a9y United States

Everhart et al.

US 20170331903A1

a2y Patent Application Publication o) Pub. No.: US 2017/0331903 A1

43) Pub. Date: Nov. 16, 2017

(54)

(71)
(72)

@
(22)

(1)

METHODS FOR FACILITATING SECURE
CONNECTIONS FOR AN OPERATING
SYSTEM KERNEL AND DEVICES THEREOF

Applicant: NetApp, Inc., Sunnyvale, CA (US)

Inventors: Craig Everhart, Pittsburgh, PA (US);
Flora Wong, Palo Alto, CA (US);
Ankit Jain, San Jose, CA (US); Vijay
Singh, San Jose, CA (US); Robert
Wyckoff Hyer, JR., Seven Fields, PA
(US); Balajee Nagasubramaniam,
Dublin, CA (US)

Appl. No.: 15/152,219
Filed:

Publication Classification

Int. CL.

HO4L 29/08
HO4L 29/06
HO4L 29/06

Client
Device

14(n)

May 11, 2016

(2006.01)
(2006.01)
(2006.01)

(52) US.CL
CPC ... HO4L 67/141 (2013.01); HO4L 63/0428
(2013.01); HO4L 69/16 (2013.01)
(57) ABSTRACT

A method, non-transitory computer readable medium and
local storage node computing device that establishes a first
connection between a first endpoint in a kernel of an
operating system and a second endpoint. A proxy application
in a user space is invoked and a second connection is
established from the operating system kernel to the proxy
application. The proxy application is linked to a secure
protocol implementation. Handshake messages are proxied
between the second endpoint and the proxy application
using the first and second connections. Security parameters
for the first connection and determined from the handshake
messages are sent from the proxy application to the oper-
ating system kernel via the second connection. Data is
exchanged between the first endpoint in the operating sys-
tem kernel and the second endpoint using the first connec-
tion and the security parameters.

Local Storage Node
Computing Device 12

Data Storage
Device 18(1)

\ Data Storage

Device 18(n)

Remote Storage Node

Kernel 24

Cowmputing Device 20

Local Endpoint
26

Remote

A

La

‘m‘

Endpoint 28

US 2017/0331903 A1

Nov. 16,2017 Sheet 1 of 5

Patent Application Publication

g7 wodpugg

1D

A

AOUWITY

07 201a9(] Sunndwo)
IPON 288I01S djoWdY

{U)]T o1a9(]
98e101§ BIR(Y

(18T 221
age101§ vIRQQ

A4

9T
yurodpuy 007

$Z [PuIay

71 92o1a0¢g Sunndwo)
JPON 988I01S [BO0T

01

(A

901A3(]
R

)
201A(
ot

US 2017/0331903 A1

Nov. 16,2017 Sheet 2 of 5

Patent Application Publication

'Ol

$< 908I0u]
UOHBOIUNIILIO))

0¢ (s)10859001

A4

9¢
1xdepy 2a8eiolg

v

8¢

Q1 uonejudswdjdwy 1000J01g AINVY

9% voneoyddy Axo1d

T 2oedg 1980

97 1urodpus 8007

$T U

7 20uedg ouway

A

A
A\ 4

Y

O wskg Suneradg

7€ AIOWoN

71 92149(1 Sunndwio)) opoN 95eIOIS [BOO

Patent Application Publication Nov. 16,2017 Sheet 3 of 5 US 2017/0331903 A1

Initiate a Process in an Operating System that Requires Communication with a Remote
Endpoint 300

v

Establish a Connection from a Local Endpoint in a Kernel of the Operating System to the
Remote Endpoint 302

Y

Invoke a Proxy Application Linked to a Secure Protocol Implementation and Esiablish a
Connection from the Operating System Kemel to the Proxy Application 304

.

Receive a Client Hello Message from the Proxy Application and Send the Client Hello
Message to the Remote Endpoint 306

!

Receive a Response to the Client Hello Message, Including a Server Hello Message, from the
Remote Endpoint and Send the Response to the Proxy Application 308

y

Receive a Response to the Server Hello Message, Including a Client Finished Message, from
the Proxy Application and Send the Response to the Remote Endpoint 310

!

Receive a Response to the Client Finished Message, Including a Server Finished Message,
from the Remote Endpoint and Send the Response to the Proxy Application 312

v

Receive Parameter(s) from the User Space Application 314
I

Message Generated? 316

Encrypt the Message Using the Parameter(s) and Send the
Message to the Remote Endpoint 318

Message Received? 320

Deerypt the Message Using the Parameter(s) 322

FIG.3

Patent Application Publication Nov. 16,2017 Sheet 4 of 5 US 2017/0331903 A1

Receive a Request to Establish a Connection from an Operating System Kemnel and Establish
the Connection with the Kemel 400

v

Generaie a Client Hello Message Using a Linked Secure Protocol Implementation and Send
the Client Hello Message to the Operating System Kernel 402

Y

Receive a Response to the Client Hello Message. Including a Server Hello Message, Process
the Response and Generate a Response to the Server Hello Message, Including a Client Finish
Message, Using the Secure Protocol Implementation, and Send the Response to the Operating

System Kernel 404

'

Receive a Response to the Client Finished Message, Including a Scrver Finish Mcssage, and
Process the Response Using the Secure Protocol Implementation 406

v

Determine Security Parameter(s) Associated with the Connection and Send the Parameter(s)
to the Operating System Kernel 408

FIG. 4

US 2017/0331903 A1

{laveainsiL

{isddeimanianayslL

{spddeimipunssiy pommees o

Jof yaddeia §11

HIOEDBULET
RN AN

Nov. 16,2017 Sheet 5 of 5

S

kS
#

aseyd B18D aseyd MeyspueY

Patent Application Publication

US 2017/0331903 Al

METHODS FOR FACILITATING SECURE
CONNECTIONS FOR AN OPERATING
SYSTEM KERNEL AND DEVICES THEREOF

FIELD

[0001] This technology relates to data security in commu-
nication networks, and more particularly to methods and
devices for facilitating secure connections for an operating
system kernel.

BACKGROUND

[0002] As larger amounts of data are generated and com-
municated across networks, data security is increasingly
important. Cryptographic security protocols including
secure sockets layer (SSL) and transport layer security
(TLS) have been developed that facilitate secure communi-
cations over computer networks. In many computing envi-
ronments, data is exchanged via applications having asso-
ciated connections that are established with at least one
endpoint in an operating system kernel.

[0003] In one particular example, storage node computing
devices, such as storage servers or controllers, have oper-
ating systems that utilize endpoints in kernel space. The
endpoints in kernel space can be utilized by storage node
computing devices to communicate with other storage node
computing devices across network(s) in order to perform
storage management functions, such as backup, disaster
avoidance, or load sharing, for example. Many other types
of computing devices also utilize endpoints in operating
system kernels.

[0004] Currently, kernel applications often utilize trans-
port control protocol (TCP) connections over public com-
munication networks (e.g., the Internet) to send data in plain
text or without any encryption or security. The data sent via
unsecure TCP connections is susceptible to being observed,
obtained, or manipulated, for example, which is undesirable.
[0005] In order to facilitate secure connections for oper-
ating system kernels, SSL/TLS can be ported into kernel
space. However, porting implementations of SSL/TLS into
kernel space is problematic because the associated code is
complex. Performing cryptographic negotiation, for
example, strains the resources available to operating system
kernels. Additionally, SSI/TLS implementations are often
updated, and recurring maintenance of ported software at the
kernel level is relatively difficult. In particular, many updates
are relatively important and repair security vulnerabilities
that could allow attacks.

[0006] Alternatively, applications in kernel space can uti-
lize an SSL/TLS implementation hosted in user space.
However, an additional manipulation of data is required to
interface with an SSL/TLS implementation hosted in user
space, which results in relatively slow performance. The
increased latency resulting from leveraging an SSL/TLS
implementation hosted in user space is particularly prob-
lematic in environments in which the speed of communica-
tions and data across a network is critical.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] FIG. 1 is a block diagram of a network environ-
ment with an exemplary local storage node computing
device with a local endpoint in an operating system kernel;
[0008] FIG. 2 is a block diagram of the exemplary local
storage node computing device shown in FIG. 1;

Nov. 16, 2017

[0009] FIG. 3 is a flowchart of an exemplary method for
interfacing, by an operating system kernel, with a proxy
application in a user space in order to facilitate secure
connections for the operating system kernel;

[0010] FIG. 4 is a flowchart of an exemplary method for
interfacing, by a proxy application in a user space, with an
operating system kernel in order to facilitate secure connec-
tions for the operating system kernel; and

[0011] FIG. 5 is a sequence diagram of an exemplary
method of facilitating secure connections for an operating
system kernel.

DETAILED DESCRIPTION

[0012] A network environment 10 including an exemplary
local storage node computing device 12 is illustrated in FIG.
1. The local storage node computing device 12 in this
example is coupled to client devices 14(1)-14(#) via a local
area network (LAN) 16, data storage devices 18(1)-18(») via
a bridge or switch (not shown), and a remote storage node
computing device 20 via a wide area network (WAN) 22
although this network environment 10 can include other
numbers and types of systems, devices, components, and/or
elements in other configurations. Additionally, the network
environment 10 may include other network devices such as
one or more routers and/or switches, for example, which are
well known in the art and thus will not be described herein.
[0013] The local storage node computing device 12
includes an operating system kernel 24 that includes a local
endpoint 26 that can be coupled to a remote endpoint 28 of
the remote storage node computing device 20 by a connec-
tion over the WAN 22, although the remote endpoint 24 can
be located at any type of computing devices. This technol-
ogy provides a number of advantages including methods,
non-transitory computer readable media, and devices that
facilitate more efficient secure connections from endpoints
in operating system kernels to remote endpoints based, in
part, by advantageously utilizing a proxy application in user
space to handle a handshake or negotiation phase of a secure
protocol and the kernel to handle a subsequent data phase in
which data is exchanged with a remote endpoint.

[0014] Referring to FIG. 2, a block diagram of the exem-
plary local storage node computing device 12 is illustrated.
The local storage node computing device 12 generally
provides file services relating to the organization of infor-
mation on the data storage devices 18(1)-18(z) on behalf of
the client devices 14(1)-14(»). In this example, the local
storage node computing device 12 includes processor(s) 30,
a memory 32, a communication interface 34, and a storage
adapter 36, which are coupled together by a bus 38 or other
communication link.

[0015] The processor(s) 30 of the local storage node
computing device 12 may execute a program of stored
instructions for one or more aspects of the this technology,
as described and illustrated by way of the embodiments
herein, although the processor(s) 30 could execute other
numbers and types of programmed instructions. The pro-
cessor(s) 30 in the local storage node computing device 12
may include one or more central processing units (CPUs) or
general purpose processors with one or more processing
cores, for example.

[0016] The memory 32 of the local storage node comput-
ing device 12 may include any of various forms of read only
memory (ROM), random access memory (RAM), flash
memory, non-volatile or volatile memory, or the like, or a

US 2017/0331903 Al

combination of such devices, for example. In this example,
the memory includes an operating system 40, the kernel 26
configured to execute in a kernel space 42, and the local
endpoint 26 disposed at the kernel 24. Additionally, the
memory 32 in this particular example includes a user space
44 and a proxy application 46 configured to execute in the
user space 44 and linked to a secure protocol implementa-
tion 48, although other types and/or numbers of applications
or modules can also be included in other examples.

[0017] The operating system 34 is configured to function-
ally organize stored data by invoking storage operations to
facilitate file services provided by the local storage node
computing device 12, among other functions. In particular,
the operating system 34 implements a file system to logi-
cally organize information as a hierarchical structure of
directories and files on the data storage devices 18(1)-18(n).
Accordingly, the operating system 34 cooperates with the
storage adapter 36 to access information requested by the
client devices 14(1)-14(») and stored on the data storage
devices 18(1)-18(»), among other functions.

[0018] The operating system includes the kernel 24, which
manages startup for the local storage node computing
device, translates messages received from higher level soft-
ware executing on the local storage node computing device
12, and manages the memory 32 of the local storage node
computing device 12, for example, among other functions.
The kernel 24 executed in a kernel space 42 segregated by
the operating system 40 and can run processes that perform
the above-identified functions, as well as other storage
functions such as backup, disaster avoidance, and load
sharing, for example. In order to carry out such functionality,
the kernel 24 can establish the local endpoint 26, which can
have an associated address or other identifier that is used in
a connection with the remote endpoint 28.

[0019] The operating system 40 can further segregate the
memory 32 into user space 44 that hosts higher level
applications, including the proxy application 46. The proxy
application 46 can be a daemon or other type of application
that is configured to handle the negotiation phase of a secure
protocol in order to facilitate a secure connection between
the local endpoint 26 and the remote endpoint 28. In
particular, the proxy application can receive SSL/TLS hand-
shake messages from the kernel 24 that were sent from the
remote endpoint 28 and can interface with the secure pro-
tocol implementation 48 to process the messages in order to
carry out a cryptographic negotiation, for example, on behalf
of the kernel 24, as described and illustrated in more detail
later.

[0020] The secure protocol implementation 48 can be a
package, library, or toolkit that includes an SSL/TLS imple-
mentation that can be leveraged by the proxy application 46
when processing messages proxied from the kernel 24. As
the secure protocol implementation 48 is relatively complex,
it is advantageously executed with the proxy application 46
in user space with this technology. In one example, the
secure protocol implementation 48 can be an OpenSSL
library, although other types of secure protocol implemen-
tations can be used in other examples. By hosting the secure
protocol implementation 48 in the user space 44, maintain-
ing the code associated with the secure protocol implemen-
tation 48 is relatively easy as compared to porting such code
to the kernel space 42.

[0021] The communication interface 34 of the local stor-
age node computing device 12 can include one or more

Nov. 16, 2017

network interface controllers (NICs) for operatively cou-
pling and communicating between the local storage node
computing device 12 and the client devices 14(1)-14(») via
the LAN 16 and, optionally, between the local storage node
computing device 12 and the remote storage node comput-
ing device 30 via the WAN 22, although other types and
numbers of communication networks or systems with other
types and numbers of connections and configurations to
other devices and elements also can be used.

[0022] By way of example only, the LAN and/or WAN 22
can use TCP/IP over Ethernet and industry-standard proto-
cols, including NFS, CIFS, SOAP, XML, LDAP, and SNMP,
although other types and numbers of communication net-
works can be used. The LAN and/or WAN 22 in this
example may employ any suitable interface mechanisms and
network communication technologies including, for
example, teletraffic in any suitable form (e.g., voice, modem,
and the like), Public Switched Telephone Network (PSTNs),
Ethernet-based Packet Data Networks (PDNs), combina-
tions thereof, and the like. The communication network(s)
16 may also comprise any local area network and/or wide
area network (e.g., Internet), although any other type of
traffic network topologies may be used.

[0023] The storage adapter 36 can cooperate with the
operating system 40 to access information requested by the
client devices 14(1)-14(n). The information may be stored
on the data storage devices 18(1)-18(») in logical volumes,
for example. The storage adapter 36 includes input/output
(I/0) or communication interface circuitry that couples to
the data storage devices 18(1)-18(») over an I/O intercon-
nect arrangement such as a conventional high-performance,
Fibre Channel serial link topology, SAS, SCSI, or SATA, for
example. The storage adapter 36 can communicate with the
data storage devices 18(1)-18(n) over a network, switch,
and/or bridge (not shown). The data storage devices 18(1)-
18(%) can be housed in a shelf or other enclosure, for
example, and the data storage devices 18(1)-18(#) can also
be located elsewhere in the network environment 10.

[0024] Referring back to FIG. 1, each of the client devices
14(1)-14(») in this example includes a processor, a memory,
a communication interface, and optionally an input device,
and a display device, which are coupled together by a bus or
other link, although each of the client devices 14(1)-14(n)
can have other types and numbers of components or other
elements and other numbers and types of network devices
could be used.

[0025] The client devices 14(1)-14(») may run interface
applications that provide an interface to make requests for
and send content and/or data to the local storage node
computing device 12 via the LAN 16, for example. Each of
the client devices 14(1)-14(») may be an application server
hosting applications that utilize backend storage, or any
other type of processing and/or computing device, for
example.

[0026] The data storage devices 18(1)-18(x) can be hard
disk drives, solid state drives, flash drives (e.g., in an all flash
array), optical disk-based storage, any combination thereof,
or any other type of stable, non-volatile storage suitable for
storing files or objects in storage volumes for short or long
term retention, for example. The data storage devices 18(1)-
18(z) optionally host one or more volumes based on a
Redundant Array of Inexpensive Disks (RAID) architecture

US 2017/0331903 Al

or other topology facilitating data persistency, although
other types and numbers of volumes in other topologies can
also be used.

[0027] The remote storage node computing device 20 can
be the same type of storage node computing device as the
local storage node computing device 12, with one or more
of the same components illustrated in FIG. 2. Alternatively,
the remote storage node computing device 20 can be any
other type of computing device configured to execute one or
more applications or processes that utilize connections (e.g.,
TCP connections) and are configured to establish the remote
endpoint 28 in order to facilitate the connections and com-
municate data to the local storage node computing device
12.

[0028] Although examples of the local storage node com-
puting devices 12, client devices 14(1)-14(#n), data storage
devices 18(1)-18(x), and remote storage node computing
device 20 are described and illustrated herein, it is to be
understood that the devices and systems of the examples
described herein are for exemplary purposes, as many varia-
tions of the specific hardware and software used to imple-
ment the examples are possible, as will be appreciated by
those skilled in the relevant art(s). In addition, two or more
computing systems or devices can be substituted for any one
of the systems in any embodiment of the examples.

[0029] The examples also may be embodied as one or
more non-transitory computer readable media having
instructions stored thereon for one or more aspects of the
present technology, as described and illustrated by way of
the examples herein, which when executed by the processor,
cause the processor to carry out the steps necessary to
implement the methods of this technology, as described and
illustrated with the examples herein.

[0030] An exemplary method for facilitating secure con-
nections for an operating system kernel will now be
described with reference to FIGS. 1-6. Referring more
specifically to FIG. 3, a flowchart of an exemplary method
for interfacing, by the operating system kernel 24, with the
proxy application 46 in the user space 44 in order to
facilitate secure connections for the kernel 24 is illustrated.
In step 300, the kernel 24 executing on the local storage node
computing device 12 initiates a process that requires com-
munication with a remote endpoint 28.

[0031] The remote endpoint 28 is hosted at the remote
storage node computing device 20 in this particular
example, but can be associated with any other type of device
in other examples. The process in the kernel 24 can be
related to storage functionality provided by the local storage
node computing device 12, such as backup, disaster avoid-
ance, load sharing, or any other type of storage functionality,
although other functionality can also be provided by the
process. The process in this example requires secure com-
munication of data over the WAN 22 (e.g., the Internet) from
the local endpoint 26 to the remote endpoint 28.

[0032] In step 302, the kernel 24 executing on the local
storage node computing device 12 establishes a connection
from the local endpoint 26 in the kernel 24 to the remote
endpoint 28 over the WAN 22. The connection can be a
transmission control protocol (TCP) connection, for
example, although other types of connections can also be
used.

[0033] In step 304, the kernel 24 executing on the local
storage node computing device 12 invokes the proxy appli-
cation 46 in the user space 44. The kernel 24 in this example

Nov. 16, 2017

invokes the proxy application 46 by establishing a connec-
tion with the proxy application 46, which is linked to the
secure protocol implementation 48 (e.g., an implementation
of secure sockets layer (SSL)/transport layer security (TLS),
such as OpenSSL). The operation of the proxy application
46 is described and illustrated in more detail later with
reference to FIG. 4.

[0034] In step 306, the kernel 24 executing on the local
storage node computing device 12 receives a client hello
message generated by the proxy application 46 using the
secure protocol implementation 48. Accordingly, the proxy
application 46 is configured to interface with the secure
protocol implementation to initiate a handshake process
according to the secure protocol, when invoked. In particu-
lar, the proxy application 46 generates a client hello mes-
sages according to an SSL/TLS secure protocol in this
example.

[0035] Subsequent to receiving the client hello message
via the connection with the proxy application 46 established
in step 304, the kernel 24 sends the client hello message to
the remote endpoint 28 over the WAN 22 using the TCP
connection established in step 302. The proxy application 46
in this particular example is configured to handle the client
portion of the SSI/TLS handshake negotiation, but the
proxy application 46 could also handle the server portion of
the SSL/TLS handshake negotiation in other examples, and
other secure protocols can also be used.

[0036] Referring back to FIG. 3, in step 308 the kernel 24
executing on the local storage node computing device 12
receives, at the local endpoint 26, a response to the client
hello messages from the remote endpoint 28 using the TCP
connection established in step 302. The response to the
client hello messages can include a server hello message
including a server certificate, server key, a client certificate
request, and/or a server hello done message, although other
types of messages and parameters can also be received from
the remote endpoint 28.

[0037] As the kernel 24 it not linked to any secure protocol
implementation in the kernel space 42, the kernel 24 cannot
effectively interpret the parameters (e.g., certificate, key,
encryption methods) received (or sent) during the secure
protocol handshake negotiation. Accordingly, in step 308,
the kernel 24 sends the response to the proxy application 46
via the connection established in step 304 for processing, as
described and illustrated in more detail later with reference
to FIG. 4.

[0038] In step 310, the kernel 24 executing on the local
storage node computing device 12 receives a response to the
server hello message from the proxy application 46 via the
connection established in step 304. The response to the
server hello message can include a client certificate, client
key, certificate verification, cipher suite information, and/or
client finished message, although other types of messages
and parameters can also be received from the proxy appli-
cation 46 in other examples. In step 310, the kernel 24 also
sends the response to the server hello message to the remote
endpoint 28 using the connection established in step 302.

[0039] In step 312 in this particular example, the kernel 24
executing on the local storage node computing device 12
receives, at the local endpoint 26, a response to the client
finished message from the remote endpoint 28 and via the
connection established in step 302. The response to the
client finished message can include a server finished mes-

US 2017/0331903 Al

sage and, optionally, one or more parameters including
additional cipher information, for example.

[0040] In one example, the response to the client hello
messages can be sent in step 308, and/or the response to the
client finished message can be sent in step 312, to the proxy
application 46 in response to a received request from the
proxy application 46 as the proxy application is aware of the
steps of the handshake process based on the secure protocol
implementation 48. In this example, the proxy application
46 can use headers and request certain byte sizes of data
received by the kernel 24 at the local endpoint 26. In another
example, the kernel 24 can also send the responses in step
308 and/or 312 to the proxy application 46 without being
prompted by the proxy application 46, and other methods of
communicating between the kernel 24 and the proxy appli-
cation 46 using the connection established in step 304 can
also be used.

[0041] In step 314, the kernel 24 executing on the local
storage node computing device 12 receives one or more
security parameters that correspond to an encryption method
to be used to encrypt and decrypt data exchanged with the
remote endpoint 28. The security parameter(s) are received
from the proxy application 46 via the connection established
in step 304. Accordingly, the proxy application 46 effec-
tively carries out the secure protocol handshake, negotiates
an encryption method on behalf of the kernel 24, and
communicates the results of that handshake and negotiation,
including security parameters that can be used to implement
an encryption method, to the kernel 24.

[0042] In step 316, the kernel 24 executing on the local
storage node computing device 12 determines whether a
message has been generated by the process that was initiated
in step 300. The message can be a request to send data to the
remote endpoint 28 in examples in which the process is
associated with a backup application, for example, although
any other types of messages and processes can also be used.
If the kernel 24 determines that a message was generated by
the process, then the Yes branch is taken to step 318.
[0043] In step 318, the kernel 24 executing on the local
storage node computing device 12 encrypts data correspond-
ing to the message using the security parameter(s) received
in step 314 that correspond with the encryption method
negotiated during the handshake phase in steps 306-312. In
step 314, the kernel 24 also sends the encrypted message to
the remote endpoint 28 via the TCP connection established
in step 302 and over the WAN 22. Subsequent to sending the
encrypted message, or if the kernel 24 determines in step
316 that a message has not been generated by the process
and the No branch is taken, then the local storage node
computing device 12 proceeds to step 320.

[0044] In step 320, the kernel 24 executing on the local
storage node computing device 12 determines whether a
message has been received at the local endpoint 26 from the
remote endpoint 28 via the TCP connection established in
step 302 and over the WAN 22. If the kernel 24 determines
that a message has been received, then the Yes branch is
taken to step 322.

[0045] In step 322, the kernel 24 executing on the local
storage node computing device 12 decrypts the received
message using the security parameter(s) received in step 314
that correspond with the encryption method negotiated dur-
ing the handshake phase in steps 306-312. While one
exemplary handshake exchange is described and illustrated
herein with reference to FIG. 3, other types of handshake

Nov. 16, 2017

exchanges with other types and number of messages and
parameters can also be used in other examples. Subsequent
to decrypting the received message, or if the kernel 24
determines in step 320 that a message has not been received
from the remote endpoint 28 and the No branch is taken,
then the local storage node computing device 12 proceeds
back to step 316.

[0046] Accordingly, the local storage node computing
device 12 effectively waits for a message to be generated by
the process initiated in step 300, to be sent via the local
endpoint 26, or received from the remote endpoint 18, to be
retrieved by the process initiated in step 300, in this par-
ticular example. Steps 316-322 collectively comprise a data
phase of secure communication across the WAN 22 via the
TCP connection established in step 302. Since the kernel 24
received the security parameter(s) from the proxy applica-
tion 46 that are required to secure or encrypt the data
exchanged via the TCP connection established in step 302,
the data phase in this example is advantageously carried out
by the kernel 24 entirely in the kernel space 42 without any
interaction or communication with the proxy application 46
or any other process or application in the user space 44.

[0047] Referring more specifically to FIG. 4, a flowchart
of an exemplary method for interfacing, by the proxy
application 46 in the user space 44, with a kernel 24 of the
operating system 40 in order to facilitate secure connections
for the kernel 24 is illustrated. In step 400 in this example,
the proxy application 46 in the user space 44 of the local
storage node computing device 12 receives a request to
establish a connection from the kernel 24 and establishes the
connection with the kernel 24 in response to the request. The
request can be sent as part of the invocation of the proxy
application 46 by the kernel 24, as described and illustrated
in more detail earlier with reference to step 304.

[0048] In step 402, the proxy application 46 executing on
the local storage node computing device 12 generates a
client hello message using the linked secure protocol imple-
mentation 48, although other types of messages can be
generated in order to initiate a handshake phase of a secure
protocol negotiation. Additionally, the handshake exchange
described and illustrated with reference to FIG. 4 is exem-
plary, and other types of handshake exchanges with other
types and number of messages and parameters can also be
used in other examples. Accordingly, when invoked, the
proxy application 46 is configured to initiate an SSL/TLS
handshake in this particular example by generating a client
hello message and sending the client hello message to the
kernel 24 via the connection established in step 400. The
kernel 24 can then send the client hello message to the
remote endpoint 28, as described and illustrated in more
detail earlier with reference to step 306 of FIG. 3.

[0049] Referring back to FIG. 4, in step 404, the proxy
application 46 executing on the local storage node comput-
ing device 12 receives a response to the client hello message
from the kernel 24 via the connection established in step
400. In this example, the response to the client hello message
includes a server hello message including a server certifi-
cate, server key, client certificate request, and/or server hello
done message, although other types of parameters and/or
messages can also be received in step 404. The response to
the client hello message can be actively requested by the
proxy application 46 or passively received by the proxy
application 46 from the kernel 24, for example.

US 2017/0331903 Al

[0050] The proxy application 46 in this example is con-
figured to process the response to the client hello message
using the secure protocol implementation 48, such as by
extracting and analyzing the parameter(s) in the response to
the client hello message in order to generate a response to
the server hello message. The response to the server hello
message can include a client certificate, client key, certificate
verification, cipher information, and/or client finished mes-
sage, although other types of parameters and/or messages
can also be used in other examples. In step 404, the proxy
application 46 also sends the generated response to the
server hello message to the kernel 24 via the connection
established in step 400. The kernel 24 can then send the
generated response to the server hello message to the remote
endpoint 28, as described and illustrated in more detail
earlier with reference to step 310 of FIG. 3.

[0051] Referring back to FIG. 4, in step 406, the proxy
application 46 executing on the local storage node comput-
ing device 12 receives a response to the client finished
message from the kernel 24 via the connection established in
step 400. In this example, the response to the client finished
message includes a server finished message and, optionally,
additional cipher information, although other types of
parameters and/or messages can also be received in step 406.
The response to the client finished message can be actively
requested by the proxy application 46 or passively received
by the proxy application 46 from the kernel 24, for example.
The proxy application 46 is configured to process the
response to the client finished message using the secure
protocol implementation 48, such as by extracting and
analyzing the parameter(s) (e.g., the additional cipher infor-
mation) in the response to the client finished message.
[0052] In step 408, the proxy application 46 executing on
the local storage node computing device 12 determines one
or more security parameter(s) corresponding to an encryp-
tion method to be used by the kernel 24 for communications
across a TCP connection with the remote endpoint 28 in a
data phase, as described and illustrated in more detail earlier
with reference to steps 316-322 of FIG. 3. The security
parameter(s) can be determined using the secure protocol
implementation 48, and can be extracted or derived from one
or more of the messages exchanged during the handshake
phase, for example.

[0053] Referring more specifically to FIG. 5, a sequence
diagram of an exemplary method of facilitating secure
connections for the kernel 24 is illustrated. As illustrated in
FIG. 5, a proxy application 46 (referred to in FIG. 5 as the
“App”) in a user space is linked with a secure protocol
implementation (referred to in FIG. 5 as “OpenSSL). The
proxy application 46 handled the handshake phase of an
SSL/TLS protocol by communicating across a connection
with the kernel 24 in kernel space and using the linked
secure protocol implementation 48. Subsequent to negotiat-
ing security parameter(s) during the handshake phase, the
proxy application 46 sends the security parameter(s) to the
kernel 24 be used to encrypt data sent by the kernel 24 from
alocal endpoint 26 to a remote endpoint 28 in the data phase.
Thereafter, the kernel 24 proceeds to exchange data across
a secure connection between the local endpoint 24 and the
remote endpoint 28.

[0054] Accordingly, with this technology, the complexity
of a handshake phase is carried out using a secure protocol
implementation in user space, where there are greater
resources as compared to kernel space. By hosting the secure

Nov. 16, 2017

protocol implementation in user space, the secure protocol
implementation is more easily updated as compared to
porting the secure protocol implementation to kernel space.
The handshake phase with this technology arrives at security
parameters corresponding to a negotiated encryption method
that is communicated to the kernel. Accordingly, the kernel
can then securely communicate across a connection in a data
phase using the encryption method and with reduced latency
as compared to carrying out the data phase by continued
proxying of message and data to a proxy application in user
space.

[0055] Having thus described the basic concept of the
invention, it will be rather apparent to those skilled in the art
that the foregoing detailed disclosure is intended to be
presented by way of example only, and is not limiting.
Various alterations, improvements, and modifications will
occur and are intended to those skilled in the art, though not
expressly stated herein. These alterations, improvements,
and modifications are intended to be suggested hereby, and
are within the spirit and scope of the invention. Additionally,
the recited order of processing elements or sequences, or the
use of numbers, letters, or other designations therefore, is
not intended to limit the claimed processes to any order
except as may be specified in the claims. Accordingly, the
invention is limited only by the following claims and
equivalents thereto.

What is claimed is:

1. A method, comprising:

establishing, by a local storage node computing device, a

first connection between a first endpoint in a kernel of
an operating system and a second endpoint;

invoking, by the local storage node computing device, a

proxy application in user space and establishing a
second connection from the operating system kernel to
the proxy application, wherein the proxy application is
linked to a secure protocol implementation;

proxying, by the local storage node computing device, a

plurality of handshake messages between the second
endpoint and the proxy application using the first and
second connections;

sending, by the local storage node computing device, one

or more security parameters for the first connection
from the proxy application to the operating system
kernel via the second connection, the security param-
eters determined from one or more of the handshake
messages; and

exchanging, by the local storage node computing device,

data between the first endpoint in the operating system
kernel and the second endpoint using the first connec-
tion and the security parameters.

2. The method of claim 1, wherein the first connection is
atransmission control protocol (TCP) connection, the secure
protocol implementation is an open secure sockets layer
(SSL) (OpenSSL) library, and the proxy application is a
daemon.

3. The method of claim 1, wherein the security parameters
correspond to an encryption method, and the method further
comprises:

encrypting, by the local storage node computing device, a

first set of the data sent from the first endpoint in the
operating system kernel to the second endpoint using
the first connection based on the encryption method;
and

US 2017/0331903 Al

decrypting, by the local storage node computing device, a
second set of the data received from the second end-
point at the first endpoint in the operating system kernel
using the first connection based on the encryption
method.

4. The method of claim 1, further comprising initiating, by
the local storage node computing device, a process in the
operating system requiring communication with the second
endpoint, wherein the process is configured to provide
storage management functionality and the second endpoint
is associated with a remote storage node computing device.

5. The method of claim 2, further comprising converting,
by the local storage node computing device, the TCP con-
nection into a transport layer security (TLS) connection,
wherein the plurality of handshake messages are:

associated with a client side of the TLS connection and
the establishing further comprises initiating the first
connection from the first endpoint to the second end-
point; or

associated with a server side of the TLS connection and

the establishing further comprises receiving the first
connection at the first endpoint from the second end-
point.

6. The method of claim 1, further comprising processing,
by the local storage node computing device, the handshake
messages proxied to the proxy application using the secure
protocol implementation.

7. A non-transitory machine readable medium having
stored thereon instructions for performing a method com-
prising machine executable code which when executed by at
least one machine causes the machine to:

establish a first connection between a first endpoint in a
kernel of an operating system and a second endpoint;

invoke a proxy application in user space and establishing
a second connection from the operating system kernel
to the proxy application, wherein the proxy application
is linked to a secure protocol implementation;

proxy a plurality of handshake messages between the
second endpoint and the proxy application using the
first and second connections;

send one or more security parameters for the first con-
nection from the proxy application to the operating
system kernel via the second connection, the security
parameters determined from one or more of the hand-
shake messages; and

exchange data between the first endpoint in the operating
system kernel and the second endpoint using the first
connection and the security parameters.

8. The non-transitory machine readable medium of claim
7, wherein the first connection is a transmission control
protocol (TCP) connection, the secure protocol implemen-
tation is an open secure sockets layer (SSL) (OpenSSL)
library, and the proxy application is a daemon.

9. The non-transitory machine readable medium of claim
7, wherein the security parameters correspond to an encryp-
tion method, and the machine executable code when
executed by the machine further causes the machine to:

encrypt a first set of the data sent from the first endpoint
in the operating system kernel to the second endpoint
using the first connection based on the encryption
method; and

Nov. 16, 2017

decrypt a second set of the data received from the second
endpoint at the first endpoint in the operating system
kernel using the first connection based on the encryp-
tion method.
10. The non-transitory machine readable medium of claim
7, wherein the machine executable code when executed by
the machine further causes the machine to initiate a process
in the operating system requiring communication with the
second endpoint, wherein the process is configured to pro-
vide storage management functionality and the second end-
point is associated with a remote storage node computing
device.
11. The non-transitory machine readable medium of claim
8, wherein the machine executable code when executed by
the machine further causes the machine to convert the TCP
connection into a transport layer security (TLS) connection,
wherein the plurality of handshake messages are:
associated with a client side of the TLS connection and
the machine executable code when executed by the
machine further causes the machine to initiate the first
connection from the first endpoint to the second end-
point; or
associated with a server side of the TLS connection and
the machine executable code when executed by the
machine further causes the machine to receive the first
connection at the first endpoint from the second end-
point.
12. The non-transitory machine readable medium of claim
7, wherein the machine executable code when executed by
the machine further causes the machine to process the
handshake messages proxied to the proxy application using
the secure protocol implementation.
13. A local storage node computing device, comprising:
a memory containing machine readable medium compris-
ing machine executable code having stored thereon
instructions for performing a method of facilitating
secure connections for an operating system kernel; and
a processor coupled to the memory, the processor con-
figured to execute the machine executable code to
cause the processor to:
establish a first connection between a first endpoint in
a kernel of an operating system and a second end-
point;
invoke a proxy application in user space and establish-
ing a second connection from the operating system
kernel to the proxy application, wherein the proxy
application is linked to a secure protocol implemen-
tation;
proxy a plurality of handshake messages between the
second endpoint and the proxy application using the
first and second connections;
send one or more security parameters for the first
connection from the proxy application to the oper-
ating system kernel via the second connection, the
security parameters determined from one or more of
the handshake messages; and
exchange data between the first endpoint in the oper-
ating system kernel and the second endpoint using
the first connection and the security parameters.
14. The local storage node computing device of claim 13,
wherein the first connection is a transmission control pro-
tocol (TCP) connection, the secure protocol implementation
is an open secure sockets layer (SSL) (OpenSSL) library,
and the proxy application is a daemon.

US 2017/0331903 Al

15. The local storage node computing device of claim 13,
wherein the security parameters correspond to an encryption
method and the processor is further configured to execute
the machine executable code to further cause the processor
to:

encrypt a first set of the data sent from the first endpoint
in the operating system kernel to the second endpoint
using the first connection based on the encryption
method; and

decrypt a second set of the data received from the second
endpoint at the first endpoint in the operating system
kernel using the first connection based on the encryp-
tion method.

16. The local storage node computing device of claim 13,
wherein the processor is further configured to execute the
machine executable code to further cause the processor to
initiate a process in the operating system requiring commu-
nication with the second endpoint, wherein the process is
configured to provide storage management functionality and
the second endpoint is associated with a remote storage node
computing device.

Nov. 16, 2017

17. The local storage node computing device of claim 14,
wherein the processor is further configured to execute the
machine executable code to further cause the processor to
convert the TCP connection into a transport layer security
(TLS) connection, wherein the plurality of handshake mes-
sages are:

associated with a client side of the TLS connection and

the processor is further configured to execute the
machine executable code to further cause the processor
to initiate the first connection from the first endpoint to
the second endpoint; or

associated with a server side of the TLS connection and

the processor is further configured to execute the
machine executable code to further cause the processor
to receive the first connection at the first endpoint from
the second endpoint

18. The local storage node computing device of claim 13,
wherein the processor is further configured to execute the
machine executable code to further cause the processor to
process the handshake messages proxied to the proxy appli-
cation using the secure protocol implementation.

#* #* #* #* #*

