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METHOD AND APPARATUS FOR 
ESTIMATING THE VALUE OF A PHYSICAL 
PARAMETER IN A BIOLOGICAL TISSUE 

TECHNICAL FIELD 

[ 0001 ] The present invention relates to a method and 
apparatus for estimating the value of a physical parameter in 
a biological tissue . 

BACKGROUND 

[ 0002 ] Intra - operative imaging is important for guiding 
surgical procedures , especially during minimally invasive 
surgery ( MIS ) . Intra - operative imaging in MIS is often 
constrained by the number and / or size of incisions or ports , 
thereby restricting the physical size of the imaging equip 
ment , as well as limiting access by the surgeon to the 
surgical site . This often constrains the number of possible 
imaging modalities that can be used concurrently throughout 
such procedures . Optical colour ( three channel RGB ) cam 
eras having spectral sensitivity in the visible wavelength 
range are frequently used during such procedures , occasion 
ally with interruptions to switch to other imaging modalities 
at specific points during the surgery . One example of a 
switch in imaging modality would be to identify structural 
components that are too faint or subtle for the surgeon to 
detect easily in the RGB image / video . 
[ 0003 ] Several pathological signals , such as melanin and 
haemoglobin concentration , may correspond to tissue struc 
ture and viability , and are detectable by their characteristic 
attenuation of light in the visible wavelength range . Detect 
ing and displaying this information can then help to provide 
guidance during a surgical procedure , especially when the 
variation may not be detectable or quantifiable readily by 
eye . Visualisation of tissue oxygenation has been used in 
various procedures throughout the body to provide a surgeon 
with real - time ( intra - operative ) information on the oxygen 
ation of tissue in and around the surgical site . 
[ 0004 ] Current white light imaging using endoscopes and 
laparoscopes is mostly limited to providing information 
from tissue surfaces , but does not help the surgeon to 
identify structures within the tissue such as blood vessels or 
nerves . For example , endoscopic images generally contain 
only macroscopic structural and radiometric information , 
but do not directly highlight tissue function or characteristics 
which may be used to identify malignancy . 
[ 0005 ] Multispectral imaging ( MSI ) is an attractive 
modality for intra - operative surgical imaging because it is 
non - ionising and compatible with common endoscopic 
instrumentation . MSI has been used to make an in situ 
assessment of the heart ; Nighswander - Rempel et al [ 1 ] show 
how this can be used to measure ischaemia in this sensitive 
organ without use of ionising radiation . In MIS , imaging the 
oxygenation of tissue has also been used to help identify 
malignant tissue , as demonstrated by Claridge et al [ 2 ] , with 
the increased vascularisation of malignant tissue resulting in 
a local increase of the total haemoglobin within tissue . The 
use of multi - spectral imaging to assess the success of a 
uterine transplant procedure has been shown by Clancy et al 
[ 3 ] , including making inference of the oxygenation satura 
tion and total haemoglobin in the transplanted organ . A 
similar approach has also been applied to an assessment of 
bowel perfusion , see Clancy et al [ 16 ] . 

[ 0006 ] Multispectral imaging has generally been per 
formed using a liquid crystal tuneable filter ( LCTF ) that 
separately captures images across multiple narrow ( usually 
non - overlapping ) spectral bands . This method of capture is 
very versatile , but it does require the use of a different 
camera system , including specialist hardware , during mea 
surement ( rather than a standard RGB camera ) . A further 
problem with such multispectral imaging is that its temporal 
resolution is inversely proportional to the spectral resolu 
tion . In particular , the serial acquisition at each wavelength 
enhances spectral resolution but causes signal blur and 
misalignment when imaging dynamic tissue that is under 
going physiological motion . To compensate for such dis 
placements , Clancy [ 3 ] includes a registration step to correct 
for tissue motion relative to the camera in between the image 
captures for each spectral band . However , the image regis 
tration may still be difficult owing to signal blur and mis 
alignment . 
[ 0007 ] If tissue motion can be completely eliminated , it is 
possible to ignore factors such as variable tissue morphology 
and imaging geometry by looking at the change in measure 
ment over time in response to stimuli . This approach has 
been used by Bouchard et al [ 4 ] to image the change in 
oxygenation in the exposed cortex . The assumption is that 
after controlling for tissue and camera motion , temporal 
variation in the scene will be due to changes in concentration 
of constituent chromophores . As a result the temporal oxy 
genation signal can be used to make inference about the 
physical response in the brain to various stimuli , without 
requiring the injection of any agents into cortex itself . In this 
work by Bouchard et al [ 4 ] , variable illumination using 
strobed light emitting diodes ( LEDs ) tuned to particular 
wavelengths allowed for a higher speed capture of the 
dynamic tissue response ; however , the use of such LEDs 
places a significant demand on the surgical procedure by 
requiring a specialist lighting environment . 
[ 0008 ] While differing in their practical configuration , the 
methods of Bouchard [ 4 ] , Clancy et al [ 5 ] and Wickert et al 
[ 6 ] all share a similar theoretical basis . Measurements of the 
attenuation of illumination across multiple non - overlapping 
spectral bands are made and , utilising the Beer - Lambert 
equation , an estimation of chromophore concentration is 
made . In the case where there is no fluorescence , these 
techniques are analogous as they all make spectrally distinct 
measurements of the scene . To estimate the intrinsic oxy 
genation and total haemoglobin , the optimisation can be 
posed as a simple least squares fitting , as demonstrated in 
Clancy [ 5 ] , using reference reflectance spectra . On the other 
hand , the use of such methods requires specialist hardware 
to be installed either alongside or in place of current intra 
operative imaging methods in order to perform the spectrally 
distinct measurements of the scene . 
[ 0009 ] Capturing a full multispectral image of a surgical 
site with sufficient spectral resolution to allow inference to 
be performed is therefore typically rather slow , especially if 
a filter - based approach is being used , since a significant 
amount of the illuminating light is then filtered out , thereby 
necessitating relatively long exposure times . Rapid capture 
through illumination , as used in Bouchard [ 4 ] , can be 
achieved by high speed strobe illumination , which generally 
utilises a carefully chosen set of LEDs that illuminate the 
surgical site with different narrow spectral bands . However , 
this again tends to involve specialist hardware . 
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[ 0017 ] Also provided is a non - transitory computer read 
able medium comprising instructions that , when imple 
mented on a computer , cause the computer to perform the 
method for estimating the value of a physical parameter of 
biological tissue as described above . 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0010 ] Rapid filter based approaches such as that of Wick 
ert [ 6 ] make use of a reduced number ( but maximally 
discriminative ) filter set , to support the rapid capture of a full 
( polychromatic ) image set for making an estimation of the 
haemoglobin distribution and oxygenation using fewer mea 
surements . However , such an approach generally requires 
modifications to the existing hardware of most endoscopes 
or laparoscopes . 
[ 0011 ] Recent rapid capture techniques have focused on 
the use of RGB ( red - blue - green ) cameras to capture data at 
near real - time speeds , by capturing parallel measurements of 
the surgical site in each channel . The work of Nishidate et 
al [ 7 ] reconstructs intrinsic oxygen saturation ( SO2 ) and 
total blood volume ( THD ) from an image obtained from an 
RGB camera through a two step approach , firstly using a 
Weiner filtering based reconstruction of the expected spec 
trum and then obtaining concentrations of chromophores , 
such as haemoglobin characteristics , through the standard 
method which is also used for spectrally distinct measure 
ments . This method achieves good results , but is less flex 
ible , since it relies on learning the spectral characteristic for 
a specific tissue type . 
[ 0012 ] In Fawzy et al [ 8 ] , a hybrid combination of mul 
tiple spectrally distinct bandpass filters and an RGB sensor 
are used to rapidly sample the spectra or light returning from 
tissue and capture full multispectral data at high frame rates . 
This is achieved by using triple band pass filters mounted in 
a filter wheel to make simultaneous spectrally distinct mea 
surements , recording a set of 18 band filtered measurements 
in six captures . This framework accounts for spatially vary 
ing geometry and achieves a frame rate of 15 fps by a using 
hardware accelerated ( GPU ) linear matrix inversion to esti 
mate oxygenation and total haemoglobin distribution . This 
technique tailors the filters to a specific RGB sensor so again 
requires a break in surgery to switch imaging modality . 
[ 0013 ] Temporal analysis of tissue directly from RGB 
video can also be used for the estimation of oxygen satura 
tion , as in Guazzi et al [ 17 ] ; however this requires sufficient 
time to detect periodic pathological processes . 
[ 0014 ] The value of multispectral imaging to assist with 
certain surgical procedures is therefore well - established , but 
the existing techniques which are available generally have 
some practical limitations that make them more complex or 
difficult to utilise in a clinical environment . 

[ 0018 ] Embodiments of the invention will now be 
described , by way of example only , with reference to the 
accompanying drawings , in which : 
[ 0019 ] FIG . 1 shows a schematic representation of a 
system for estimating the value of a physical parameter of 
biological tissue in accordance with some embodiments of 
the present invention . 
[ 0020 ] FIG . 2 shows a method for estimating the value of 
a physical parameter of biological tissue in accordance with 
some embodiments of the present invention . 
[ 0021 ] FIG . 3A shows a schematic view of an endoscope 
and associated illumination for use in estimating the value of 
a physical parameter of biological tissue in accordance with 
some embodiments of the present invention . 
[ 0022 ] FIG . 3B shows an example of the spectral distri 
bution of the attenuation of the back - scattered light for the 
configuration of FIG . 3A . 
[ 0023 ] FIG . 3C shows an RGB endoscopic image of tissue 
( bottom right ) . The estimated values of total haemoglobin 
and oxygenation are determined as described herein , and 
shown as overlays upon the RGB image ( top and left 
respectively ) . 
[ 0024 ] FIG . 4A shows a representation of an experimental 
( simulated ) model of biological tissue , including blood 
vessels , used for investigating the approach described 
herein . 
[ 0025 ] FIG . 4B shows typical spectral sensitivities for R , 
G and B wavebands as utilised for the approach described 
herein . 
[ 0026 ] FIG . 4C shows how the configuration of FIG . 4A 
appears if the blood is ( i ) oxygenated ( left ) , or ( ii ) de 
oxygenated ( right ) , in each of the R , G and B wavebands 
( bottom , middle and top respectively according to the spec 
tral response curves of FIG . 4B . 
[ 0027 ] FIG . 5 shows a comparison of images depicting the 
estimation of total haemoglobin ( left group ) and oxygen 
saturation ( right group ) for oxygenated blood ( left ) and 
de - oxygenated blood ( right ) obtained firstly by using a 
multi - spectral linear fit ( top row ) , secondly by using the 
method described ( middle row ) , and thirdly from ground 
truth ( lower row ) . 
[ 0028 ] FIG . 6 shows an in vivo erimental set - up used 
as a test for the method described herein . 
[ 0029 ] FIG . 7 is a graph showing the error between the 
estimated physical parameter of biological tissue ( as 
obtained by the method described herein ) and the ground 
truth for the in vivo experiment shown in FIG . 5 . 
[ 0030 ] FIG . 8 shows examples ( rows ) each comprising an 
RGB image ( left / first column ) of in vivo biological tissue , 
the spatial distribution according to ground truth of total 
haemoglobin ( second column ) , the spatial distribution using 
the method described herein of total haemoglobin ( third 
column ) , the absolute difference between the second and 
third columns ( fourth column ) , and an overlay ( fifth column ) 
of the absolute difference ( fourth column ) upon the corre 
sponding RGB image ( left column ) . 

SUMMARY 

[ 0015 ] The invention is defined in the appended claims . 
[ 0016 ] A method and apparatus are provided for estimat 
ing the value of a physical parameter of biological tissue . 
The method comprises acquiring a colour image of the 
biological tissue from a single image capture device ; extract 
ing from the colour image at least two images in respective 
optical wavebands having a different spectral sensitivity 
from one another , whereby a given location in the biological 
tissue is present in each of the extracted images ; providing 
a physical model of the optical properties of the biological 
tissue , wherein the optical properties of the biological tissue 
are sensitive to the value of said physical parameter ; and 
estimating the value of the physical parameter at said given 
location based on an intensity value at that location for each 
extracted image . The estimating utilises the physical model 
of the optical properties of the biological tissue and the 
spectral sensitivity for each respective waveband . 
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DETAILED DESCRIPTION [ 0031 ] FIG.9 is a plot showing original multispectral data 
( light blue ) and the variation of power with wavelength , a 
least squares attempt to fit the original multispectral data 
( brown ) , a fit based on the approach described herein using 
3 channels ( RGB ) , and a fit based on the approach described 
herein using 2 sets of 3 channels ( RGB ) that are slightly 
different from one another . 
[ 0032 ] FIG . 10A shows the comparative absolute concen 
tration estimation error for both oxygenated and deoxygen 
ated haemoglobin combined across both test cases for 
Example 2 in the presence of noise . 
[ 0033 ] FIG . 10B shows the spatial distribution of the mean 
concentration estimation error for monocular ( top ) , stereo 
( middle ) and multispectral ( bottom ) at four noise levels . 
[ 0034 ] FIG . 11A is a graph comparing the performance of 
the three channel monocular against the six channel ( stereo ) 
version of the method of Example 2 with respect to total 
haemoglobin error ( top ) and total oxygen saturation error . 
[ 0035 ] FIG . 11B shows ( top ) an RGB image of tissue from 
Example 2 , ( middle ) the spatial distribution of total haemo 
globin , and ( bottom ) the spatial distribution of oxygen 
saturation , showing 6 - channel ( stereo ) to the left , and 
3 - channel ( monocular ) to the right . 
[ 0036 ] FIG . 12 is generally similar to FIG . 3 , but shows 
another implementation using a monocular laparoscope , 
with a central camera channel , surrounded by an annular 
lighting arrangement . 
[ 0037 ] FIG . 13 presents an overview of the approach 
described herein for some implementations . 
[ 0038 ] FIG . 14A shows a comparison between the selected 
bands ( wavelengths ) from a multispectral datacube and 
corresponding synthesised RGB views ( shown on the right 
of the image and labelled X and Y ) . 
[ 0039 ] FIG . 14B shows a comparison between the total 
haemoglobin estimate ( g / litre ) of tissue obtained from a 
reference multispectral image ( left ) and a corresponding 
estimate from synthesised RGB images ( right ) . 
[ 0040 ] FIG . 14C shows a comparison between the oxygen 
saturation estimate ( % ) of tissue obtained from a reference 
multispectral image ( left ) and corresponding estimate from 
synthesised RGB images ( right ) . 
[ 0041 ] FIG . 15 ( a ) shows an original RGB laparoscopic 
view of the underside of a tongue . 
[ 0042 ] FIG . 15 ( b ) shows the oxygen saturation estimate 
overlaid on the laparoscopic view of FIG . 15 ( a ) . 
[ 0043 ] FIG . 15 ( c ) shows the total haemoglobin estimate 
( THb ) overlaid on the laparoscopic view of FIG . 15 ( a ) . 
[ 0044 ] FIG . 15 ( d ) is a graph showing the total haemoglo 
bin estimate ( g / litre ) as a function of time for the left and 
right camera feeds used to obtain the RGB image of FIG . 
15 ( a ) . 
( 0045 ] FIG . 15 ( e ) is a graph showing the derivative of the 
left and right camera feeds of FIG . 15 ( d ) as a function of 
time after smoothing ( smoothing is performed due to large 
amounts of high frequency noise , e.g. , roaming high - lights 
on tissue surface , non - perfect tracking ) . 
[ 0046 ] FIG . 15 ( ) is a graph showing a frequency analysis 
( Fourier transform ) of time - series for the estimate of total 
haemoglobin of FIG . 15 ( d ) . Although the signal contains a 
lot of noise , a fitted polynomial curve ( shown in orange ) has 
a peak between 0.76 and 0.84 seconds . 

[ 0047 ] Aspects and features of certain examples and 
embodiments of the present invention are discussed / de 
scribed herein . Some aspects and features of certain 
examples and embodiments may be implemented conven 
tionally and these are not discussed / described in detail in the 
interests of brevity . It will thus be appreciated that aspects 
and features of apparatus and methods discussed herein 
which are not described in detail may be implemented in 
accordance with any conventional techniques for imple 
menting such aspects and features . We describe herein a 
technique for recovering values of physical parameters of 
biological tissue , such as intrinsic measurements of the 
blood profusion and oxygenation in tissue , from acquired 
images , such as standard RGB images . In some cases , 
particularly for RGB images , there may be significant spec 
tral overlap between the waveband of each image ( R , G or 
B ) , in contrast to many conventional multispectral imaging 
techniques that have utilised narrow , spectrally distinct 
images . Detecting and displaying such information regard 
ing in vivo concentrations , etc. could provide a powerful 
tool to the surgeon , but because the problem is ill - posed 
when using RGB data , solutions often demand hardware 
modifications to the endoscopic cameras or lighting to 
instead capture multispectral data . Various approaches are 
described herein which seek to help address some of these 
issues . These approach support estimating a value of a 
physical parameter of biological tissue which may be used , 
for example , to provide this information to a surgeon in a 
real - time or near real - time manner without switching imag 
ing hardware during a surgical procedure . 
[ 0048 ] In some embodiments described herein , the use is 
made of an RGB sensor / camera or RGB images as the 
acquired images . Typically , these images are readily avail 
able from most endoscope systems which use such RGB 
images to provide a medical practitioner with a real - time 
video feed suitable for guiding the endoscope and / or guiding 
other medical equipment during a surgical operation . As 
discussed above , traditionally a conventional endoscope 
must be removed from the patient to allow a multispectral 
imaging system to be inserted — that is , the imaging equip 
ment must be switched into the subject . However , this adds 
time , complexity and cost to the overall medical procedure , 
and / or may also cause more irritation or damage to the 
subject of the procedure . 
[ 0049 ] In contrast , the present approach makes use of 
RGB images which are already obtained by ( and available 
from ) the endoscope or similar imaging equipment to esti 
mate the value of a physical parameter . Consequently , this 
approach can be used to supplement an RGB video feed with 
information regarding the value of the physical parameter 
across the field of view of the endoscope . Moreover , such an 
approach typically utilises single shot images , i.e. , images 
obtained in the RGB bands at the same moment in time . It 
will be appreciated that this approach avoids any switching 
of the imaging equipment during the medical procedure 
itself , and also helps to allow the estimated value of the 
physical parameter to be provided in real - time . This real 
time estimation may further be supported by using a look - up 
table ( LUT ) that maps all RGB values to a corresponding 
parameter of interest ( for a given configuration ) . 
[ 0050 ] FIG . 1 shows a highly schematic view of a system 
for performing multispectral imaging as described herein . In 
particular , FIG . 1 shows an apparatus 100 which includes an 
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image acquisition section 110 , a physical model implemen 
tation 120 and a processing section 130. It will be appreci 
ated that the apparatus 100 and components 110 , 120 , 130 
may take any desired form . For example , in one implemen 
tation , the apparatus 100 may be general purpose computer 
( or set of multiple computers ) configured by appropriate 
software to perform the various functionality of components 
110 , 120 , 130. Alternatively , one or more of components 
110 , 120 , 130 may be provided as specific hardware imple 
mentations , application - specific integrated circuits ( ASICs ) 
or field programmable gate arrays ( FPGAs ) configured to 
perform the various functionality of components 110 , 120 , 
130. Further possible implementations of apparatus 100 and 
components 110 , 120 , 130 , typically formed from suitable 
combinations of hardware and in software , will be apparent 
to the skilled person . Apparatus 100 may be further provided 
with ( or connected to ) suitable input and / or output means , 
e.g. a mouse , keyboard , and display screen ( not shown in 
FIG . 1 ) . 
[ 0051 ] Apparatus 100 may be implemented in association 
with a laparoscope , endoscope or other similar medical 
equipment used to image biological tissue . The apparatus 
100 may be installed or integrated , at least in part , directly 
into such equipment , or may be utilised in conjunction with 
such equipment . In this latter case , the apparatus 100 will 
typically have an appropriate data connection ( wired or 
wireless ) to the laparoscope , endoscope or other similar 
medical equipment . 
[ 0052 ] The image acquisition section 110 is configured to 
acquire images of biological tissue using or from an image 
capture device 140. In some implementations , this image 
capture device 140 is integrated into the apparatus 100 , 
while in other implementations , the image capture device 
may be a separate unit ( albeit connected to transfer the 
image data into the image acquisition section 110 ) . The 
image capture device 140 may be configured to take single 
images and / or continuous ( video ) images ( both of which 
will be described herein as images ) . The image capture 
device 140 may be , for example , include a charge - coupled 
device ( CCD ) or CMOS imaging device for obtaining the 
image signal . 
[ 0053 ] The image capture device 140 is most typically an 
RGB device , which is able to simultaneously capture an 
image in three broad , overlapping visible wavebands , 
denoted red , green and blue . These three RGB images can 
then be combined to form a full colour image . It will be 
appreciated that this RGB colour imaging is standard across 
many electronic optical systems ( such as digital cameras , 
televisions , etc. ) and therefore already available as standard 
on many image capture devices . 
[ 0054 ] Nevertheless , the image capture device 140 is not 
necessarily restricted to the use of RGB imaging ( or formats 
derived therefrom , such as YUV ) . For example , the image 
capture device may capture images ( concurrently ) in just 
two optical wavebands , or in four or more optical wave 
bands . Moreover , these optical wavebands may fall within 
the visible part of the spectrum , i.e. , from 400 nm to 900 nm , 
or may extend , for example into the UV ( up to say 100 nm ) , 
and / or into the infrared ( up to , for example , 3 um ) . 
[ 0055 ] In any event , each of the two , three or more optical 
wavebands supported by the image capture device has a 
different spectral sensitivity from the other wavebands . 
These differing spectral sensitivities for the respective wave 
bands are typically shifted from one another so as to cover 

( between them ) at least a significant proportion of the visible 
range . This then allows the images in the different wave 
bands to be combined to give a composite image that can 
typically have at least some resemblance to the visual 
appearance that would be seen by a human . The spectral 
sensitivity does not necessarily have to be continuous over 
the whole of a given waveband ( e.g. there might not be any 
sensitivity in the centre of the waveband ) , although in most 
implementations the wavebands are indeed likely to be 
continuous . 
[ 0056 ] In addition , the wavebands are typically relatively 
broad , e.g. spanning at least 5 % , more typically 10 % or 
20 % , of the visible spectrum , to allow shorter exposure 
times ( and hence support real - time imaging ) . The different 
wavebands also have a degree of overlap with one another 
( since this helps to have broader wavebands within a given 
spectral region ) . 
[ 0057 ] The images in the different wavebands should be 
acquired concurrently . In many cases this will involve 
simultaneous exposure in the different wavebands for 
example , conventional RGB cameras frequently have an 
array of image pixels , which are provided with a suitable 
spatial pattern of R , G and B filters across the array to obtain 
the separate colour image in each waveband . Other image 
capture devices might only acquire a single waveband at a 
time , but cycle quickly through the different wavebands in 
order to be able to form a composite video image sufficiently 
quickly for real - time human viewing e.g. with a minimum 
of at least several frames per second , more likely 24 frames 
per second or higher . A higher frame rate is advantageous in 
that any temporal variations in the tissue , due to organ 
movement or the like , within a single image are reduced 
( thereby improving the quality of the captured images ) . 
Moreover , values for the physical parameters of the biologi 
cal tissue that are derived from the images ( as described 
below ) can then be estimated and provided in ( near ) real 
time . Note that having relatively broad wavebands helps to 
tolerate shorter exposure times , and hence a quicker frame 
rate for the video . 
[ 0058 ] As noted above , the image capture device 140 may 
be provided as part of the apparatus 100. In some imple 
mentations ( or applications ) , the image acquisition section 
110 may acquire the image data in real - time , for example , in 
an intra - operative environment , thereby providing support 
for image - guided surgery ( or other procedures ) . In other 
circumstances , the image acquisition section may acquire 
the images to analyse retrospectively ( i.e. after the relevant 
clinical procedure has terminated ) . 
[ 0059 ] The image capture device 140 is configured to 
provide the image acquisition section with the image data 
such that the image for each waveband can be separately 
extracted or identified . It will be appreciated that for RGB 
images , the R , G and B colour values are saved together for 
each pixel , so that an image specific to one waveband ( R , G 
or B ) can be readily extracted if so desired . 
[ 0060 ] In some cases , the image capture device 140 may 
be adapted to capture multiple images simultaneously within 
a given waveband . For example , two RGB images might be 
obtained that are offset slightly from one another in order to 
capture a region of biological tissue at slightly different 
viewing angles or along a different line of sight . These two 
images can then be used to provide stereoscopic view of the 
tissue , as described in more detail below . 



US 2019/0320875 A1 Oct. 24 , 2019 
5 

[ 0061 ] The physical model implementation 120 is config 
ured to provide and support a physical model of the optical 
properties of the biological tissue being imaged . These 
optical properties of the biological tissue are sensitive to the 
value of a physical parameter of interest , such as the level of 
oxygenation of blood . More particularly , the way in which 
light interacts with the tissue ( as specified in the physical 
model ) is determined by a given value of the physical 
parameter . For example , the physical model may include 
attenuation coefficients indicating how light of a given 
wavelength that is incident upon the biological tissue is 
attenuated within the biological tissue dependent upon a 
given value of the physical parameter . However , the physical 
model does not require any learned spectral characteristics 
in respect of a specific tissue type . The physical model 
implementation , including the attenuation coefficients , is 
determined in advance using , for example , physical simu 
lation of a given tissue type . Accordingly , the physical 
model implementation 120 includes or has access to suitable 
memory or storage for holding the physical model , either 
locally , e.g. on a hard disk drive or ROM , and / or remotely , 
e.g. for access over a network such as the Internet . 
[ 0062 ] The physical model generally relates to a tissue 
type of tissue composition , e.g. the heart or liver , etc. , 
although the model is not specific to an individual patient . In 
some cases the physical model implementation 120 may 
provide support for multiple different tissue types , and the 
appropriate tissue type can be selected in advance for any 
given clinical procedure . In other implementations , the 
apparatus 100 may be more specialised for use with a 
particular organ or tissue type , e.g. the heart , and the 
physical model implementation 120 may be preconfigured 
accordingly . 
[ 0063 ] In many cases , the tissue that is being imaged by 
the image capture device 140 will also be illuminated . Such 
illumination may be utilised when the image capture device 
140 is located inside the body during surgical procedure in 
order to provide enough light to obtain a useful image . 
Furthermore , even if a useful image could be obtained 
without illumination , it may still be desirable to utilise 
illumination in order to allow shorter exposure times , and 
hence a better time resolution for the image acquisition . The 
illumination ( not shown in FIG . 1 ) may be provided by any 
suitable source device ( or combination of such devices ) , for 
example , the image capture device 140 itself may provide 
some form of illumination , and / or this may be provided by 
some other facility , a light tube , or a light source incorpo 
rated into a surgical instrument . The approach described 
herein does not require any specific type of illumination 
source , but the illumination should generally be suitable for 
human viewing of the tissue , for example , providing stan 
dard white illumination . However , in practice different 
sources of white light may provide different spectral distri 
butions of lights ( e.g. reflecting different colour tempera 
tures ) . 
[ 0064 ] The spectral distribution of the light recorded by 
the image capture device 140 is generally determined by : 
( a ) the spectral distribution of the illumination ( which may 
be from one or more specific source ( s ) , or from ambient 
light , or a combination of multiple such sources . 
( b ) the physical and optical properties of the tissue being 
imaged ( in terms of colour , transparency , etc. ) , which in turn 
are sensitive to at least one biological parameter of interest , 
e.g. the oxygenation of the blood . 

( c ) the spectral sensitivity of the image capture device 140 
in each of the relevant wavebands . 
[ 0065 ] The spectral sensitivity of the image capture device 
140 may be provided on a pixel - by - pixel basis ( so that each 
pixel is , in effect , individually calibrated ) , or as an average 
across all pixels for an individual device , or as an average 
across a particular model . The calibration may be provided 
by the manufacturer ( especially at the level of a particular 
model ) , and / or may be calibrated by suitable measurements 
( especially at the level of an individual device ) . In general , 
the spectral sensitivity of the image capture device 140 is 
likely to be reasonably consistent with time , so that the 
calibration may be a one - off initial measurement , or at least , 
does not have to be repeated for each clinical procedure . 
[ 0066 ] The spectral sensitivity calibration of the image 
capture device 140 is obtained for each of the wavebands . In 
some cases the calibration per waveband may be provided 
explicitly , in other cases is may be determined from knowl 
edge of the general spectral sensitivity of all pixels , plus 
knowledge of the spectral ( colour ) filtering applied to the 
pixels of each waveband ( e.g. to create the R , G and B 
pixels ) . 
[ 0067 ] Regarding the spectral distribution of the illumi 
nation , the illumination is often provided primarily by a 
single light source , without a significant contribution from 
ambient light ( because the clinical procedure is internal to 
the body ) . In this case , the spectral distribution of the 
illumination may be provided by the manufacturer of the 
illumination source ( especially at the level of a particular 
model ) , and / or may be obtained by suitable measurements 
of the illumination source ( especially at the level of an 
individual device ) . Again , such calibration is likely to be 
reasonably consistent with time . 
[ 0068 ] Another approach is to perform an in situ calibra 
tion , e.g. using the image capture device 140 itself . For 
example , light from the illumination source may be reflected 
into the image capture device 140 from an instrument 
surface of known colour ( e.g. a white or silver ) , and this 
could be used to estimate the spectral distribution of the 
illumination light ( allowing for the spectral sensitivity of the 
image capture device itself 140 ) . A further possibility is that 
a sensor is used to measure the spectral distribution of the 
illumination in situ . Note that this sensor could be relatively 
compact ( since it does not need imaging facilities ) , and 
could , for example , be incorporated into the image capture 
device 140 or some other apparatus , or provided as a 
standalone device . The use of such in situ measurement may 
be especially appropriate if there is no dedicated illumina 
tion source , for example , if the biological tissue being 
imaged is illuminated ( at least in part ) by the general lighting 
system of the surgical theatre . 
[ 0069 ] In some cases , the calibration information concern 
ing the spectral distribution of the illumination source may 
be incorporated into the physical model implementation 
120 , which then in effect represents the overall production of 
the light that is imaged by the image capture device 140 . 
Likewise , the spectral sensitivities of the image capture 
device may also be incorporated into the physical model 
implementation 120. Alternatively , the calibration of the 
illumination source and / or the calibration of the image 
capture device 140 may be separately stored in or provided 
to the apparatus 100 for use by the processing section 130 to 
perform the analysis described herein . 
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[ 0070 ] In general terms , the present approach involves 
having a known optical input , as per the calibration of the 
illumination source , and a known optical output , as per the 
optical signals acquired by the ( calibrated ) image capture 
device 140. The optical output is related to the optical input 
by a transfer function which is dependent on the physical 
model implementation 120 , and more particularly on the at 
least one biological parameter utilised by this model . This 
then forms an inverse problem of estimating the at least one 
biological parameter from the known optical input and the 
observed optical output . 
[ 0071 ] In some implementations , an iterative approach is 
used for performing this estimation . In particular , an initial 
trial value of the physical parameter is assumed , e.g. based 
on a standard or average biological value . For example , in 
the case of estimating a concentration of oxygenated hae 
moglobin as the physical parameter , the initial value may be 
set as 75 g / 1 . However , it will be appreciated that this is just 
an example initial value and other numerical values may be 
used instead as appropriate . 
[ 0072 ] Taking the initial trial value of the physical param 
eter as an input to the physical model implementation 120 , 
the processing section 130 uses the physical model imple 
mentation to create a predicted image in each waveband 
( e.g. RGB ) . The predicted image for each waveband can 
then be compared with the actual observed image in each 
waveband , and the result used to update the trial value of the 
physical parameter . For example , if the predicted images are 
generally less red than actual images , and it is known that 
increasing the physical parameter will make the predicted 
images redder , the trial value can be updated to a larger 
value . The process then repeats iteratively , updating the trial 
value at each iteration . When the predicted images have a 
good match to the observed images ( e.g. to within a prede 
termined threshold ) , then the algorithm has converged , and 
the processing stops . At such termination , the most recently 
updated trial value of the parameter becomes the estimated 
value of this parameter . 
[ 0073 ] Note that the processing section 130 may perform 
the above processing separately for each image pixel loca 
tion to obtain a spatial distribution of the parameter across 
the image . On the other hand , the processing section 130 
may perform the processing on regions of the image , in 
effect by averaging over multiple pixels . This may give 
better sensitivity to the actual level of the parameter ( by 
reducing noise ) , albeit at the cost of lower spatial resolution . 
Similarly , if a video signal is being received , the processing 
section may average at a given location over multiple frames 
of the video , which again may provide better sensitivity to 
the actual value of the parameter , but at the cost of lower 
time resolution . ( N. B. some form of image registration may 
be performed to bring into spatial alignment frames or 
images acquired at different times in order to support such 
temporal averaging ) . 
[ 0074 ] In principle , any suitable fitting or estimation tech 
nique may be employed to enable the estimated parameter to 
be obtained from the acquired images . Two exemplary 
techniques are discussed below in Examples 1 and 2 , which 
disclose a Bayesian approach and a Tikhonov approach for 
estimating a biological parameter from multispectral data . In 
some further examples , these estimation techniques can be 
applied to image data that has first experienced a mathemati 
cal transformation , such as a Harr wavelet transformation . In 
one particular example , the two estimation techniques men 

tioned above are applied in parallel to different components 
of the transformed image data . 
[ 0075 ] As shown in FIG . 1 , the apparatus 100 is further 
provided with ( or includes ) a display 150 which is commu 
nicatively coupled to the processing section 130. The display 
150 may be remote from the apparatus 100 or may be 
integrated into the display 150. The communication between 
the display 150 and the ( rest of ) apparatus 100 may be over 
a wired or wireless link . 
[ 0076 ] The display unit 150 can be used to provide a visual 
display of the biological tissue which is being imaged by the 
image capture unit 140 ( as a video feed or as a succession 
of individual images , as appropriate ) . This visual display 
may comprise two components . The first component corre 
sponds to the conventional image output from the image 
capture unit 140 , for example , a normal RGB camera image . 
Note that this type of image output is already provided for 
many clinical procedures , whether for performing some 
form of investigation ( e.g. to look for any sign of disease ) , 
or to support some form of intervention ( such as for image 
assisted surgery ) . 
[ 0077 ] The second component of the display comprises a 
map or spatial distribution representing the value of the 
parameter as determined by the processing section 130 at 
each location of the image from the image capture device 
140. This value can be represented using any suitable 
display mechanism , e.g. using contours , or colours ( such as 
for a heat map ) , and so on . 
[ 0078 ] The first and second components may be displayed 
together for easy comparison , for example , side by side , or 
one superimposed on the other . In the former case , there may 
be further tools to help a user identify corresponding loca 
tions in each component . For example , a cursor position in 
one component may be automatically mirrored at the same 
location for the other component . FIG . 3C ( discussed in 
more detail below ) provides an example of the latter 
approach , in which a colour - scaled image indicative of the 
value of the physical parameter at each spatial position of the 
acquired images is used to show total haemoglobin and 
oxygenation colour - scales overlain upon an RGB image of 
the same location . Overall , the display allows a clinician to 
quickly assess the value of the physical parameter associated 
with a particular region of the image , as well as being able 
to see a conventional image of that same region . 
[ 0079 ] It will be appreciated that there are a very wide 
range of further possible options for the display to be 
provided on display 150 , according to the needs and pref 
erences of any given user . For example , the display format 
may allow the actual numerical value ( s ) of the physical 
parameter to be displayed or readily accessed for a given 
image locatione.g . one option might be to include a text 
or numerical - based representation of the physical parameter 
at a selected location of ( or adjacent to ) the RGB image . 
Furthermore , a user may be able to display just the first 
component , or just the second component , or the combina 
tion of both ( as desired ) . 
[ 0080 ] FIG . 2 depicts an example method for implement 
ing the approach described herein , such as using the appa 
ratus of FIG . 1. The method begins at step S1 by acquiring 
two or more images of a biological tissue , each image being 
acquired in a respective optical waveband a particular spec 
tral sensitivity , such that each image is acquired in a different 
optical waveband ( and hence with a different spectral sen 
sitivity ) . For example , three images may be acquired , such 
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as red , blue and green . Note that the two or more images are 
spatially and temporarily coincident with one another — for 
example , all of the images might be acquired with a single 
exposure from a single imaging device . This image acqui 
sition may include capturing new images , such as from 
image capture device 140 , and / or accessing stored images , 
.e.g . from a database or the like containing historical images . 
The former option may be appropriate for presenting and 
analysing images in real - time during a clinical procedure , 
the latter option may be appropriate for analysing the images 
after the clinical procedure has terminated . 
[ 0081 ] The acquired images may be displayed to a user in 
composite form ( i.e. as a single colour image ) at S2 . This is 
particularly appropriate if the acquired images are RGB 
images or similar , since these images can then be used to 
provide real - time visualisation of the biological tissue , e.g. 
as a conventional video feed . 
[ 0082 ] The processing section 130 now utilises the physi 
cal model implementation 120 and the acquired images to 
estimate one or more physical parameters of interest relating 
to the biological tissue being imaged ( having regard to the 
illumination and spectral sensitivity of the image capture 
device 140 as discussed above ) . The physical model imple 
mentation 120 takes as input values for the one or more 
physical parameters , and uses this information to specify a 
transfer function between the input and output images . In 
theory we want to go in the reverse direction determine the 
one or more physical parameters that would generate the 
output image given the known illumination ( and the physical 
model of the tissue ) . However , the model is generally too 
complex for this estimation to be performed directly , but 
rather an iterative estimation process can be used instead . 
[ 0083 ] At S3 , this iterative process begins by assuming an 
initial trial value for the physical parameter ( or parameters ) , 
for example , by taking average value found across multiple 
subjects , or a previous reading from the same subject . 
[ 0084 ] In S4 , the processing section 130 utilises the trial 
value for the physical parameter ( s ) in conjunction with the 
physical model implementation 120 ( and knowledge of the 
illumination and spectral sensitivity of the image capture 
device ) to predict an output image . This predicted output 
image includes spectral information , thereby allowing the 
processing section to determine how the predicted image 
would appear in each of the wavebands . 
[ 0085 ] A comparison is now performed at S5 for each 
waveband between the predicted image and the acquired 
image . At S6 , a test is performed to see if there is a 
discrepancy in at least one wavebande.g . the difference 
between the predicted image and the acquired image is 
greater than a set threshold . In this case we take the positive 
path to S7 and update the trial value for the physical 
parameter ( s ) . This updating may utilise knowledge of the 
discrepancy between the predicted image and the acquired 
image . For example , if increasing the parameter is known to 
make the tissue appear bluer , then the trial value would be 
increased if the discrepancy was such that a predicted image 
was not blue enough compared to the acquired image . We 
then return to operation S4 and calculate new predicted 
images , this time with the updated trial value of the physical 
parameter ( s ) . 
[ 008 ] It will be appreciated that operations S4 , S5 , S6 and 
S7 form an iterative procedure that , all being well , will 
converge to a value of the physical parameter that allows , in 
each waveband , the predicted image to match the acquired 

image ( to within the set threshold ) . At this point we take the 
negative path from S6 to S8 , where the current trial value of 
the parameter is set as the estimated value of the physical 
parameter . At S9 , this estimated value is then available for 
display with the acquired images ( see S2 above ) , such as 
described above in relation to FIG . 1. Alternatively , if there 
is no convergence , the processing section 130 may abort the 
procedure after some pre - set number of iterations ( not 
shown in FIG . 2 ) . 
[ 0087 ] Although the processing of FIG . 2 has been 
described with reference to the entire image , the estimation 
of the physical parameter can be limited to a particular 
region of an image ( as small as one pixel ) . Moreover , the 
approach of FIG . 2 provides one technique for estimating the 
value of the physical parameter from the observed images . 
Further techniques are described below that provide a more 
rigorous statistical basis for such estimation . 
[ 0088 ] One implementation of the technique described 
here is to provide a single shot capture method utilising a 
known calibration of the camera to estimate oxygen satura 
tion and the distribution thereof in tissue . The technique is 
general for internal human tissue in the sense that it does not 
depend on learned parameters . Instead , in one implementa 
tion , the observation in Boulnois et al [ 13 ] is used that 
dominant absorbers for light in the visible wavelength range 
are oxygenated blood ( HbO2 — sometimes denoted just as 
HbO ) and deoxygenated blood ( Hb ) , and this provides a 
prior on the expected spectrum of light leaving the scene . 
[ 0089 ] In a first example below , a technique is presented 
that can be integrated into a surgical work - flow without the 
need to switch cameras mid - procedure . This technique is 
able to run at the frame rate of a standard video camera and 
to provide information on oxygenated and deoxygenated 
haemoglobin concentrations within tissue that is commen 
surate with results that would be acquired through a slower 
or more disruptive multispectral imaging protocol . Accord 
ingly , the approach described herein offers enhanced inte 
gration with current work flows and rapid acquisition of 
estimated values of physical parameters relating to biologi 
cal tissue . In a second example below , an estimation tool is 
presented for measuring the concentration of oxygenated 
and deoxygenated haemoglobin directly from endoscopic 
RGB video . The method provides improved accuracy when 
applied to stereoscopic data but has the versatility to still 
achieve good results with monocular images . The method 
performs well on synthetic data and is comparable to the 
result from raw MSI data acquired using modified imaging 
hardware such as a LCTF camera . The method makes use of 
a calibration of optical sensors for a given light source to 
capture the response curve for each channel . The technique 
is therefore readily applicable to a wide range of MIS 
procedures and integrates easily into the operating theatre . 

Example 1 
[ 0090 ] The approach adopted in this example involves a 
single shot capture , and requires no modification to existing 
surgical imaging configurations . The method of Example 1 
uses a radiometric colour calibration of the surgical camera 
and optical waveband / channel , in conjunction with a Bayes 
ian framework to recover a measurement of the oxygen 
saturation ( SO2 ) . The method is a per - pixel technique that 
can also incorporate local patch - based information into the 
estimation of intrinsic SO , and total blood volume ( THb ) as 
physical parameters of clinical interest ( a patch represents a 
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small region of the image incorporating , and usually cen 
tered on , the pixel of interest ) . This is done , in this example , 
by modelling predicted images in each waveband as 
weighted sums over a mixture of Poisson distributions and 
optimising the variables SO2 and THb to maximise the 
likelihood of obtaining the acquired images from the image 
capture device 140 ( or other form of sensor ) . 
[ 0091 ] In terms of calibrating the spectral sensitivity of the 
camera , various methods may be utilised . For example , one 
method to perform a high quality calibration is to use a 
monochromatic ( tuneable ) light source [ 18 ] . A simpler and 
quicker method , typically more suited to use in a clinical 
( rather than laboratory ) environment is to use the camera to 
image a set of coloured patches [ 19 ] that have known 
reflectance , although this latter approach is generally less 
accurate at higher sensor ( camera ) noise levels . From simu 
lations , it has been found that a miscalibration of the spectral 
response curve for the camera tends to bias the optimisation 
towards deoxy haemoglobin ( Hb ) , whereas the measurement 
of total haemoglobin was found to be more robust against 
any such calibration problems . 
[ 0092 ] The technique of this example has been validated 
on synthetic image data which has been generated from the 
measured optical characteristics of blood ( see Bosschaart et 
al [ 9 ] ) and sub mucosa ( see Bashkatov et al [ 10 ] ) . Secondly , 
the method of this example has also been validated on in 
vivo data by using the multispectral optimisation of Clancy 
[ 5 ] as the ground truth and , in so doing , it is shown how the 
method of this example correlates strongly with conven 
tional multispectral approaches . 
[ 0093 ] Monte Carlo for Multi - Layered media ( MCML ) 
simulation , as shown by Wang et al [ 11 ] , is an established 
method for simulating light transport through layered turbid 
media . The Mesh based Monte Carlo ( MMC ) approach of 
Fang et al [ 12 ] develops a more expressive simulation 
framework from this basic approach in order to allow more 
complex three - dimensional structures to be modelled . It is 
this latter approach ( MMC ) that is used herein to simulate a 
tissue model that is geometrically complex . 

detail ) . An original endoscopic view is shown bottom - right , 
while the saturation , which is the ratio of oxygenated blood 
to total haemoglobin , is superimposed ( top ) on this original 
endoscopic view . Similarly , the concentration of oxygenated 
blood is superimposed ( bottom - left ) on the original endo 
scopic view . ( Note that the total haemoglobin is a measure 
formed by the sum of concentrations of the two chro 
mophores , oxygenated and de - oxygenated blood ) . 
[ 0097 ] Returning to FIG . 3A , the image capture device 
shown therein is a stereo RGB endoscope , which has two 
camera channels side by side , 305A , 305B . Each camera 
channel acquires an RGB image , in the sense that a single 
image ( snapshot ) can be considered as comprising the 
superposition of an R image , a G image and a B image 
( which can be individually extracted from the resulting 
image ) . The image capture device 140 includes two illumi 
nation channels 308A , 308B , on either side of the two 
camera channels 305A , 305B . The illumination channels 
308A , 308B provide an initial illumination , denoted Io , onto 
a biological tissue 350 of interest . The camera channels 
305A , 305B then receive a return signal ( from reflection and 
scattering , etc ) , denoted as 1x . In particular , the light arriving 
at the camera channels 305A , 305B is assumed to have been 
back - scattered and attenuated from passing through the 
biological tissue 350 containing spatially varying concen 
tration of chromophores ( where this concentration of the 
chromophore can be considered as a physical parameter of 
interest ) . In tissue found inside the body , the dominant 
chromophores are generally the two oxygenation states that 
haemoglobin can take , the concentration of which can be 
written as Hbo2 and Sub for oxygenated and de - oxygenated 
states respectively . 
[ 0098 ] At a given scene ( image ) location , x ( as imaged by 
the image capture device 140 ) , the concentration $ ( x ) of a 
given chromophore within the tissue being imaged can be 
estimated using the modified Beer - Lambert relationship , see 
Delpy et al [ 14 ] . This provides a relationship for how the 
concentration of all chromophores present in a sample ( the 
tissue at position x ) attenuate the incident light 1o , a ( x ) of a 
given wavelength A arriving at that location . 
[ 0099 ] To produce the resulting intensity of light leaving 
the scene at that position , la ( x ) : 

1 ( x ) = 10,1 ( x ) e ( + G ( « ) - 
This modified form of the Beer - Lambert relationship intro 
duces two notable additions to the original Beer - Lambert 
equation . The first new variable is the mean path length of 
light travelling through tissue , Husna which together with the 
attenuation coefficient az , a , depends on the wavelength and 
tissue composition . The second extension is to include a 
geometry factor G ( x ) to describe the effect of the surface of 
the tissue not necessarily being normal to the incident light 
direction or sensor 140 . 
[ 0100 ] Rearranging the terms of ( 1 ) it is possible to frame 
this as a linear relationship : 

Tissue Model 

G ( x ) -25 ( x ) Q 

S , S , 

[ 0094 ] FIG . 3A is a schematic diagram of an image 
capture device 140 such as for use with apparatus 100 of 
FIG . 1 for imaging biological tissue . In particular , FIG . 3A 
shows the passage of light through a turbid media , such as 
human tissue , which can be considered as a random process 
comprising scattering and absorption events . Inhomogeneity 
in the concentration of chromophores results in a spatially 
varying distribution of detected light . The effective attenu 
ation of a sample will be a combination of the attenuation 
due to absorption as well as scattering , i.e. , how much light 
of a given wavelength is backscattered out of the tissue 
again . 
[ 0095 ] FIG . 3B shows the spectral distribution of the light 
leaving tissue such as shown in FIG . 3A . It can be seen that 
this spectral distribution can be used to characterise the 
tissue that the light passes through . In particular , FIG . 3B 
illustrates the effective attenuation of a uniform white illu 
minant after backscattering through oxygenated Cabo2 ) , 
and de - oxygenated ( SHb ) blood . These effective backscatter 
spectra were generated through Monte Carlo simulation . 
[ 0096 ] FIG . 3C shows maps of the tissue saturation and 
the concentration of oxygenated blood , such as may be 
generated by the approach described ( see below for more 

( 2 ) h ( x ) Az = -log | 10,2 ( x ) ( trade ) G ( x ) + X & ( X ) HE JQE 
where A , is the attenuation at a given wavelength . This 
negative log ratio of the incident to exit intensity is the total 
attenuation A. Thus if the incident illumination is known , the 
chromophore concentration parameters $ ( x ) on the right can 
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be found by making many spectrally distinct measurements 
of the tissue and solving the linear equation . 

A = b ( x ) ( 3 ) 

Here b is a vector of the constants of mean travel distance 
and attenuation due to chromophores and geometry , for all 
wavelength measurements in A. 

This gives the product of measurement probabilities for each 
individual waveband or channel and a prior of the scene 
parameters ( $ ( x ) ) . Since each channel accumulates over a 
wide wavelength range the mean will be quite large , and 
hence the channel distribution ( as per Equation ( 5 ) ) can be 
approximated as a normal N ( u , 0 ) . 
[ 0105 ] To estimate the parameter ( s ) that maximise equa 
tion ( 7 ) , and since the denominator does not depend on and 
hence can be ignored for the purposes of maximisation of 
theta is maximised for : 

Sensor Model 

( 8 ) 
arg max ( PE ) 

? ax { PC ) [ N ( He's , OCf ) } 

[ 0101 ] The probability that a light sensor , such as image 
capture device 140 , detects photons is dependent on two 
random variables : firstly the chance that a photon left the 
scene from location x , for which the concentration is E ( x ) , 
and arrived at the sensor 1 / ( x , & ( x ) ) , and secondly whether the 
sensor will detect it , p . In this case the camera sensitivity p 
is assumed to be constant in time but may vary over 
wavelength . Hence , since this is a counting problem , the 
probability distribution of the sensor can be represented as 
Poisson ( P2 E [ 12 ( x , $ ( x ) ) ] ) for any given wavelength , where 
E [ : ] represents the expectation of the random variable . 
[ 0102 ] For a wide band detector , such as an entire wave 
band or channel ( c ) of a colour sensor , this is then the 
weighted sum over the sensitive range of wavelengths , with 
weights corresponding to the sensitivity Pea at that particu 
lar wavelength . The random variable of the channel mea 
surement , I. ( x , $ ( x ) ) , can be written , for some position x and 
concentration parameters 5 , as the inner product over all 
wavelengths : 

1 ( x , 8 ( x ) ) = ( Pe ] ( x , & ( x ) ) ) , 
[ 0103 ] This is a relatively straightforward sum because the 
contributions from different wavelengths are independent 
when conditioned on the scene ( concentration ) parameters 
$ ( x ) . The distribution of this random variable is also Poisson 
distributed with a mean and variance : 

We choose the ( prior ) distribution of s , i.e. P ( 5 ) such that the 
oxygen saturation ( SHboz ! ( SHbo2 + Hb ) ) is uniform in the 
range ( 0,1 ) , while the total haemoglobin ( SH602 + SH ) is 
uniform in the range ( 0 , 250 ) g / litre . Alternatively , the only 
prior on may be that all elements are non - negative , given 
that it is not possible to have negative concentrations . While 
this may seem too relaxed a constraint allowing concentra 
tions to be potentially infinite , the cases when this might 
occur are generally limited to degenerate situations where 
the count for each channel of the sensor is zero or very close 
to zero . The other term in the maximisation of equation ( 8 ) 
represents , for each waveband , c , the probability of receiv 
ing the observed intensity level , which is dependent upon the 
waveband itself ( known ) , and the concentration parameter & 
( with the summation then being performed over all observed 
wavebands ) . Equation ( 8 ) then determines the value of the 
concentration parameter ( s ) that maximise the likelihood of 
seeing the set of observed intensities across the set of 
wavebands c . 

( 5 ) Parameter Optimisation Mc PC , E [ / 2 ( x ) ] 

The random variables for sensor measurements are condi 
tioned on the unknown scene parameters ( x ) ( i.e. the 
physical parameter ( s ) of interest ) at a given position . 
[ 0104 ] To find the unknown scene parameters , the Bayes 
rule can be used to find an expression for E ( x ) conditioned 
on the sensor ( camera ) measurements in multiple channels . 
For a three channel ( RGB ) sensor , the standard Bayes rule 
gives the relationship : 

( 6 ) PCS | Ir , Ig , lb ) P ( Ir , Ig , 1b PF ) 
P ( Ir , Ig , lb ) 

[ 0106 ] To estimate the concentration , based on Equation 
( 8 ) , from acquired images or channels of RGB measure 
ments , a two - step process is utilised . Since the modified 
Beer - Lambert model is applicable when measurements are 
non - overlapping and narrow banded , firstly an estimate of 
the spectrum of incidental light In ' arriving at the RGB 
sensor ( or image capture device 140 ) is obtained . Secondly , 
an estimate of the concentration of oxy- and deoxy - haemo 
globin & ( vector ) from In ' is obtained by solving equation ( 2 ) 
by minimising sum of square difference ( SSD ) . This process 
is iterated alternately estimating the multispectral data la ' 
and then the concentrations E. 
[ 0107 ] ( It will be appreciated that this is a more sophisti 
cated approach of estimating & than the approach illustrated 
in FIG . 2 , in that the latter assumes I ' is directly as measured 
by the camera , subject to calibration of the camera . In 
contrast , in this example it is also recognised that the camera 
measurement of Iz ' is itself subject to uncertainty in view of 
the Poisson distribution of photon reception ) . 
[ 0108 ] The first step of estimating the spectrum of incident 
light is performed using Bayesian maximum a posterior 
( MAP ) estimation as per the following equation ( derived 
from equation ( 8 ) , having regard to the relationship between 
In ' and ? . 

where P ( ) is a probability . Further due to the channel 
response being independently conditioned on the scene 
parameters the right hand side of equation ( 6 ) can be 
formulated as : 

( 7 ) P ( 1,1 & P ( 1 , 1 ) P ( Ig \ OPE 
P ( Ir , lg , lb ) 
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( 9 ) ( 10 ) 
k = arg max { { [ 1 Nitecido Octa P ( x ) } VR VR || N14.12 , OculaPW 

to now be : 

( 11 ) - ( 01 | N ( Helgu OcnJ } POW 

During this step , the constraint that In ' has to adhere pre 
cisely to a spectrum predicted by the Beer - Lambert rela 
tionship is relaxed , but Ia ' is instead penalised through the 
prior P ( ID ) . The prior is generated from the previous esti 
mation of using & equation ( 1 ) to estimate the absorption . We 
set the penalisation as the SSD between I'm and the expected 
value of E [ 12 ] , as predicted by the estimate of the previous 
iteration for E. Further , a Dirichlet boundary condition is 
imposed on I ' , thus limiting the range of the variable to the 
interval [ 0,10,1 ) . 
Implementation Details 
[ 0109 ] The optimisation may be performed in various 
ways — two examples are described below . 

Optimisation Method 1 
[ 0110 ] This is an optimisation of equation ( 9 ) performed 
by steepest gradient descent , computed via finite difference 
as shown in Algorithm 1 , which is in essence an expectation 
maximisation process . 

where the only change required is the basis in which partial 
derivatives are calculated . 
[ 0113 ] This is essentially exploiting how a Fourier basis 
better approximates the non - linear basis of the space of 
possible In than an impulse basis and is more likely to 
converge to a solution that within the space of plausible Ix . 
Further the convergence is faster because the space of 
possible I , is sparse in a Fourier basis . 
[ 0114 ] Hence steepest gradient descent is performed in 
Fourier space maintaining sparsity characteristics of the 
expected power spectra . Thus at each step of the gradient 
descent the estimated spectrum In ' is still a highly probable 
spectrum , resulting in a significantly better re - estimation 
step . 
[ 0115 ] Finally the fast non - negative least squares method 
of Bro et al [ 15 ] is used to solve the parameter estimation 
from the estimated emission spectrum . Non - negativity is 
required as it would not be physically plausible to have 
negative concentrations of chromophores . Further , this 
method is efficient on small matrices . 

Algorithm 1 : Bayesian estimation of haemoglobin 

Optimisation Method 2 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

input : rgb camera measurement 
C camera response matrix 

output : hb oxy / deoxy haemoglobin 
hb initialise with [ 75g / 1 , 75g / l ] 
? , the number of wavelengths spanned by C 
for i = 0 to 20 do 

inc é n , * pow ( 2 , -i ) 
In's In + estimate from hb 
p = P ( I ' | In , C , rgb ) 
while iterations ++ < max and not localminima do 

x < arg max_ { P ( In ' | 12 , C , rgb ) | Inextinc } 
Inextinc 
if p 2 P ( IX ' | 1 , , C , rgb ) then 

localminima true 
End 

End 
hbé estimate from In ' 

End 

[ 0116 ] In a second optimisation method , equation 9 is 
optimised using a more direct approach . Instead of using 
gradient descent as in optimisation method 1 , optimisation 
method 2 concatenates the camera matrix with a scaled 
identity matrix and solves as a linear optimisation . 
[ 0117 ] Using the understanding that each of the per chan 
nel variables is maximised when the difference is minimised 
between < PcIx > and the measurements made in each chan 
nel , and that the contribution of the prior is to penalise per 
wavelength deviation of I , from the current estimate , we can 
pose the minimisation : 

( 9a ) 
k = arg min { $ ( e . b ) –192 + Š ( 4 – Ell } } } 

[ 0111 ] The gradient descent is not performed using an 
impulse basis as we found that this provides relatively poor 
convergence , possibly due to impulse basis increments 
being close to orthogonal to the space of possible 1 ) . Thus 
the impulse basis gradient descent converges to a la which 
is a metamerism of the true In , and the re - estimation linear 
fitting step ( line 14 ) then produces poor results as it is 
unlikely that it can fit well to the metameristic 19. ( A 
metamerism is two colours that are perceived as the same , 
in this case via their RGB signal , but are in fact different in 
terms of their overall spectral distribution ) . 
[ 0112 ] Instead a basis change from an impulse basis to a 
Fourier basis is performed , which was chosen as the space 
of possible la is sparse in Fourier representation . This basis 
change is possible because of independence in the impulse 
basis representation , and this is preserved when switching to 
another linear independent basis representation during the 
optimisation . This is a rewriting of the solution to equation 
( 9 ) , using steepest gradient descent : 

[ 0118 ] The expected value of Ix , E [ 12 ] is as predicted by 
equation ( 1 ) from the previous iterations estimate for . 
Further , the approximation of the Poisson distribution by the 
Normal could potentially allow negative count values for 
each wavelength , so a non - negativity constraint on l'a is 
imposed to prevent physically impossible values . 
[ 0119 ] The optimisation of equation 9a can then be 
achieved via a single linear expression solving for In ' on the 
left hand side below : 
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( 9b ) 
0 

. Pr , g , b K = be 
yE [ a ] 

I , 
Ig 
? , 

7 

where I. , Ig , and I , are the sensor measurements in each 
channel , and y is a regularisation constant . To prevent the 
prior dominating , y is set to 0.01 ( although other values may 
be set ) . Since the left hand side of equation 9b is constant 
over all iterations , this is a computationally efficient 
approach as decompositions of the left hand matrix can be 
reused each time . A fast non - negative least squares method 
is used to solve equation 9b and also for the subsequent 
parameter estimation . 
[ 0120 ] This optimisation method can be summarised in a 
similar algorithm to Algorithm 1. In this case , lines 6 to 13 
of Algorithm 1 become : I , ' < estimate from C , rgb , 12 . 9 

Real - Time 

[ 0121 ] The above optimisation is deterministic when you 
set as fixed the illumination spectrum and the response 
curves of the colour channels ( wavebands ) of the camera . In 
other words , there is a fixed correspondence between the 
( estimated / measured ) I , and the chromophore concentration 
5. Accordingly , the algorithm can be performed in real time 
by use of a pre - computed look - up table ( LUT ) that maps all 
possible RGB values to a corresponding chromophore con 
centration & 
[ 0122 ] Using such a look - up table consisting of all pos 
sible 24 - bit RGB colours ( approximately 16 million ) , it was 
feasible to process endoscopic images at video rate using a 
naive serial implementation . The look - up table in this case 
was 270 MB in size , and so would easily integrate into a 
GPU - based live video processing pipeline on currently 
available hardware . Using a Surface Pro 3 2.3 GHz 8 GB 
RAM , it was feasible to process images over 30 fps using a 
two threaded serial implementation of the LUT based 
approach . 

tissue 430 are three parallel blood vessels 431 ( C ) at constant 
depth . The interstitial space within the simulation volume is 
given the properties of air . Photon trajectories ( d ) are tracked 
until they leave the simulation volume or arrive at the 
detector 420 ( e ) , which is 20 mm wide square , parallel to , 
and 10 mm away from , the tissue surface ) . 
[ 0125 ] For the MMC , the mesh was made denser near the 
blood vessel boundaries for smoother approximation of the 
curved vessel walls . For the MMC simulation , photons were 
generated at intervals of 10 nm across the range 400 nm to 
900 nm . To detect the backscattered light photon momentum 
was recorded for all photons leaving the bounds of the 
meshed region . Photons that did not exit through the side of 
the mesh that was illuminated were discarded , as were 
photons leaving at an angle to the surface that was too 
oblique to be detected by a detector placed 10 mm above the 
illuminated surface . Image data for each wavelength were 
then generated at this detector location . 
[ 0126 ] To simulate multi - spectral camera images of the 
scene , the incoming photons were first filtered into spectral 
bands and the incident angle was then used to further filter 
photons according to a geometrical camera model . In par 
ticular , an orthographic camera was simulated to avoid 
angular bias in contrast , for a pin - hole camera , light at the 
edge of the image exits the tissue at a much shallower angle 
than that at the centre ) . RGB images were generated by 
filtering the multi - spectral ( MS ) data using filters corre 
sponding to spectral sensitivity of a conventional RGB 
camera , see FIG . 4B . In particular , FIG . 4B shows a repre 
sentative three channel RGB - like camera response curve . 
These response curves may be used , for example , to gener 
ate synthetic RGB data from the synthetic multispectral data 
( as described in more detail below ) . FIG . 4C then shows 
channel responses for the camera response curves of FIG . 
4B for the oxygenated blood vessels ( left ) and the de 
oxygenated blood vessels ( right ) . 
[ 0127 ] To validate data generated by the simulation , a 
separate simulation was performed using homogeneous tis 
sue models . Wth these , multi - spectral image sets were 
generated in the same way as for those with the submerged 
vessels , and it was confirmed that the backscattered spec 
trum aligned with the expected result from theory . It was 
found that the homogeneous back scattered photon count 
was closely aligned to that predicted by theory when using 
the reduced scattering coefficient to calculate an effective 
attenuation . 
[ 0128 ] The results of running the method of Example 1 on 
the synthetic data containing the three blood vessels to 
determine the concentration of both oxygenated and de 
oxygenated haemoglobin is shown in FIG . 5. In particular , 
FIG . 7 shows a comparison of total haemoglobin and oxyger 
saturation estimation by multispectral linear fit ( top row ) , 
and a method for estimating a physical parameter of bio 
logical tissue ( second row ) against the ground truth ( third 
row ) , using the synthetic dataset . Results are show after 
histogram equalisation . The full multispectral approach 
localises well the total haemoglobin and saturation for both 
test cases . The method for estimating a physical parameter 
described herein is able to achieve reasonable localisation of 
total haemoglobin , while the saturation measure is less 
correlated to scene structures but does correctly differentiate 
between the two test cases . The apparent poor localisation 
for saturation is an artefact of the having very low values for 
both oxy and de - oxy haemoglobin in areas of soft tissue , 

Experiments and Results 

Synthetic Data Experiments 
[ 0123 ] To create synthetic test data , multi - spectral image 
data was created and then filtered to generate RGB camera 
responses . The optical characteristics of blood and colonic 
submucosa ( soft tissue ) were compiled from Bosschaart [ 9 ] 
and Bashkatov [ 10 ] respectively . The synthetic phantom 
model comprised a homogeneous block of soft tissue with 
three superficial vessels containing either oxygenated or 
de - oxygenated blood . The three blood vessels had different 
uniform diameters of 2 mm , 1 mm , and 0.5 mm respectively , 
and the top edge of each vessel was at the same depth below 
the surface of the tissue . The data generation was repeated 
three times with different depths of submersion for the 
vessels , namely : 1 mm , 2 mm , and 5 mm . 
[ 0124 ] The Mesh based Monte Carlo ( MMC ) simulation 
of Fang [ 12 ] was used on a meshed version of the digital 
phantom model shown in FIG . 4A . In particular , FIG . 4A 
shows a representation of an experimental model comprising 
an isotropic planer ( 40 mm square ) light source 410 ( a ) and 
a soft tissue volume 430 ( b , 100 mm cube ) . Inset into the 
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as then used for determining the optical characteristics of the 
physical model for this example ) . 

Real Data Experiments 

since the saturation metric is very sensitive to slight noise for 
small values of oxy and de - oxy haemoglobin . 
[ 0129 ] Overall , the best performance of FIG . 7 for both the 
multispectral and the approach described herein for Example 
1 was in localising the total haemoglobin , and in this case , 
the method of Example 1 performs almost as well as the 
multispectral method . As noise levels , increase the variance 
of the multispectral approach increases at a faster rate than 
the method of Example 1. This is most likely due to the 
inherent smoothing that happens during the maximisation 
step from the application of the prior . 
[ 0130 ] Both methods perform less well on the saturation 
estimation , and the method of Example 1 is generally less 
effective than the multispectral method , especially at high 
noise levels . This difference in the saturation estimation is 
likely due to the similarity of the attenuation spectra of 
oxygenated and de - oxygenated haemoglobin , which 
becomes even more subtle when marginalised by the camera 
into a three channel image . However , the method of 
Example 1 does distinguish in the correct manner , at a global 
whole image level , between the oxygenated tubes and de 
oxygenated tubes ( vessels ) in the correct manner . Tabulated 
results are shown numerically in Table 1 below . 

TABLE 1 

The comparative performance between the multi - spectral technique 
and the RGB measurements described herein based on per - pixel absolute 
error with respect to the ground - truth , provided as mean and standard 
deviation ) in g / l for the total haemoglobin error and as a proportion 
( 0-1 ) for the saturation ) . The added zero mean Gaussian noise raw 

values were in the range [ 0 , 1 ] , hence the relatively small 
sigma values the for added noise . At each noise level , 100 uniquely 

seeded trials were run and the aggregate of all repetitions was 
then used to compute the error statistics . 

[ 0132 ] To further evaluate the method of Example 1 , data 
was utilised from a porcine study , in which multispectral 
imaging was performed on tissue undergoing periods of 
artificially induced restricted blood flow . FIG . 6 is a sche 
matic illustration of this approach . In particular , FIG . 6 
shows an in vivo experimental set up used as a test subject 
for verifying the method described herein , in which the 
laparoscope can be seen entering the scene from the upper 
left side , while in the centre is a section of exposed bowel . 
[ 0133 ] Using the method of Clancy [ 5 ] , a ground truth 
total haemoglobin estimate was created for each multispec 
tral set , masking out regions where the coefficient of deter 
mination ( COD ) of this fit was lower then 0.5 . To create 
corresponding input RGB data , the multispectral data was 
composited into a three channel image using known camera 
response curves for RGB ( such as those shown in FIG . 4B ) . 
[ 0134 ] In order to compare the results obtained using the 
method described herein against the multispectral generated 
ground truth , it is necessary to perform histogram equalisa 
tion ( or some other suitable approach ) to compensate for a 
scale ambiguity between the multispectral method and the 
approach described herein . This scale ambiguity is thought 
to arise from because the distance to the tissue surface is 
unknown and this has a significant effect by changing the 
global illumination . Nevertheless , it is possible to evaluate 
the relative distribution of estimated concentration by bring 
the results into the same scale , via histogram equalisation 
( for example ) . 
[ 0135 ] FIG . 7 shows the mean absolute error between the 
estimates of a physical parameter ( as described herein ) and 
the ground truth computed from the multispectral data 
( lower errors therefore indicate a better correspondence to 
the ground truth ) . These errors are without units due to the 
histogram equalisation , but because the ground truth is 
normalised into the range [ 0,1 ] , the error also lies within this 
range . Over all in - vivo data sets , the mean absolute error is 
0.1394 with a standard deviation of 0.1715 . These values lie 
towards the low end of the error range and hence are 
indicative of a similar estimation by both the method 
described herein and the multispectral generated the ground 
truth . 
[ 0136 ] The similarity of the fitting can also be seen in FIG . 
8 , which shows a side - by - side comparison of the technique 
described herein , labelled “ our method ” in FIG . 8 , alongside 
difference maps for the total haemoglobin measure . In 
particular , FIG . 8 shows a comparison for total blood 
volume ( THb ) maps , where the values are capped at 175 g / 1 
for display purposes . All results and difference images in this 
Figure are displayed on the same scale . Clearly visible in the 
ground truth is the highly profuse region on the far left 
which corresponds to imaging artefacts where there is O in 
all the original multispectral data — a similar outlier region 
can be seen in the result for the method described herein near 
the top of the frame . 

Total haemoglobin error 

MS - THE RGB THb 

noise ( 0 ) u 

none 

0.01 
0.03 
0.05 
0.07 
0.09 
0.10 

30.9253 
31.3542 
32.8964 
37.1411 
41.6593 
44.5390 
45.3196 

16.6138 
16.6520 
19.0817 
25.5051 
30.0078 
32.4252 
33.2666 

34.1193 
35.8721 
38.8110 
41.7424 
45.1139 
49.0652 
50.9120 

22.6741 
21.8864 
21.1776 
21.3663 
22.3773 
24.3692 
25.7727 

Saturation error 

MS - Sat RGB - Sat 

noise ( 0 ) u u o 

none 
0.01 
0.03 
0.05 
0.07 
0.09 
0.10 

0.2101 
0.2104 
0.2124 
0.2164 
0.2159 
0.2073 
0.2013 

0.2641 
0.2643 
0.2679 
0.2781 
0.2863 
0.2881 
0.2874 

0.2817 
0.2952 
0.3328 
0.3814 
0.4042 
0.4527 
0.4544 

0.0813 
0.0775 
0.0745 
0.0842 
0.1016 
0.1250 
0.1332 

[ 0131 ] It should be noted that the ground truth used in 
these this example influenced by two factors ( at least ) : firstly 
the simulated imaging process is inherently noisy as it is the 
product of simulating the passage of a finite number of 
photons , and secondly there may be low level traces of 
haemoglobin in the tissue analysed by Bashkatov [ 10 ] ( and 

Example 2 
[ 0137 ] Example 2 provides another example of using the 
method described herein as a real - time ( or near real - time ) 
technique for the measurement of physical ( biological ) 
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parameters such as total haemoglobin and blood oxygen 
ation in tissue . In Example 2 , the method is performed using 
RGB images from a stereo laparoscope ( although the 
method is equally applicable to other types of imaging 
equipment , including those that provide monocular images ) . 
[ 0138 ] The high degree of spectral overlap between wave 
bands or channels such as RGB makes inference of haemo 
globin concentration challenging , non - linear and under 
constrained . In Example 2 , the problem is decomposed into 
two constrained linear sub - problems with Tikhonov regu 
larisation , and it is shown that this improves the estimation 
substantially , particularly in oxygenation accuracy , when 
using stereo image data rather than monocular images . 
[ 0139 ] The approach described herein for Example 2 
utilises a radiometric colour calibration of the laparoscopic 
imaging device , after which , the technique can be applied 
without modification of the laparoscopic instrumentation . 
The technique of Example 2 is validated both ( i ) on synthetic 
data using Monte Carlo simulation of light transport through 
soft tissue containing submerged blood vessels and ( ii ) on 
animal in vivo data with a hardware acquired multispectral 
data set for comparison . 
[ 0140 ] Specifically , Example 2 provides a method for 
estimating blood oxygen saturation and total haemoglobin 
by using the RGB sensors ( image capture device ) in stereo 
laparoscopes . N.B. such RGB sensors are already the pri 
mary imaging device of stereo laparoscopes for providing 
robotic minimally invasive surgery . 
[ 0141 ] The calibrated colour response curves of the RGB 
sensors define the mapping of ( latent ) multispectral data into 
RGB space . The approach of Example 2 inverts this process 
using a Tikhonov regularisation scheme to preserve smooth 
ness . This reduces the problem into a two - step process , with 
the first of step having a closed form solution , enabling rapid 
processing of full frame stereo data . 
[ 0142 ] Example 2 has been validated in a similar way to 
Example 1 , namely , by using synthetic data generated from 
measured optical characteristics of blood [ 2 ] and sub 
mucosa [ 1 ] as input into the Mesh based Monte Carlo 
( MMC ) simulation framework of Fang [ 12 ] . The technique 
of Example 2 is further validated on in vivo data by using the 
multispectral optimisation of Clancy [ 5 ] as the ground truth , 
and showing how the method of Example 2 correlates 
strongly with the results of such a full MSI analysis without 
the need for modified acquisition hardware . The results 
suggest how to acquire additional information during sur 
gery by resolving the existing imaging RGB signal into the 
various wavebands . 

The attenuation coefficients a for the chromophores of 
oxygenated ( HbO2 ) and de - oxygenated ( Hb ) haemoglobin 
are dependent on scattering and absorption characteristics . 
The attenuation coefficients are calculated a priori from a 
Monte Carlo simulation of the backscattered light and its 
attenuation in tissue . Such a simulation may be performed 
using similar techniques to those already described in rela 
tion to Example 1 above . 
[ 0144 ] The requirement for the Beer - Lambert relation to 
hold is that the wavebands are non - overlapping and each is 
narrow . Given these conditions , this expression can be 
solved using a non negative least squares solver to ensure 
positivity . For example , the fast non - negative least squares 
( FNNSL ) of Bro [ 15 ] is used in Example 2 to constrain the 
estimation of chromophore concentration from multispectral 
data . 
[ 0145 ] In the case of RGB data , however , the measure 
ment is actually in three channels , e.g. , R , G , and B , each 
with significant spectral overlap and all fairly wide . In order 
to preserve the conditions of the Beer - Lambert equation , it 
would be necessary to pose the solution as the combination 
of three variably weighted sums of exponentials . Approach 
ing this formulation directly becomes computationally 
intensive , but this can be mitigated by reducing the problem 
to two fast steps . First an estimate of the latent multispectral 
data ( as received at the camera ) is performed and then from 
this a least squares fitting can be performed in order to 
estimate the chromophore concentrations . 
[ 0146 ] To estimate the multispectral image , In , based on 
the captured RGB image data , IRGBs , involves using the 
radiometric calibration of the camera C. One approach is to 
solve the linear system though a least squares minimisation 
such as : 

( 13 ) h = arg min || CH - TRGBs 112 
h 

where || : || is the Euclidean norm . 
[ 0147 ] However , this approach gives a poor estimation of 
the true multispectral data , since the problem is vastly 
unconstrained , given that I can have an order of magnitude 
more entries then IRGBs , thus this solution is often a 
metamerism of the true multispectral data when viewed 
though this particular camera system . Typically such a least 
squares estimation tends to estimate multispectral data that 
has all of its variation in a small number of wavelength 
bands as shown in FIG . 9 , which shows a comparative 
estimation of the multispectral data from RGB with a six 
channel sensor response inlet for reference . 
[ 0148 ] To constrain the estimation , one can impose a prior 
( T ) on I , using a Tikhonov regularisation . 

Method 

[ 0143 ] In general terms , the underlying approach of 
Example 2 matches that of Example 1. In particular , given 
a multispectral measurement comprising multiple non - over 
lapping waveband limited individual measurements Ix , and 
corresponding vector of initial illumination 1 . ,,, the estima 
tion of the concentration parameter & can be performed by 
least squares fitting ( note that a typically corresponds to the 
wavelengths of the centre of each waveband ) . This result is 
obtained by first rearranging the Beer - Lambert equation for 
an individual wavelength : 

( 14 ) h = arg min || Ch - IRGBs | ? + lyf 12112 
ha 

The prior , T , comprises the expected multispectral data that 
would be observed given the current estimate of the physical 
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parameter of interest , & for example , the haemoglobin con 
centration . The strength of the prior in Equation ( 14 ) is 
regulated by the scalar y = 0.01 . 
[ 0149 ] Equation ( 14 ) is typically solved implicitly as : 

I = ( CTC + r + T ) - ' CTIRGBS ( 15 ) 

where I is often taken as the identity matrix , thus minimis 
ing the overall size of Ix . However , for Example 2 we use a 
Laplacian matrix for I to penalise a non - smooth In , wherein 
the Laplacian matrix is formed of ones on the leading 
diagonal and negative half on the first super and sub diago 
nals . This choice of I is made because the multispectral data 
is expected to be similar to that predicted by the Beer 
Lambert relationship , which is mostly smooth across the 
visible wavelength range for a comprising attenuation due to 
oxygenated and de - oxygenated haemoglobin . 

-1/2 0 0 ( 16 ) 

-1/2 - diag ( T ) = 
0 -1/2 

0 -1/2 1 

[ 0150 ] Once the multi - spectral data I , has been estimated 
from the acquired RGB data , as above , using Equation 15 , 
then a non - negative least squares solver can be used to 
estimate the concentration parameters . For example , the fast 
non - negative least squares ( FNNSL ) of Bro [ 15 ] may be 
used to perform the estimation of chromophore concentra 
tion from multispectral data In ( as estimated from the 
acquired RGB data ) . 
[ 0151 ] The method of Example 2 can also be applied to a 
monocular imaging context by reducing the number of 
columns in C and the length of IRGBs . This allows for a 
concentration estimation to happen either jointly , utilising 
data from two or more sensors / cameras , or independently for 
each sensor / camera . 

leaving the bounds of the meshed region . Photons that did 
not exit through the side of the mesh that was illuminated 
were discarded , as were photons leaving at angles to the 
surface that were too oblique to be detected by a detector 
placed at 10 mm above the illuminated surface . Image data 
for each wavelength were then generated at this detector 
location . To simulate multi - spectral camera images of the 
scene the photons , the image data were filtered into by 
wavelength as appropriate . 
( 0154 ] RGB images were then generated by filtering the 
multi - spectral data using the spectral response curves for a 
conventional RGB camera see for example the curve 
shown in FIG . 4B . Noise was added to the multispectral data 
by adding zero mean normally distributed vales to each 
wavelength channel . For the RGB images , noise was gen 
erated and correlated based on the spectral response curve of 
the camera ( for each waveband ) , such that the mean noise 
level in each channel of the RGB images and multispectral 
data was equivalent . 
[ 0155 ] The performance of the method of Example 2 is 
seen in FIGS . 10A and 10B . FIG . 10A shows the compara 
tive absolute concentration estimation error for both oxy 
genated and deoxygenated haemoglobin combined across 
both test cases ( for Example 2 ) , showing mean absolute 
error ( solid bar ) and one standard deviation ( thin line ) . For 
reference , typical total haemoglobin concentration for whole 
blood in an adult male is approx . 145 grams per litre . Noise 
is shown as a fraction of the sensor bit depth : for a typical 
8 bit colour depth , a noise level of 0.09 corresponds to a 
sigma of 23.04 ( i.e. 0.09 * 256 ) . FIG . 10B represents the 
mean concentration estimation error for monocular , stereo 
and multispectral at four different noise levels at different 
image locations ( the vertical lines correspond to the three 
blood vessels in each image ) . 
[ 0156 ] As can be seen from FIGS . 10A and 10B , the 
approach described herein , based on performing an estimate 
from RGB images , is closer to the estimation from the full 
multispectral data as the noise level decreases . Also at low 
noise levels , the stereo ( six channel ) version of the method 
of Example 2 outperforms the monocular ( three channel ) 
version . However , at higher levels of noise the stereo version 
underperforms the monocular version due to the increased 
likelihood of over or under saturated pixel data in the six 
channels compared to the three of the monocular version . 
The impact of over or under saturated measurement data is 
more significant in the method of Example 2 compared to a 
multispectral approach because each channel in the method 
of Example 2 corresponds to a wide wavelength range . 
Consequently , in the presence of the smoothness prior on Ix , 
this causes large global under or over chromophore concen 
tration estimation . The presence of a few saturated outliers 
has less impact on the multispectral method as it is directly 
fitted against the multispectral data , and so the effect of a 
saturated outlier is localised to an individual wavelength 
band . ( Note also that over and / or under saturation can be 
reduced or avoided by utilising an image capture device that 
has a greater colour bit depth for each pixel ) . 

Experiments and Results 

Synthetic Data Experiments 
[ 0152 ] To create synthetic test data , multispectral image 
data was simulated and subsequently filtered to generate 
RGB camera responses broadly in line with the procedure 
described above with respect to Example 1. In particular , the 
optical characteristics of blood and colonic submucosa ( soft 
tissue ) were compiled from Bosschaart [ 9 ] and Bashkatov 
[ 10 ] respectively . The synthetic phantom model comprised a 
homogeneous block of soft tissue with three superficial 
vessels containing either oxygenated or de - oxygenated 
blood . The three blood vessels had different uniform diam 
eters of 2 mm , 1 mm and 0.5 mm and the top edge of each 
vessel was at the same depth below the surface of the tissue 
at a depth of 1 mm . 
[ 0153 ] The Mesh based Monte Carlo ( MMC ) simulation 
of Fang [ 12 ] was used on a meshed version of the digital 
phantom model as shown in FIG . 4A . The mesh was made 
denser near the blood vessel boundaries for smoother 
approximation of the curved vessel walls . For the MMC 
simulation , photons were generated at intervals of 10 nm 
across the range 400 nm to 900 nm . To detect the backscat 
tered light , photon momentum was recorded for all photons 

Real Data Experiments 
( 0157 ] To validate the accuracy of the method of Example 
2 in an in vivo context , multispectral data sets , M , each 
comprising 24 non - overlapping 10 nm wide band limited 
images over the spectral range 460 nm to 690 nm were 
captured . Multispectral haemoglobin estimation using the 
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method of Clancy [ 5 ] was performed on these data to 
establish a best case ground truth and the coefficient of 
determination ( COD ) of this fit . A subset , M ' of the original 
multispectral data where the CoD was over 0.5 was then 
utilised to create a multispectral data set in which there is 
high confidence in the ground truth concentration . From the 
multispectral data sets , corresponding RGB images were 
generated using typical RGB camera response curves such 
as shown in FIG . 4B . 
[ 0158 ] We ran both the monocular and stereo versions of 
the method of Example 2 on M ' and the regression from the 
RGB methods was compared against the ground truth . 
Concentrations of oxygenated and deoxygenated haemoglo 
bin were then converted into the total haemoglobin and 
oxygen saturation measures , since these are the markers that 
would most normally be used to clinically evaluate a sur 
gical site . 
[ 0159 ] FIG . 11A shows the performance of the three 
channel monocular against the six channel versions of the 
method of Example 2 evaluated against the results from a 
full multispectral estimation with outliers removed via use 
of threshold . Clearly visible is the improved precision of the 
six channel method especially for the correct evaluation of 
the oxygen saturation . Overall , FIG . 11A shows that the use 
of stereo images significantly improves the estimation of 
total haemoglobin , with an overall mean absolute error of 
less than 3 g per litre when using six channels from two 
cameras , compared to over 6 g per litre for three channels 
with a monocular approach . The standard deviation of the 
error for these two methods remains close , but is slightly 
lower for the six channel variant . Given that total haemo 
globin concentration of whole blood is in the region of 145 
g / litre this indicates a high degree of accuracy when imaging 
for the purposes of perfusion mapping . Oxygen saturation 
estimation shows the most marked improvement when using 
stereo over monocular with an overall saturation estimation 
error of 10.27 % down from 41.71 % for the stereo and mono 
variants respectively . In evaluating the in vivo performance , 
results that corresponded to a THb concentration greater 
than 200 g / litre were considered outliers this enumerated as 
less than 0.1 % of the results being rejected as outliers . 
[ 0160 ] In both cases , the method of Example 2 produces 
results which are similar to those from multispectral infer 
ence , and the error is typically located in areas not corre 
sponding to vasculature . This is illustrated in FIG . 11B , 
where a section of bowel is exposed on a gauze background . 
FIG . 11B shows a stereo view of a surgical site with maps 
of the absolute difference in estimation of saturation and 
total haemoglobin between the method of Example 2 and 
that from full multispectral analysis . Note how the error is 
lower in places corresponding to locations of blood vessels . 
Furthermore , for the six channel case , the difference in total 
haemoglobin ( from ground truth ) is very low across the 
image , however the estimation of the saturation performs 
less well in images regions of low total haemoglobin . This 
is to be expected , as the oxygen saturation is a ratio of 
oxygenated to deoxygenated haemoglobin , and when both 
are at low concentration , small errors in the estimation of 
either become amplified in the aggregate saturation measure . 

lighting arrangement . In particular , FIG . 12a shows the 
passage of light through human tissue as a process compris 
ing scattering and absorption events , with inhomogeneity in 
the concentration chromaphore resulting in a spatially vary 
ing distribution of detected light . The effective attenuation of 
a sample is due to a combination of the attenuation due to 
absorption as well as scattering . FIG . 12b shows the back 
scattered fraction of light for oxygenated and de - oxygenated 
blood under uniform illumination — this is generated from 
Monte Carlo simulation using [ 12 ] . This give us an aggre 
gate attenuation coefficient ( -log ( ) that combines attenua 
tion due to absorption and scattering as well as the mean 
travel distance within tissue . FIG . 12C measures the total 
haemoglobin , formed by the sum of concentrations of these 
two chromaphores , with saturation then being determined as 
the ratio of oxygenated blood to total haemoglobin . Also , 
shown are an overlay ( bottom ) of the total haemoglobin , 
calculated from multispectral analysis , superimposed on the 
original endoscopic view ( top ) . 
( 0162 ] FIG . 13 presents an overview of the approach 
described herein for some implementations . The process 
includes capturing a spectral calibration for the laparoscope 
via a colour chart illuminated with the scopes standard 
lighting . When an RGB image is acquired from the laparo 
scope , for each pixel we alternately estimate the multispec 
tral signal from the RGB data camera calibration and current 
concentrations estimate ; then the concentrations estimate is 
updated from the current multispectral estimate and the 
Monte Carlo computed backscatter data . 
[ 0163 ] It will be appreciated that in the approach of FIG . 
13 , the RGB image is generally already acquired for pro 
viding video guidance of the laparoscope . Accordingly , the 
concentration information derived from this RGB signal can 
be considered as extra results that are available without 
changing the existing clinical equipment or procedure ( and 
hence with little or no additional cost or complexity ) . Note 
that this additional processing to obtain the concentration 
data from the RGB image may be performed in real - time 
( intra - operatively ) and / or post - operatively , i.e. as a form of 
analysis of an RGB image obtained and recorded during an 
operative procedure . 
[ 0164 ] In the implementations discussed above , the con 
centration estimation has generally been performed on a 
pixel by pixel basis . However , neighbourhood information 
might be used to improve this estimation ( especially in 
conditions of higher noise level ) . In one simple approach , 
the pixels might be grouped together into larger blocks of 
pixel , and a separate estimation performed for each pixel 
block . Alternatively , the estimation may still be performed 
on a pixel - by - pixel basis , but information from neighbour 
ing pixels may be used for the estimation procedure . Fur 
thermore , in addition to spatial proximity , temporal prox 
imity may also be used if the acquired image comprises a 
video sequence of images . For example , the estimated 
concentrations might be averaged over multiple frames to 
give a more accurate estimate . The skilled person will be 
aware of further methods for making use of such temporal 
and / or spatial proximity . ( Note that the use of temporal 
proximity may require spatial alignment or registration of 
different images if / when the camera position moves ; there 
are various known techniques for performing and / or 
enabling such alignment , e.g. by performing an image - to 
image registration , or by fixing a tracking device to the 
laparoscope ) . 

Further Implementations 
[ 0161 ] FIG . 12 is generally similar to FIG . 3 , but shows 
another implementation using a monocular laparoscope , 
with a central camera channel , surrounded by an annular 
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Further Discussion MSI data can be performed to satisfy the Beer - Lambert 
relation [ 5 ] , as discussed above . 
[ 0169 ] In the hybrid method , once an RGB image is 
captured , the 2D discrete Haar transform can be used to 
decompose the image into four components , three direc 
tional approximate derivatives and a residual low pass 
coefficient component . This decomposition can then be 
exploited for efficient computation , since it supports the use 
of ( computationally ) expensive estimation on less of the data 
( 1 = 22 + n where n is the level of decomposition ) . 
[ 0170 ] The matrix H can be expressed for an image 
window I = { Ixy , Ix , 1 + 1 , Ix + 1,19 Ix + 1 , 3 + 1 } as : 

Haar ( I ) = I * H ( 17 ) 

given that the 2d Haar matrix is formed as : 

1 1 1 

1 1 -1 -1 
H = 0.5 . 

-1 -1 

-1 1 -1 

[ 0165 ] As explained above , haemoglobin concentrations 
in tissue are important measurements that provide functional 
information and may also be used for the structural charac 
terisation of tissue types . In minimally invasive surgery 
( MIS ) , the use of haemoglobin concentration imaging of 
tissue surfaces using multispectral imaging ( MSI ) is prom 
ising as a non - ionising optical imaging modality that can 
monitor organ viability in transplant procedures [ 20 ] , [ 16 ] or 
be used to detect abnormal tissue . A major advantage of the 
MSI modality is that it is able to obtain wide field of view 
measurements without contact , thus allowing for monitoring 
large areas that cannot be observed through other sensing 
means , such as oxi - meter probes which can only give spot 
measurements . 
[ 0166 ] Techniques for MSI compatible with MIS are typi 
cally limited for real - time monitoring by either their capture 
rate [ 5 ] or data processing speed [ 23 ] , therefore limiting 
their use for imaging dynamic systems . Methods have been 
developed to estimate tissue haemoglobin concentr ions for 
monitoring purposes using fast filter wheels of minimal sets 
of filters [ 6 ] . However , in MIS the surgical environment 
makes the use specialised hardware complex , because addi 
tional regulatory and sterilisation requirements must be 
taken into account . Computational methods requiring mini 
mal hardware modification and using existing hardware are 
therefore highly attractive . Computational techniques that 
utilise the laparoscopic RGB video feed for tissue monitor 
ing at speeds greater than 15 Hz may require inflexible 
calibration [ 7 ] , or have difficulty dealing with scene motion 
[ 17 ] , or involve a trade - off in estimation accuracy of satu 
ration ( SO2 ) against total haemoglobin ( THb ) [ 24 ] . 
( 0167 ] Wavelet decompositions have been widely used in 
image processing to transform data into domain spaces 
where certain operations can be applied more efficiently or 
components of the signal with little entropy can be omitted 
[ 21 ] . Such a wavelet approach is described below , along 
with a proposed framework for processing frames of lapa 
roscopic video by Haar decomposition . This approach 
allows a hybrid technique that involves the use of two 
separate algorithms to process the various components of the 
compressed data representation . In particular , because the 
Haar wavelet normally produces large numbers of zeros in 
the transformed data set , certain information is concentrated 
in relatively few coefficients that can therefore be processed 
more effectively . As described below , the RGB image data 
can therefore be processed to arrive at a surrogate MSI 
signal though a dual optimisation approach , which is par 
ticularly effective for fairly smooth signals , such as laparo 
scopic video data . 

Note that the first component in the matrix is just an average 
value of the four pixel square , in effect a low pass filter ; the 
second and fourth columns are sensitive to variations along 
the x and y axes respectively , while the third column is 
sensitive to variability in xy ( diagonal ) . 
[ 0171 ] As this is a just a linear transformation , if we group 
each pixel data in windows of four elements we can include 
it in the construction of RGB data IRGB from the multispec 
tral signal In : 

CH'H = IRGB'H ( 19 ) 

for known camera spectral sensitivity matrix C. ( Equation 
19 is analogous to Equation 4 above , noting that Ic of 
Equation 4 , the channel intensity e.g. for R / G or B channels . 
corresponds to IRGB in Equation 19 ; in addition , Equation 19 
also omits the Poisson photon counting statistics , i.e. 
approximating the received light signal as continuous , as per 
classical optics ; see also Equation 13 above ) . 
[ 0172 ] The least squares solution for Equation 19 being : 

1x = { ( CTC ) TCP - IRGE : H ) -H ( 20 ) 

since H = H * . Similarly for the Tikhonov regularise solution 
as used by [ 24 ] , see also Equation 14 above , we can apply 
this method to the Haar transformed data as : 

1.H = ( CTC + T ) - ' CT.IRGB'H ( 21 ) 

where I is the identity matrix multiplied by a small constant 
y . Here we have used the same windowed grouping : 

IRGB = { IRGB , X , y » IRGB , X , Y + 1 » ?RGB , x + 1 , y » IRGB , x + 1 , 3 + 1 } ( 22 ) 

corresponding to the multispectral window : 
1 = { lm , x , y , x , 3 + 1,1mm x + l , xxl , x + 1 , 3 + 1 } ( 23 ) 

While this demonstrates how Tikhonov based estimation , 
such as used in Example 2 above , can be used on any of the 
Haar coefficients , to get better accuracy one can use a hybrid 
method in which the regularisation of Equation 21 is per 
formed only on the sparse directional components — i.e . , the 
three directional components . For the low - pass coefficients 
( corresponding to the first column of the 2d Haar matrix , the 
Bayesian method of [ 23 ] is utilised ( see also example 1 
above ) , since this Bayesian method is more accurate than 

Method 

[ 0168 ] Underpinning the hybrid technique is again the 
estimation of a signal surrogate to MSI but obtained from at 
least two images ( e.g. RGB video frames ) . As for the 
examples described above , this technique may utilise knowl 
edge of transmitted attenuation characteristics of tissue [ 9 ] 
and backscattered attenuation coefficients derived by Monte 
Carlo ( MC ) simulation [ 12 ] , to provide a model of the 
combined attenuation due to absorption and scattering [ 23 ] 
in the biological tissue ( N.B. since the camera and light 
source are usually on the same side of the biological tissue , 
e.g. during laparoscopic imaging ) . The fitting to surrogate 
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( 24 ) 

Tikhonov estimation . ( Note that we can regard the low pass 
coefficients as analogous to an over - exposed image taken at 
a lower resolution ) . 
[ 0173 ] Formally we can show that the method holds by 
substituting in the maximisation step of [ 23 ] with the low 
pass transformed data . Using H2p = 0.54 * [ 1 , 1 , 1 , 1 ] to 
represent the low pass component of the discrete Haar 
transform , the concentration estimation ?i from low pass data 
is given by : 

& X = -log ( HLP ) 

where & are the backscatter attenuation coefficients for oxy 
and de - oxy haemoglobin ( HbO2 and Hb ) . We solve for Â 
using least squares fitting , 

x = ( - ES ) - ' E'log ( ) , HLP ) ( 25 ) 

These concentration estimates are then used to generate the 
expected value for the multispectral data E [ 12 ] used to 
regularise then subsequent fitting iteration , this is defined as , 

( 26 ) 

substituting the concentration estimate from ( 24 ) and can 
celling terms the expected value will be the multispectral 
data transformed by HLP 

E [ / ] = 1 , HLP ( 26 ) 

Note that this applies to the low pass coefficients because 
they are all positive and so all terms remain real throughout . 
[ 0174 ] The expectation step of [ 23 ] is linear and so 
compatible with working on Haar transformed data . One 
change that we make to the expectation step is to change the 
prior on the expected spectrum from a value prior to a shape 
prior . We do this by computing the second derivative of 
E [ 1 ] and use that to regularise the second derivative of the 
estimated In , since this better regularises the estimation . 
[ 0175 ] As described above , once the surrogate MSI signal , 
In , is found , the estimation of the physical parameter of the 
biological tissue can be obtained by solving the Beer 
Lambert equation , or any other suitable equation relating the 
intensity of measured light and the absorption and scattering 
coefficients of the tissue . 

E [ 1 ] = e - sx 

same architecture , we implemented both of these methods 
for GPU using the CUDA programming language from 
Nvidia . We performed two variants of the method described 
herein , corresponding to single ( wl ) and multilevel ( w3 : 
three levels ) Haar decomposition . Here , the level of decom 
position represents the number of times the Haar decompo 
sition is applied , i.e. , the number of times the differences 
between pixels are calculated . For all methods , the accuracy 
was compared against the results of estimation from directly 
using the MSI data [ 5 ] . 
[ 0178 ] FIG . 14A show selected bands ( wavelengths ) from 
a multispectral datacube , and a corresponding RGB view 
synthesised according to the hybrid method described herein 
( denoted X and y ) . FIGS . 14B and 14C show comparisons 
between the total haemoglobin ( THb ) estimate ( g / litre ) and 
oxygen saturation ( SO2 ) estimate ( % ) of tissue obtained from 
a reference multispectral image ( left ) and a corresponding 
estimate from synthesised RGB images ( right ) . 
[ 0179 ] As seen in FIGS . 14A to 14C , the estimation from 
the hybrid method bears a strong visual similarity to the 
result of direct estimation from MSI data , with two notable 
variations . Firstly , in the hybrid method there is much less 
noise in the estimation , which can be interpreted as due to 
each of the MSI images being moderately noisy due to their 
limit waveband ( hence lower signal intensity ) . Such noise is 
inherently smoothed out when synthesising RGB data from 
the MSI datacube , as each RGB band integrates over many 
MSI bands due to the wider sensitivity of the respective 
colour channels . On the other hand , the RGB technique is 
less able to robustly estimate haemoglobin concentrations in 
areas of high illumination ( this can be clearly seen in the 
SO , estimation near the top of FIG . 14C ) . In addition , the 
generally smoother appearance of the synthesised results 
means that local variations in the MSI signal are lost due to 
both the synthesis of the RGB image and subsequently due 
to the regularisation in our estimation approach . However , 
overall the hybrid method was closer to that of [ 23 ] than 
[ 24 ] , as shown in Table 2 below . 

TABLE 2 

HbO2 and Hb estimation accuracy on synthetic data compared 
to direct estimation from multispectral data [ 5 ] . 

Computational 
architecture 

Execution time Mean squared error 
Hz g / litre Method 

25 
54 
25 

Bayes [ 23 ] 
Tikhonov [ 24 ] 
Bayes [ 23 ] 
Tikhonov [ 24 ] 
Proposed ( wl ) 
Proposed ( w3 ) 

CPU 
CPU 
CUDA 
CUDA 
CUDA 
CUDA 

0.0671 
0.282 
3.54 

43.5 
12.7 
14.4 

54 
36 
36 

Experiments and Results 
[ 0176 ] We conducted two experiments to validate the 
proposed algorithm . The first experiment used RGB views 
generated from in vivo animal experiment MSI data sets , 
which allow a comparison of the method described herein to 
a hardware implemented gold standard . Secondly we uti 
lised the method described herein to process video from a 
patch of tissue at the base of the tongue , showing that 
because we are able resolve at a high frame rate , we can 
detect the pulse rate by tracking a patch of tissue over time . 
Comparison with Hardware Multispectral Imaging Signals 
[ 0177 ] Real in vivo MSI data was used to generate syn 
thetic RGB images using known camera spectral sensitivity 
curves , calibrated from the spectral response of cameras on 
a Da Vinci surgical robot [ 25 ] . The MSI data comes from 
experiments in which MSI was used to monitor and evaluate 
organ viability , by measuring tissue perfusion and oxygen 
saturation , throughout uterine transplant procedures per 
formed on sheep and rabbits [ 20 ] . The data was chosen , inter 
alia , because it most closely resembles the envisioned clini 
cal use for the method described herein . To evaluate com 
putation speed and accuracy , we compared against [ 24 ] and 
[ 23 ] , however , to make a fair comparison of speed on the 

[ 0180 ] In terms of computational performance , the timed 
results of haemoglobin estimation were made using mega 
pixel sized input images . Timings were calculated including 
all pre - processing steps , which for the hybrid method 
described herein includes the initial Haar decomposition and 
final recomposition . Table 2 shows that the proposed hybrid 
method has a quicker estimation time than the Bayesian 
methods but a higher error , while conversely , the proposed 
hybrid methods are slower than the Tikhonov methods but 
have a much lower error . Table 2 also illustrates the dimin 
ishing returns for the for multileveled ( w3 ) variant of the 
described method compared to the single decomposition 
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level version ( wl ) , in that these two variations both have the 
same error performance albeit with a small computational 
variation in terms of speed . 
Experiments on In vivo Data From a Stereo - Laparoscope 
[ 0181 ] We captured video of the base of the tongue of an 
adult male using a Da Vinci surgical robot's stereo laparo 
scope . The laparoscopic camera was calibrated to estimate 
the channel sensitivity . We tracked a patch of tissue using the 
method of [ 22 ] over time in both left and right cameras , and 
processed the two views separately . Tracking and image 
warping was necessary in order to remove residual motion 
artefacts due to tongue movement allowing visualisation of 
the spectral and temporal variation of a selected region 
within a spatio - temporally registered signal . We then com 
pared the mean value of total haemoglobin as estimated 
from each view and observed a strong similarity in estima 
tion over time . ( There appears to be constant offset between 
the estimates from each view ; this could be due to a slight 
miscalibration of the spectral response curve for one of the 
cameras ) . 
[ 0182 ] We observed high frequency noise in the time 
series data , which might potentially be due to specular 
highlights moving as the tissue surface deformed and 
moved , or to imperfect tracking ( which is to be expected 
given the relatively difficult conditions ) . Processing the 
registered video signal after warping using a low pass filter , 
we were able to observe a periodic signal in the derivative 
of the time series which was aligned in both views . We 
believe this to be representative of physiological signals 
within the tissue due to cardiovascular activity . By looking 
at the Fourier transform of the change in THb estimation , the 
power spectrum peaked between 0.76 and 0.84 seconds , 
which corresponds to periodic signal of between 71 and 79 
cycles per minute matching the heart rate of the subject 
during the experimental acquisition . 
[ 0183 ] FIG . 15 illustrates the results discussed above . In 
particular , FIG . 15a shows the original RGB laparoscopic 
view for this data , FIG . 15b show the SO2 estimation 
overlaid on the laparoscopic view , FIG . 15c shows the THb 
estimation overlaid on the laparoscopic view . FIG . 15d 
shows the tracked THb over time from the left and right 
camera feeds separately this is reasonably constant . FIG . 15e 
shows the derivative after smoothing the THb trace for each 
camera view ( smoothing was performed due to large 
amounts of high frequency noise in the trace , believe to arise 
from roaming high - lights on tissue surface , and non - perfect 
tracking ) . FIG . 15f shows a frequency analysis of the change 
in THb over time ; although there is a lot of noise , fitting a 
polynomial curve finds the peak at between 0.76 and 0.84 
seconds . 
[ 0184 ] Above has been described a hybrid method for 
estimating haemoglobin concentration from RGB images . 
The method improves on the computational speed , which is 
important for real - time clinical applications , and can poten 
tially detect spatial and temporal variations in the oxy- and 
de - oxygenated blood flow within tissue close the exposed 
surface . The results on data from animal transplantation 
experiments illustrate the potential surrogate use of a hard 
ware MSI approach as a translatable method for monitoring and evaluating organs intra - operatively . 
[ 0185 ] As described above , a discrete Haar decomposition 
to separate individual video frames into low pass and 
directional coefficients , and a different multispectral estima 
tion technique is used on each . An increase in speed may be 

achieved by using fast Tikhonov regularisation on the direc 
tional coefficients , and more accurate ( but slower ) Bayesian 
estimation on the low pass coefficients . Note that apart from 
the change in estimation procedure , the same processing 
steps as described above for Examples 1 and 2 may still be 
utilised . For example , a colour image ( e.g. RGB ) of a region 
of biological tissue is acquired from a single image capture 
device ( e.g. , an RGB camera ) , and the multispectral image , 
In , is estimated , to allow determination of physical param 
eters of interest . As part of this estimation procedure , the 
image is filtered , for example by using a Haar decomposi 
tion , which derives image gradients . The Haar wavelet 
transformed images support the use of separate algorithms to 
process the various components of the transformed data 
because the directional coefficients tend to contain many 
small ( or zero ) values ; hence information is concentrated in 
low pass coefficients , with the former making a relatively 
small contribution to the overall solution . Accordingly , a 
hybrid ( dual optimisation approach is adopted , in which the 
low pass coefficients are processed by a high accuracy 
estimation method ( e.g. Bayesian or any other suitable 
method ) , while the directional coefficients are processed by 
a lower accuracy , but faster , method ( e.g. Tikhonov regu 
larisation , or any other suitable method ) . This increase in 
processing speed supports a higher frame rate , and so is 
particularly helpful for tracking temporal variation in signals 
( or for countering movement of the subject during imaging ) . 
[ 0186 ] The skilled person will be aware of various modi 
fication to the approach described above . For example , the 
Bayesian estimation may be applied to one or more of the 
directional components of the Haar transformed data if so 
desired ( e.g. to give a greater accuracy ) . Also , processing 
techniques described in relation to Example 1 and 2 , e.g. , 
such as use of an LUT to speed up calculation time , may also 
be employed in the hybrid method . 

CONCLUSION 
[ 0187 ] A method for estimating the value of a physical 
parameter of biological tissue , the method comprising : 
acquiring a colour image of the biological tissue ; extracting 
from the colour image at least two images in respective 
optical wavebands having a different spectral sensitivity 
from one another ; providing a physical model of the optical 
properties of the biological tissue , wherein the optical prop 
erties of the biological tissue are sensitive to the value of 
said physical parameter , and estimating the value of the 
physical parameter at a given location based on an intensity 
value at that location for each extracted image , wherein the 
estimating utilises the physical model of the optical prop 
erties of the biological tissue and the spectral sensitivity for 
each respective waveband . 
[ 0188 ] The acquired colour image typically represents a 
single snapshot that obtains colour information simultane 
ously in each of said respective optical wavebands . For 
example , the acquired colour image typically comprises a 
red - green - blue ( RGB ) image , i.e. a single image that 
includes colour information for each of three colour wave 
bands . The processing can then extract red , green and blue 
images from the original RGB image . 
[ 0189 ] Note that in many surgical procedures , such an 
RGB image is acquired anyway , e.g. for image - assisted 
surgery . Accordingly , the acquired image is already avail 
able for use in the estimation of the physical parameter , 
without requiring any additional imaging equipment or 
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procedures . The approach described herein provides addi 
tional information to a clinician with little or no negative 
impact on a patient or the overall clinical procedure . For 
example , the output may comprise a map of the value of the 
physical parameter which can be superimposed in real - time 
onto the acquired colour image . To support such real - time 
operation , the values of the physical parameter , given dif 
ferent intensity values in different wavebands of the 
extracted images , may be pre - computed and stored in a 
look - up table . 
[ 0190 ] In some cases the given location for which the 
physical parameter is determined corresponds to a single 
pixel of the image , while in other cases the given location 
corresponds to a region formed by multiple pixels of the 
acquired image . The region may potentially correspond to a 
given anatomical structure , which may be identified , for 
example , by a segmentation procedure . 
[ 0191 ] In some cases , the physical parameter relates to 
blood flow in vasculature within the biological tissue . For 
example , a first physical parameter to be estimated may 
comprise the concentration of oxygenated haemoglobin and 
a second physical parameter to be estimated may comprise 
the concentration of de - oxygenated haemoglobin . Such oxy 
genation of the haemoglobin changes the colour of the blood 
( makes it redder ) and hence is amenable to investigation by 
the approach described herein . Related physical parameters 
of interest include the total concentration of both oxygenated 
and de oxygenated haemoglobin and the oxygen saturation 
within the haemoglobin . The skilled person will be aware of 
further physical parameters that impact the colour of tissue , 
and hence might be investigated in this manner . 
[ 0192 ] In some implementations , the first and second 
colour images of the biological tissue are acquired using a 
stereoscopic image capture device . This may help to provide 
better estimates of the physical parameter , e.g. if the two 
cameras of the stereoscopic image capture device have 
slightly different RGB sensitivities , since this then provides 
additional data points for estimating the true spectrum 
arriving at the image capture point . 
[ 0193 ] A variety of statistical and algorithmic approaches 
can be utilised to derive the physical parameter from the 
extracted images . For example , the estimation may be 
performed using a Bayesian approach by performing a 
maximisation of : 

P ( a ( L ) I ( L ) . IM ( L ) ) = [ P ( I ( L ) IML ) a ( L ) xe 
( A ( L ) ) ] / [ P ( I ( L ) ... Im ( L ) ] 

wherein a ( L ) represents the physical parameter to be esti 
mated at location L , IL ( L ) ... Im ( L ) are the respective 
intensity values of M extracted images ( M22 ) at location L , 
and P ( a ( L ) ) is an assumed prior distribution of a , wherein 
P ( 1 , ( L ) ... IxLla ( L ) ) is determined using the physical 
model , and wherein the maximisation is performed with 
respect to a . In some implementations , P ( I , ( L ) ... Im ( L ) 
la ( L ) ) is determined by firstly using the physical model to 
estimate In ( L ) , which represents the spectral distribution of 
light from the biological tissue arriving at the image capture 
device , and secondly using the estimated la ( L ) and the 
spectral sensitivity for each respective waveband to deter 
mine I ( L ) ... Im ( L ) , e.g. by minimising the sum of squared 
differences . 
[ 0194 ] However , somewhat simpler approaches are also 
feasible , such as estimating the value of the physical param 
eter by the iterative steps of : predicting the intensity value at 
the given location for each optical waveband from the 

physical model using a current trial value of the physical 
parameter ; determining the difference at the given location 
between the predicted intensity value and the intensity value 
from the extracted image for each optical waveband ; if the 
determined difference is below a threshold , selecting the 
current trial value of the physical parameter as the estimated 
value , and if not , updating the current trial value and 
returning to perform said predicting step for a new iteration . 
The skilled person will be aware of further possible 
approaches for estimating the value of the physical param 
eter . 
[ 0195 ] Another approach which can provide trade - offs 
between computational power required and errors in the 
estimation has been described , in which a Haar wavelet 
transformation is performed on the captured image data 
before being processed according to one or more of the 
Tikhonov and Bayesian techniques . Although the Haar 
wavelet transform has been described herein as a method of 
pre - processing the captured images , the skilled person will 
be aware of other suitable transforms ( e.g. , such as other 
types of wavelet transforms ) that could be applied in a 
similar manner . 
[ 0196 ] The apparatus described herein may perform a 
number of software - controlled operations . In such cases , the 
software may run at least in part on special - purpose hard 
ware ( e.g. GPUs ) or on conventional systems with conven 
tional processors . The software may be loaded into such 
hardware , for example , by a wireless or wired communica 
tions link , or may be loaded by some other mechanisme.g . 
from a hard disk drive , or a flash memory device . 
[ 0197 ] The skilled person will appreciate that various 
embodiments have been described herein by way of 
example , and that different features from different embodi 
ments can be combined as appropriate . Accordingly , the 
scope of the presently claimed invention is to be defined by 
the appended claims and their equivalents . 
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1. A method for estimating the value of a physical 
parameter of biological tissue , the method comprising : 

acquiring a colour image of the biological tissue from a 
single image capture device ; 

extracting from the colour image at least two images in 
respective optical wavebands having a different spec 
tral sensitivity from one another , whereby a given 
location in the biological tissue is present in each of the 
extracted images ; 

providing a physical model of the optical properties of the 
biological tissue , wherein the optical properties of the 
biological tissue are sensitive to the value of said 
physical parameter ; and 

estimating the value of the physical parameter at said 
given location based on an intensity value at that 
location for each extracted image , wherein the estimat 
ing utilises the physical model of the optical properties 
of the biological tissue and the spectral sensitivity for 
each respective waveband . 

2. The method of claim 1 , wherein the acquired colour 
image represents a single snapshot that obtains colour infor 
mation simultaneously in each of said respective optical 
wavebands . 

3. The method of claim 2 , wherein the at least two images 
extracted from the acquired colour image are spatially and 
temporally coincident with one another . 

4. ( canceled ) 
5. The method of claim 1 , wherein the respective optical 

wavebands are at least partly overlapping . 
6. ( canceled ) 
7. ( canceled ) 
8. ( canceled ) 
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9. The method of claim 1 , wherein the physical parameter 
relates to blood flow in vasculature within the biological 
tissue ; and optionally : 
wherein a first physical parameter to be estimated com 

prises the concentration of oxygenated haemoglobin , a 
second physical parameter to be estimated comprises 
concentration of de - oxygenated haemoglobin , or both ; 

wherein the physical parameter comprises total concen 
tration of both oxygenated and de - oxygenated haemo 
globin ; or 

wherein the physical parameter comprises oxygen satu 
ration within the haemoglobin . 

10. ( canceled ) 
11. ( canceled ) 
12. ( canceled ) 
13. The method of claim 1 , further comprising : 
acquiring first and second colour images of the biological 

tissue using a stereoscopic image capture device ; and 
extracting , from each of the first and second colour 

images , at least two images in respective optical wave 
bands having a different spectral sensitivity from one 
another , whereby a given location in the biological 
tissue is present in all of the extracted images from the 
first and second colour images . 

14. The method of claim 1 , further comprising : 
acquiring first and second colour images of the biological 

tissue using a stereoscopic image capture device ; 
combining the first and second colour images to produce 

an acquired monocular colour image ; and 
extracting , from the acquired monocular colour image , at 

least two images in respective optical wavebands hav 
ing a different spectral sensitivity from one another , 
whereby a given location in the biological tissue is 
present in each of the extracted images . 

15. The method of claim 1 , further comprising providing 
information on the illumination of the biological tissue for 
use as part of the estimating . 

16. The method of claim 1 , further comprising estimating 
the value of a physical parameter of biological tissue at 
multiple locations in the acquired image to form a map 
showing a spatial distribution of the value of the physical 
parameter . 

17. The method of claim 16 , further comprising : 
showing the map of the value of the physical parameter in 

conjunction with the acquired colour image ; or 
showing the map of the value of the physical parameter 

superimposed onto the acquired colour image . 
18. ( canceled ) 
19. The method of claim 17 , wherein the map is displayed 

in real - time during a clinical procedure on the biological 
tissue . 

20. ( canceled ) 
21. The method of claim 1 , wherein the estimating 

includes using a Bayesian approach by performing a maxi 
misation of : 

22. The method of claim 21 , in which P ( 1 / ( L ) 
IxL ) la ( L ) ) is determined by firstly using the physical 
model to estimate Ia ( L ) , which represents the spectral dis 
tribution of light from the biological tissue arriving at the 
image capture device , and secondly using the estimated 
I ( L ) and the spectral sensitivity for each respective wave 
band to determine I ( L ) ... Im ( L ) . 

23. The method of claim 22 , wherein I ( L ) ... Im ( L ) are 
determined from the estimated Ia ( L ) and the spectral sensi 
tivity for each respective waveband by minimising the sum 
of squared differences . 

24. The method of claim 1 , wherein estimating the value 
of the physical parameter includes iteratively : 

predicting the intensity value at the given location for 
each optical waveband from the physical model using 
a current trial value of the physical parameter ; 

determining a difference at the given location between a 
predicted intensity value and the intensity value from 
the extracted image for each optical waveband ; 

if the determined difference is below a threshold , selecting 
a current trial value of the physical parameter as the 
estimated value , and if not , updating the current trial 
value and returning to perform said predicting for a 
new iteration . 

25. ( canceled ) 
26. ( canceled ) 
27. The method of claim 1 , wherein the method comprises 

filtering the at least two extracted images prior to estimating 
the value of the physical parameter , and wherein estimating 
the physical parameter involves estimating the physical 
parameter using the physical model and the filtered images . 

28. The method of claim 27 , wherein the filtering per 
forms a decomposition into a first component and a second 
component , wherein the second component has less entropy , 
is relatively sparse compared to the first component , or both . 

29. ( canceled ) 
30. ( canceled ) 
31. The method of claim 28 , wherein estimating the value 

of the physical parameter involves applying a first estima 
tion process to the first component and a second estimation 
process to the second component , wherein the first estima 
tion process is slower but more accurate than the second 
estimation process . 

32. ( canceled ) 
33. ( canceled ) 
34. A non - transitory computer readable medium compris 

ing instructions that , when implemented on a computer , 
cause the computer to perform the method of claim 1 . 

35. Apparatus for estimating a value of a physical param 
eter of biological tissue , the apparatus being configured to : 

acquire a colour image of the biological tissue from a 
single image capture device ; 

extract from the colour image at least two images in 
respective optical wavebands having a different spec 
tral sensitivity from one another , whereby a given 
location in the biological tissue is present in each of the 
extracted images ; 

provide a physical model of the optical properties of the 
biological tissue , wherein the optical properties of the 
biological tissue are sensitive to the value of said 
physical parameter ; and 

estimate the value of the physical parameter at said given 
location based on an intensity value at that location for 
each extracted image , wherein the estimating utilises 

P ( A ( L ) I ( L ) ... Im ( L ) ) = [ P ( 11 ( L ) ... Im ( L ) la ( L ) ) xP 
( a ( L ) ) ] / [ P ( I ( L ) ... Im ( L ) ] 

wherein a ( L ) represents the physical parameter to be 
estimated at location L , I ( L ) . IM ( L ) are the 
respective intensity values of M extracted images 
( M22 ) at location L , and P ( a ( L ) ) is an assumed prior 
distribution of a , wherein P ( 1 / ( L ) ... Im ( L ) la ( L ) ) is 
determined using the physical model , and wherein the 
maximisation is performed with respect to a . 
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the physical model of the optical properties of the 
biological tissue and the spectral sensitivity for each 
respective waveband . 

36. ( canceled ) 
37. ( canceled ) 


