US 20170331868A1

a2y Patent Application Publication o) Pub. No.: US 2017/0331868 A1

a9y United States

Cook et al.

43) Pub. Date: Nov. 16, 2017

(54) DYNAMIC STREAM OPERATOR FISSION
AND FUSION WITH PLATFORM
MANAGEMENT HINTS

(71) Applicant: International Business Machines
Corporation, Armonk, NY (US)

(72) Inventors: Alexander Cook, Rochester, MN (US);
Cory J. Kleinheksel, Ames, [A (US);
David M. Koster, Rochester, MN (US);
Peter A. Nicholls, Janetville (CA);
Jason A. Nikolai, Rochester, MN (US)

(21) Appl. No.: 15/151,020

(22) Filed: May 10, 2016
Publication Classification
(51) Int. CL
HO4L 29/06 (2006.01)
GOG6F 17/30 (2006.01)
100

\/\

(52) US.CL
CPC ... HO4L 65/4069 (2013.01); GOGF 17/30958

(2013.01)

(57) ABSTRACT

Methods and apparatus, including computer program prod-
ucts, implementing and using techniques for data stream
processing in a runtime data processing environment. A
stream processing graph that includes several connected
operators is received. Source code of the operators is ana-
lyzed to identify hints describing whether an operator con-
tains data structures, method parameters or other data that
can be applied in a parallelization data processing environ-
ment. Performance metrics of the data processing environ-
ment within parallel regions is evaluated to determine
whether data processing resources can be dynamically
scaled up or down. In response to determining that the data
processing resources can be dynamically scaled up, one or
more operators are split to be processed on two or more
parallel processing resources. In response to determining
that the data processing resources can be dynamically scaled
down, one or more operators are combined to be processed
on a single parallel processing resource.

/ Begin ;
T

Provide hints

102

'

Detect parallel regions

104

'

106

'

Deploy streams
application

108

Monitor processing
metrics of regions

:

Yes

\ 4

112

Reduce parallelism

\
Attempt to add 114
processing resources
to another parallel
region

|—> End

omputation
communication
bandwidth below
threshold?

110
No

116

Increase parallelism

Patent Application Publication Nov. 16,2017 Sheet 1 of 5 US 2017/0331868 A1

100 { Begin

\/\ l 102
N\

Provide hints

104
Detect parallel regions N/
L 106
NS/
Deploy streams
application
L 108
: A4
Monitor processing
metrics of regions
L 110

Computation No

communication
bandwidth below
threshold?

Yes

116

112

/\/ Increase parallelism

Reduce parallelism

'
114

Attempt to add /\/

processing resources
to another parallel
region

Patent Application Publication Nov. 16,2017 Sheet 2 of 5 US 2017/0331868 A1

Operators shown with hints as writlen in source code

o @fusable
 @parallel @fissable |

N ¢c —> D

Defauit / Initial System Deployment

Process #1 Process #2 Process #3

“““

FIG. 2B

Patent Application Publication Nov. 16,2017 Sheet 3 of 5 US 2017/0331868 A1

Scenario: High Load on A

Process #3

 Process#1 Process #2

~ Process #4

FIG. 2C

Scenario: High Load on A, Suddenly Drops

Process#? Process #2 Process #3

Y
]

—> A ——m B c

FIG. 2D

Patent Application Publication Nov. 16,2017 Sheet 4 of 5 US 2017/0331868 A1

Scenario: Highloadon B

Process #1 Process #2 Process #3 Process #4

FIG. 2E

‘___“____§‘;>_§§§‘t_§rio: Highloadon B, LowlLoadonC &D

Process #1 Process #2 ~ Process #3

FIG. 2F

Patent Application Publication Nov. 16,2017 Sheet 5 of 5 US 2017/0331868 A1

Scenario: Lowloadon B, C, & D

Process #1 Process #2

—> A > B C D

FIG. 2G

US 2017/0331868 Al

DYNAMIC STREAM OPERATOR FISSION
AND FUSION WITH PLATFORM
MANAGEMENT HINTS

BACKGROUND

[0001] The present invention relates to data processing,
and more specifically, to processing data streams. Data
stream processing is typically referred to as the in-memory,
record-by-record analysis of machine data in motion. A
common objective of data stream processing is to extract
actionable intelligence as streaming analytics, and to react to
operational exceptions through real-time alerts and auto-
mated actions in order to correct or avert the problem. The
data streams that are processed are typically unstructured log
records and sensor events, with each record including a
timestamp indicating the exact time of data creation or
arrival.

[0002] Over the past few years, there has been a significant
increase in machine-generated data from logs, sensors, net-
works and devices, which has led to an exponential increase
in data volume. This increase has been happening in parallel
with a developing need for real-time so-called “Big Data”
applications, as enterprises typically want to extract greater
value from their real-time Big Data asset.

[0003] However, applications based on traditional “store-
first, process-second”-data management architectures are
unable to scale for real-time Big Data applications, primarily
due to the latency and throughput requirements for real-time
applications in industries such as telecom, Internet of Things
(IOT) and cyber-security.

[0004] Data stream processing, on the other hand, is a
programming paradigm that naturally exposes task and
pipeline parallelism. Streaming applications are directed
graphs where vertices are operators and edges are data
streams. Because the operators are independent of each
other, and are fed continuous streams of tuples, they can
naturally execute in parallel. The only communication
between operators is through the streams that connect them.
When operators are connected in chains, they expose inher-
ent pipeline parallelism. When the same streams are fed to
multiple operators that perform distinct tasks, they expose
inherent task parallelism. This makes them popular in envi-
ronments where high throughput, low latency applications
are required that can scale with both the number of cores in
a machine, and with the number of machines in a cluster.
[0005] While pipeline and task parallelism occur naturally
in stream graphs, data parallelism requires intervention. In
the streaming context, data parallelism involves splitting
data streams and replicating operators. The parallelism
obtained through replication can be more well balanced than
the inherent parallelism in a particular stream graph, and is
easier to scale to the resources at hand. Such data parallelism
allows operators to take advantage of additional cores and
hosts that the task and pipeline parallelism are unable to
exploit.

[0006] Extracting data parallelism by hand is possible, but
is usually cumbersome. Developers must identify where
potential data parallelism exists, while at the same time
considering if applying data parallelism is safe. The diffi-
culty of developers doing this optimization by hand grows
quickly with the size of the application and the interaction of
the subgraphs that comprise it. After identifying where
parallelism is both possible and legal, developers may have
to enforce ordering on their own. All of these tasks are

Nov. 16, 2017

tedious and error-prone. Further, unless an operator was
explicitly written as a parallel or threaded operator, it may
not be clear how to add processing resources. Yet further,
explicitly creating parallel operator regions when volume or
velocity of data is low is a waste of resources, especially in
a cloud setting. Thus, there is a need for improved data
stream processing techniques.

SUMMARY

[0007] According to one embodiment of the present inven-
tion, methods, systems and computer program products are
provided for data stream processing in a runtime data
processing environment. A stream processing graph that
includes several connected operators is received. Source
code of the operators is analyzed to identify hints describing
whether an operator contains data structures, method param-
eters or other data that can be applied in a parallelization
data processing environment. Performance metrics of the
data processing environment within parallel regions is
evaluated to determine whether data processing resources
can be dynamically scaled up or down. In response to
determining that the data processing resources can be
dynamically scaled up, one or more operators are split to be
processed on two or more parallel processing resources. In
response to determining that the data processing resources
can be dynamically scaled down, one or more operators are
combined to be processed on a single parallel processing
resource.

[0008] The details of one or more embodiments of the
invention are set forth in the accompanying drawings and
the description below. Other features and advantages of the
invention will be apparent from the description and draw-
ings, and from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] FIG. 1 shows a flowchart 100 for data stream
processing, in accordance with one embodiment.

[0010] FIGS. 2A-2G show schematic block diagrams of
various scenarios that can occur as the operator load changes
in a data stream processing system, in accordance with one
embodiment.

[0011] Like reference symbols in the various drawings
indicate like elements.

DETAILED DESCRIPTION

[0012] The various embodiments of the invention pertain
to techniques for addressing the challenges mentioned above
by using hints to the platform runtime management as to
where and how to decide to scale up or scale down
resources.

[0013] In the following description, the concepts of “fis-
sion” and “fusion” within a streams application will be used.
Stream processing graphs are composed of a connected
graph of operators, which are code blocks that are capable
of independently running in a process, for example a Linux
process.

[0014] Operator fusion refers to placing multiple operators
together into a single process, such that they pool network
1/0 and process tuples as a single unit.

[0015] Operator fission refers to the opposite of this pro-
cess, wherein multiple operators that have been deployed in
a single process are split into two or more processes (poten-
tially on different resources) and each process is allocated its

US 2017/0331868 Al

own I/O resources, thus allowing the operators to process
tuples independently of each other.

[0016] Operator parallelization is a concept that is similar
to operator fission. When there is a desire to split any given
operator in the graph into two operators for higher process-
ing rates, and the operator is deployed as a single operator,
the operator is cloned. That is, the same code block is
deployed in a process, to another resource. Then the con-
nections that feed into the original operator are directed to
split their data flow between the two identical operator
deployments.

[0017] In order to further illustrate the concepts of opera-
tor fusion, fission and parallelization, please consider the
following example. Assume that there is a complex algo-
rithm with multiple operators A, B, C, and D. In a fusion
example, the operator management may decide for numer-
ous reasons that ABC should be one process and D should
be another process. In a fission example, it may be decided
that the combined ABC process should be split into two or
more processes, say an AB process and a C process, for
example. Operator parallelization, on the other hand, is even
at a finer level than this. Here operator D already has its own
process, but it is determined that for numerous reasons the
process could benefit from additional parallelization. There-
fore, operator D is split into two or more operators in two or
more processes, say process D1 and D2. Thus, the results of
these examples are processes AB, C, D1 and D2.

[0018] In accordance with some embodiments of the
invention, hints are used within the source code of the
streams graphs and the operators contained in those graphs
to apply parallel regions on specific data structure(s),
method parameter(s), and potentially other data or func-
tional parallel items.

[0019] Further, in some embodiments, resources are
scaled up or down dynamically during runtime, based on
performance metrics within parallel regions. Many streams
engines, such as, for example the Infosphere Streams, which
is available from International Business Corporation of
Armonk, N.Y., collect complex metrics on various aspects of
the engine’s runtime. This monitoring is provided by the
engine and then used for various purposes during operation.
Many such techniques are familiar to those of ordinary skill
in the art. As will be described in further detail below,
scaling up or down may involve fission, fusion or paral-
lelization of operators. In some cases, fusion opportunities
may also arise from prior fission of operators, as described
in the example above.

[0020] While data parallel processing may be easily
understood, an example of a hint at functional parallel
opportunities may be a hint above an implementation of
code relying on a series of “if” or “switch” statements, to
which fission could be applied as a way to create similar (but
different) functional parallel items. In the various embodi-
ments, these hints can either be expressed directly in the
source code as annotations or in some cases they may be
implicit.

[0021] As the skilled person realizes, explicit hints using
in-code annotations near “if” or “switch” statements could
be just one method that a developer can use to hint to the
management engine of a possible place in the execution to
perform the splitting. Thus, there might be several condi-
tions, and each of those conditions may then become their
own copy of the operator after the parallelization split
occurs.

Nov. 16, 2017

[0022] Implicit hints, on the other hand, come from algo-
rithm and data structure fundamentals. Implicit hints can
include, for example, streaming operators whose processing
is dependent upon a hash table or hash map, which through
code analysis or other means can be determined to be well
suited for isolated/independent processing.

[0023] With reference now to FIG. 1, a schematic process
100 is shown for data stream processing, in accordance with
one embodiment. As can be seen in FIG. 1, the process 100
starts by a developer providing hints to the streams to use at
runtime, during development in step 102. As was described
above, these hints can be implicit, for example, like “parti-
tionBy” parameters. Alternatively, the hints can be more
explicit, such as a Java™ annotation indicating that a
particular Java™ hash table can be parallelized or that a
particular Java™ method can be parallelized on a particular
parameter(s).

[0024] Next, during compile time, the compiler identifies
parallel regions in step 104. The parallel regions can include
known safe potential parallel regions. Safe regions are
regions that through static analysis are guaranteed to have
the ability to parallelize without the need of a hint in the
source code. There may also be additional potential parallel
regions within the source code, which could not have been
automatically detected without the additional hints in the
source code. As was described above, a hint may be needed,
for example, to identify areas of source code to which fission
could be applied to create functionally different parallel
operators, i.e., a set of “if” or “switch” statements.

[0025] Next, during runtime, the streams application is
initially deployed in such a way that all parallel regions
defined in step 104 are as wide as possible. For regions to be
“wide” in this context refers to that all the resources allo-
cated to the streams job will be consumed. Thus, parallel
regions will be replicated a number of times in order to
generate process to match all physical resources allocated.
As a result, each region is given approximately the same
level of parallelism, step 106.

[0026] The processing metrics of all of these regions are
automatically monitored on a periodic basis during runtime,
step 108. The period between re-evaluating metrics can be
variable, from a few milliseconds (i.e., in essence continu-
ous) to longer time periods. For example, the period can be
based on a period of time or on a certain number of tuples
processed. Further, in some embodiments, there can be
“exceptional thresholds” programmed that induce immedi-
ate re-evaluation, for example, in response to detecting
100% usage, or detecting that a tuple queue has reached a
specific depth.

[0027] The process examines whether a region is using
computation and communication bandwidths below a cer-
tain threshold in step 110. In various embodiments, the
thresholds can be singular values or can be a set of values.
With single thresholds, changes to the system may occur
each time the metric passes above or below the value. Sets
of threshold values may be used when different actions may
want to be taken at each level. For example to avoid
so-called thrashing of the system (i.e., when the manage-
ment of a computation begins to consume more resources
than the computation itself), it may be beneficial to scale
down a parallel region at 20% usage, but not attempt to scale
up the region until the usage crosses 60%.

[0028] If it is determined in step 110 that the region uses
below the threshold, its degree of parallelism is reduced in

US 2017/0331868 Al

step 112. In some embodiments, reducing the parallelism
may also involve fusing the region with other operators or
regions. Processing resources are not immediately returned,
but first an attempt is made in step 114 to add the processing
resources to another parallel region, and the process 100
ends.

[0029] If it is determined in step 110 that a region uses
computation and communication bandwidths above a cer-
tain threshold, its degree of parallelism is increased in step
116. This increase is typically constrained by resource
availability and by the runtime limitations. For example, a
runtime limitation may be that “partitionBy,” or hash table,
or other parallel defined regions simply will not benefit from
additional resources. For example, if a there are only four
“if”” conditions and there are already four parallel operators
responsible for one condition each, then adding a fifth
parallel operator will have no impact because there is no
work that can be assigned to that operator.

[0030] The scaling up or scaling down of a parallel region
by adding and removing resources experiences different
challenges when faced with stateless or stateful regions, as
well as with the availability of “spare” resources or not.
“Stateful” in this context implies that stream tuples that have
arrived in the past affect the processing of a tuple that arrives
in the future. “Stateless” implies that regardless of the order
of the tuples, every incoming tuple will always generate the
same output even when the order is changed. So past tuples
do not have an impact on future tuples. Certain conditions
make it easier to perform this scaling. The specific details on
live vs. halted operator/region migration and scaling is
well-known to those of ordinary skill in the art, and no
further description is believed to be necessary here.

[0031] FIGS. 2A-2G show schematic views of a range of
possible examples in which fission, fusion and paralleliza-
tion can be applied, as discussed above. Turning now to FIG.
2A, four operators A, B, C and D are show with hints as
written in their source code. Operator A is an operator that
can be parallelized. Operators B, C and D are operators that
are fuseable, and among these operators, operators B and C
form one fissable unit.

[0032] FIG. 2B illustrates the default or initial system
deployment. As can be seen in FIG. 2B, a first process,
Process #1, is deployed on operator A. A second process,
Process #2, is deployed on the B and C operators. A third
process, Process #3, is deployed on operator D.

[0033] Assume now that there is a high load on operator
A. This scenario is illustrated in FIG. 2C. Since operator A
has the ability to be parallelized, the system “clones” opera-
tor A into an identical deployment, operator A'. This enables
the original incoming data stream to operator A to be split
between operator A and operator A', which is illustrated in
FIG. 2C as Process #4.

[0034] FIG. 2D shows the opposite scenario, that is, when
the load on operators A and A' suddenly drops. In that case,
operator A' is deleted by the system and all its tasks are
resumed by operator A, as was originally the case.

[0035] FIG. 2E shows a scenario in which there is a high
load on operator B. Since operators B and C are fissable,
operators B and C are split into two processes, Process #2
and Process #3 (potentially on different resources), and each
process is allocated its own 1/O resources, thus allowing
operators B and C to process tuples independently of each
other.

Nov. 16, 2017

[0036] FIG. 2F shows a scenario in which two operators
are fused. In this case, it is assumed that there is a high load
on operator B and a low load on each of operators C and D.
Since operators C and D are fuseable, they are placed
together into a single process, Process #3, and will thus pool
network 1/O and process tuples as a single unit.

[0037] Lastly, FIG. 2G shows a scenario in which three
operators are fused. In this case, it is assumed that there is
alow load on each of operators B, C and D. Since all of these
operators are fuseable, they are placed together into a single
process, Process #2, and will thus pool network I/O and
process tuples as a single unit.

[0038] The present invention may be a system, a method,
and/or a computer program product at any possible technical
detail level of integration. The computer program product
may include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the present
invention.

[0039] The computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an instruction execution device. The computer readable
storage medium may be, for example, but is not limited to,
an electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

[0040] Computer readable program instructions described
herein can be downloaded to respective computing/process-
ing devices from a computer readable storage medium or to
an external computer or external storage device via a net-
work, for example, the Internet, a local area network, a wide
area network and/or a wireless network. The network may
comprise copper transmission cables, optical transmission
fibers, wireless transmission, routers, firewalls, switches,
gateway computers and/or edge servers. A network adapter
card or network interface in each computing/processing
device receives computer readable program instructions
from the network and forwards the computer readable
program instructions for storage in a computer readable
storage medium within the respective computing/processing
device.

[0041] Computer readable program instructions for carry-
ing out operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, con-

US 2017/0331868 Al

figuration data for integrated circuitry, or either source code
or object code written in any combination of one or more
programming languages, including an object oriented pro-
gramming language such as Smalltalk, C++, or the like, and
procedural programming languages, such as the “C” pro-
gramming language or similar programming languages. The
computer readable program instructions may execute
entirely on the user’s computer, partly on the user’s com-
puter, as a stand-alone software package, partly on the user’s
computer and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user’s computer through
any type of network, including a local area network (LAN)
or a wide area network (WAN), or the connection may be
made to an external computer (for example, through the
Internet using an Internet Service Provider). In some
embodiments, electronic circuitry including, for example,
programmable logic circuitry, field-programmable gate
arrays (FPGA), or programmable logic arrays (PLA) may
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, in order to
perform aspects of the present invention.

[0042] Aspects of the present invention are described
herein with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems), and computer
program products according to embodiments of the inven-
tion. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer readable program instruc-
tions.

[0043] These computer readable program instructions may
be provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

[0044] The computer readable program instructions may
also be loaded onto a computer, other programmable data
processing apparatus, or other device to cause a series of
operational steps to be performed on the computer, other
programmable apparatus or other device to produce a com-
puter implemented process, such that the instructions which
execute on the computer, other programmable apparatus, or
other device implement the functions/acts specified in the
flowchart and/or block diagram block or blocks.

[0045] The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods, and com-
puter program products according to various embodiments
of the present invention. In this regard, each block in the
flowchart or block diagrams may represent a module, seg-

Nov. 16, 2017

ment, or portion of instructions, which comprises one or
more executable instructions for implementing the specified
logical function(s). In some alternative implementations, the
functions noted in the blocks may occur out of the order
noted in the Figures. For example, two blocks shown in
succession may, in fact, be executed substantially concur-
rently, or the blocks may sometimes be executed in the
reverse order, depending upon the functionality involved. It
will also be noted that each block of the block diagrams
and/or flowchart illustration, and combinations of blocks in
the block diagrams and/or flowchart illustration, can be
implemented by special purpose hardware-based systems
that perform the specified functions or acts or carry out
combinations of special purpose hardware and computer
instructions.
[0046] The descriptions of the various embodiments of the
present invention have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech-
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.
1-7. (canceled)
8. A system for data stream processing, comprising:
one or more processing resources, wherein each process-
ing resource includes a memory and one or more
processors, the processing resources being configured
to operate together to perform a method comprising:

receiving a stream processing graph comprising a plural-
ity of connected operators;

analyzing source code of the plurality of operators to

identify hints describing whether an operator contains
data structures, method parameters or other data that
can be applied in a parallelization data processing
environment;

evaluating performance metrics of the data processing

environment within parallel regions to determine
whether data processing resources can be dynamically
scaled up or down;

in response to determining that the data processing

resources can be dynamically scaled up, splitting one or
more operators to be processed on two or more parallel
processing resources; and

in response to determining that the data processing

resources can be dynamically scaled down, combining
one or more operators to be processed on a single
parallel processing resource.

9. The system of claim 8, wherein splitting one or more
operators includes cloning an operator to deploy an identical
code block to another processing resource.

10. The system of claim 8, wherein data processing
resources are scaled up or down dynamically during run-
time, based on performance metrics within parallel regions.

11. The system of claim 8, wherein the hints include one
or more of: express hints that are expressed directly in the
source code as annotations, and implicit hints that are
derived through code analysis.

12. The system of claim 8, wherein evaluating perfor-
mance metrics is done on a periodic basis during runtime.

US 2017/0331868 Al

13. The system of claim 12, wherein the period between
re-evaluating performance metrics is variable and is based
on one or more of: a period of time, and on a number of
tuples processed by an operator.

14. The system of claim 8, wherein evaluating includes
comparing the performance metrics to one or more threshold
values.

15. A computer program product for data stream process-
ing, the computer program product comprising a computer
readable storage medium having program instructions
embodied therewith, wherein the computer readable storage
medium is not a transitory signal per se, the program
instructions being executable by a processor to cause the
processor to perform a method comprising:

receiving a stream processing graph comprising a plural-
ity of connected operators;

analyzing source code of the plurality of operators to
identify hints describing whether an operator contains
data structures, method parameters or other data that
can be applied in a parallelization data processing
environment;

evaluating performance metrics of the data processing
environment within parallel regions to determine
whether data processing resources can be dynamically
scaled up or down;

Nov. 16, 2017

in response to determining that the data processing
resources can be dynamically scaled up, splitting one or
more operators to be processed on two or more parallel
processing resources; and

in response to determining that the data processing

resources can be dynamically scaled down, combining
one or more operators to be processed on a single
parallel processing resource.

16. The computer program product of claim 15, wherein
splitting one or more operators includes cloning an operator
to deploy an identical code block to another processing
resource.

17. The computer program product of claim 15, wherein
data processing resources are scaled up or down dynami-
cally during runtime, based on performance metrics within
parallel regions.

18. The computer program product of claim 15, wherein
the hints include one or more of: express hints that are
expressed directly in the source code as annotations, and
implicit hints that are derived through code analysis.

19. The computer program product of claim 15, wherein
evaluating performance metrics is done on a periodic basis
during runtime.

20. The computer program product of claim 15, wherein
evaluating includes comparing the performance metrics to
one or more threshold values.

#* #* #* #* #*

