNs|puey jurpuNoqUIdRH PUNOQU [eUIsjuF |sUUBYD Y S WA Woo je
(99genelyuripunoquIdpH)uoNeulLOSICs|pUEY YUTTPUNOGUTRH PUNOGUI [eUsIUI [BUUELO AR S LUGI LIOD Je

(21 yenelyurpeyojedsiqdpH)Apes yurieyojedsiqdnH jeuueyo |ewejul eyojedsip dpy s gl Woo Je

V¢ "OI4 oA

Patent Application Publication Apr. 11,2024 Sheet S of 18 US 2024/0118808 A1

at com.mycompany.storefront.promos. PromoT racker.dealOfDay(PromoT racker.java:452)

at com.mycompany.storefront.promos. PromoT racker.collectPromotions(PromoTracker.java: 366)
at com.mycompany.storefront.web.AdSupplier.unavailable{ AdSupplier.java:915)

at com.mycompany.storefront.web.AdSupplier.paidAdvertisement(AdSupplier.java:403)

I | P R R T S T R T S S T S ey -1

I at com.mycompany.storefront.web.ShoppingServiet.buildPage(ShoppingServiet java:95) =~ 404

I .- - _°‘ - s - __ _1

I | at com.mycompany.storefront.web.ShoppingServlet.doGet(ShoppingServiet java:71) ~ 402

e T e J
COMPUTED MATCH: 1 +4 +9 +16 +64 = 94

FIG. 4

Patent Application Publication Apr. 11,2024 Sheet 6 of 18 US 2024/0118808 A1

: | at com.mycompany.storefront.common.DBUt. getConnection(DBUtjavai 122) -~ 516

:FStBS&Bq}Eoﬁ)éﬁy}Io_re?rBﬁt}v_eB.TrT\/Er?tS&.Eoflléc_tﬁe_nq_[)_at_aﬁﬁxkﬁt_or_yfja_vé:_1 03 014 5/12

- S |

| R R I R T O R Y T T T Ty Y "

I at com.mycompany.storefront.web.Recommendations.selectDisplayltem(Recommendations.java:461) |

__ 3

| ; . i
| Lt commycompeny storsfent.vieb ShopingSavetshowlte{ShoppingServiejavart20) Ky

e T T T T T T AL et oL A T4 Zony 1

| L at com.mycompany.storefront.web.ShoppingServiet. mainPanel(ShoppingServlet java: 789) ~ 506

I
I
I
I
I
I
r I
. ___ d I
I
I
I
I
I
I
I
I

I

I

: [at com.mycompany.storefront.web.ShoppingServiet. buildPage(ShoppingServiet java: 95) N 504

I | at com.mycompany.storefront.web.ShoppingServlet.doGet(ShoppingServiet java:71) ~ 502
COMPUTED MATCH: 1 +4 +9 +16 +25 +36 +49 +64 = 204

FIG. 5

Patent Application Publication Apr. 11,2024 Sheet 7 of 18 US 2024/0118808 A1

-
3 AVAILABLE POOLED CONNECTIONS WITH
| at com mycompany.storefront.common. DBUS| getConnection(DBUtijavar122) -~ 606

at com.mycompany.storefront.web.OrderConfirm.orderT otal(OrderConfirm.java: 2384)
at com.mycompany.storefront.web.ShoppingServlet.checkoutPage(ShoppingServlet java:539)

I R R R T S I Y S S T T S Y 1

I
I
I
I
I
I
I
I
:_L at com.mycompany.storefront.web.ShoppingServlet.doGet(ShoppingServlet java: 71) ~ 602

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
L

Patent Application Publication

Apr. 11, 2024 Sheet 8 of 18

(START)

Y

700~

CREATE A MODIFIED CALL STACK FOR

FOR A CONNECTION IN RESPONSE TO

RECEIVING A CONNECTION REQUEST
FROM AN APPLICATION

TOFIG. 7B
FROMFIG. 7B

702

DOES A
GROUP OF POTENTIAL
CONNECTIONS IN THE CONNECTION
POOL MATCH THE CONNECTION

REQUEST PRESENT
?

NO

o
|

Y

FROMFIG. 7B
722~

CREATE A NEW CONNECTION
FOR THE APPLICATION

Y

'\

A

724

RETURN THE CONNECTION
TO THE APPLICATION

Y

726

MONITOR USAGE FOR
THE CONNECTION

Y

728~

DETECT THAT THE APPLICATION
CLOSES A CONNECTION HANDLE
FOR THE CONNECTION

Y

730

DETERMINE WHETHER TO ADD THE
MODIFIED CALL STACK FOR THE
CONNECTION TO THE EXCLUDE LIST
FOR THE MODIFIED CALL STACK

Y

(C end)
FIG. 7A

US 2024/0118808 A1

Patent Application Publication Apr. 11,2024 Sheet 9 of 18 US 2024/0118808 A1
FROM
FIG. 7A
704~ CREATE A LIST OF
CANDIDATE CONNECTIONS
K
RETRIEVE AN UNPROCESSED
706 ~_ POTENTIAL CONNECTION FROM
THE GROUP OF POTENTIAL
CONNECTIONS FOR PROCESSING
208 | RETRIEVE AN ASSOCIATED MODIFIED CALL
N STACK ASSOCIATED WITH THE POTENTIAL
CONNECTION FOR PROCESSING
710
DETERMINE
WHETHER THE ASSOCIATED
MODIFIED CALL STACK IS AN EXCLUDED NO 712
MODIFIED CALL STACK FROM AN EXCLUDE)
LIST FOR THE MOEIFIED DETERMINE A WEIGHTED
CALL STACK? MATCH SCORE BASED ON A
COMPARISON BETWEEN
THE MODIFIED CALL STACK
AND THE ASSOCIATED
MODIFIED CALL STACK
IS ANOTHER !
VES UNPROCESSED POTENTIAL DD THE POTENTIAL
CONNECTION PRESENT IN THE CONNECTION ASSOGIATED
GROUP OF POTENT)IAL WITH THE WEIGHTED MATCH
CONNECTIONS? SCORE TO THE LIST OF
CANDIDATE CONNECTIONS
ORDERED BY HIGHEST
WEIGHTED MATCH SCORE
IS THE VES N
LIST OF CANDIDATE CONNECTIONS 714
EMPTY? u
SELECT THE FIRST POTENTIAL CONNECTION FIéOYA
720-"] IN THE LIST OF CANDIDATE CONNECTIONS :
T0
FIG. 7A FIG. 7B

Patent Application Publication

800~

RECEIVE AREQUESTFOR A
CONNECTION FROM AN APPLICATION

v

802~

RETRIEVE A CALL STACK

Y

804 ~_

RETRIEVE A FIRST ELEMENT FROM THE
CALL STACK FOR THE CONNECTION

RETRIEVED ELEMENT FOR AN APPLICATION

RETRIEVED ELEMENT FOR A THIRD PARTY

Apr. 11,2024 Sheet 10 of 18

US 2024/0118808 A1

»

\

806

IS THE

RETRIEVED ELEMENT YES

FOR A SPECIFICATION
PACKAGE?

IS THE

SERVER PACKAGE?

IS THE

PACKAGE?

812

INCLUDE THE RETRIEVED ELEMENT
INTO THE MODIFIED CALL STACK

YES

YES

2

\

IS ANOTHER
UNPROCESSED ELEMENT
PRESENT IN THE CALL
STACK?

RETRIEVE THE
UNPROCESSED ELEMENT
FROM THE CALL STACK

818

OUPUT THE MODIFIED CALL STACK

Y

(END)

N
816

FIG. 8

Patent Application Publication Apr. 11,2024 Sheet 11 of 18 US 2024/0118808 A1
START
900 ~J INITIALIZE A WEIGHTED MATCH SCORE TO ZERO
\ J
902~]" INITIALIZE AN ELEMENT COUNTER TO ZERO
904 ~ RETRIEVE A FINAL ELEMENT IN THE
MODIFIED CALL STACK FOR PROCESSING
V:
906~ ADD 1 TO THE ELEMENT COUNTER
908
IS THE
ELEMENT OF THE
MODIFIED CALL STACK PRESENT IN ~YES
THE ASSOCIATED MODIFIED Y
CALL STACK? ADD A SQUARE OF THE
ELEMENT COUNTER TO THE
WEIGHTED MATCH SCORE
I N
910
DOES THE RETRIEVE THE
MODIFIED CALL STACK PRECEDING ELEMENT
HAVE A PRECEDING FROM THE MODIFIED CALL
ELEMENT? STACK FOR PROCESSING
N
914
9161 OUTPUT THE WEIGHTED MATCH SCORE

END

FIG. 9

Patent Application Publication Apr. 11,2024 Sheet 12 of 18

US 2024/0118808 A1
START
1000 ~| INITIALIZE AHIT COUNTER, AMISS COUNTER,
AND A DISCARD COUNTER TO ZERO
v
1002~ RECEIVED AREQUEST TO USE A PREPARED
STATEMENT FROM AN APPLICATION
1004 ~_ SEARCH FOR THE PREPARED
STATEMENT IN A STATEMENT POOL
IS PREPARED
STATEMENT PRESENT IN THE STATEMENT
POOL?
IS 1008
THE
1016~ ADD 1 TO THE HIT COUNTER STATEMENT YES
P POOL AT MAXIMUM 1010
y CAPACITY v /
PROVIDE THE APPLICATION ? ADD 1TOTHE
1018~ WITH A CONNECTION HANDLE TO DISCARD
THE PREPARED STATEMENT NO r COUNTER
ADD 1 TO THE !
MISS COUNTER DESTROY AN
APPLIC/T%%EENISHED ‘ UNUSED
PREPARED
USING THE PREPARED 1012 1014 STATEMENT
PLACE THE STATEMENT? y / FROMTHE
PREPARED CREATE ANEW PREPARED
STATEMENT PREPARED STATEMENT
BACK INTO THE STATEMENT POOL
STATEMENT POOL | TN
/o 1011
1022
HAS THE NO
APPLICATION FINISHED USING THE CURRENT

CONNECTION?

FIG. 10

Patent Application Publication

DOES
THE DISCARD
COUNTER HAVE A VALUE THAT IS AT
LEAST 1

1100

1102
N\
DETERMINE THE TOTAL USAGE FOR THE CONNECTION
FOR AN ASSOCIATED MODIFIED CALL STACK BY
ADDING THE HIT COUNTER AND THE MISS COUNTER

v

DETERMINE A STATEMENT POOL HIT
RATIO AS THE HIT COUNTER DIVIDED BY
THE TOTAL USAGE OF THE CONNECTION

4
1104 1106
DOES

THE STATEMENT

NO

Apr. 11,2024 Sheet 13 of 18

US 2024/0118808 A1

POOL HIT RATIO EXCEEDS AHITS TO

MISSES THRESHOLD
?

ISTHE

VALUE FOR THE DISCARD NO

1112

COUNTER LESSTHAN OREQUALTO A
DISCARD THRESHOLD

vy [/

?
1110 1108
\

ADD THE ASSOCIATED MODIFIED
CALL STACK TO THE EXCLUDE LIST
FOR THE MODIFIED STACK CALL

INCREASE THE MAXIMUM STATEMENT POOL

v

SIZE FOR THE CONNECTION BASED ON THE
VALUE FOR THE DISCARD COUNTER

Y

CONFIGURE THE MODIFIED CALL

STACK FOR THE CONNECTION TO

THE VALUE OF THE ASSOCIATED
MODIFIED CALL STACK

I

-
-

Y
RESET THE HIT COUNTER, THE MISS COUNTER,
AND THE DISCARD COUNTER TO ZERO

1116

END

1114

FIG. 11

Patent Application Publication Apr. 11,2024 Sheet 14 of 18 US 2024/0118808 A1

(START)

Y
1200 CREATE A MODIFIED CALL STACK FOR A

™ CONNECTION REQUEST IN RESPONSE TO
RECEIVING THE CONNECTION REQUEST

Y

IDENTIFY A GROUP OF POTENTIAL
CONNECTIONS FROM THE CONNECTIONS IN THE
CONNECTION POOL THAT MATCHES THE
1202~ CONNECTION REQUEST, WHEREIN THE GROUP
OF POTENTIAL CONNECTIONS IS ASSOCIATED
WITH A GROUP OF ASSOCIATED MODIFIED CALL
STACKS THAT CALL THE PREPARED STATEMENTS

Y

DETERMINE A GROUP OF WEIGHTED MATCH
SCORES FOR THE GROUP OF ASSOCIATED
1204 MODIFIED CALL STACKS FROM A COMPARISON
OF THE MODIFIED CALL STACK WITH THE GROUP
OF ASSOCIATED MODIFIED CALL STACKS

Y
SELECT A CONNECTION FROM THE GROUP
OF POTENTIAL CONNECTIONS BASED ON A
1206 - HIGHEST WEIGHTED MATCH SCORE IN THE
GROUP OF WEIGHTED MATCH SCORES

Y

(End)
FIG. 12

Patent Application Publication Apr. 11,2024 Sheet 15 of 18 US 2024/0118808 A1

(START)

Y

1300~

RETRIEVE ELEMENTS FROM A CALL
STACK IN RESPONSE TO RECEIVING
THE CONNECTION REQUEST

y

1302~

REMOVE EACH ELEMENT THAT IS KNOWN
TO NOT BE A PART OF THE APPLICATION
LOGIC FOR THE CONNECTION REQUEST

Y

1304

PLACE THE REMAINING ELEMENTS
IN THE MODIFIED CALL STACK

1400 ~ RETRIEVE ELEMENTS FROM A CALL STACK IN

1402~ THE APPLICATION LOGIC FOR THE CONNECTION

Y

(C enD)
FIG. 13

(START)

Y

RESPONSE TO RECEIVING THE CONNECTION REQUEST

y
ADD ELEMENTS THAT ARE KNOWN TO BE PART OF

REQUEST TO THE MODIFIED CALL STACK

Y

(END)
FIG. 14

Patent Application Publication Apr. 11,2024 Sheet 16 of 18 US 2024/0118808 A1

(START)

Y

1500 COMPARE THE ELEMENTS IN THE MODIFIED
™ CALL STACK WITH ASSOCIATED ELEMENTS
IN AN ASSOCIATED MODIFIED CALL STACK

Y

ASSIGN AWEIGHTED MATCH SCORE TO THE
ASSOCIATED MODIFIED CALL STACK BASED ON
1502~ MATCHES OF THE ELEMENTS IN THE MODIFIED
CALL STACK WITH THE ASSOCIATED ELEMENTS

IN THE ASSOCIATED MODIFIED CALL STACK

Y

C EnD)
FIG. 15

(START)

Y

1600]

EXCLUDE A POTENTIAL CONNECTION FROM THE GROUP OF
POTENTIAL CONNECTIONS IN RESPONSE TO AN ASSOCIATED
MODIFIED CALL STACK FOR THE POTENTIAL CONNECTION
BEING EXCLUDED BECAUSE OF A MATCHING RATIO FOR A
MATCHING OF PREPARED STATEMENTS IN A PREPARED
STATEMENT POOL FOR THE POTENTIAL CONNECTION THAT
IS LESS THAN A HITS TO MISSES THRESHOLD

Y

C END)
FIG. 16

Patent Application Publication Apr. 11,2024 Sheet 17 of 18 US 2024/0118808 A1

EXCLUDE A POTENTIAL CONNECTION FROM THE GROUP OF POTENTIAL
CONNECTIONS IN RESPONSE TO AN ASSOCIATED MODIFIED CALL
STACK FOR THE POTENTIAL CONNECTION BEING EXCLUDED BECAUSE
1700~ OF AMATCHING RATIO FOR A MATCHING OF PREPARED STATEMENTS IN
A PREPARED STATEMENT POOL FOR THE POTENTIAL CONNECTION THAT
IS EQUAL TO OR GREATER THAN A HITS TO MISSES THRESHOLD AND A
NUMBER OF TIMES PREPARED STATEMENTS ARE DISCARDED FROM
PREPARED STATEMENT POOL IS GREATER THAN A DISCARD THRESHOLD

END

FI1G. 17

INCREASE A SIZE OF A PREPARED STATEMENT POOL IN RESPONSE
TO A MATCHING FOR A MATCHING RATIO OF PREPARED
STATEMENTS IN A PREPARED STATEMENT POOL FOR A POTENTIAL

1800-"] CONNECTION THAT IS EQUAL TO OR GREATER THAN A HITS TO
MISSES THRESHOLD AND A NUMBER OF TIMES PREPARED
STATEMENTS ARE DISCARDED IS LESS THAN A DISCARD THRESHOLD

Y

C EnD)
FIG. 18

Patent Application Publication Apr. 11,2024 Sheet 18 of 18 US 2024/0118808 A1

1998
DATA PROCESSING SYSTEM
1906 1908
1916 STORAGE DEVICES

1 984 N /
PERSISTENT

MEMORY STORAGE

PROCESSOR UNIT

@ 1982

3 i T
COMMUNICATIONS INPUT/OUTPUT
UNIT UNIT DISPLAY
/ / 3
1910 1912 1914

i

1920 COMPUTER
\‘ PROGRAM PRODUCT

COMPUTER-READABLE MEDIA

PROGRAM INSTRUCTIONS
(1924
19227 1918

COMPUTER-READABLE
STORAGE MEDIA

FIG. 19

US 2024/0118808 Al

CONNECTION POOL MANAGEMENT WITH
STRATEGIC CONNECTION ALLOCATION
TO REDUCE MEMORY CONSUMPTION OF
STATEMENT POOLS

BACKGROUND

1. Field

[0001] The disclosure relates generally to an improved
computer system and more specifically to managing con-
nection pools that are associated with prepared statement
pools.

2. Description of the Related Art

[0002] With various application servers that host applica-
tions or software, connection pools can be used to increase
performance in processing requests. For example, Java
database connectivity (JBDC) connections and prepared
statements can be used to improve performance. A prepared
statement is a precompiled query statement that can be
executed multiple times. For example, a prepared statement
can be a precompiled sequential query language (SQL)
statement. With some types of database connections, such as
JBDC connections, a prepared statement is tied to a specific
connection. As a result, closing that connection invalidates
the prepared statements.

[0003] This situation results in each connection in a con-
nection pool having its own prepared statement pool con-
taining prepared statements. Thus, the maximum number of
prepared statements kept within the resulting pool of pools
can reach a number that is equal to the maximum connection
pool size multiplied by the maximum statement pool size.
Further, if multiple data sources are used, each with the same
configuration for maximum connection pool size and maxi-
mum statement pool size, then that number is multiplied by
the number of data sources. For example, up to 12,600
prepared statements can be pooled for 3 data sources, having
the same configuration and a maximum connection pool size
of 60 and a maximum statement pool size of 70.

SUMMARY

[0004] According to one illustrative embodiment, a com-
puter implemented method manages connections in a con-
nection pool. A computer system creates a modified call
stack for a connection request in response to receiving the
connection request. The modified call stack comprises ele-
ments that call prepared statements that are part of an
application logic for the connection request. The computer
system identifies a group of potential connections from the
connections in the connection pool that matches the con-
nection request. The group of potential connections is asso-
ciated with a group of associated modified call stacks that
call the prepared statements. The computer system deter-
mines a group of weighted match scores for the group of
associated modified call stacks from a comparison of the
modified call stack with the group of associated modified
call stacks. The computer system selects a connection from
the group of potential connections based on a highest
weighted match score in the group of weighted match
scores. According to other illustrative embodiments, a com-
puter system and a computer program product for managing
connections in a connection pool are provided.

Apr. 11, 2024

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] FIG. 1 is a block diagram of a computing environ-
ment in which illustrative embodiments can be imple-
mented;

[0006] FIG. 2 is a block diagram of a connection envi-
ronment in accordance with an illustrative embodiment;
[0007] FIGS. 3A-3B are a diagram illustrating generation
of a modified call stack in accordance with an illustrative
embodiment;

[0008] FIG. 4 is a diagram illustrating determining a
weighted match score between modified call stacks in accor-
dance with an illustrative embodiment;

[0009] FIG. 5 is a diagram illustrating determining a
weighted match score between modified call stacks in accor-
dance with an illustrative embodiment;

[0010] FIG. 6 is a diagram illustrating determining a
weighted match score between modified call stacks in accor-
dance with an illustrative embodiment;

[0011] FIGS. 7A-7B are a flowchart of a process for
managing connections in a connection pool in accordance
with an illustrative embodiment;

[0012] FIG. 8 is a flowchart of a process for creating a
modified call stack in accordance with an illustrative
embodiment;

[0013] FIG. 9 is a flowchart of a process for determining
a weighted match score between a modified call stack and an
associated modified call stack in accordance with an illus-
trative embodiment;

[0014] FIG. 10 is a flowchart of a process for monitoring
usages of connections in accordance with an illustrative
embodiment;

[0015] FIG. 11 is a flowchart of a process for determining
the exclude list from usage of connection for an associated
modified call stack in accordance with an illustrative
embodiment;

[0016] FIG. 12 is a flowchart of a process for managing
connections in a connection pool in accordance with an
illustrative embodiment;

[0017] FIG. 13 is a flowchart of a process for creating a
modified call stack in accordance with an illustrative
embodiment;

[0018] FIG. 14 is a flowchart of another process for
creating a modified call stack is depicted in accordance with
an illustrative embodiment;

[0019] FIG. 15 is a flowchart of a process for determining
a group of weighted match scores in accordance with an
illustrative embodiment;

[0020] FIG. 16 is a flowchart of a process for excluding a
potential connection in accordance with an illustrative
embodiment;

[0021] FIG. 17 is a flowchart of another process for
excluding a potential connection in accordance with an
illustrative embodiment;

[0022] FIG. 18 is a flowchart of another process for
increasing a size of a prepared statement pool in accordance
with an illustrative embodiment; and

[0023] FIG. 19 is a block diagram of a data processing
system in accordance with an illustrative embodiment.

DETAILED DESCRIPTION

[0024] Various aspects of the present disclosure are
described by narrative text, flowcharts, block diagrams of
computer systems and/or block diagrams of the machine

US 2024/0118808 Al

logic included in computer program product (CPP) embodi-
ments. With respect to any flowcharts, depending upon the
technology involved, the operations can be performed in a
different order than what is shown in a given flowchart. For
example, again depending upon the technology involved,
two operations shown in successive flowchart blocks may be
performed in reverse order, as a single integrated step,
concurrently, or in a manner at least partially overlapping in
time.

[0025] A computer program product embodiment (“CPP
embodiment” or “CPP”) is a term used in the present
disclosure to describe any set of one, or more, storage media
(also called “mediums”) collectively included in a set of one,
or more, storage devices that collectively include machine
readable code corresponding to instructions and/or data for
performing computer operations specified in a given CPP
claim. A “storage device” is any tangible device that can
retain and store instructions for use by a computer processor.
Without limitation, the computer readable storage medium
may be an electronic storage medium, a magnetic storage
medium, an optical storage medium, an electromagnetic
storage medium, a semiconductor storage medium, a
mechanical storage medium, or any suitable combination of
the foregoing. Some known types of storage devices that
include these mediums include: diskette, hard disk, random
access memory (RAM), read-only memory (ROM), erasable
programmable read-only memory (EPROM or Flash
memory), static random access memory (SRAM), compact
disc read-only memory (CD-ROM), digital versatile disk
(DVD), memory stick, floppy disk, mechanically encoded
device (such as punch cards or pits/lands formed in a major
surface of a disc) or any suitable combination of the fore-
going. A computer readable storage medium, as that term is
used in the present disclosure, is not to be construed as
storage in the form of transitory signals per se, such as radio
waves or other freely propagating electromagnetic waves,
electromagnetic waves propagating through a waveguide,
light pulses passing through a fiber optic cable, electrical
signals communicated through a wire, and/or other trans-
mission media. As will be understood by those of skill in the
art, data is typically moved at some occasional points in time
during normal operations of a storage device, such as during
access, de-fragmentation or garbage collection, but this does
not render the storage device as transitory because the data
is not transitory while it is stored.

[0026] With reference now to the figures in particular with
reference to FIG. 1, a block diagram of a computing envi-
ronment is depicted in accordance with an illustrative
embodiment. Computing environment 100 contains an
example of an environment for the execution of at least some
of the computer code involved in performing the inventive
methods, such as connection manager 190. In addition to
connection manager 190, computing environment 100
includes, for example, computer 101, wide area network
(WAN) 102, end user device (EUD) 103, remote server 104,
public cloud 105, and private cloud 106. In this embodiment,
computer 101 includes processor set 110 (including process-
ing circuitry 120 and cache 121), communication fabric 111,
volatile memory 112, persistent storage 113 (including oper-
ating system 122 and connection manager 190, as identified
above), peripheral device set 114 (including user interface
(UI) device set 123, storage 124, and Internet of Things
(IoT) sensor set 125), and network module 115. Remote
server 104 includes remote database 130. Public cloud 105

Apr. 11, 2024

includes gateway 140, cloud orchestration module 141, host
physical machine set 142, virtual machine set 143, and
container set 144.

[0027] COMPUTER 101 may take the form of a desktop
computer, laptop computer, tablet computer, smart phone,
smart watch or other wearable computer, mainframe com-
puter, quantum computer or any other form of computer or
mobile device now known or to be developed in the future
that is capable of running a program, accessing a network or
querying a database, such as remote database 130. As is well
understood in the art of computer technology, and depending
upon the technology, performance of a computer-imple-
mented method may be distributed among multiple comput-
ers and/or between multiple locations. On the other hand, in
this presentation of computing environment 100, detailed
discussion is focused on a single computer, specifically
computer 101, to keep the presentation as simple as possible.
Computer 101 may be located in a cloud, even though it is
not shown in a cloud in FIG. 1. On the other hand, computer
101 is not required to be in a cloud except to any extent as
may be affirmatively indicated.

[0028] PROCESSOR SET 110 includes one, or more,
computer processors of any type now known or to be
developed in the future. Processing circuitry 120 may be
distributed over multiple packages, for example, multiple,
coordinated integrated circuit chips. Processing circuitry
120 may implement multiple processor threads and/or mul-
tiple processor cores. Cache 121 is memory that is located
in the processor chip package(s) and is typically used for
data or code that should be available for rapid access by the
threads or cores running on processor set 110. Cache memo-
ries are typically organized into multiple levels depending
upon relative proximity to the processing circuitry. Alterna-
tively, some, or all, of the cache for the processor set may be
located “off chip.” In some computing environments, pro-
cessor set 110 may be designed for working with qubits and
performing quantum computing.

[0029] Computer readable program instructions are typi-
cally loaded onto computer 101 to cause a series of opera-
tional steps to be performed by processor set 110 of com-
puter 101 and thereby effect a computer-implemented
method, such that the instructions thus executed will instan-
tiate the methods specified in flowcharts and/or narrative
descriptions of computer-implemented methods included in
this document (collectively referred to as “the inventive
methods™). These computer readable program instructions
are stored in various types of computer readable storage
media, such as cache 121 and the other storage media
discussed below. The program instructions, and associated
data, are accessed by processor set 110 to control and direct
performance of the inventive methods. In computing envi-
ronment 100, at least some of the instructions for performing
the inventive methods may be stored in connection manager
190 in persistent storage 113.

[0030] COMMUNICATION FABRIC 111 is the signal
conduction path that allows the various components of
computer 101 to communicate with each other. Typically,
this fabric is made of switches and electrically conductive
paths, such as the switches and electrically conductive paths
that make up busses, bridges, physical input/output ports and
the like. Other types of signal communication paths may be
used, such as fiber optic communication paths and/or wire-
less communication paths.

US 2024/0118808 Al

[0031] VOLATILE MEMORY 112 is any type of volatile
memory now known or to be developed in the future.
Examples include dynamic type random access memory
(RAM) or static type RAM. Typically, volatile memory 112
is characterized by random access, but this is not required
unless affirmatively indicated. In computer 101, the volatile
memory 112 is located in a single package and is internal to
computer 101, but, alternatively or additionally, the volatile
memory may be distributed over multiple packages and/or
located externally with respect to computer 101.

[0032] PERSISTENT STORAGE 113 is any form of non-
volatile storage for computers that is now known or to be
developed in the future. The non-volatility of this storage
means that the stored data is maintained regardless of
whether power is being supplied to computer 101 and/or
directly to persistent storage 113. Persistent storage 113 may
be a read only memory (ROM), but typically at least a
portion of the persistent storage allows writing of data,
deletion of data and re-writing of data. Some familiar forms
of persistent storage include magnetic disks and solid state
storage devices. Operating system 122 may take several
forms, such as various known proprietary operating systems
or open source Portable Operating System Interface-type
operating systems that employ a kernel. The code included
in connection manager 190 typically includes at least some
of the computer code involved in performing the inventive
methods.

[0033] PERIPHERAL DEVICE SET 114 includes the set
of peripheral devices of computer 101. Data communication
connections between the peripheral devices and the other
components of computer 101 may be implemented in vari-
ous ways, such as Bluetooth connections, Near-Field Com-
munication (NFC) connections, connections made by cables
(such as universal serial bus (USB) type cables), insertion-
type connections (for example, secure digital (SD) card),
connections made through local area communication net-
works and even connections made through wide area net-
works such as the internet. In various embodiments, Ul
device set 123 may include components such as a display
screen, speaker, microphone, wearable devices (such as
goggles and smart watches), keyboard, mouse, printer,
touchpad, game controllers, and haptic devices. Storage 124
is external storage, such as an external hard drive, or
insertable storage, such as an SD card. Storage 124 may be
persistent and/or volatile. In some embodiments, storage 124
may take the form of a quantum computing storage device
for storing data in the form of qubits. In embodiments where
computer 101 is required to have a large amount of storage
(for example, where computer 101 locally stores and man-
ages a large database) then this storage may be provided by
peripheral storage devices designed for storing very large
amounts of data, such as a storage area network (SAN) that
is shared by multiple, geographically distributed computers.
IoT sensor set 125 is made up of sensors that can be used in
Internet of Things applications. For example, one sensor
may be a thermometer and another sensor may be a motion
detector.

[0034] NETWORK MODULE 115 is the collection of
computer software, hardware, and firmware that allows
computer 101 to communicate with other computers through
WAN 102. Network module 115 may include hardware,
such as modems or Wi-Fi signal transceivers, software for
packetizing and/or de-packetizing data for communication
network transmission, and/or web browser software for

Apr. 11, 2024

communicating data over the internet. In some embodi-
ments, network control functions and network forwarding
functions of network module 115 are performed on the same
physical hardware device. In other embodiments (for
example, embodiments that utilize software-defined net-
working (SDN)), the control functions and the forwarding
functions of network module 115 are performed on physi-
cally separate devices, such that the control functions man-
age several different network hardware devices. Computer
readable program instructions for performing the inventive
methods can typically be downloaded to computer 101 from
an external computer or external storage device through a
network adapter card or network interface included in net-
work module 115.

[0035] WAN 102 is any wide area network (for example,
the internet) capable of communicating computer data over
non-local distances by any technology for communicating
computer data, now known or to be developed in the future.
In some embodiments, the WAN 102 may be replaced and/or
supplemented by local area networks (LLANs) designed to
communicate data between devices located in a local area,
such as a Wi-Fi network. The WAN and/or LANs typically
include computer hardware such as copper transmission
cables, optical transmission fibers, wireless transmission,
routers, firewalls, switches, gateway computers and edge
servers.

[0036] END USER DEVICE (EUD) 103 is any computer
system that is used and controlled by an end user (for
example, a customer of an enterprise that operates computer
101), and may take any of the forms discussed above in
connection with computer 101. EUD 103 typically receives
helpful and useful data from the operations of computer 101.
For example, in a hypothetical case where computer 101 is
designed to provide a recommendation to an end user, this
recommendation would typically be communicated from
network module 115 of computer 101 through WAN 102 to
EUD 103. In this way, EUD 103 can display, or otherwise
present, the recommendation to an end user. In some
embodiments, EUD 103 may be a client device, such as thin
client, heavy client, mainframe computer, desktop computer
and so on.

[0037] REMOTE SERVER 104 is any computer system
that serves at least some data and/or functionality to com-
puter 101. Remote server 104 may be controlled and used by
the same entity that operates computer 101. Remote server
104 represents the machine(s) that collect and store helpful
and useful data for use by other computers, such as computer
101. For example, in a hypothetical case where computer
101 is designed and programmed to provide a recommen-
dation based on historical data, then this historical data may
be provided to computer 101 from remote database 130 of
remote server 104.

[0038] PUBLIC CLOUD 105 is any computer system
available for use by multiple entities that provides on-
demand availability of computer system resources and/or
other computer capabilities, especially data storage (cloud
storage) and computing power, without direct active man-
agement by the user. Cloud computing typically leverages
sharing of resources to achieve coherence and economies of
scale. The direct and active management of the computing
resources of public cloud 105 is performed by the computer
hardware and/or software of cloud orchestration module
141. The computing resources provided by public cloud 105
are typically implemented by virtual computing environ-

US 2024/0118808 Al

ments that run on various computers making up the com-
puters of host physical machine set 142, which is the
universe of physical computers in and/or available to public
cloud 105. The virtual computing environments (VCEs)
typically take the form of virtual machines from virtual
machine set 143 and/or containers from container set 144. It
is understood that these VCEs may be stored as images and
may be transferred among and between the various physical
machine hosts, either as images or after instantiation of the
VCE. Cloud orchestration module 141 manages the transfer
and storage of images, deploys new instantiations of VCEs
and manages active instantiations of VCE deployments.
Gateway 140 is the collection of computer software, hard-
ware, and firmware that allows public cloud 105 to com-
municate through WAN 102.

[0039] Some further explanation of virtualized computing
environments (VCEs) will now be provided. VCEs can be
stored as “images.” A new active instance of the VCE can be
instantiated from the image. Two familiar types of VCEs are
virtual machines and containers. A container is a VCE that
uses operating-system-level virtualization. This refers to an
operating system feature in which the kernel allows the
existence of multiple isolated user-space instances, called
containers. These isolated user-space instances typically
behave as real computers from the point of view of programs
running in them. A computer program running on an ordi-
nary operating system can utilize all resources of that
computer, such as connected devices, files and folders,
network shares, CPU power, and quantifiable hardware
capabilities. However, programs running inside a container
can only use the contents of the container and devices
assigned to the container, a feature which is known as
containerization.

[0040] PRIVATE CLOUD 106 is similar to public cloud
105, except that the computing resources are only available
for use by a single enterprise. While private cloud 106 is
depicted as being in communication with WAN 102, in other
embodiments a private cloud may be disconnected from the
internet entirely and only accessible through a local/private
network. A hybrid cloud is a composition of multiple clouds
of different types (for example, private, community or public
cloud types), often respectively implemented by different
vendors. Each of the multiple clouds remains a separate and
discrete entity, but the larger hybrid cloud architecture is
bound together by standardized or proprietary technology
that enables orchestration, management, and/or data/appli-
cation portability between the multiple constituent clouds. In
this embodiment, public cloud 105 and private cloud 106 are
both part of a larger hybrid cloud.

[0041] The illustrative embodiments recognize and take
into account a number of different considerations as
described herein. For example, the illustrative embodiments
recognize and take into account that some JDBC drivers can
use large amounts of memory per prepared statement that
results in users or customers running out of memory because
of the number of pooled prepared statements. However,
disabling statement pooling to avoid the memory issue is
undesirable because of a loss of performance.

[0042] One solution involves updating application code in
places where particular prepared statements are used infre-
quently. Hints can be included that pooling should be
avoided for particular prepared statements. This change can
be helpful where particular prepared statements are used
infrequently and take up slots in a prepared statement pool.

Apr. 11, 2024

This feature can reduce the overhead of unwanted discard
and re-create processing of prepared statements that are used
infrequently. However, this solution involves changing the
application code which is often undesirable.

[0043] Another solution involves analyzing prepared
statements with different code paths through the application.
A code path is a path of execution through application logic
for an application. Updates can be made to the application
code for these paths to either use a dedicated data source or
connection label. In this manner, the connection pool can be
partitioned into restricted paths that allow reducing the
maximum full-size for prepared statement pools. However,
using dedicated data sources can lead to increasing the size
of the connection pool to provide an ability to process
requests. This solution can overwhelm a database backend
causing the database backend to run out of connections. The
label approach is not within many standards and will lose out
in the connection pooling and in turn other services provided
by the application server.

[0044] Other solutions involve reducing the maximum
connection pool size, the maximum prepared statement pool
size, or both to reduce memory usage. The solutions, how-
ever, are not desirable because of the degradation in perfor-
mance through the reduction in pool sizes.

[0045] Thus, one or more illustrative examples can collect
data from the thread stack present at the time a request is
made for a connection. This data is used to optimize the
matching of connections within a connection pool according
to predicted sets of prepared statement utilization. As a
result, one or more illustrative examples can enable the
maximum pool size to be reduced without requiring special
analysis of prepared statement usage. Further, the illustrative
examples avoid needing changes to application code.

[0046] The illustrative examples provide a method, appa-
ratus, system, a computer program product for managing
connections in a connection pool. In one example, a com-
puter system creates a modified call stack for a connection
request in response to receiving the connection request. The
modified call stack comprises elements that call prepared
statements that are part of an application logic for the
connection request. The computer system identifies a group
of potential connections from the connections in the con-
nection pool that matches the connection request. The group
of potential connections is associated with a group of
associated modified call stacks that call the prepared state-
ments. The computer system determines a group of weighted
match scores for the group of associated modified call stacks
from a comparison of the modified call stack with the group
of associated modified call stacks. The computer system
selects a connection from the group of potential connections
based on a highest weighted match score in the group of
weighted match scores

[0047] With reference now to FIG. 2, a block diagram of
a connection environment is depicted in accordance with an
illustrative embodiment. In this illustrative example, con-
nection environment 200 includes components that can be
implemented in hardware such as the hardware shown in
computing environment 100 in FIG. 1.

[0048] In this illustrative example, connection system 202
in connection environment 200 can operate to manage
connections 204 in connection pool 206. For example,
connection system 202 can manage the allocation of con-
nections 204 in connection pool 206.

US 2024/0118808 Al

[0049] In this example, connections 204 in connection
pool 206 are associated with prepared statement pools 208.
For example, each connection in connections 204 has a
prepared statement pool in prepared statement pools 208.
Prepared statement pools 208 have prepared statements 210.
[0050] In this illustrative example, a prepared statement is
a precompiled template in which constant values can be
substituted during execution of the prepared statements. In
one example, a prepared statement is a precompiled query
statement that can be executed multiple times. These pre-
pared statements can be, for example, sequential query logic
(SQL) data manipulation language (DML) statements such
as insert, select, or update. The use of prepared statements
210 can increase efficiency through the caching of state-
ments that are used repeatedly. For example, the caching of
these prepared statements in prepared statement pools 208
can result in increased efficiency in sending requests to a
database.

[0051] In this illustrative example, connection system 202
comprises a number of different components. As depicted in
this example, connection system 202 has computer system
212 and connection manager 214.

[0052] Connection manager 214 can be implemented in
software, hardware, firmware or a combination thereof.
When software is used, the operations performed by con-
nection manager 214 can be implemented in program
instructions configured to run on hardware, such as a pro-
cessor unit. When firmware is used, the operations per-
formed by connection manager 214 can be implemented in
program instructions and data and stored in persistent
memory to run on a processor unit. When hardware is
employed, the hardware can include circuits that operate to
perform the operations in connection manager 214.

[0053] In the illustrative examples, the hardware can take
a form selected from at least one of a circuit system, an
integrated circuit, an application specific integrated circuit
(ASIC), a programmable logic device, or some other suit-
able type of hardware configured to perform a number of
operations. With a programmable logic device, the device
can be configured to perform the number of operations. The
device can be reconfigured at a later time or can be perma-
nently configured to perform the number of operations.
Programmable logic devices include, for example, a pro-
grammable logic array, a programmable array logic, a field
programmable logic array, a field programmable gate array,
and other suitable hardware devices. Additionally, the pro-
cesses can be implemented in organic components inte-
grated with inorganic components and can be comprised
entirely of organic components excluding a human being.
For example, the processes can be implemented as circuits
in organic semiconductors.

[0054] As used herein, “a number of” when used with
reference to items, means one or more items. For example,
“a number of operations” is one or more operations.
[0055] Further, the phrase “at least one of,” when used
with a list of items, means different combinations of one or
more of the listed items can be used, and only one of each
item in the list may be needed. In other words, “at least one
of” means any combination of items and number of items
may be used from the list, but not all of the items in the list
are required. The item can be a particular object, a thing, or
a category.

[0056] For example, without limitation, “at least one of
item A, item B, or item C” may include item A, item A and

Apr. 11, 2024

item B, or item B. This example also may include item A,
item B, and item C or item B and item C. Of course, any
combinations of these items can be present. In some illus-
trative examples, “at least one of” can be, for example,
without limitation, two of item A; one of item B; and ten of
item C; four of item B and seven of item C; or other suitable
combinations.

[0057] Computer system 212 is a physical hardware sys-
tem and includes one or more data processing systems.
When more than one data processing system is present in
computer system 212, those data processing systems are in
communication with each other using a communications
medium. The communications medium can be a network.
The data processing systems can be selected from at least
one of a computer, a server computer, a tablet computer, or
some other suitable data processing system.

[0058] As depicted, computer system 212 includes a num-
ber of processor units 216 that are capable of executing
program instructions 218 implementing processes in the
illustrative examples. In other words, program instructions
218 are computer readable program instructions.

[0059] As used herein, a processor unit in the number of
processor units 216 is a hardware device and is comprised of
hardware circuits such as those on an integrated circuit that
respond and process instructions and program instructions
that operate a computer. A processor unit can be imple-
mented using processor set 110 in FIG. 1. When the number
of processor units 216 execute program instructions 218 for
a process, the number of processor units 216 can be one or
more processor units that are on the same computer or on
different computers. In other words, the process can be
distributed between processor units 216 on the same or
different computers in computer system 212. Further, the
number of processor units 216 can be of the same type or
different type of processor units. For example, the number of
processor units 216 can be selected from at least one of a
single core processor, a dual-core processor, a multi-proces-
sor core, a general-purpose central processing unit (CPU), a
graphics processing unit (GPU), a digital signal processor
(DSP), or some other type of processor unit.

[0060] In this illustrative example, connection manager
214 operates to manage connections 204 in connection pool
206. In this example, connection manager 214 creates modi-
fied call stack 220 for connection request 222 in response to
receiving the connection request 222. In this example,
modified call stack 220 is created from call stack 221. In this
depicted example, call stack 221 is the call stack that is
present at the time of connection request 222 is made. In this
example, call stack 221 is the call stack present at the time
an application request is made through connection request
222. This call stack can also be referred to as a thread stack.
[0061] In one illustrative example, connection manager
214 creates modified call stack 220 by retrieving elements
225 from call stack 221 in response to receiving connection
request 222. Connection manager 214 removes each element
in elements 225 that is known to not be a part of the
application logic for connection request 222. Connection
manager 214 places the remaining elements in modified call
stack 220. These remaining elements are elements 224.
Elements 224 can be a subset of elements 225.

[0062] In another illustrative example, connection man-
ager 214 creates modified call stack 220 by retrieving
elements 225 from call stack 221 in response to receiving the
connection request 222. In this example, connection man-

US 2024/0118808 Al

ager 214 adds elements 225 that are known to be part of the
application logic for connection request 222 to modified call
stack 220 such that modified call stack 220 has elements
224.

[0063] In this example, modified call stack 220 comprises
elements 224 that call prepared statements 210 that are part
of an application logic for connection request 222. Elements
224 can directly or indirectly call prepared statements 210.
For example, an element can call a method that calls another
method in a chain of calls that eventually uses a prepared
statement in a request for data. In this example, elements 224
in modified call stack 220 are selected in a manner that
removes extraneous elements that are not directly related to
the logic in the application for connection request 222.
[0064] Connection manager 214 identifies a group of
potential connections 226 from the connections 204 in the
connection pool 206 that matches connection request 222. In
this illustrative example, the group of potential connections
226 is one or more connections 204 that match connection
request 222. These connections are labeled as “potential
connections” because further analysis is needed to select a
connection from the group of potential connections 226 for
use.

[0065] In this example, the group of potential connections
226 is associated with a group of associated modified call
stacks 228 that call prepared statements 210. In this
example, each potential connection in the group of potential
connections 226 is associated with an associated modified
call stack in the group of associated modified call stacks 228.
These modified call stacks in the group of associated modi-
fied call stacks 228 were generated at the time requests were
made for the connections in the group of potential connec-
tions 226.

[0066] In this illustrative example, connection manager
214 determines a group of weighted match scores 230 for the
group of associated modified call stacks 228. The group of
weighted match scores 230 is determined from modified call
stack 220 and the group of associated modified call stacks
228. In this example, modified call stack 220 is compared
with each modified call stack in the group of associated
modified call stacks 228 to obtain a weighted match score
for each comparison to form the group of weighted match
scores 230. This comparison determines the level of match-
ing between elements that request prepared statements in
modified call stack 220 and the group of associated modified
call stacks 228. As the level of matching between elements
increases, the weighted match score increases for that com-
parison.

[0067] For example, connection manager 214 can deter-
mine a weighted match score in the group of weighted match
scores 230 by comparing elements 224 in modified call stack
220 with associated elements 236 in associated modified call
stack 238. Connection manager 214 can assign weighted
match score 240 to associated modified call stack 238 based
on matches of elements 224 in modified call stack 221 with
associated elements 236 in associated modified call stack
238. This comparison of elements 224 in modified call stack
220 can be made with each associated modified call stack in
associated modified call stacks 228 to obtain the group of
weighted match scores 230.

[0068] In this example, weighted match score 240 is
higher for a first match between more recent elements in
modified call stack 220 and the associated elements 236 in
associated modified call stack 238 as compared to a second

Apr. 11, 2024

match between older elements in modified call stack 220 and
associated elements 236 in associated modified call stack
238. This comparison can be performed using a recency bias
such that more recent elements that are higher up in the stack
are given a higher weighting as compared to older elements
that are farther down in the stack.

[0069] Connection manager 214 selects connection 232
from the group of potential connections 226 based on a
highest weighted match score 234 in the group of weighted
match scores 230. In the illustrative example, connection
manager 214 can also exclude a potential connection and
potential connections 226 as part of the process of selecting
connection 232 from the group of potential connections 226.
[0070] In one example, connection manager 214 can
exclude potential connection 242 from the group of potential
connections 226 in response to associated modified call
stack 238 for potential connection 242 being excluded
because of a matching ratio 244 for a matching of prepared
statements 210 in a prepared statement pool for potential
connection 242 that is less than hits to misses threshold 246.
In this example, matching ratio 244 is a ratio of hits to
misses with respect to prepared statements 210 in the
comparison of elements 224 and modified call stack 220
with associated elements 236 in associated modified call
stack 238.

[0071] In this example. hits to misses threshold 246 can be
selected as a value that indicates that good matches are
present between prepared statements in a prepared statement
pool and the request for prepared statements from the
prepared statement pool during actual use of a connection
for a connection. For example, hits to misses threshold 246
can be 0.85, 0.9, or some other value indicating that good
matches are present.

[0072] In another illustrative example, connection man-
ager 214 can exclude potential connection 242 from the
group of potential connections 226 in response to an asso-
ciated modified call stack 238 for potential connection 242
being excluded because of matching ratio 244 for matching
of prepared statements in a prepared statement pool for the
potential connection 242 that is equal to or greater than hits
to misses threshold 246 but a number of times prepared
statements are discarded from prepared statement pool is
greater than discard threshold 248. In this example, discard
threshold 248 is the number of times that a prepared state-
ment in a prepared statement pool is discarded or removed
from the prepared statement pool. This threshold can be set
to indicate when the number of discards of the prepared
statements is greater than desired. The particular value for
this threshold can be based on when memory usage or
performance issues can occur based on discarded prepared
statements.

[0073] In another illustrative example, connection man-
ager 214 can change the size of a prepared statement pool to
increase performance. For example, connection manager
214 can increase a size of a prepared statement pool in
response to a matching for a matching of prepared state-
ments in a prepared statement pool for potential connection
242 that is equal to or greater than hits to misses threshold
246 and a number of times prepared statements are dis-
carded is less than discard threshold 248. In this example,
increasing the size of the prepared statement pool when the
matching ratio indicates that the matches are good can result
in decreased matching with fewer discards or no discards of
prepared statements.

US 2024/0118808 Al

[0074] In one illustrative example, one or more solutions
are present that overcome a problem with memory use
associated with connections associated with prepared state-
ment pools. As a result, one or more solutions may provide
enable managing connections in a connection pool in which
each connection is associated with a prepared statement
pool. In one or more illustrative examples, modified call
stacks are used to determine weightings for prepared state-
ment usage.

[0075] Inone or more illustrative examples, the maximum
prepared statement pool size can be reduced through this
type of connection management. In one illustrative example,
each respective prepared statement pool associated with
each pool connection needs only to retain a sufficient num-
ber of prepared statements to meet the use of pattern that
pertains to a particular set of similar modified call stacks.
Further, one or more illustrative examples can involve
dynamically assigning or changing the maximum size of the
statement pool. In this manner, user input and user analysis
are unnecessary to reduce memory usage by prepared state-
ments in prepared statement pools. Additionally, the man-
agement of connection pools associated with a prepared
statement pools can be performed without making changes
to an application or a need for user analysis to make
adjustments to the prepared statement pool size.

[0076] Computer system 212 can be configured to perform
at least one of the steps, operations, or actions described in
the different illustrative examples using software, hardware,
firmware or a combination thereof. As a result, computer
system 212 operates as a special purpose computer system
in which connection manager 214 in computer system 212
enables increase performance in managing connections. In
particular, connection manager 214 transforms computer
system 212 into a special purpose computer system as
compared to currently available general computer systems
that do not have connection manager 214.

[0077] In the illustrative example, the use of connection
manager 214 in computer system 212 integrates processes
into a practical application for a method of managing
connections that increases the performance of computer
system 212. In other words, connection manager 214 in
computer system 212 is directed to a practical application of
processes integrated into connection manager 214 in com-
puter system 212 that manages connections based on infor-
mation in a call stack at the time a request is made to access
an application. In the illustrative example, connection man-
ager 214 enables optimizing the matching of connections
within a connection pool based on predicted sets of prepared
statement utilization. The prepared statement utilization can
be determined through analyzing a modified call stack with
elements representing logic for the application. These ele-
ments can be calls to prepared statements. With the analysis
of the information from the call stack and the call stacks
associated with connections in the connection pool, the
maximum full-size can be reduced while maintaining the
desired level performance without requiring special knowl-
edge or code updates to the application.

[0078] The illustration of connection environment 200 in
FIG. 2 is not meant to imply physical or architectural
limitations to the manner in which an illustrative embodi-
ment can be implemented. Other components in addition to
or in place of the ones illustrated may be used. Some
components may be unnecessary. Also, the blocks are pre-
sented to illustrate some functional components. One or

Apr. 11, 2024

more of these blocks may be combined, divided, or com-
bined and divided into different blocks when implemented in
an illustrative embodiment. For example, connection man-
ager 214 can manage one or more connection pools in
addition to connection pool 206.

[0079] With reference to FIGS. 3A-3B, a diagram illus-
trating generation of a modified call stack is depicted in
accordance with an illustrative embodiment. In the illustra-
tive examples, the same reference numeral may be used in
more than one figure. This reuse of a reference numeral in
different figures represents the same element in the different
figures.

[0080] As depicted, modified call stack 302 is generated
from call stack 300. In this illustrative example, modified
call stack 302 is an example of modified call stack 220 in
FIG. 2 and call stack 300 is an example of call stack 221 in
FIG. 2.

[0081] In this example, call stack 300 is present for a
connection request and includes elements 303, such as
element 304, element 306, element 308, element 310, ele-
ment 312, element 314, element 316, and element 318.
[0082] Call stack 300 can be processed to generate a
modified call stack 302 by removing elements that are
known to not be part of the application logic for the
connection. For example, classes with packages provided by
Java packages, Java EE packages, Jakarta packages, or
similar specifications are excluded from call stack 300. In
addition, classes with packages provided by the application
server or a third party package that does not access the
database are excluded from call stack 300.

[0083] As a result, call stack 300 has been reduced to
generate a modified call stack 302. Modified call stack only
includes associated elements that are part of the application
logic for the connection. In this example, modified call stack
302 includes associated elements 319 such as associated
element 320, associated element 322, associated element
324, associated element 326, associated element 328, asso-
ciated element 330, associated element 332, and associated
element 334. These associated elements correspond to ele-
ment 304, element 306, element 308, element 310, element
312, element 314, element 316, and element 318 in call stack
300, respectively.

[0084] Associated elements 319 in modified call stack 302
are assigned different weightings as part of determining the
weighted match score. In this illustrative example, the
element that is furthest from the connection request is
assigned with a weighting of 1. Subsequent associated
elements in modified call stack 302 are incrementally
assigned with weightings that are 1 higher than the previous
associated element so that the associated element perform-
ing the connection request has the highest weighting.
[0085] For example, in modified call stack 302, associated
element 334 is assigned a weighting of 1, associated element
332 is assigned a weighting of 2, associated element 330 is
assigned a weighting of 3, associated element 328 is
assigned a weighting of 4, associated element 326 is
assigned a weighting of 5, associated element 324 is
assigned a weighting of 6, associated element 322 is
assigned a weighting of 7, and associated element 320 is
assigned a weighting of 8.

[0086] In this depicted example, the weighted match score
for the comparison of two modified call stacks is initially set
as zero and subsequently calculated based on the number of
common associated elements between the two modified call

US 2024/0118808 Al

stacks. In other words, if an associated element can be found
in both modified call stacks, the square of weighting of the
associated element will be added to the weighted match
score.

[0087] For example, associated element 334 contributes a
score value of 1 to the weighted match score, if associated
element 334 is found in both modified call stacks. Associ-
ated element 332 contributes a score value of 4 to the
weighted match score, if associated element 330 is found in
both modified call stacks, and associated element 330 con-
tributes a score value of 9 to the weighted match score. If
associated element 320 is found in both modified call stacks,
associated element 320 contributes a score value of 64 to the
weighted match score.

[0088] With reference to FIG. 4, a diagram illustrating
determining a weighted match score between modified call
stacks is depicted in accordance with an illustrative embodi-
ment. Potential connections are identified for modified call
stack 302. In this illustrative example, two potential con-
nections with associated modified call stacks are identified
as potential matches for the connection request with modi-
fied call stack 302. In this example, each of the two potential
connections has a modified call stack with the elements
shown in associated modified call stack 400. In other words,
each of the potential connections has a modified call stack
with the same elements as depicted for associated modified
call stack 400 and associated modified call stack 400 is not
shared between these potential connections.

[0089] Inthis illustrative example, a weighted match score
can be calculated for associated modified call stack 400 and
modified call stack 302. The weighted match score between
the two modified call stacks can be calculated by comparing
associated elements in both associated modified call stack.
For example, associated modified call stack 400 and modi-
fied call stack 302 have 5 associated elements in common.
[0090] In this example, associated element 402 corre-
sponds to associated element 334, associated element 404
corresponds to associated element 332, associated element
406 corresponds to associated element 330, associated ele-
ment 408 corresponds to associated element 328, and asso-
ciated element 410 corresponds to associated element 320.
Therefore, the weighted match score for associated modified
call stack 400 and modified call stack 302 is calculated by
summing squares of weightings for associated element 334,
associated element 332, associated element 330, associated
element 328, and associated element 320. As a result, the
weighted match score for associated modified call stack 400
and modified call stack 302 is 94. Both potential connections
have the same weight match score in this example.

[0091] With reference to FIG. 5, a diagram illustrating
determining a weighted match score between modified call
stacks is depicted in accordance with an illustrative embodi-
ment. In this illustrative example, one potential connection
with associated modified call stack 500 is identified as a
potential match for the connection request for modified call
stack 302. Similarly, the weighted match score for associ-
ated modified call stack 500 and modified call stack 302 is
calculated by the squares of weightings for associated ele-
ments that the two modified call stack have in common. In
this example, associated modified call stack 500 has 8
associated elements that are found in modified call stack
302. Therefore, the weighted match score for associated
modified call stack 500 and modified call stack 302 is 204.
This score is the sum of squares of the weightings for

Apr. 11, 2024

associated element 334, associated element 332, associated
element 330, associated element 328, associated element
326, associated element 324, associated element 322, and
associated element 320. These associated elements corre-
spond to element 502, element 504, element 506, element
508, element 510, element 512, element 514, and element
516 in call stack 500, respectively.

[0092] With reference to FIG. 6, a diagram illustrating
determining a weighted match score between modified call
stacks is depicted in accordance with an illustrative embodi-
ment. In this illustrative example, three potential connec-
tions with associated modified call stacks are identified as
potential matches for the connection request with modified
call stack 302. In this example, each of the three potential
connections has a modified call stack with the elements
depicted for associated modified call stack 600. In other
words, each of the potential connections has a modified call
stack with the same elements as depicted in associated
modified call stack 600 and associated modified call stack
600 is not shared between these potential connections.
[0093] As depicted, the weighted match score for associ-
ated modified call stack 600 and modified call stack 302 is
calculated by summing the squares of weightings of shared
associated elements. In this example, associated modified
call stack 600 has 3 associated elements that are be found in
modified call stack 302. Therefore, the weighted match
score for associated modified call stack 600 and modified
call stack 302 is 114, which is the sum of squares of the
weightings for associated elements 334, 322, and 320. These
associated elements correspond to element 602, element
604, and element 606 in call stack 600, respectively. As
result, all three of the potential connections have the same
weighted match score in this example.

[0094] In an illustrative example, if a partial match is
found between two modified call stacks, the weightings and
modified call stack associated with the potential connection
are adjusted to correspond to the change in usage that will
end up being reflected in the distribution of pooled prepared
statements. In other words, the weighting of elements in a
modified call stack can adjust and adapt to the changes in
usage patterns over time.

[0095] Turning next to FIGS. 7A-7B, a flowchart of a
process for managing connections in a connection pool is
depicted in accordance with an illustrative embodiment. The
process in FIGS. 7A-7B can be implemented in hardware,
software, or both. When implemented in software, the
process can take the form of program instructions that is run
by one of more processor units located in one or more
hardware devices in one or more computer systems. For
example, the process can be implemented in connection
manager 214 in computer system 212 in FIG. 2.

[0096] The process begins by creating a modified call
stack for a connection request in response to receiving a
connection request from an application (step 700). As
depicted, the modified call stack comprises elements that
call prepared statements that are part of an application logic
for the connection request. Other elements that are not part
of the application logic are not used in the modified call
stack.

[0097] The process determines whether a group of poten-
tial connections in the connection pool that matches the
connection request is present (step 702). In step 702, each
connection with a match to the connection request is a
potential connection in the group of potential connections. A

US 2024/0118808 Al

potential connection in this step has an associated modified
call stack. This associated modified call stack for the poten-
tial connection is a modified call stack that was created at the
time the request was made for the potential connection.

[0098] If a group of potential connections identified from
the connection pool matches the connection request, the
process creates a list of candidate connections (step 704). In
step 704, the list of candidate connections is initially an
empty list. This list is used to store potential connections
identified as being candidates for use by the connection
request.

[0099] The process retrieves an unprocessed potential
connection from the group of potential connections for
processing (step 706). In step 706, a potential connection is
an unprocessed connection before it is evaluated in this
process. The process retrieves an associated modified call
stack associated with the potential connection retrieved for
processing (step 708).

[0100] The process determines whether the associated
modified call stack is an excluded modified call stack in an
exclude list for the modified call stack (step 710). In step
710, the exclude list identifies associated modified call
stacks that have been determined to be not effective matches
for use with connection requests. This analysis of determin-
ing whether to exclude modified call stacks is described in
the flowchart in FIG. 11 below. As a result, a potential
connection associated with excluded modified call stacks is
not a good candidate for the connection request and the
connection is not added to the list of candidate connections.

[0101] If the associated modified call stack is not on the
exclude list for modified call stacks, the process determines
a weighted match score based on a comparison between the
modified call stack and the associated modified call stack
(step 712). In step 712, the weighted match score can be
determined based on matches of the elements in the modi-
fied call stack and the associated elements in the associated
modified call stack. An example of a process for determining
a weighted match score is described below in FIG. 9.

[0102] The process adds the potential connection associ-
ated with the weighted match score to the list of candidate
connections ordered by the highest weighted match score
(step 714). In step 714, the list with this ordering results in
the connection with the highest weighted match score being
first in the list while the connection with the lowest weighted
match score is at the end of the list. As a result, potential
connections with higher weighted match scores are higher in
the list.

[0103] The process then determines whether another
unprocessed potential connection is present in the group of
potential connections (step 716). If another unprocessed
potential connection is present for processing, the process
proceeds to step 706. Otherwise, the process determines
whether the list of candidate connections is empty (step
718). In step 718, the list of candidate connections is empty
if all identified potential connections are on the exclude list
for the modified call stack.

[0104] Ifthe list of candidate connections is not empty, the
process selects the first potential connection in the list of
candidate connections (step 720). In step 720, the list is
ordered by the highest weighted match score. As result, the
first potential connection in the list is the potential connec-
tion with the highest weighted match score in the potential
connections in the list. The process then returns the connec-

Apr. 11, 2024

tion to the application (step 724). With reference again to
step 718, if the list is empty, the process proceeds to step
722.

[0105] With reference again to step 710, if the associated
modified call stack is on the exclude list for modified call
stacks, the process proceeds to step 716 and determines
whether another unprocessed potential connection is present
in the group of potential connections for processing. As a
result, the potential connection with the associated modified
call stack on the exclude list is not added to the list of
candidate connections for the connection request.

[0106] With reference again to step 702, if potential con-
nections from the connection pool that match the connection
request are absent, the process creates a new connection for
the application (step 722). The process returns the connec-
tion to the application (step 724).

[0107] When a connection is first created, a modified call
stack is created for the connection from the request that
caused connection to be created. That modified call stack
remains associated with that connection unless the modified
call stack is replaced due to an unfavorable hit ratio with at
least one discard or unfavorable higher number of discards
as described below in step 1114 in FIG. 11. When a
connection request can be fulfilled by reusing a connection
from a list of potential connections, and the modified call
stack of the connection request does not perfectly match the
modified call stack of the chosen potential connection, there
is no change to the potential connection’s modified stack at
this point.

[0108] The process monitors usage for the connection
(step 726). In step 726, the process monitors the usage of
new connection to determine the effectiveness of the con-
nection that has been returned for use by the application. An
example of this monitoring is described in the process in
FIG. 10 below. The process detects that the application
closes a connection handle for the connection (step 728).
The process determines whether to add the modified call
stack for the connection to the exclude list for the modified
call stack (step 730). The process terminates thereafter. In
step 730, the connection can be excluded when the matching
ratio for matchings of prepared statements in the prepared
statement pool for the new connection is less than a hits to
misses threshold defined by the user.

[0109] With reference to FIG. 8, a flowchart of a process
for creating a modified call stack is depicted in accordance
with an illustrative embodiment. The process in FIG. 8 is an
example of one implementation for step 700 in FIG. 7A-7B.

[0110] The process begins by receiving a request for a
connection from an application (step 800). The process
retrieves a call stack (step 802). In step 802, the call stack is
for the connection request from the application and can be
obtained from the programming language used such as Java.
The process retrieves a first element from the call stack for
the connection (step 804).

[0111] The process determines whether the retrieved ele-
ment of the call stack is for a specification package (step
806). In step 806, specification packages can be Java pack-
ages, Java EE packages, Javax packages, Jakarta packages,
or any package that provides specification code. If the
retrieved element of the call stack is not for a specification
package, the process determines whether the retrieved ele-
ment of the call stack is for an application server package
(step 808). In step 808, clements by application server

US 2024/0118808 Al

package are excluded from the call stack because those
elements are products of the vendor and do not perform
application logic.

[0112] If the retrieved element of the call stack is not by
an application server package, the process determines
whether the retrieved element of the call stack is for a third
party package (step 810). In step 810, elements by the third
party packages do not contribute to the application logic and
are therefore excluded from the call stack.

[0113] If the retrieved element of the call stack is not for
a third party package, the process includes the retrieved
element into the modified call stack (step 812). The process
then determines whether another unprocessed element is
present in the call stack (step 814). If an unprocessed
element is present, the process retrieves the unprocessed
element from the call stack (step 816). In step 816, this
element is the next element from the top of the call stack.
The process then returns to step 806 and repeats the process
from step 806 to step 814 until all elements in the call stack
are processed.

[0114] With reference again to step 806, if the retrieved
element is for a specification package, the process proceeds
to step 814. Referring back to step 808, if the retrieved
element is for an application server package, the process
proceeds to step 814. Referring again to step 810, if the
retrieved element is for a third party package, the process
also proceeds to step 814. In this case, determinations in step
806, step 808, and step 814 indicate that the elements are not
part of the logic for the application. As a result, these
elements are not included in the modified call stack.
[0115] With reference again to step 814, if an unprocessed
element is not present, the process outputs the modified call
stack (step 818). The process terminates thereafter.

[0116] With reference to FIG. 9, a flowchart of a process
for determining a weighted match score between a modified
call stack and an associated modified call stack is depicted
in accordance with an illustrative embodiment. The process
in FIG. 9 is an example of one implementation for step 712
in FIG. 7A-7B.

[0117] The process initializes a weighted match score to
zero (step 900). In step 900, the score is a match score for
matching between elements in the modified call stack for the
connection request and associated elements in an associated
modified call stack for a potential connection that is being
considered. The process initializes an element counter to
zero (step 902). In this step, element counter is a numerical
representation of the relative location for associated ele-
ments in the modified call stack.

[0118] The process retrieves a final element in the modi-
fied call stack for processing (step 904). As depicted, the
location of an element in the modified call stack corresponds
to the weight of the element. In this illustrative example, the
final element of modified call stack corresponds to the
element that is furthest from connection request. This ele-
ment has the lowest weight.

[0119] The process adds 1 to the element counter (step
906). The process determines whether the element of the
modified call stack is present in the associated modified call
stack (step 908). If the element of modified call stack is
present in the associated modified call stack, the process
adds a square of the element counter to the weighted match
score (step 910). The process determines whether the modi-
fied call stack has a preceding element (step 912). If the
modified call stack has a preceding element, the process

Apr. 11, 2024

retrieves the preceding element from the modified call stack
for processing (step 914). The process proceeds to step 906
to add 1 to the counter of elements. In this illustrative
example, the process repeats steps 906 to 914 until all
associated elements in the modified call stack are processed.
[0120] In step 912, if the modified call stack does not have
a preceding element, the process outputs the weighted match
score (step 916). The process terminates thereafter. With
reference again to step 908, if the final element of modified
call stack is not present in the associated modified call stack,
the process proceeds to step 912 as described above.
[0121] With reference to FIG. 10, a flowchart of a process
for monitoring usages of connections is depicted in accor-
dance with an illustrative embodiment. The process in FIG.
10 is an example of one implementation for step 728 in
FIGS. 7A-7B.

[0122] The process begins by initializing a hit counter, a
miss counter, and a discard counter to zero (step 1000). The
process receives a request to use a prepared statement from
an application (step 1002). The process searches for the
prepared statement in a statement pool (step 1004). The
process determines whether the prepared statement is pres-
ent in the statement pool (step 1006). If the prepared
statement is present in the statement pool, the process adds
1 to the hit counter (step 1016). The process provides
application with a connection handle to the prepared state-
ment (step 1018).

[0123] The process determines whether the application
has finished using the prepared statement (step 1020). If the
application has not finished using the prepared statement,
the process determines whether the application has finished
using the current connection (step 1024). If the application
is not finished using the current connection, the process
returns to step 1002. Otherwise, the process terminates.
[0124] With reference again to step 1020, if the applica-
tion has finished using the prepared statement, the process
places the prepared statement back into the statement pool
(step 1022). The process then proceeds to step 1024.
[0125] With reference again to step 1006, if the prepared
statement is not present in the statement pool, the process
determines whether the statement pool is at maximum
capacity (step 1008). If the statement pool is not at maxi-
mum capacity, the process adds 1 to the miss counter (step
1012). The process creates a new prepared statement (step
1014). The process then proceeds to step 1018 as described
above. Turning back to step 1008, if the statement pool is at
maximum capacity, the process adds 1 to the discard counter
(step 1010). The process destroys an unused prepared state-
ment from the prepared statement pool (step 1011). The
process then proceeds to step 1012.

[0126] With reference to FIG. 11, a flowchart of a process
for determining the exclude list from usage of connection for
an associated modified call stack is depicted in accordance
with an illustrative embodiment. The process in FIG. 11 is
an example of one implementation for step 710 in FIG.
7A-TB.

[0127] The process begins by determining whether the
discard counter has a value that is at least 1 (step 1100). If
the discard counter is at least 1, the process determines the
total usage for the connection for an associated modified call
stack by adding the hit counter and the miss counter (step
1102).

[0128] The process determines a statement pool hit ratio as
the hit counter divided by the total usage of the connection

US 2024/0118808 Al

(step 1104). The process then determines whether the state-
ment pool hit ratio exceeds a hits to misses threshold (step
1106). This hits to misses threshold can be based on what
ratio of hits to misses results in good matching for the
connection. In one illustrative example, the hits to misses
ratio can be 0.9. In another example, this ratio can be 0.85.

[0129] If the statement pool ratio exceeds the hits to
misses threshold, the process determines whether the value
for the discard counter is less than or equal to a discard
threshold (step 1108). In step 1108, the discard threshold can
be selected based on when discards are considered to be
present. This threshold can be selected based on the amount
of growth that would be tolerated for an individual statement
pool in order for its connection to cover multiple similar
usage patterns rather than requiring a separate connection
for each pattern. This threshold can be, for example, a
number, such as less than 5. The threshold can be fine-tuned
by experimenting with different thresholds and initial maxi-
mum statement pool sizes and observing memory utilization
as well as metrics for discards over time to identify which
settings are optimal. In other example, the threshold is a
default threshold that is chosen by the connection manager.

[0130] In one illustrative example, the discard threshold
can be set to 2. If the value for the discard counter is less than
or equal to the discard threshold, the process increases the
maximum statement pool size for the connection based on
the value for the discard counter (step 1110). In step 1110,
the increase in maximum pool size is selected to increase the
matching while reducing discards. The goal in increasing the
maximum pool size can be selected as a value that obtains
100% matching with no discards. The process resets the hit
counter, the miss counter, and the discard counter to zero
(step 1116). The process terminates thereafter.

[0131] With reference again to step 1106, if the statement
pool hit ratio does not exceed the hits to misses threshold,
the process adds the associated modified call stack to the
exclude list for the modified call stacks (step 1112). The
process configures the modified call stack for the connection
to the value of the associated modified call stack (step 1114).
In step 1114, a connection’s associated modified call stack
can be replaced. Step 1114 can perform replacement at this
point of the process because the intolerable number of
discards and changes to usage that were observed cause the
statement pool to have a distribution of statements that is no
longer a good match for the original modified stack from
when the connection was first created. In this step, the
connection’s modified call stack is replaced with the modi-
fied call stack for the request associated with the most recent
usage that it is now most consistent with. The process then
proceeds to step 1116. With reference again to step 1108, if
the discard counter is not less than or equal to the discard
threshold, the process proceeds to step 1112 as described
above.

[0132] Turning next to FIG. 12, a flowchart of a process
for managing connections in a connection pool is depicted in
accordance with an illustrative embodiment. The process in
FIG. 12 can be implemented in hardware, software, or both.
When implemented in software, the process can take the
form of program instructions that is run by one of more
processor units located in one or more hardware devices in
one or more computer systems. For example, the process can
be implemented in connection manager 214 in computer
system 212 in FIG. 2.

Apr. 11, 2024

[0133] The process begins by creating a modified call
stack for a connection request in response to receiving the
connection request (step 1200). In step 1200, the modified
call stack comprises elements that call prepared statements
that are part of an application logic for the connection
request.

[0134] The process identifies a group of potential connec-
tions from the connections in the connection pool that
matches the connection request, wherein the group of poten-
tial connections is associated with a group of associated
modified call stacks that call the prepared statements (step
1202). The process determines a group of weighted match
scores for the group of associated modified call stacks from
a comparison of the modified call stack with the group of
associated modified call stacks (step 1204).

[0135] The process selects a connection from the group of
potential connections based on a highest weighted match
score in the group of weighted match scores (step 1206). The
process terminates thereafter.

[0136] With reference to FIG. 13, a flowchart of a process
for creating a modified call stack is depicted in accordance
with an illustrative embodiment. The process in FIG. 13 is
an example of one implementation for step 1200 in FIG. 12.
[0137] The process begins by retrieving elements from a
call stack in response to receiving the connection request
(step 1300). The process removes each element that is
known to not be a part of the application logic for the
connection request (step 1302).

[0138] The process places the remaining elements in the
modified call stack (step 1304). The process terminates
thereafter.

[0139] Next in FIG. 14, a flowchart of another process for
creating a modified call stack is depicted in accordance with
an illustrative embodiment. The process in FIG. 13 is
another example of an implementation for step 1200 in FIG.
12.

[0140] The process begins by retrieving elements from a
call stack in response to receiving the connection request
(step 1400). The process adds elements that are known to be
part of the application logic for the connection request to the
modified call stack (step 1402). The process terminates
thereafter.

[0141] Turning now to FIG. 15, a flowchart of a process
for determining a group of weighted match scores is
depicted in accordance with an illustrative embodiment. The
process illustrated in FIG. 15 is an example of an imple-
mentation for step 1204 in FIG. 12.

[0142] The process begins by comparing the elements in
the modified call stack with associated elements in an
associated modified call stack (step 1500). The process
assigns a weighted match score to the associated modified
call stack based on matches of the elements in the modified
call stack with the associated elements in the associated
modified call stack (step 1502). The process terminates
thereafter.

[0143] In this example, the weighted match score is higher
for a first match between more recent elements in the
modified call stack and the associated elements in the
associated modified call stack as compared to a second
match between older elements in the modified call stack and
the associated elements in the associated modified call stack.
This process can be repeated to compare the modified call
stack with each associated modified call stack to determine
the group of weighted match scores.

US 2024/0118808 Al

[0144] With reference to FIG. 16, a flowchart of a process
for excluding a potential connection is depicted in accor-
dance with an illustrative embodiment. The process illus-
trated in FIG. 16 is an example of an additional step that can
be performed in the process in FIG. 12.

[0145] The process excludes a potential connection from
the group of potential connections in response to an asso-
ciated modified call stack for the potential connection being
excluded because of a matching ratio for a matching of
prepared statements in a prepared statement pool for the
potential connection that is less than a hits to misses thresh-
old (step 1600). The process terminates thereafter.

[0146] Next in FIG. 17, a flowchart of another process for
excluding a potential connection is depicted in accordance
with an illustrative embodiment. The process illustrated in
FIG. 17 is an example of an additional step that can be
performed in the process in FIG. 12.

[0147] The process excludes a potential connection from
the group of potential connections in response to an asso-
ciated modified call stack for the potential connection being
excluded because of a matching ratio for a matching of
prepared statements in a prepared statement pool for the
potential connection that is equal to or greater than a hits to
misses threshold and a number of times prepared statements
are discarded from prepared statement pool is greater than a
discard threshold (step 1700). The process terminates there-
after.

[0148] With reference to FIG. 18, a flowchart of another
process for increasing a size of a prepared statement pool is
depicted in accordance with an illustrative embodiment. The
process illustrated in FIG. 18 is an example of an additional
step that can be performed in the process in FIG. 12.
[0149] The process increases a size of a prepared state-
ment pool in response to a matching for a matching ratio of
prepared statements in a prepared statement pool for a
potential connection that is equal to or greater than a hits to
misses threshold and a number of times prepared statements
are discarded is less than a discard threshold (step 1800).
The process terminates thereafter.

[0150] The flowcharts and block diagrams in the different
depicted embodiments illustrate the architecture, function-
ality, and operation of some possible implementations of
apparatuses and methods in an illustrative embodiment. In
this regard, each block in the flowcharts or block diagrams
may represent at least one of a module, a segment, a
function, or a portion of an operation or step. For example,
one or more of the blocks can be implemented as program
instructions, hardware, or a combination of the program
instructions and hardware. When implemented in hardware,
the hardware may, for example, take the form of integrated
circuits that are manufactured or configured to perform one
or more operations in the flowcharts or block diagrams.
When implemented as a combination of program instruc-
tions and hardware, the implementation may take the form
of firmware. Each block in the flowcharts or the block
diagrams can be implemented using special purpose hard-
ware systems that perform the different operations or com-
binations of special purpose hardware and program instruc-
tions run by the special purpose hardware.

[0151] In some alternative implementations of an illustra-
tive embodiment, the function or functions noted in the
blocks may occur out of the order noted in the figures. For
example, in some cases, two blocks shown in succession can
be performed substantially concurrently, or the blocks may

Apr. 11, 2024

sometimes be performed in the reverse order, depending
upon the functionality involved. Also, other blocks can be
added in addition to the illustrated blocks in a flowchart or
block diagram.

[0152] Turning now to FIG. 19, a block diagram of a data
processing system is depicted in accordance with an illus-
trative embodiment. Data processing system 1900 can be
used to implement computers and computing devices in
computing environment 100 in FIG. 1. Data processing
system 1900 can also be used to implement computer system
212. In this illustrative example, data processing system
1900 includes communications framework 1902, which
provides communications between processor unit 1904,
memory 1906, persistent storage 1908, communications unit
1910, input/output (/O) unit 1912, and display 1914. In this
example, communications framework 1902 takes the form
of a bus system.

[0153] Processor unit 1904 serves to execute instructions
for software that can be loaded into memory 1906. Processor
unit 1904 includes one or more processors. For example,
processor unit 1904 can be selected from at least one of a
multicore processor, a central processing unit (CPU), a
graphics processing unit (GPU), a physics processing unit
(PPU), a digital signal processor (DSP), a network proces-
sor, or some other suitable type of processor. Further,
processor unit 1904 can may be implemented using one or
more heterogeneous processor systems in which a main
processor is present with secondary processors on a single
chip. As another illustrative example, processor unit 1904
can be a symmetric multi-processor system containing mul-
tiple processors of the same type on a single chip.

[0154] Memory 1906 and persistent storage 1908 are
examples of storage devices 1916. A storage device is any
piece of hardware that is capable of storing information,
such as, for example, without limitation, at least one of data,
program instructions in functional form, or other suitable
information either on a temporary basis, a permanent basis,
or both on a temporary basis and a permanent basis. Storage
devices 1916 may also be referred to as computer-readable
storage devices in these illustrative examples. Memory
1906, in these examples, can be, for example, a random-
access memory or any other suitable volatile or non-volatile
storage device. Persistent storage 1908 may take various
forms, depending on the particular implementation.

[0155] For example, persistent storage 1908 may contain
one or more components or devices. For example, persistent
storage 1908 can be a hard drive, a solid-state drive (SSD),
a flash memory, a rewritable optical disk, a rewritable
magnetic tape, or some combination of the above. The media
used by persistent storage 1908 also can be removable. For
example, a removable hard drive can be used for persistent
storage 1908.

[0156] Communications unit 1910, in these illustrative
examples, provides for communications with other data
processing systems or devices. In these illustrative
examples, communications unit 1910 is a network interface
card.

[0157] Input/output unit 1912 allows for input and output
of data with other devices that can be connected to data
processing system 1900. For example, input/output unit
1912 may provide a connection for user input through at
least one of a keyboard, a mouse, or some other suitable
input device. Further, input/output unit 1912 may send

US 2024/0118808 Al

output to a printer. Display 1914 provides a mechanism to
display information to a user.

[0158] Instructions for at least one of the operating sys-
tem, applications, or programs can be located in storage
devices 1916, which are in communication with processor
unit 1904 through communications framework 1902. The
processes of the different embodiments can be performed by
processor unit 1904 using computer-implemented instruc-
tions, which may be located in a memory, such as memory
1906.

[0159] These instructions are referred to as program
instructions, computer usable program instructions, or com-
puter-readable program instructions that can be read and
executed by a processor in processor unit 1904. The program
instructions in the different embodiments can be embodied
on different physical or computer-readable storage media,
such as memory 1906 or persistent storage 1908.

[0160] Program instructions 1918 is located in a functional
form on computer-readable media 1920 that is selectively
removable and can be loaded onto or transferred to data
processing system 1900 for execution by processor unit
1904. Program instructions 1918 and computer-readable
media 1920 form computer program product 1922 in these
illustrative examples. In the illustrative example, computer-
readable media 1920 is computer-readable storage media
1924.

[0161] Computer readable storage media 1924 is a physi-
cal or tangible storage device used to store program instruc-
tions 1918 rather than a medium that propagates or transmits
program instructions 1918. Computer readable storage
media 1924, as used herein, is not to be construed as being
transitory signals per se, such as radio waves or other freely
propagating electromagnetic waves, electromagnetic waves
propagating through a waveguide or other transmission
media (e.g., light pulses passing through a fiber-optic cable),
or electrical signals transmitted through a wire.

[0162] Alternatively, program instructions 1918 can be
transferred to data processing system 1900 using a computer
readable signal media. The computer readable signal media
are signals and can be, for example, a propagated data signal
containing program instructions 1918. For example, the
computer readable signal media can be at least one of an
electromagnetic signal, an optical signal, or any other suit-
able type of signal. These signals can be transmitted over
connections, such as wireless connections, optical fiber
cable, coaxial cable, a wire, or any other suitable type of
connection.

[0163] Further, as used herein, “computer-readable media
1920” can be singular or plural. For example, program
instructions 1918 can be located in computer-readable media
1920 in the form of a single storage device or system. In
another example, program instructions 1918 can be located
in computer-readable media 1920 that is distributed in
multiple data processing systems. In other words, some
instructions in program instructions 1918 can be located in
one data processing system while other instructions in
program instructions 1918 can be located in one data pro-
cessing system. For example, a portion of program instruc-
tions 1918 can be located in computer-readable media 1920
in a server computer while another portion of program
instructions 1918 can be located in computer-readable media
1920 located in a set of client computers.

[0164] The different components illustrated for data pro-
cessing system 1900 are not meant to provide architectural

Apr. 11, 2024

limitations to the manner in which different embodiments
can be implemented. In some illustrative examples, one or
more of the components may be incorporated in or otherwise
form a portion of, another component. For example,
memory 1906, or portions thereof, may be incorporated in
processor unit 1904 in some illustrative examples. The
different illustrative embodiments can be implemented in a
data processing system including components in addition to
or in place of those illustrated for data processing system
1900. Other components shown in FIG. 19 can be varied
from the illustrative examples shown. The different embodi-
ments can be implemented using any hardware device or
system capable of running program instructions 1918.

[0165] Thus, illustrative embodiments of the present
invention provide a computer implemented method, com-
puter system, and computer program product managing
connections in a connection pool. A computer system creates
a modified call stack for a connection request in response to
receiving the connection request, wherein the modified call
stack comprises elements that call prepared statements that
are part of an application logic for the connection request.
The computer system identifies a group of potential con-
nections from the connections in the connection pool that
matches the connection request. The group of potential
connections is associated with a group of associated modi-
fied call stacks that call the prepared statements. The com-
puter system determines a group of weighted match scores
for the group of associated modified call stacks from a
comparison of the modified call stack with the group of
associated modified call stacks. The computer system selects
a connection from the group of potential connections based
on a highest weighted match score in the group of weighted
match scores.

[0166] In one or more illustrative examples the maximum
prepared statement pool size can be reduced through this
type of connection management. In the illustrative example,
each respective prepared statement pool associated with
each pool connection only needs to retain a sufficient num-
ber of prepared statements to meet the use of pattern that
pertains to a particular connection pool. Further, one or more
illustrative examples can involve dynamically assigning or
changing the maximum size of the statement pool. In this
manner, user input and user analysis are unnecessary to
reduce memory usage by prepared statements in prepared
statement pools. Additionally, the management of connec-
tion pools associated with a prepared statement pools can be
performed without making changes to an application or a
need for user analysis to make adjustments to the prepared
statement pool size.

[0167] The description of the different illustrative embodi-
ments has been presented for purposes of illustration and
description and is not intended to be exhaustive or limited to
the embodiments in the form disclosed. The different illus-
trative examples describe components that perform actions
or operations. In an illustrative embodiment, a component
can be configured to perform the action or operation
described. For example, the component can have a configu-
ration or design for a structure that provides the component
an ability to perform the action or operation that is described
in the illustrative examples as being performed by the
component. Further, to the extent that terms “includes”,
“including”, “has”, “contains”, and variants thereof are used
herein, such terms are intended to be inclusive in a manner

US 2024/0118808 Al

similar to the term “comprises” as an open transition word
without precluding any additional or other elements.
[0168] The descriptions of the various embodiments of the
present invention have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Not all embodiments will
include all of the features described in the illustrative
examples. Further, different illustrative embodiments may
provide different features as compared to other illustrative
embodiments. Many modifications and variations will be
apparent to those of ordinary skill in the art without depart-
ing from the scope and spirit of the described embodiment.
The terminology used herein was chosen to best explain the
principles of the embodiment, the practical application or
technical improvement over technologies found in the mar-
ketplace, or to enable others of ordinary skill in the art to
understand the embodiments disclosed here.
What is claimed is:
1. A computer implemented method for managing con-
nections in a connection pool, the computer implemented
method comprising:
creating, by a computer system, a modified call stack for
a connection request in response to receiving the con-
nection request, wherein the modified call stack com-
prises elements that call prepared statements that are
part of an application logic for the connection request;

identifying, by the computer system, a group of potential
connections from the connections in the connection
pool that matches the connection request, wherein the
group of potential connections is associated with a
group of associated modified call stacks that call the
prepared statements;
determining, by the computer system, a group of weighted
match scores for the group of associated modified call
stacks from a comparison of the modified call stack
with the group of associated modified call stacks; and

selecting, by the computer system, a connection from the
group of potential connections based on a highest
weighted match score in the group of weighted match
scores.
2. The computer implemented method of claim 1, wherein
creating, by the computer system, the modified call stack for
the connection request in response to receiving the connec-
tion request comprises:
retrieving, by the computer system, elements from a call
stack in response to receiving the connection request;

removing, by the computer system, each element that is
known to not be a part of the application logic for the
connection request; and

placing, by the computer system, remaining elements in

the modified call stack.

3. The computer implemented method of claim 1, wherein
creating, by the computer system, the modified call stack for
the connection request in response to receiving the connec-
tion request comprises:

retrieving, by the computer system, elements from a call

stack in response to receiving the connection request;
and

adding, by the computer system, elements that are known

to be part of the application logic for the connection
request to the modified call stack.

4. The computer implemented method of claim 1, wherein
determining, by the computer system, the group of weighted
match scores for the group of associated modified call stacks

Apr. 11, 2024

from the comparison of the modified call stack with the
group of associated modified call stacks comprises:
comparing, by the computer system, the elements in the
modified call stack with associated elements in an
associated modified call stack; and
assigning, by the computer system, a weighted match
score to the associated modified call stack based on
matches of the elements in the modified call stack with
the associated elements in the associated modified call
stack.
5. The computer implemented method of claim 4, wherein
the weighted match score is higher for a first match between
more recent elements in the modified call stack and the
associated elements in the associated modified call stack as
compared to a second match between older elements in the
modified call stack and the associated elements in the
associated modified call stack.
6. The computer implemented method of claim 1 further
comprising:
excluding, by the computer system, a potential connection
from the group of potential connections in response to
an associated modified call stack for the potential
connection being excluded because of a matching ratio
for a matching of prepared statements in a prepared
statement pool for the potential connection that is less
than a hits to misses threshold.
7. The computer implemented method of claim 1 further
comprising:
excluding, by the computer system, a potential connection
from the group of potential connections in response to
an associated modified call stack for the potential
connection being excluded because of a matching ratio
for a matching of prepared statements in a prepared
statement pool for the potential connection that is equal
to or greater than a hits to misses threshold and a
number of times prepared statements are discarded
from prepared statement pool is greater than a discard
threshold.
8. The computer implemented method of claim 1 further
comprising:
increasing, by the computer system, a size of a prepared
statement pool in response to a matching for a matching
ratio of prepared statements in a prepared statement
pool for a potential connection that is equal to or greater
than a hits to misses threshold and a number of times
prepared statements are discarded is less than a discard
threshold.
9. A computer system comprising:
a number of processor units, wherein the number of
processor units executes program instructions to:

create a modified call stack for a connection request in
response to receiving the connection request, wherein
the modified call stack comprises elements that call
prepared statements that are part of an application logic
for the connection request;

identify a group of potential connections from connec-

tions in a connection pool that matches the connection
request, wherein the group of potential connections is
associated with a group of associated modified call
stacks that call the prepared statements;

determine a group of weighted match scores for the group

of associated modified call stacks from a comparison of
the modified call stack with the group of associated
modified call stacks; and

US 2024/0118808 Al

select a connection from the group of potential connec-
tions based on a highest weighted match score in the
group of weighted match scores.

10. The computer system of claim 9, wherein in creating
the modified call stack for the connection request in
response to receiving the connection request, the number of
processor units executes the program instructions to:

retrieve elements from a call stack in response to receiv-

ing the connection request;

remove each element that is known to not be a part of
the application logic for the connection request; and

place remaining elements in the modified call stack.

11. The computer system of claim 9, wherein in creating
the modified call stack for the connection request in
response to receiving the connection request, the number of
processor units executes the program instructions to:

retrieve elements from a call stack in response to receiv-

ing the connection request; and

add elements that are known to be part of the application

logic for the connection request to the modified call
stack.

12. The computer system of claim 9, wherein in deter-
mining the group of weighted match scores for the group of
associated modified call stacks from the comparison of the
modified call stack with the group of associated modified
call stacks, the number of processor units executes the
program instructions to:

compare the elements in the modified call stack with

associated elements in an associated modified call
stack; and

assign a weighted match score to the associated modified

call stack based on matches of the elements in the
modified call stack with the associated elements in the
associated modified call stack.

13. The computer system of claim 12, wherein the
weighted match score is higher for a first match between
more recent elements in the modified call stack and the
associated elements in the associated modified call stack as
compared to a second match between older elements in the
modified call stack and the associated elements in the
associated modified call stack.

14. The computer system of claim 9, wherein the number
of processor units executes the program instructions to:

exclude a potential connection from the group of potential

connections in response to an associated modified call
stack for the potential connection being excluded
because of a matching ratio for a matching of prepared
statements in a prepared statement pool for the poten-
tial connection that is less than a hits to misses thresh-
old.

15. The computer system of claim 9, wherein the number
of processor units executes the program instructions to:

exclude a potential connection from the group of potential

connections in response to an associated modified call
stack for the potential connection being excluded
because of a matching ratio for a matching of prepared
statements in a prepared statement pool for the poten-
tial connection that is equal to or greater than a hits to
misses threshold and a number of times prepared
statements are discarded from prepared statement pool
is greater than a discard threshold.

16. The computer system of claim 9, wherein the number
of processor units executes the program instructions to:

Apr. 11, 2024

increase a size of a prepared statement pool in response to
a matching ratio for a matching of prepared statements
in a prepared statement pool for a potential connection
that is equal to or greater than a hits to misses threshold
and a number of times prepared statements are dis-
carded is less than a discard threshold.
17. A computer program product for managing connec-
tions in a connection pool, the computer program product
comprising a computer readable storage medium having
program instructions embodied therewith, the program
instructions executable by a computer system to cause the
computer system to perform a method of:
creating, by a computer system, a modified call stack for
a connection request in response to receiving the con-
nection request, wherein the modified call stack com-
prises elements that call prepared statements that are
part of an application logic for the connection request;

identifying, by the computer system, a group of potential
connections from the connections in the connection
pool that matches the connection request, wherein the
group of potential connections is associated with a
group of associated modified call stacks that call the
prepared statements;
determining, by the computer system, a group of weighted
match scores for the group of associated modified call
stacks from a comparison of the modified call stack
with the group of associated modified call stacks; and

selecting, by the computer system, a connection from the
group of potential connections based on a highest
weighted match score in the group of weighted match
scores.
18. The computer program product of claim 17, wherein
creating the modified call stack for the connection request in
response to receiving the connection request comprises:
retrieving, by the computer system, elements from a call
stack in response to receiving the connection request;

removing, by the computer system, each element that is
known to not be a part of the application logic for the
connection request; and

placing, by the computer system, remaining elements in

the modified call stack.

19. The computer program product of claim 17 wherein
creating the modified call stack for the connection request in
response to receiving the connection request comprises:

retrieving, by the computer system, elements from a call

stack in response to receiving the connection request;
and

adding, by the computer system, elements that are known

to be part of the application logic for the connection
request to the modified call stack.

20. The computer program product of claim 17, wherein
determining the group of weighted match scores for the
group of associated modified call stacks from the compari-
son of the modified call stack with the group of associated
modified call stacks comprises:

comparing, by the computer system, the elements in the

modified call stack with associated elements in an
associated modified call stack; and

assigning, by the computer system, a weighted match

score to the associated modified call stack based on
matches of the elements in the modified call stack with
the associated elements in the associated modified call
stack.

