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KINEMATIC CHAIN MOTION
PREDICTIONS USING RESULTS FROM
MULTIPLE APPROACHES COMBINED VIA
AN ARTIFICIAL NEURAL NETWORK

RELATED APPLICATIONS

[0001] The present application relates to U.S. patent appli-
cation Ser. No. 16/044,984, filed Jul. 25, 2018 and entitled
“Calibration of Measurement Units in Alignment with a
Skeleton Model to Control a Computer System,” U.S. patent
application Ser. No. 15/996,389, filed Jun. 1, 2018 and
entitled “Motion Predictions of Overlapping Kinematic
Chains of a Skeleton Model used to Control a Computer
System,” U.S. patent application Ser. No. 15/973,137, filed
May 7, 2018 and entitled “Tracking User Movements to
Control a Skeleton Model in a Computer System,” U.S.
patent application Ser. No. 15/868,745, filed Jan. 11, 2018
and entitled “Correction of Accumulated Errors in Inertial
Measurement Units Attached to a User,” U.S. patent appli-
cation Ser. No. 15/864,860, filed Jan. 8, 2018 and entitled
“Tracking Torso Leaning to Generate Inputs for Computer
Systems,” U.S. patent application Ser. No. 15/847,669, filed
Dec. 19, 2017 and entitled “Calibration of Inertial Measure-
ment Units Attached to Arms of a User and to a Head
Mounted Device,” U.S. patent application Ser. No. 15/817,
646, filed Nov. 20, 2017 and entitled “Calibration of Inertial
Measurement Units Attached to Arms of a User to Generate
Inputs for Computer Systems,” U.S. patent application Ser.
No. 15/813,813, filed Nov. 15, 2017 and entitled “Tracking
Torso Orientation to Generate Inputs for Computer Sys-
tems,” U.S. patent application Ser. No. 15/792,255, filed
Oct. 24, 2017 and entitled “Tracking Finger Movements to
Generate Inputs for Computer Systems,” U.S. patent appli-
cation Ser. No. 15/787,555, filed Oct. 18, 2017 and entitled
“Tracking Arm Movements to Generate Inputs for Computer
Systems,” and U.S. patent application Ser. No. 15/492,915,
filed Apr. 20, 2017 and entitled “Devices for Controlling
Computers based on Motions and Positions of Hands.” The
entire disclosures of the above-referenced related applica-
tions are hereby incorporated herein by reference.

FIELD OF THE TECHNOLOGY

[0002] At least a portion of the present disclosure relates
to computer input devices in general and more particularly
but not limited to input devices for virtual reality and/or
augmented/mixed reality applications implemented using
computing devices, such as mobile phones, smart watches,
similar mobile devices, and/or other devices.

BACKGROUND

[0003] U.S. Pat. App. Pub. No. 2014/0028547 discloses a
user control device having a combined inertial sensor to
detect the movements of the device for pointing and select-
ing within a real or virtual three-dimensional space.
[0004] U.S. Pat. App. Pub. No. 2015/0277559 discloses a
finger-ring-mounted touchscreen having a wireless trans-
ceiver that wirelessly transmits commands generated from
events on the touchscreen.

[0005] U.S. Pat. App. Pub. No. 2015/0358543 discloses a
motion capture device that has a plurality of inertial mea-
surement units to measure the motion parameters of fingers
and a palm of a user.
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[0006] U.S. Pat. App. Pub. No. 2007/0050597 discloses a
game controller having an acceleration sensor and a gyro
sensor. U.S. Pat. No. D772,986 discloses the ornamental
design for a wireless game controller.

[0007] Chinese Pat. App. Pub. No. 103226398 discloses
data gloves that use micro-inertial sensor network technolo-
gies, where each micro-inertial sensor is an attitude and
heading reference system, having a tri-axial micro-electro-
mechanical system (MEMS) micro-gyroscope, a tri-axial
micro-acceleration sensor and a tri-axial geomagnetic sensor
which are packaged in a circuit board. U.S. Pat. App. Pub.
No. 2014/0313022 and U.S. Pat. App. Pub. No. 2012/
0025945 disclose other data gloves.

[0008] U.S. Pat. App. Pub. No. 2016/0085310 discloses
techniques to track hand or body pose from image data in
which a best candidate pose from a pool of candidate poses
is selected as the current tracked pose.

[0009] U.S. Pat. App. Pub. No. 2017/0344829 discloses an
action detection scheme using a recurrent neural network
(RNN) where joint locations are applied to the recurrent
neural network (RNN) to determine an action label repre-
senting the action of an entity depicted in a frame of a video.
[0010] The disclosures of the above discussed patent
documents are hereby incorporated herein by reference.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The embodiments are illustrated by way of
example and not limitation in the figures of the accompa-
nying drawings in which like references indicate similar
elements.

[0012] FIG. 1 illustrates a system to track user movements
according to one embodiment.

[0013] FIG. 2 illustrates a system to control computer
operations according to one embodiment.

[0014] FIG. 3 illustrates a skeleton model that can be
controlled by tracking user movements according to one
embodiment.

[0015] FIGS. 4 and 5 show methods to train a recurrent
neural network (RNN) and use the RNN to predict move-
ment measurements of one tracking system based on move-
ment measurements of another tracking system according to
one embodiment.

[0016] FIGS. 6 and 7 show methods to train a recurrent
neural network (RNN) and use the RNN to predict move-
ment measurements of omitted tracking devices based on
remaining tracking devices according to one embodiment.

[0017] FIGS. 8 and 9 show a method to track user move-
ments using an artificial neural network (ANN) according to
one embodiment.

[0018] FIG. 10 illustrates the use of a bidirectional long
short-term memory (BLSTM) network to combine the
results from different artificial neural networks according to
one embodiment.

[0019] FIG. 11 illustrates another technique to combine
the results from different artificial neural networks for
kinematic chains that have overlapping portions according
to one embodiment.

[0020] FIG. 12 shows a method to train multiple artificial
neural networks for multiple kinematic chains that have
overlapping portions according to one embodiment.

[0021] FIG. 13 shows a method to predict motion mea-
surements of an overlapping portion of multiple kinematic
chains that are module using separate artificial neural net-
works according to one embodiment.
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[0022] FIG. 14 shows a method to use a skeleton model
having multiple artificial neural networks for multiple kine-
matic chains according to one embodiment.

[0023] FIG. 15 illustrates a system to track arm move-
ments according to one embodiment.

[0024] FIG. 16 illustrates a skeleton model of an arm.
[0025] FIG. 17 illustrates the determination of the orien-
tation of a forearm according to one embodiment.

[0026] FIG. 18 shows a method to combine orientations of
a part in a kinematic chain computed using different
approaches.

[0027] FIG. 19 shows a method to train an artificial neural
network to classify orientation results computed using dif-
ferent techniques.

[0028] FIG. 20 shows a method to control a computer
model of a kinematic chain according to one embodiment.

DETAILED DESCRIPTION

[0029] The following description and drawings are illus-
trative and are not to be construed as limiting. Numerous
specific details are described to provide a thorough under-
standing. However, in certain instances, well known or
conventional details are not described to avoid obscuring the
description. References to one or an embodiment in the
present disclosure are not necessarily references to the same
embodiment; and, such references mean at least one.
[0030] At least some embodiments disclosed herein allow
the tracking of a reduced number of portions of a user using
micro-electromechanical system (MEMS) inertial measure-
ment units (IMUs) and using an artificial neural network to
control a skeleton model in a computer system having more
than the reduced number of portions connected via joints,
where each portion may be considered as rigid and movable
relative other portions through rotation at the joints.
[0031] A kinematic chain is an assembly of rigid parts
connected by joints. A skeleton model of a user, or a portion
of the user, can be constructed as a set of rigid parts
connected by joints in a way corresponding to the bones of
the user, or groups of bones, that can be considered as rigid
parts.

[0032] For example, the head, the torso, the left and right
upper arms, the left and right forearms, the palms, phalange
bones of fingers, metacarpal bones of thumbs, upper legs,
lower legs, and feet can be considered as rigid parts that are
connected via various joints, such as the neck, shoulders,
elbows, wrist, and finger joints.

[0033] A skeleton model of a user can be constructed
based on rigid models of body parts of the user parts and the
corresponding joints; and the relative positions and/or ori-
entations of the rigid parts collectively represent the pose of
the user and/or the skeleton model. The skeleton model of
the user can be used to control the presentation of an avatar
of the user, to identify the gesture inputs of the user, and/or
to make a virtual realty or augmented reality presentation of
the user.

[0034] FIG. 1 illustrates a system to track user movements
according to one embodiment.

[0035] FIG. 1 illustrates various parts of a user, such as the
torso (101) of the user, the head (107) of the user, the upper
arms (103 and 105) of the user, the forearms (112 and 114)
of the user, and the hands (106 and 108) of the user.
[0036] In an application illustrated in FIG. 1, the hands
(106 and 108) of the user are considered rigid parts movable
around the wrists of the user. In other applications, the palms
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and finger bones of the user can be further tracked for their
movements relative to finger joints (e.g., to determine the
hand gestures of the user made using relative positions
among fingers of a hand and the palm of the hand).

[0037] In FIG. 1, the user wears several sensor devices
(111, 113, 115, 117 and 119) that track the orientations of
parts of the user that are considered, or recognized as, rigid
in an application.

[0038] In an application illustrated in FIG. 1, rigid parts of
the user are movable relative to the torso (101) of the user
and relative to each other. Examples of the rigid parts
include the head (107), the upper arms (103 and 105), the
forearms (112 and 114), and the hands (106 and 108). The
joints, such as neck, shoulder, elbow, and/or wrist, connect
the rigid parts of the user to form one or more kinematic
chains. The kinematic chains can be modeled in a computing
device (141) to control the application.

[0039] To track the relative positions/orientations of rigid
parts in a kinematic chain, a tracking device can be attached
to each individual rigid part in the kinematic chain to
measure its orientation.

[0040] In general, the position and/or orientation of a rigid
part in a reference system (100) can be tracked using one of
many systems known in the field. Some of the systems may
use one or more cameras to take images of a rigid part
marked using optical markers and analyze the images to
compute the position and/or orientation of the part. Some of
the systems may track the rigid part based on signals
transmitted from, or received at, a tracking device attached
to the rigid part, such as radio frequency signals, infrared
signals, ultrasound signals. The signals may correspond to
signals received in the tracking device, and/or signals emit-
ted from the tracking device. Some of the systems may use
inertial measurement units (IMUs) to track the position
and/or orientation of the tracking device.

[0041] In FIG. 1, the sensor devices (111, 113, 115, 117
and 119) are used to track some of the rigid parts (e.g., 107,
103, 105, 106, 108) in the one or more kinematic chains, but
sensor devices are omitted from other rigid parts (101, 112,
114) in the one or more kinematic chains to reduce the
number of sensor devices used and/or to improve user
experience for wearing the reduced number of sensor
devices.

[0042] The computing device (141) has a prediction model
(141) trained to generate predicted measurements of parts
(101, 112, 114, 107, 103, 105, 106, and/or 108) of the user
based on the measurements of the sensor devices (111, 113,
115, 117 and 119).

[0043] For example, the prediction model (141) can be
implemented using an artificial neural network in the com-
puting device (141) to predict the measurements of the
orientations of the rigid parts (101, 112, 114) that have
omitted sensor devices, based on the measurements of the
orientations rigid parts (107, 103, 105, 106, 108) that have
the attached sensor devices (111, 113, 115, 117 and 119).
[0044] Further, the artificial neural network can be trained
to predict the measurements of the orientations of the rigid
parts (107, 103, 105, 106, 108) that would be measured by
another system (e.g., an optical tracking system), based on
the measurement of the attached sensor devices (111, 113,
115, 117 and 119) that measure orientations using a different
technique (e.g., IMUs).

[0045] The sensor devices (111, 113, 115, 117, 119) com-
municate their movement measurements to the computing
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device (141), which computes or predicts the orientation of
the rigid parts (107, 103, 105, 106, 108, 101, 112, 114) by
applying the measurements obtained from the attached sen-
sor devices (111, 113, 115, 117 and 119) as inputs to an
artificial neural network trained in a way as further discussed
below.

[0046] In some implementations, each of the sensor
devices (111, 113, 115, 117 and 119) communicates its
measurements directly to the computing device (141) in a
way independent from the operations of other sensor
devices.

[0047] Alternative, one of the sensor devices (111, 113,
115, 117 and 119) may function as a base unit that receives
measurements from one or more other sensor devices and
transmit the bundled and/or combined measurements to the
computing device (141). In some instances, the artificial
neural network is implemented in the base unit and used to
generate the predicted measurements that are communicated
to the computing device (141).

[0048] Preferably, wireless connections made via a per-
sonal area wireless network (e.g., Bluetooth connections), or
a local area wireless network (e.g., Wi-Fi connections) are
used to facilitate the communication from the sensor devices
(111, 113, 115, 117 and 119) to the computing device (141).
[0049] Alternatively, wired connections can be used to
facilitate the communication among some of the sensor
devices (111, 113, 115, 117 and 119) and/or with the com-
puting device (141).

[0050] For example, a hand module (117 or 119) attached
to or held in a corresponding hand (106 or 108) of the user
may receive the motion measurements of a corresponding
arm module (115 or 113) and transmit the motion measure-
ments of the corresponding hand (106 or 108) and the
corresponding upper arm (105 or 103) to the computing
device (141).

[0051] The hand (106), the forearm (114), and the upper
arm (105) can be considered a kinematic chain, for which an
artificial neural network can be trained to predict the orien-
tation measurements generated by an optical track system,
based on the sensor inputs from the sensor devices (117 and
115) that are attached to the hand (106) and the upper arm
(105), without a corresponding device on the forearm (114).
[0052] Optionally or in combination, the hand module
(e.g., 117) may combine its measurements with the mea-
surements of the corresponding arm module (115) to com-
pute the orientation of the forearm connected between the
hand (106) and the upper arm (105), in a way as disclosed
in U.S. patent application Ser. No. 15/787,555, filed Oct. 18,
2017 and entitled “Tracking Arm Movements to Generate
Inputs for Computer Systems”, the entire disclosure of
which is hereby incorporated herein by reference.

[0053] For example, the hand modules (117 and 119) and
the arm modules (115 and 113) can be each respectively
implemented via a base unit (or a game controller) and an
arm/shoulder module discussed in U.S. Pat. App. Pub. No.
15/492,915, filed Apr. 20, 2017 and entitled “Devices for
Controlling Computers based on Motions and Positions of
Hands”, the entire disclosure of which application is hereby
incorporated herein by reference.

[0054] Insome implementations, the head module (111) is
configured as a base unit that receives the motion measure-
ments from the hand modules (117 and 119) and the arm
modules (115 and 113) and bundles the measurement data
for transmission to the computing device (141). In some
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instances, the computing device (141) is implemented as
part of the head module (111). The head module (111) may
further determine the orientation of the torso (101) from the
orientation of the arm modules (115 and 113) and/or the
orientation of the head module (111), using an artificial
neural network trained for a corresponding kinematic chain,
which includes the upper arms (103 and 105), the torso
(101), and/or the head (107).

[0055] For the determination of the orientation of the torso
(101), the hand modules (117 and 119) are optional in the
system illustrated in FIG. 1.

[0056] Further, in some instances the head module (111) is
not used in the tracking of the orientation of the torso (101)
of the user.

[0057] Typically, the measurements of the sensor devices
(111, 113, 115, 117 and 119) are calibrated for alignment
with a common reference system, such as a coordinate
system (100).

[0058] After the calibration, the hands, arms (105, 103),
the head (107) and the torso (101) of the user may move
relative to each other and relative to the coordinate system
(100). The measurements of the sensor devices (111, 113,
115, 117 and 119) provide orientations of the hands (106 and
108), the upper arms (105, 103), and the head (107) of the
user relative to the coordinate system (100). The computing
device (141) computes, estimates, or predicts the current
orientation of the torso (101) and/or the forearms (112 and
114) from the current orientations of the upper arms (105,
103), the current orientation the head (107) of the user,
and/or the current orientation of the hands (106 and 108) of
the user and their orientation history using the prediction
model (116).

[0059] Optionally or in combination, the computing
device (141) may further compute the orientations of the
forearms from the orientations of the hands (106 and 108)
and upper arms (105 and 103), e.g., using a technique
disclosed in U.S. patent application Ser. No. 15/787,555,
filed Oct. 18, 2017 and entitled “Tracking Arm Movements
to Generate Inputs for Computer Systems”, the entire dis-
closure of which is hereby incorporated herein by reference.
[0060] At least some embodiments disclosed herein allow
the determination or estimation of the orientation of the
torso (101) and/or the forearms (112 and 114) from the
orientations of the upper arms (105 and 103), the orientation
of the head (107), and/or the orientation of the hands (106
and 108) without the need for additional sensor modules
being attached to the torso (101) and the forearms (112 and
114).

[0061] FIG. 2 illustrates a system to control computer
operations according to one embodiment. For example, the
system of FIG. 2 can be implemented via attaching the arm
modules (115 and 113) to the upper arms (105 and 103)
respectively, the head module (111) to the head (107) and/or
hand modules (117 and 119), in a way illustrated in FIG. 1.
[0062] In FIG. 2, the head module (111) and the arm
module (113) have micro-electromechanical system
(MEMY) inertial measurement units (IMUs) (121 and 131)
that measure motion parameters and determine orientations
of the head (107) and the upper arm (103).

[0063] Similarly, the hand modules (117 and 119) can also
have IMUs. In some applications, the hand modules (117
and 119) measure the orientation of the hands (106 and 108)
and the movements of fingers are not separately tracked. In
other applications, the hand modules (117 and 119) have
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separate IMUs for the measurement of the orientations of the
palms of the hands (106 and 108), as well as the orientations
of at least some phalange bones of at least some fingers on
the hands (106 and 108). Examples of hand modules can be
found in U.S. patent application Ser. No. 15/792,255, filed
Oct. 24, 2017 and entitled “Tracking Finger Movements to
Generate Inputs for Computer Systems,” the entire disclo-
sure of which is hereby incorporated herein by reference.
[0064] Each of the IMUs (131 and 121) has a collection of
sensor components that enable the determination of the
movement, position and/or orientation of the respective
IMU along a number of axes. Examples of the components
are: a MEMS accelerometer that measures the projection of
acceleration (the difference between the true acceleration of
an object and the gravitational acceleration); a MEMS
gyroscope that measures angular velocities; and a magne-
tometer that measures the magnitude and direction of a
magnetic field at a certain point in space. In some embodi-
ments, the IMUs use a combination of sensors in three and
two axes (e.g., without a magnetometer).

[0065] The computing device (141) has a prediction model
(116) and a motion processor (145). The measurements of
the IMUs (e.g., 131, 121) from the head module (111), arm
modules (e.g., 113 and 115), and/or hand modules (e.g., 117
and 119) are used in the prediction module (116) to generate
predicted measurements of at least some of the parts that do
not have attached sensor modules, such as the torso (101),
and forearms (112 and 114). The predicted measurements
and/or the measurements of the IMUs (e.g., 131, 121) are
used in the motion processor (145).

[0066] The motion processor (145) has a skeleton model
(143) of the user (e.g., illustrated FIG. 3). The motion
processor (145) controls the movements of the parts of the
skeleton model (143) according to the movements/orienta-
tions of the corresponding parts of the user. For example, the
orientations of the hands (106 and 108), the forearms (112
and 114), the upper arms (103 and 105), the torso (101), the
head (107), as measured by the IMUs of the hand modules
(117 and 119), the arm modules (113 and 115), the head
module (111) sensor modules and/or predicted by the pre-
diction model (116) based on the IMU measurements are
used to set the orientations of the corresponding parts of the
skeleton model (143).

[0067] Since the torso (101) does not have a separately
attached sensor module, the movements/orientation of the
torso (101) is predicted using the prediction model (116)
using the sensor measurements from sensor modules on a
kinematic chain that includes the torso (101). For example,
the prediction model (116) can be trained with the motion
pattern of a kinematic chain that includes the head (107), the
torso (101), and the upper arms (103 and 105) and can be
used to predict the orientation of the torso (101) based on the
motion history of the head (107), the torso (101), and the
upper arms (103 and 105) and the current orientations of the
head (107), and the upper arms (103 and 105).

[0068] Similarly, since a forearm (112 or 114) does not
have a separately attached sensor module, the movements/
orientation of the forearm (112 or 114) is predicted using the
prediction model (116) using the sensor measurements from
sensor modules on a kinematic chain that includes the
forearm (112 or 114). For example, the prediction model
(116) can be trained with the motion pattern of a kinematic
chain that includes the hand (106), the forearm (114), and the
upper arm (105) and can be used to predict the orientation
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of the forearm (114) based on the motion history of the hand
(106), the forearm (114), the upper arm (105) and the current
orientations of the hand (106), and the upper arm (105).
[0069] The skeleton model (143) is controlled by the
motion processor (145) to generate inputs for an application
(147) running in the computing device (141). For example,
the skeleton model (143) can be used to control the move-
ment of an avatar/model of the arms (112, 114, 105 and 103),
the hands (106 and 108), the head (107), and the torso (101)
of the user of the computing device (141) in a video game,
a virtual reality, a mixed reality, or augmented reality, etc.
[0070] Preferably, the arm module (113) has a microcon-
troller (139) to process the sensor signals from the IMU
(131) of the arm module (113) and a communication module
(133) to transmit the motion/orientation parameters of the
arm module (113) to the computing device (141). Similarly,
the head module (111) has a microcontroller (129) to process
the sensor signals from the IMU (121) of the head module
(111) and a communication module (123) to transmit the
motion/orientation parameters of the head module (111) to
the computing device (141).

[0071] Optionally, the arm module (113) and the head
module (111) have LED indicators (137 and 127) respec-
tively to indicate the operating status of the modules (113
and 111).

[0072] Optionally, the arm module (113) has a haptic
actuator (138) respectively to provide haptic feedback to the
user.

[0073] Optionally, the head module (111) has a display
device (127) and/or buttons and other input devices (125),
such as a touch sensor, a microphone, a camera, etc.
[0074] Insome implementations, the head module (111) is
replaced with a module that is similar to the arm module
(113) and that is attached to the head (107) via a strap or is
secured to a head mount display device.

[0075] Insome applications, the hand module (119) can be
implemented with a module that is similar to the arm module
(113) and attached to the hand via holding or via a strap.
Optionally, the hand module (119) has buttons and other
input devices, such as a touch sensor, a joystick, etc.
[0076] For example, the handheld modules disclosed in
U.S. patent application Ser. No. 15/792,255, filed Oct. 24,
2017 and entitled “Tracking Finger Movements to Generate
Inputs for Computer Systems”, U.S. patent application Ser.
No. 15/787,555, filed Oct. 18, 2017 and entitled “Tracking
Arm Movements to Generate Inputs for Computer Sys-
tems”, and/or U.S. patent application Ser. No. 15/492,915,
filed Apr. 20, 2017 and entitled “Devices for Controlling
Computers based on Motions and Positions of Hands” can
be used to implement the hand modules (117 and 119), the
entire disclosures of which applications are hereby incorpo-
rated herein by reference.

[0077] When a hand module (e.g., 117 or 119) tracks the
orientations of the palm and a selected set of phalange
bones, the motion pattern of a kinematic chain of the hand
captured in the predictive mode (116) can be used in the
prediction model (116) to predict the orientations of other
phalange bones that do not wear sensor devices.

[0078] FIG. 2 shows a hand module (119) and an arm
module (113) as examples. In general, an application for the
tracking of the orientation of the torso (101) typically uses
two arm modules (113 and 115) as illustrated in FIG. 1. The
head module (111) can be used optionally to further improve
the tracking of the orientation of the torso (101). Hand
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modules (117 and 119) can be further used to provide
additional inputs and/or for the prediction/calculation of the
orientations of the forearms (112 and 114) of the user.
[0079] Typically, an IMU (e.g., 131 or 121) in a module
(e.g., 113 or 111) generates acceleration data from acceler-
ometers, angular velocity data from gyrometers/gyroscopes,
and/or orientation data from magnetometers. The microcon-
trollers (139 and 129) perform preprocessing tasks, such as
filtering the sensor data (e.g., blocking sensors that are not
used in a specific application), applying calibration data
(e.g., to correct the average accumulated error computed by
the computing device (141)), transforming motion/position/
orientation data in three axes into a quaternion, and pack-
aging the preprocessed results into data packets (e.g., using
a data compression technique) for transmitting to the host
computing device (141) with a reduced bandwidth require-
ment and/or communication time.

[0080] Each of the microcontrollers (129, 139) may
include a memory storing instructions controlling the opera-
tions of the respective microcontroller (129 or 139) to
perform primary processing of the sensor data from the IMU
(121, 131) and control the operations of the communication
module (123, 133), and/or other components, such as the
LED indicator (137), the haptic actuator (138), buttons and
other input devices (125), the display device (127), etc.
[0081] The computing device (141) may include one or
more microprocessors and a memory storing instructions to
implement the motion processor (145). The motion proces-
sor (145) may also be implemented via hardware, such as
Application-Specific Integrated Circuit (ASIC) or Field-
Programmable Gate Array (FPGA).

[0082] In some instances, one of the modules (111, 113,
115, 117, and/or 119) is configured as a primary input
device; and the other module is configured as a secondary
input device that is connected to the computing device (141)
via the primary input device. A secondary input device may
use the microprocessor of its connected primary input device
to perform some of the preprocessing tasks. A module that
communicates directly to the computing device (141) is
consider a primary input device, even when the module does
not have a secondary input device that is connected to the
computing device via the primary input device.

[0083] In some instances, the computing device (141)
specifies the types of input data requested, and the condi-
tions and/or frequency of the input data; and the modules
(111, 113, 115, 117, and/or 119) report the requested input
data under the conditions and/or according to the frequency
specified by the computing device (141). Different reporting
frequencies can be specified for different types of input data
(e.g., accelerometer measurements, gyroscope/gyrometer
measurements, magnetometer measurements, position, ori-
entation, velocity).

[0084] In general, the computing device (141) may be a
data processing system, such as a mobile phone, a desktop
computer, a laptop computer, a head mount virtual reality
display, a personal medial player, a tablet computer, etc.
[0085] FIG. 3 illustrates a skeleton model that can be
controlled by tracking user movements according to one
embodiment. For example, the skeleton model of FIG. 3 can
be used in the motion processor (145) of FIG. 2.

[0086] The skeleton model illustrated in FIG. 3 includes a
torso (232) and left and right upper arms (203 and 205) that
can move relative to the torso (232) via the shoulder joints
(234 and 241). The skeleton model may further include the
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forearms (215 and 233), hands (206 and 208), neck, head
(207), legs and feet. In some instances, a hand (206) includes
a palm connected to phalange bones (e.g., 245) of fingers,
and metacarpal bones of thumbs via joints (e.g., 244).
[0087] The positions/orientations of the rigid parts of the
skeleton model illustrated in FIG. 3 are controlled by the
measured orientations of the corresponding parts of the user
illustrated in FIG. 1. For example, the orientation of the head
(207) of the skeleton model is configured according to the
orientation of the head (107) of the user as measured using
the head module (111); the orientation of the upper arm
(205) of the skeleton model is configured according to the
orientation of the upper arm (105) of the user as measured
using the arm module (115); and the orientation of the hand
(206) of the skeleton model is configured according to the
orientation of the hand (106) of the user as measured using
the hand module (117); etc.

[0088] The prediction model (116) can have multiple
artificial neural networks trained for different motion pat-
terns of different kinematic chains.

[0089] For example, a clavicle kinematic chain can
include the upper arms (203 and 205), the torso (232)
represented by the clavicle (231), and optionally the head
(207), connected by shoulder joints (241 and 234) and the
neck. The clavicle kinematic chain can be used to predict the
orientation of the torso (232) based on the motion history of
the clavicle kinematic chain and the current orientations of
the upper arms (203 and 205), and the head (207).

[0090] For example, a forearm kinematic chain can
include the upper arm (205), the forearm (215), and the hand
(206) connected by the elbow joint (242) and the wrist joint
(243). The forearm kinematic chain can be used to predict
the orientation of the forearm (215) based on the motion
history of the forearm kinematic chain and the current
orientations of the upper arm (205), and the hand (206).
[0091] For example, a hand kinematic chain can include
the palm of the hand (206), phalange bones (245) of fingers
on the hand (206), and metacarpal bones of the thumb on the
hand (206) connected by joints in the hand (206). The hand
kinematic chain can be used to predict the orientation of the
phalange bones and metacarpal bones based on the motion
history of the hand kinematic chain and the current orien-
tations of the palm, and a subset of the phalange bones and
metacarpal bones tracked using IMUs in a hand module
(e.g., 117 or 119).

[0092] For example, a torso kinematic chain may include
clavicle kinematic chain and further include forearms and/or
hands and legs. For example, a leg kinematic chain may
include a foot, a lower leg, and an upper leg.

[0093] An artificial neural network of the prediction model
(116) can be trained using a supervised machine learning
technique to predict the orientation of a part in a kinematic
chain based on the orientations of other parts in the kine-
matic chain such that the part having the predicted orienta-
tion does not have to wear a separate sensor device to track
its orientation.

[0094] Further, an artificial neural network of the predic-
tion model (116) can be trained using a supervised machine
learning technique to predict the orientations of parts in a
kinematic chain that can be measured using one tracking
technique based on the orientations of parts in the kinematic
chain that are measured using another tracking technique.
[0095] For example, the tracking system as illustrated in
FIG. 2 measures the orientations of the modules (111, 113,
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..., 119)using IMUs (e.g., 111, 113, . . . ). The inertial-based
sensors offer good user experiences, have less restrictions on
the use of the sensors, and can be implemented in a
computational efficient way. However, the inertial-based
sensors may be less accurate than certain tracking methods
in some situations, and can have drift errors and/or accu-
mulated errors through time integration.

[0096] For example, an optical tracking system can use
one or more cameras to track the positions and/or orienta-
tions of optical markers that are in the fields of view of the
cameras. When the optical markers are within the fields of
view of the cameras, the images captured by the cameras can
be used to compute the positions and/or orientations of
optical markers and thus the orientations of parts that are
marked using the optical markers. However, the optical
tracking system may not be as user friendly as the inertial-
based tracking system and can be more expensive to deploy.
Further, when an optical marker is out of the fields of view
of cameras, the positions and/or orientations of optical
marker cannot be determined by the optical tracking system.
[0097] An artificial neural network of the prediction model
(116) can be trained to predict the measurements produced
by the optical tracking system based on the measurements
produced by the inertial-based tracking system. Thus, the
drift errors and/or accumulated errors in inertial-based mea-
surements can be reduced and/or suppressed, which reduces
the need for re-calibration of the inertial-based tracking
system.

[0098] FIG. 4 shows a method to train a recurrent neural
network (RNN) (307). For example, the method of FIG. 4
can be used to generate the prediction model (116) of FIG.
1 and/or FIG. 2.

[0099] In FIG. 4, human motions (303) are tracked/mea-
sured using two tracking systems (301 and 302). For
example, the inertial-based system of FIG. 2 can be used as
the tracking system A (301); and an optical tracking system
can be used as the tracking system B (302).

[0100] For example, a person can wear the sensor devices
(111, 113, 115, 117 and 119) that contains the IMUs (e.g.,
121, 131, . . . ) for the inertial-based system. To train the
recurrent neural network (RNN) (307), optical markers can
be attached to the person for the optical tracking system
(e.g., 302).

[0101] Optionally, the optical markers can be integrated
on the sensor devices (111, 113, 115, 117 and 119) to track
the motions (303) for the training of the prediction model
(116) that includes the recurrent neural network (RNN)
307).

[0102] Optionally, additional optical markers are attached
to certain parts of the user that do not wear the sensor
devices that contain IMUs. For example, the forearms (112
and 114) and the torso (101) of the user, as illustrated in FIG.
1 do not have attached IMUs for the measurements of their
orientations via the inertial-based system (e.g., 301); how-
ever, the forearms (112 and 114) and the torso (101) of the
user can have optical markers to measure their orientations
using the optical tracking system (e.g., 302).

[0103] In general, the optical tracking system (e.g., 302)
can be replaced with another tracking system that makes the
orientation measurements based on infrared signals, ultra-
sound signals, radio frequency identification tag (RFID)
signal, etc. Further, a combination of tracking systems can
be used as the tracking system B (302) to obtain the most
accurate measurements B (306) of the human motions (303).
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The tracking system B (302) is used to measure the orien-
tations of at least some of the parts of the person not
measured by the tracking system A (301) and optionally the
parts of the person that are measured by the tracking system
A (301).

[0104] After the person wears the sensor modules and
optical markers for the tracking system A (301) and the
tracking system B (302), the person may perform a plurality
of sequences of actions that involve various motion patterns
of the kinematic chains.

[0105] The sequences can start from a common calibration
pose, such as a pose as illustrated in FIG. 1. Other examples
of calibration poses can be found in U.S. patent application
Ser. No. 15/847,669, filed Dec. 19, 2017 and entitled “Cali-
bration of Inertial Measurement Units Attached to Arms of
a User and to a Head Mounted Device,” U.S. patent appli-
cation Ser. No. 15/817,646, filed Nov. 20, 2017 and entitled
“Calibration of Inertial Measurement Units Attached to
Arms of a User to Generate Inputs for Computer Systems,”
the entire disclosures of which applications are hereby
incorporated herein by reference.

[0106] The positions and/or orientations of the parts of the
person, such as the head (107), the arms (103, 105, 112, 114)
and hands (106 and 108), and torso (101), can be measured/
tracked using the tracking systems A and B (301 and 302)
concurrently to generate measurements A and B (305 and
306) respectively.

[0107] The recurrent neural network (RNN) (307) can be
trained, using a supervised machine learning technique, to
predict the measurements B (306) generated by the tracking
system B (302) (e.g., an optical tracking system, another
tracking system, or a combination of tracking systems)
based on the measurement A (305) generated by the tracking
system A (301) (e.g., an inertial-based system as illustrated
in FIG. 2). The supervised machine learning technique
adjusts the parameters in the recurrent neural network
(RNN) (307) to minimize the difference between the actual
measurements B (306) and the predictions made using the
measurements A (305) as input to the recurrent neural
network (RNN) (307). The recurrent neural network (RNN)
(307) having the adjusted parameters provide a RNN model
(309) that can be used as the prediction model (116) in FIG.
1 and/or FIG. 2.

[0108] The recurrent neural network (RNN) (307) may
include a network of Long Short-Term Memory (LSTM)
units to selectively remember histories of states based on
which predictions are made. Alternatively, or in combina-
tion, a Fully Connected (FC) deep network, and/or a Gated
Recurrent Unit (GRU) network can also be used.

[0109] The sequences of actions performed by the person
performing the human motions (303) can be sampled at a
predetermined time interval to obtain the measurements
(305 and 306) for the training of the recurrent neural
network (RNN) (307).

[0110] In some instances, some sequences of actions are
repeated multiple times and/or at different speeds; and
scaling of the time measurement and/or double exponential
smoothing can be applied to input parameters to align the
datasets of the sequences and/or to normalize the time scale.
[0111] After the RNN model (309) is trained to have the
capability to predict the measurements B (306) generated
using the tracking system B (302), it is no longer necessary
to use the tracking system B (302). For example, the RNN
model (309) can be developed in a manufacturing facility
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and/or a developer’s facility. Users of sensor modules (e.g.,
111, 113, . . ., 119) do not need to wear optical markers or
other devices that are used in the tracking system B (302),
as illustrated in FIG. 5.

[0112] FIG. 5 shows a method to use the RNN to predict
movement measurements of one tracking system based on
movement measurements of another tracking system
according to one embodiment.

[0113] In FIG. 5, a tracking system A (301) (e.g., the
inertial-based system illustrated in FIG. 2) is used to track
user motions (304) of a user without tracking system B (302)
(e.g., an optical tracking system). The measurements A (315)
of the user motions (304) measured using the tracking
system A (301) (e.g., the inertial-based system illustrated in
FIG. 2) are used in the RNN model (309) to generate the
predictions (316) of measurements B that would be gener-
ated by the tracking system B (302). The predictions (316)
of measurements B can be provided to the motion processor
(145) to control the skeleton model (143) (e.g., as illustrated
in FIG. 3), as if the tracking system B (302) were used to
obtain the measurements.

[0114] For example, an RNN model (309) having LSTM
units can be trained to predict the orientation measurements
generated by an optical tracking system for a kinematic
chain using orientation measurements of part of the kine-
matic chain generated by the sensor modules having the
IMUs.

[0115] For example, sensors modules (113 and 119) are
attached to the upper arm (103) and the hand (119) in a
forearm kinematic chain using measurements generated
from the IMUs (e.g., 131) in the sensor modules (113 and
119). The RNN model (309) predicts, from the IMU mea-
surements for a sequence of the user motions (304), the
orientation measurements that would be generated by an
optical tracking system not only for the forearm (112) in the
forearm kinematic chain but also for the upper arm (103) and
the hand (108). The predicted orientation measurements are
used in the motion processor (145) to configure the corre-
sponding forearm kinematic chain of the skeleton (143),
including the forearm (233), the upper arm (203) and the
hand (208).

[0116] In some instances, it is not necessary to use a
tracking system implemented using one technique (e.g.,
optical tracking system) to calibrate the measurements of a
tracking system implemented using another technique (e.g.,
inertial-based tracking system). The prediction model (116)
can be trained to predict the orientations of parts that have
missing sensor modules without using multiple training
technologies, as illustrated in FIG. 6.

[0117] FIG. 6 shows a method to train a recurrent neural
network (RNN) (337) to predict the measurements of miss-
ing sensor modules.

[0118] In FIG. 6, human motions (303) of a person wear-
ing both tracking devices A (331) and tracking devices B
(332) are measured. For example, the tracking devices A
(331) correspond to the head module (111), arm modules
(113 and 115) and hand modules (117 and 119) as illustrated
in FIG. 1 and/or FIG. 2. In FIG. 1, sensor modules are
missing from the forearms (112 and 114) and the torso (101).
[0119] To train a recurrent neural network (RNN) (337) to
predict the measurements of the missing sensor modules, the
method of FIG. 6 uses the tracking devices B (332) that are
additional IMU modules attached the forearms (112 and
114) and the torso (101). The additional IMU modules can
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be similar to the arm module (113) and attached to the
forearms (112 and 114) and the torso (101) via armband,
strap and/or other ways to attach the module to the respec-
tive locations on the person that performs the human motion.
[0120] A supervised machine learning technique can be
applied to the recurrent neural network (RNN) (337) using
the measurements A (335) generated by the tracking devices
A (331) to predict the measurements B (336) generated by
the tracking devices B (333). The supervised machine learn-
ing adjusts the parameters of the recurrent neural network
(RNN) (337) to minimize the differences between the mea-
surements B (336) and their predictions made by applying
the measurements A (335) as input to the recurrent neural
network (RNN) (337). The recurrent neural network (RNN)
(337) and its trained parameters provide the RNN model
(339) that can be used to make the prediction of the
measurements of the tracking devices B (332). Thus, when
the RNN model (339) is used, the tracking devices B (332)
can be omitted, as illustrated in FIG. 7.

[0121] FIG. 7 shows a method to use the RNN trained
using the method of FIG. 6 to predict movement measure-
ments of missing sensor modules based on movement mea-
surements of attached sensor modules according to one
embodiment.

[0122] In FIG. 7, tracking devices A (331) (e.g., 111, 113,
115, 117 and 119 in FIG. 1 and/or FIG. 2) are used to track
user motions (304) of a user without tracking devices B
(332). The measurements A (345) of the user motions (304)
measured using the tracking devices A (331) (e.g., 111, 113,
115, 117 and 119) are used as input to the RNN model (339)
to generate the predictions (346) of measurements B that
would be generated by the tracking devices B (332) if the
tracking devices B (332) were used. The measurements A
(345) and the predictions (346) of measurements B can be
provided to the motion processor (145) to control the
skeleton model (143) (e.g., as illustrated in FIG. 3), as if both
the tracking devices A (331) and the tracking devices B
(332) were used.

[0123] For example, an RNN model (339) having LSTM
units can be trained to predict the orientation measurements
generated by sensor modules having IMUs for one or more
parts of a kinematic chain using orientation measurements of
the remaining parts of the kinematic chain generated by the
sensor modules having the IMUs such that the sensor
modules having IMUs can be omitted for the one or more
parts of a kinematic chain.

[0124] For example, sensors modules (113 and 119) are
attached to the upper arm (103) and the hand (119) in a
forearm kinematic chain using measurements generated
from the IMUs (e.g., 131) in the sensor modules (113 and
119). The RNN model (339) predicts, from the IMU mea-
surements for a sequence of the user motions (304), the
orientation measurements that would be generated by a
sensor module having an IMU (e.g., similar to the arm
module (113)) if such a sensor module were attached to the
forearm (112) in the forearm kinematic chain. The predicted
orientation measurements (346) for the forearm (112) and
the measurements for the upper arm (103) and the hand
(119) are used together in the motion processor (145) to
configure the corresponding forearm kinematic chain of the
skeleton (143), including the forearm (233), the upper arm
(203) and the hand (208).

[0125] Since the prediction (346) can be obtained from the
use of the sensor modules (113 and 119) without actually
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using a sensor module to track the orientation of the forearm
(112), the user performing the user motions (304) does not
have to wear the additional sensor module on the forearm
(112). Thus, the user experience is improved; and the cost of
the tracking system for the user is reduced.

[0126] FIG. 8 shows a method to train an artificial neural
network to predict orientation measurements.

[0127] The method of FIG. 8 includes attaching (401)
tracking devices to at least one kinematic chain of a person,
including first tracking devices that are separated by second
tracking devices on one or more kinematic chains.

[0128] For example, the first tracking devices are an arm
module (115) on an upper arm (105) and a hand module
(117) on a hand (106); and the one or more second tracking
devices include a tracking device on a forearm (114) on a
forearm kinematic chain that includes the upper arm (105),
the forearm (114), and the hand (106) connected via the
elbow joint and the wrist joint. The tracking device on the
forearm (114) separates the arm module (115) and the hand
module (117) on the forearm kinematic chain. The arm
module (115) and the hand module (117) include IMUs to
track their orientations in an inertial-based tracking system
and can have optical markers to separately measure their
orientations using an optical tracking system. The tracking
device on the forearm (114) can be an optical marker used
to measure its orientation in the optical tracking system and
can optionally include an IMU to track its orientation in the
inertial-based tracking system. When the tracking device on
the forearm (114) enables tracking in both the inertial-based
tracking system and the optical tracking system, the tracking
device on the forearm (114) can be implemented in a same
way as the arm module (115).

[0129] The method of FIG. 8 further includes performing
(403) a plurality of sequences of actions (303) involving the
least one kinematic chain. The sequences of actions (303)
start from a common calibration pose (e.g., as illustrated in
FIG. 1 or another pose). The actions can be designed to
simulate typical actions in an application (147), such as a
virtual reality game, an augmented reality application, etc.

[0130] The method of FIG. 8 further includes: recording
(405) orientations of the first and second tracking devices in
the sequences, where orientations of the first tracking
devices are tracked using both a first system (301) (e.g., an
inertial-based tracking system) and a second system (302)
(e.g., an optical tracking system) and orientations of the one
or more second tracking devices are tracked using the
second system (302). Optionally, the orientations of the one
or more second tracking devices can also be tracked using
the first system (301) (e.g., the inertial-based tracking sys-
tem) and used in situations where the second system (302)
is incapable of measuring the orientation of the one or more
second tracking devices. For example, when in a certain
position, the optical marker on the forearm (114) is out of the
field of view of a tracking camera of the optical tracking
system, the orientation determined from the IMU attached to
the forearm (114) can be used to generate an orientation
measurement of the forearm (114). For example, when the
optical marker is visible before and/or after the obscured
position in an action sequence, the orientation measurements
of the forearm (114) obtained from the IMU measurements
of the forearm (114) can be calibrated via the measurements
from the optical tracking system to calculate an orientation
of the forearm at the obscured position with an improved
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accuracy that is substantially the same as the measurement
from the optical tracking system.

[0131] The method of FIG. 8 further includes: training
(407) an artificial neural network (e.g., 307) to predict the
orientations of the first and second tracking devices mea-
sured by the second system (302) (e.g., an optical tracking
system) based on the orientations of the first tracking
devices measured by the first system (301) (e.g., an inertial-
based tracking system).

[0132] In some instances, different kinematic chains are
separated trained using separate artificial neural networks.
The trained networks can be used separately for the indi-
vidual kinematic chains for improved computational effi-
ciency. Alternatively, an artificial neural network can be
trained for the kinematic model of the entire skeleton (143)
for universal applications.

[0133] The trained artificial neural network can be re-
trained using a reinforcement learning technique to improve
its prediction accuracy in some motion scenarios.

[0134] FIG. 9 shows a method to track user movements
using the artificial neural network trained using the method
of FIG. 8.

[0135] The method of FIG. 9 includes: attaching (411)
tracking devices to at least one kinematic chain of a user,
including first tracking devices but no second tracking
devices on parts that separate the first track devices in one
or more kinematic chains; performing (413) a sequence of
actions (304) involving the least one kinematic chain, start-
ing from a calibration pose; generating (415) orientation
measurements of the first tracking devices in the sequence
using a first system (301) but not a second system (302);
applying (417) the orientation measurements to an artificial
neural network, previously trained (e.g., using the method of
FIG. 9) to predict the orientations of the at least one
kinematic chain as measured by the second system (302)
based on measurements of the first tracking devices tracked
by the first system (301); and generating (419) predicted
orientation measurements of the at least one kinematic chain
from applying the orientation measurements to the artificial
neural network.

[0136] For example, a computing system includes: a plu-
rality of sensor modules (e.g., 111, 113, 115, 117, and/or 119)
and a computing device (141). Each of the sensor modules
has an inertial measurement unit (e.g., 121 or 113) and is
attached to a portion (e.g., 107, 113, 115, 106, or 108) of the
user to generate motion data identifying a sequence of
orientations of the respective portion of the user. The inertial
measurement unit includes a micro-electromechanical sys-
tem (MEMS) gyroscope and may further include a magne-
tometer and a MEMS accelerometer. The computing device
provides the sequences of orientations measured by the
sensor modules as input to an artificial neural network (e.g.,
116), obtains at least an orientation measurement of a part of
the user as output from the artificial neural network (e.g.,
116), uses the orientation measurement obtained from the
artificial neural network to configure or set the orientation of
a rigid part in a kinematic chain of a skeleton model (143)
representative of the user, and controls an application (147)
according to the state of the skeleton model (143).

[0137] For example, the artificial neural network can be a
recurrent neural network previously trained to make predic-
tions matching with orientation measurements generated
using an optical tracking system. The recurrent neural net-
work contains Long Short-Term Memory (LSTM) units to
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remember a set of state histories derived from the input
sequences of orientations to predict the current orientations
of the kinematic chain.

[0138] Since the artificial neural network can predict the
orientation measurements generated using an optical track-
ing technique, the part of the user (and other parts of the
user) is not tracked using optical tracking.

[0139] For example, the orientations of the part of the user
is tracked using one of the plurality of sensor modules; and
the artificial neural network is used to improve the IMU-
based measurements to remove drift error and/or accumu-
lated error.

[0140] For example, the orientations of the part of the user
is not even tracked using a sensor module containing an
inertial measurement unit, since its orientation can be pre-
dicted using applying orientation measurements of other
parts of the user in the kinematic chain as input to the
artificial neural network.

[0141] For example, the plurality of sensor modules (e.g.,
111, 113, 115, 117, and/or 119) tracks portions (e.g., 107,
103, 105, 106, and/or 108) of the user correspond to a subset
of rigid parts (e.g., 207, 203, 205, 206 and/or 208) in the
kinematic chain of the skeleton model (143); and the rigid
part (e.g., 215, 223, or 232) corresponding to the part (e.g.,
114, 114, or 101) of the user that is not tracked separates, in
the kinematic chain, the subset of rigid parts (e.g., 207, 203,
205, 206 and/or 208).

[0142] Forexample, the artificial neural network is trained
to predict orientation measurements generated using a sepa-
rate tracking system; and the artificial neural network pro-
vides, as output, predicted orientation measurements to be
generated by the separate tracking system for the portions
(e.g., 107, 103, 105, 106, and/or 108) of the user to which
the plurality of sensor modules (e.g., 111, 113, 115, 117,
and/or 119) are attached.

[0143] For example, to train the artificial neural network,
a set of sensor modules are attached to a person who
performs a plurality of sequence of motions to generate first
orientation measurements and second orientation measure-
ments from the set of sensor modules. A supervised machine
learning technique is used to train the artificial neural
network to predict the second orientation measurements
based on the first orientation measurements.

[0144] For example, the first orientation measurements are
measured using a first technique; the second orientation
measurements are measured using a second technique; and
the artificial neural network is trained to predict the mea-
surements made using the second technique (e.g., optical
tracking) based on the measurements generated using the
first technique (e.g., IMU-based tracking).

[0145] For example, when the artificial neural network is
found to have inaccurate predictions in some scenarios, the
artificial neural network can be further trained using a
reinforcement learning technique, based on further measure-
ments made in connection with such scenarios.

[0146] In some instances, the second orientation measure-
ments identify orientations of the plurality of sensor mod-
ules; and the first orientation measurements identify orien-
tations of a subset of the plurality of sensor modules such
that measurements of the subset of sensor modules made
using one tracking technique (e.g., IMU-based tracking) can
be used with the artificial neural network to predict the
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orientation measurements of the entire set of sensor modules
made using another tracking technique (e.g., optical track-
ing).

[0147] In other instances, the first orientation measure-
ments identify orientations of a first subset of the plurality of
sensor modules; and the second orientation measurements
identify orientations of a second subset of the plurality of
sensor modules, such that the measurement from one subset
of the sensor devices can be used to predict the measure-
ments made by another subset of the sensor devices.
[0148] The skeleton model (143) can include multiple
ANN models. Each of the ANN models is trained to predict,
using measurements obtained using a tracking system A
(301) (e.g., an IMU-based system, such as that illustrated in
FIG. 2), the motion measurements of parts of a kinematic
chain that would have been measured using a tracking
system B (302) (e.g., an optical tracking system). However,
when two ANN models are used to predict the motion
measurements of two kinematic chains that have an over-
lapping portion, the ANN models can generate different
predictions for the same overlapping portion.

[0149] For example, a forearm ANN model can be used to
predict the motion/orientation measurements of a forearm
chain that contains the hand (106), the forearm (114) and the
upper arm (105). A clavicle ANN model can be used to
predict the motion/orientation measurements of a clavicle
chain that contains the left upper arm (105), the torso (101),
and the right upper arm (103) (and optionally the head
a07).

[0150] Using the forearm ANN model, the upper arm
(105) is predicted to have an orientation, which is in general
different from the orientation of the upper arm (105) pre-
dicted using the clavicle ANN model.

[0151] To use both the forearm ANN model and the
clavicle ANN model, a further ANN can be used to consider
the discrepancy generated by the forearm ANN model and
the clavicle ANN model and predict an orientation of the
upper arm (105), in a way similar to that discussed below in
connection with FIG. 10.

[0152] FIG. 10 illustrates the use of a bidirectional long
short-term memory (BLSTM) network to combine the
results from different artificial neural networks according to
one embodiment.

[0153] InFIG. 10, a set of devices (A, ...,C, ... ,E)are
used to generate their orientation measurements at time
instances 1, 2, . . . , t, where the time instances are
sequentially number for identification. The adjacent time
instances can have a fixed, predetermined time interval, or
variable time intervals that are dependent on the speed of
motion.

[0154] In FIG. 10, two RNN models (511 and 513) are
used for the prediction of motion measurements, such as the
orientations of parts of a user and/or the corresponding rigid
parts of a skeleton model (143) representing the user in a
virtual reality application, or an augmented reality applica-
tion. One RNN model (511) is trained for the prediction of
motion measurements of kinematic chain X (e.g., a forearm
kinematic chain); and another RNN model (513) is trained
for the prediction of motion measurements of kinematic
chain Y (e.g., a clavicle kinematic chain). For example, a
forearm kinematic chain is tracked using the hand module
(117) and the arm module (115) to generate input measure-
ments of their orientations for a corresponding RNN model
(e.g., 511); and a clavicle kinematic chain is tracked using
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the arm modules (113 and 115) and optionally the head
module (111) to generate input measurements of their ori-
entations for another corresponding RNN model (e.g., 513).
The tracking of the forearm kinematic chain and the tracking
of the clavicle kinematic chain can be performed using two
sets of sensor devices (e.g., 115 and 117; and 113, 115, and
111) that share a common sensor device, such as the arm
module (115). The forearm kinematic chain and the clavicle
kinematic chain share a common part (e.g., the upper arm
(105)), which orientation of which is measured using the
common sensor device C, such as the arm module (115).
[0155] From the sequences of orientation measurements
(501, . . ., 505) from the devices (e.g., 117 and 115) for
kinematic chain X (e.g., the forearm kinematic chain) at time
instances 1, 2, . . ., t, the RNN model (511) generates a
portion of the predicted measurements (515) that includes
the predicted orientations (517) of the common sensor
device C (e.g., arm module (115)) at time instances t—1 and
t+1. The device C (e.g., arm module (115)) also be used to
generate inputs (505) to the kinematic chain Y (e.g., the
clavicle kinematic chain).

[0156] Inone implementation, the devices (A, . .., C, and
E) provide orientation measurements (501, . . ., 505, .. .,
509) at each of the time instances 1, 2, . . . , t. When the

measurements at time instance t is provided to the RNN
models (511 and 513), the RNN models (511 and 513)
generate the predicted measurements (517 and 519) of the
shared device C at a time instance before t at t-1 and at a
time instance after t at t+1. The RNN models (511 and 513)
can optionally update a prediction of a measurement at a
time instance t—1 when input measurements at time instance
t that is after the time instance t-1 becomes available.
[0157] For example, when the sequences of input mea-
surements are provided as input to the RNN models (511 and
513) for time instances 1, 2, . . . , t-2, the RNN models (511
and 513) can generate the predicted measurements of the
shared device C at a time instance before the last instance
t-2 at t-3 and a time instance after the last instance t-2 at
t-1. After the input measurements for time instances t—-1 and
t are further added to the RNN models (511 and 513), the
RNN model (511 and 513) can optionally update the pre-
diction for the measurement at the time instance t-1 using
the input measurements at time instances t-1 and t.

[0158] Alternatively, the predicted measurements of the
past time instances are stored and used as inputs to the
BLSTM network (521). For example, the predicted orien-
tation measurements of device C at the time instance t-1 is
generated based on the sequences of input measurements at
time instances 1, 2, . . . , t=2, which is stored and used in the
BLSTM network (521) when the sequences of input mea-
surements at time instances 1, 2, . . . , t allows the RNN
model (511 and 513) to generate the predicted orientation
measurements of device C at the time instance t+1.

[0159] From the sequences of orientation measurements
(505, . .., 509) from the devices (e.g., 115, 111 and 113) for
kinematic chain Y (e.g., the clavicle kinematic chain) at time
instances 1, 2, . . ., t, the RNN model (513) generates a
portion of the predicted measurements (519), including the
predicted orientations (517) of the device C (e.g., arm
module (115)) at time instances t—1 and t+1.

[0160] Since the device C (e.g., arm module (115)) is in
both the kinematic chain X (e.g., the forearm kinematic
chain) and the kinematic chain Y (e.g., the clavicle kine-
matic chain), different predicted measurements (515 and
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519) are generated for the device C (e.g., arm module (115))
at time instances t-1 and t+1. The different predictions at
times t-1 and t+1 are provided as input to a bidirectional
long short-term memory (BLSTM) network (521) to gener-
ate a predicted orientation of device C (e.g., arm module
(115)) at the time instance t.

[0161] The bidirectional long short-term memory
(BLSTM) network (521) can be trained using a supervised
machine learning technique.

[0162] For example, the tracking system A (301) (e.g., an
IMU-based tracking system) can be used to generate input
measurement A (305), including input measurements for the
kinematic chain X (e.g., the forearm kinematic chain) and
input measurements for the kinematic chain Y (e.g., the
clavicle kinematic chain). The tracking system B (302) (e.g.,
an optical tracking system) can be used to generate desired
measurement B (306) includes desired measurements for the
kinematic chain X (e.g., the forearm kinematic chain) and
desired measurements for the kinematic chain Y (e.g., the
clavicle kinematic chain). The RNN models (511 and 513)
are separated trained to predict the desired measurements B
(306) from the input measurements A (305). Further, the
outputs of the RNN models (511 and 513) are used as inputs
to the BLSTM network (521), which is further trained to
predict the desired measurement of the device C as in the
measurements B (306) generated by the tracking system B
(302).

[0163] InFIG. 10, the BLSTM network (521) does not use
the predicted orientation measurements of device C at time
instance t, predicted from the RNN models (511 and 513), in
generating the predicted orientation (523) of device C at
time instance t.

[0164] In other implementations, the BLSTM network
(521) may receive further inputs, such as the orientation
measured by device C at time instance t, the orientation(s)
measured by device C before the time instance t, and/or
orientations measured by other devices in the kinematic
chains X and Y at the time instance t and/or other time
instances.

[0165] FIG. 10 illustrates an example of combining two
kinematic chains. The system can be extended to combining
more than two kinematic chains. For example, the left
forearm kinematic chain can be tracked using sensing
devices (119, 113); the right forearm kinematic chain can be
tracked using sensing devices (117 and 115); and the clavicle
kinematic chain can be tracked using sensing devices (113,
115, and optionally 111). The left forearm kinematic chain
and the clavicle kinematic chain share a common part (103)
that is tracked using a common device (113); and the right
forearm kinematic chain and the clavicle kinematic chain
share a common part (105) that is tracked using a common
device (115). RNN models for the left forearm kinematic
chain and the clavicle kinematic chain can generate different
predicted orientation measurements for their shared device
(113) and part (103); and RNN models for the right forearm
kinematic chain and the clavicle kinematic chain can gen-
erate different predicted orientation measurements for their
shared device (115) and part (105). Two BLSTM networks
(e.g., 521) can be used, one to combine the different pre-
dictions for the shared device (113) in the left forearm
kinematic chain and the clavicle kinematic chain, and the
other to combine the different predictions for the shared
device (115) in the right forearm kinematic chain and the
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clavicle kinematic chain. The BLSTM networks (e.g., 521)
respectively generate predicted orientations of the shared
devices (113 and 115).

[0166] Alternatively, a single BLSTM network (e.g., 521)
can be used to combine the different predictions for the
shared device (113) in the left forearm kinematic chain and
the clavicle kinematic chain and the different predictions for
the shared device (115) in the right forearm kinematic chain
and the clavicle kinematic chain to generate predicted ori-
entations of the shared devices (113 and 115) respectively.
[0167] FIG. 10 illustrates an example of combining kine-
matic chains using a BLSTM network (521). In general,
other artificial neural networks and/or recurrent neural net-
works can also be used.

[0168] FIG. 11 illustrates another technique to combine
the results from different artificial neural networks for
kinematic chains that have overlapping portions according
to one embodiment.

[0169] InFIG. 11, the devices (A, ..., C, ... E) generate
input orientation measurements (501, . . ., 505, . . ., 509)
for the RNN models (512 and 514) of different kinematic
chains X and Y in a way similar to that discussed in FIG. 10.
[0170] InFIG. 11, the predicted orientations (535) include
the orientations (537 and 539) predicted for device C at the
time instance t, where the device C is shared in the kinematic
chains X and Y. An average (531) of the different predictions
(537 and 539) from the RNN models (512 and 514) for the
different kinematic chains (X and Y) is computed as the
predicted orientation (533) of device C at time instance t.
[0171] Preferably, to reduce the differences between the
different predictions (537 and 539) made for the same device
C, the RNN models (512 and 514) are adjusted when both
the RNN models (512 and 514) are used. The adjustments
are made to the RNN models (512 and 514) to make the
predictions (537 and 539) close to the input orientation
measurement generated by the device C at the time instance
t.

[0172] For example, the forget rate of the RNN models
(512 and 514) applied to the input measurements (505)
generated by device C can be decreased to make the pre-
dicted orientations of device C close to the orientation
measured by device C.

[0173] For example, the forget rate of the RNN models
(512 and 514) applied to the input measurements (e.g., 501
and 509) generated by devices other than device C can be
increased to make the predicted orientations of device C
close to the orientation measured by device C.

[0174] For example, the weights of the RNN models (512
and 514) applied to the input measurements (505) generated
by device C can be increased to make the predicted orien-
tations of device C close to the orientation measured by
device C.

[0175] For example, the weights of the RNN models (512
and 514) applied to the input measurements (e.g., 501 and
509) generated by devices other than device C can be
decreased to make the predicted orientations of device C
close to the orientation measured by device C.

[0176] Insome instances, when the RNN models (512 and
514) are used together, the RNN models (512 and 514) are
further trained to minimize the differences between the
predicted measurements (537 and 539) for device C.
[0177] In some implementations, the average (531)
includes weights obtained using a machine learning tech-
nique to predict the orientation measurements made using an
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optical tracking system. Optionally, the average (531) fur-
ther receives the orientation measurement of device C at
time instance t, with a weight obtained using the supervised
machine learning technique.

[0178] The techniques of FIG. 10 and FIG. 11 can be
combined and used together. For example, the adjusted RNN
models (512 and 514) in FIG. 11 that produce reduces
differences in the predictions (e.g. 537 and 539) for the share
device C can be used in FIG. 10 to replace the separately
trained RNN models (511 and 513); and the BLSTM net-
work (521) can be used to generate a predicted orientation
(523) from predicted orientations (517 and 519) that have
reduced differences in comparison to those generated by the
separately trained RNN models (511 and 513). Further, the
output of the average (531) can be provided as an input to
the BLSTM network (521).

[0179] In one implementation, two RNN models (511 and
512) are generated for a kinematic chain X. When the
kinematic chain X is tracked without tracking the kinematic
chain Y, the RNN model (511) that is trained without
considering the differences between the predictions for the
device C between the kinematic chains X and Y is used.
When the kinematic chain X and the kinematic chain Y are
both tracked, the RNN model (512) that is trained and/or
adjusted to reduce the differences between the predictions
for the device C between the kinematic chains X and Y is
used.

[0180] Alternatively, after the RNN models (512 and 514)
are trained to reduce the differences between the different
predictions (537 and 539) for the shared device C, the RNN
models (512 and 514) can be used separately. For example,
when the kinematic chain X is tracked without tracking the
kinematic chain Y, the RNN model (512) is used; and when
the kinematic chain Y is tracked without tracking the kine-
matic chain X, the RNN model (514) is used.

[0181] FIG. 12 shows a method to train multiple artificial
neural networks for multiple kinematic chains that have
overlapping portions according to one embodiment. For
example, the method of FIG. 12 can be used to generate the
RNN models (511 and 513) and the BLSTM network (521)
of FIG. 10, and/or the RNN models (512 and 514) of FIG.
11.

[0182] The method of FIG. 12 includes training (551) a
first RNN (e.g., 511, or 512) to predict orientation measure-
ments of a first kinematic chain (e.g., a forearm kinematic
chain). The prediction is made using the measurements A
(305) from track system A (301) (e.g., an IMU-based track-
ing system) to match with the measurements B from track-
ing system B (302) (e.g., an optical tracking system).
[0183] The method of FIG. 12 further includes training
(553) a second RNN (e.g., 511 or 512) to predict orientation
measurements of a second kinematic chain (e.g., the clavicle
kinematic chain) that shares at least one part (e.g., an upper
arm) with the first kinematic chain (e.g., the forearm kine-
matic chain), in a way similar to the training (551) of the first
RNN (e.g., 511, or 512).

[0184] The method of FIG. 12 further includes training
(555) a third RNN (e.g., 521) to predict orientation mea-
surements of the at least one part (e.g., the upper arm) shared
between the first kinematic chain (e.g., the forearm kine-
matic chain) and the second kinematic chain (e.g., the
clavicle kinematic chain) based at least in part on prediction
results, generated from the first RNN and the second RNN,
for the at least one part (e.g., the upper arm).
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[0185] Optionally, the method of FIG. 12 can further
include training the first RNN (e.g., 511, or 512) and the
second RNN (e.g., 511 or 512) to reduce prediction differ-
ences between the first RNN (e.g., 511, or 512) and the
second RNN (e.g., 511 or 512) for the at least one part (e.g.,
the upper arm) shared between the first kinematic chain
(e.g., the forearm kinematic chain) and the second kinematic
chain (e.g., the clavicle kinematic chain).

[0186] When the first RNN (e.g., 511, or 512) and the
second RNN (e.g., 511 or 512) are trained to reduce their
prediction differences for the shared part in the first kine-
matic chain (e.g., the forearm kinematic chain) and the
second kinematic chain (e.g., the clavicle kinematic chain),
the training of the third RNN (e.g., 521) can be skipped; and
an average (531) can be used to combine the different
predictions (e.g., 537 and 539).

[0187] FIG. 13 shows a method to predict motion mea-
surements of an overlapping portion of multiple kinematic
chains that are module using separate artificial neural net-
works according to one embodiment. For example, the
method of FIG. 13 can be used in a system illustrated in FI1G.
10.

[0188] The method of FIG. 13 includes: receiving (561)
sensor measurements from a plurality of motion sensing
devices (e.g., 111,113, 115, 117, 119); applying (563) sensor
measurements from a first subset (e.g., 111, 113, 115) of the
motion sensing devices as input to a first RNN (e.g., 511 or
512) to obtain first predicted measurements of a first kine-
matic chain having a first set of parts (e.g., head (107), torso
(101), and upper arms (103 and 105); applying (565) sensor
measurements from a second subset (e.g., 117 and 115,
and/or 113 and 119) of the motion sensing devices as input
to a second RNN (513 or 514) to obtain second predicted
measurements of a second kinematic chain having a second
set of parts (e.g., hand (106), forearm (114), and upper arm
(105); and/or hand (108), forearm (112), and upper arm
(103)); and applying (567) at least a portion of the first
predicted measurements (e.g., 517 or 537) and a portion of
the second predicted measurements (e.g., 519 or 539) to a
third RNN (e.g., 521) to obtain third predicted measure-
ments (e.g., 523) of at least one part (e.g., 105 or 103) that
is in both the first kinematic chain and the second kinematic
chain.

[0189] FIG. 14 shows a method to use a skeleton model
having multiple artificial neural networks for multiple kine-
matic chains according to one embodiment. For example,
the method of FIG. 14 can be used in a system illustrated in
FIG. 10 or FIG. 11.

[0190] The method of FIG. 14 includes receiving (581)
sensor measurements from a plurality of motion sensing
devices (e.g., 111, 113, 115, 117, and/or 119).

[0191] If (583) the devices track motions of a first kine-
matic chain (e.g., head (107), torso (101), upper arms (105
and 103), the method of FIG. 14 further includes obtaining
(585) predicted motion measurements (e.g., 517 and/or 537)
from a first RNN (511 or 512) using at least a portion of the
sensor measurements.

[0192] If (587) the devices track motions of a second
kinematic chain (e.g., hand (106), forearm (114), and upper
arm (105); or hand (108), forearm (112), and upper arm
(103)), the method of FIG. 14 further includes obtaining
(589) predicted motion measurements (519 and/or 539) from
a second RNN (513 or 514) using at least a portion of the
sensor measurements.
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[0193] If(591) the devices track both the first and second
kinematic chains, the method of FIG. 14 further includes
obtaining (593) predicted motion measurements (523) of a
common portion of the first and second chains from a third
RNN (e.g., 521) using at least part of the predicted motion
measurements (e.g., 517 and 519) from the first and second
RNNs (511 and 513).

[0194] In some instances, in response to a determination
that the devices track both the first and second kinematic
chains, the first RNN (511) and the second RNN are adjusted
to reduce the difference between the predictions made for the
common portion of the first and second chains.

[0195] For example, a system can include: a plurality of
sensor modules (e.g., 111, 113, 115, 117, and/or 119); and a
computing device (141) coupled to the plurality of sensor
modules.

[0196] Each respective sensor module (e.g., 111, 113, 115,
117, or 119) has an inertial measurement unit (e.g., 121, 131,
... ) and is attached to a portion of a user to generate motion
data identifying a sequence of orientations of the portion of
the user.

[0197] The plurality of sensor modules including a first
subset (e.g., 111, 113, 115) and a second subset (e.g., 115 and
117) that share a common sensor module (e.g., 115) between
the first subset and the second subset.

[0198] The computing device (141) provides orientation
measurements (e.g., 501, . . ., 505) generated by the first
subset (e.g., 111, 113, 115) as input to a first artificial neural
network (511 or 512) and obtains, as output from the first
artificial neural network (511 or 512), at least one first
orientation measurement (e.g., 517 or 537)) of the common
part (e.g., 105) of the user, on which part (115) the common
sensor module (e.g., 115) is attached.

[0199] The computing device (141) further provides ori-
entation measurements (e.g., 505, . . ., 509) generated by the
second subset (e.g., 115 and 117) as input to a second
artificial neural network (513 or 154) and obtains, as output
from the second artificial neural network (513 or 514), at
least one second orientation measurement (e.g., 519 or 539)
of the common part (e.g., 105) of the user.

[0200] The computing device (141) generates a predicted
orientation measurement (e.g., 523) of the common part
(e.g., 105) of the user from combining (e.g., 521 or 531) the
at least one first orientation measurement (517 or 537) of the
common part (e.g., 105) of the user and the at least one
second orientation measurement (519 or 539) of the com-
mon part (e.g., 105) of the user.

[0201] For example, the first and second artificial neural
networks can be recurrent neural networks containing long
short-term memory (LSTM) units; and the combining can be
performed using a third artificial neural network (e.g., 521)
that at least contains a bidirectional long short-term memory
(BLSTM) unit. Alternatively, the combining can be per-
formed via averaging the first orientation measurement
(537) of the common part (e.g., 105) of the user and the
second orientation measurement (539) of the common part
(e.g., 105) of the user.

[0202] For example, the predicted orientation measure-
ment (523) of the common part is predicted for a first time
instance t; the at least one first orientation measurement
(517) of the common part (e.g., 105) of the user includes: an
orientation measurement, predicted by the first artificial
neural network, of the common part (e.g., 105) at a second
time instance t-1 before the first time instance t; and an



US 2020/0319721 Al

orientation measurement, predicted by the first artificial
neural network (511 or 512), of the common part (e.g., 105)
at a third time instance after the first time instance; and the
at least one second orientation measurement (519) of the
common part (e.g., 105) of the user includes: an orientation
measurement, predicted by the second artificial neural net-
work (513 or 514), of the common part (e.g., 105) at the
second time instance t—1 before the first time instance t; and
an orientation measurement, predicted by the second artifi-
cial neural network (e.g., 513 or 514), of the common part
(e.g., 105) at the third time instance t+1 after the first time
instance t.

[0203] In some instances, the predictions made for time
instance t-1 are updated in the artificial neural networks
(e.g., 511, 514) using the measurements (501, . . ., 505, . .
., 509) at the subsequent time instance t.

[0204] For example, the predicted orientation measure-
ment (523 or 533) of the common part (e.g., 105) is
predicted to be measured using an optical tracking system
that is used to train the artificial neural networks used in the
prediction such that the optical tracking system can be
eliminated from the system after the artificial neural net-
works have been trained.

[0205] The computing device (141) can have a skeleton
model (143). The tracked movements of the user control the
movements of corresponding parts of the skeleton model
(143). For example, the first subset (e.g., 111, 113 and 115)
tracks a first kinematic chain of the user (e.g., head (107),
torso (101), and upper arms (103 and 105)) to control
movements of a corresponding kinematic chain (e.g., 207,
232, 203 and 205)) of the skeleton model (143); and the
second subset (e.g., 115 and 117) tracks a second chain of the
user (e.g., hand (106), forearm (114) and upper arm (105) to
control movements of a corresponding kinematic chain
(206, 215, 205) of the skeleton model (143).

[0206] In some instances, orientations of a first part (e.g.,
torso (101)) in the kinematic chain of the user is not tracked
using any inertial measurement unit attached to the first part
(e.g., torso (101)); orientations of a second part (e.g., fore-
arm (114)) in the kinematic chain of the user is not tracked
using any inertial measurement unit attached to the second
part (e.g., forearm (114)); the first artificial neural network
(e.g., 511 or 512) predicts orientations of the first part (e.g.,
torso (101)) from the orientation measurements generated by
the first subset (e.g., 111, 113, 115); and the second artificial
neural network (e.g., 513 or 514) predicts orientations of the
second part (e.g., forearm (114)) from the orientation mea-
surements generated by the second subset (e.g., 115 and
117).

[0207] Each inertial measurement unit (e.g., 121, 131, . .
. ) can include a micro-electromechanical system (MEMS)
gyroscope and optionally, a magnetometer and a MEMS
accelerometer.

[0208] The artificial neural networks (e.g., 511, 512, 513,
514, 521) can be trained using a separate tracking system
that is absent from the system used to track the motion of a
user to control the skeleton model (141) in the computing
device. For example, the separate tracking system can be an
optical tracking system that uses one or more cameras to
determine the orientations of optical markers. To generate
the training dataset, optical markers can be placed on sensor
modules similar to those used to track the motion of the user.
[0209] For example, a plurality of sensor modules can be
attached to a person who performs motions to generate a
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training dataset. In a way similar to the tracking of the
motion of the user, the plurality of sensor modules include
a first subset (e.g., 111, 113 and 115) of the sensor modules
to track orientations of a first kinematic chain (e.g., 107,101,
103 and 105) of the person and a second subset (e.g., 117 and
115) of the sensor modules to track orientations of a second
kinematic chain (106, 114 and 105) of the person. The first
kinematic chain and the second kinematic chain have a
common part (e.g., 105) of the person.

[0210] Inaddition to measuring, using the sensor modules
(e.g., 111, 113, 115, 117), a plurality of sequences of
orientations of the sensor modules during the person per-
forming a plurality of sequence of motions, the separate
tracking system is used to measure, independent of mea-
surements of the sensor modules, the orientations of the
sensor modules (e.g., 111, 113, 115, and/or 117) during the
person performing a plurality of sequence of motions.
[0211] The first artificial neural network (e.g., 511 or 512)
is trained using a supervised machine learning technique to
predict, using orientation measurements from the first subset
(e.g., 111, 113, 115), orientation measurements of the first
kinematic chain (e.g., 107, 101, 103 and 105) generated
from the separate tracking system.

[0212] Similarly, the second artificial neural network (e.g.,
513 or 514) is trained using the supervised machine learning
technique to predict, using orientation measurements from
the second subset (e.g., 115 and 117), orientation measure-
ments of the second kinematic chain (e.g., 106, 114 and 105)
generated from the separate tracking system.

[0213] The third artificial neural network can be trained
using the supervised machine learning technique to predict
orientation measurements of the common part (e.g., 105) of
the person from first predicted orientation measurements
(e.g., 537) of the common part (e.g., 105) of the person
generated from the first artificial neural network (e.g., 511 or
512) and second predicted orientation measurements (e.g.,
539) of the common part (e.g., 105) of the person generated
from the second artificial neural network (e.g., 513 or 514).
[0214] Optionally, the first and second artificial neural
networks can be further trained (e.g., using an unsupervised
machine learning technique) to reduce differences between
predictions made for the common part (e.g., 105) of the
person from the first and second artificial neural networks
respectively.

[0215] At least some embodiments disclosed herein allow
arm movement tracking without a sensor device attached to
the forearm. The forearm orientation is estimated, predicted,
or computed from the orientation of the upper arm con-
nected to the forearm and the orientation of the hand
connected to the forearm, based on certain assumed orien-
tation relations among the hand, forearm and upper arm.
[0216] FIG. 15 illustrates a system to track arm move-
ments according to one embodiment.

[0217] InFIG. 15, an elbow joint (603) of a user connects
an upper arm (103) and a forearm (112) of the user; and a
wrist (608) connects the forearm (112) to a hand (108) of the
user.

[0218] The orientation of the upper arm (103) is tracked/
determined using an arm module (113) that is attached to the
upper arm (103) via an armband (611). The orientation of the
upper arm (103) is represented by a local coordinate system
X,Y,Z,, where the lengthwise direction Y, is in parallel
with the direction from the shoulder to the elbow joint (603),
the direction X, is in parallel with the direction from the
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inner side of the upper arm (103) to the outer side of the
upper arm (103), and the direction Z, is in parallel with the
direction from the back side of the upper arm (103) to the
front side of the upper arm (103).

[0219] The orientation of the hand (108) is tracked/deter-
mined using a handheld module (119). The orientation of the
hand (108) is represented by a local coordinate system
X,Y;Z;, where the lengthwise direction Y5 is in parallel
with the direction from the wrist (608) to the fingers, the
direction X is in parallel with the direction from the back of
the hand (108) to the palm of the hand (108), and the
direction Z; is in parallel with the direction from the edge of
the palm to the thumb on the hand (108).

[0220] Preferably, the arm module (113) and the handheld
module (119) separately report their motion/orientation
parameters to a computing device (141) using wireless
connections (617 and 619), such as a personal area wireless
network connection (e.g., Bluetooth connections), or a local
area wireless network connection (e.g., Wi-Fi connections).
[0221] Alternatively, the arm module (113) may report its
measurements to the handheld module (119) (via a wired or
wireless connection); and the handheld module (119) com-
municates the motion/orientation measurements to the com-
puting device (141) (e.g., via a wired or wireless connec-
tion).

[0222] For example, the handheld module (119) and the
arm module (113) can be respectively a base unit (or a game
controller) and an arm/shoulder module discussed in U.S.
Pat. App. Pub. No. 15/492,915, filed Apr. 20, 2017 and
entitled “Devices for Controlling Computers based on
Motions and Positions of Hands”, the entire disclosure of
which application is hereby incorporated herein by refer-
ence.

[0223] At least some embodiments disclosed herein allow
the orientation of the forearm (112) to be estimated, pre-
dicted, or calculated from the orientation of the hand (108)
and the orientation of the upper arm (103) without the need
for an additional sensor module to track the orientation of
the forearm (112), as further discussed below.

[0224] FIG. 16 illustrates a skeleton model of an arm. For
example, the skeleton model of FIG. 16 can be used in the
motion processor (145) of FIG. 2 to determine the orienta-
tion of the forearm (112) that does not have an attached
sensor module, as illustrated in FIG. 15.

[0225] FIG. 16 shows the geometrical representations of
the upper arm (103), the forearm (112), and the hand (108)
in relation with the elbow joint (603) and the wrist (608)
relative to the shoulder (600).

[0226] Each of the upper arm (103), the forearm (112), and
the hand (108) has an orientation relative to a common
reference system (e.g., the shoulder (600), a room, or a
location on the Earth where the user is positioned). The
orientation of the upper arm (103), the forearm (112), or the
hand (108) can be indicated by a local coordinate system
(651, 653, or 655) aligned with the upper arm (103), the
forearm (112), or the hand (108).

[0227] The orientation of the upper arm (103) and the
orientation of the hand (108), as represented by the local
coordinate systems (651 and 655) can be calculated from the
motion parameters measured by the IMUs in the module
(113 and 109) attached to the upper arm (103) and the hand
(108).

[0228] Since the forearm (112) does not have an attached
IMU for the measurement of its orientation, the motion
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processor (145) uses a set of assumed relations between the
movements of the forearm (112) and the hand (108) to
calculate or estimate the orientation of the forearm (112)
based on the orientation of the upper arm (103) and the
orientation of the hand (108), as further discussed below.
[0229] FIG. 17 illustrates the determination of the orien-
tation of a forearm according to one embodiment.

[0230] In FIG. 17, the coordinate system X,Y,7Z, repre-
sents the orientation of the upper arm (103), where the
direction Y, is along the lengthwise direction of the upper
arm (103) pointing from the shoulder (600) to the elbow
joint (603), as illustrated in FIG. 16. The directions X, and
Z, are perpendicular to the direction Y. The direction X, is
parallel to the direction from the back side of the upper arm
(103) to the front side of the upper arm (103); and the
direction X, is parallel to the direction from the inner side of
the upper arm (103) to the outer side of the upper arm (103).
[0231] When the arm is in a vertical direction pointing
downwards with the hand (108) facing the body of the user,
the lengthwise directions Y, Y,, and Y of the upper arm
(103), the forearm (112), and the hand (108) are aligned with
the vertical direction pointing downwards. When in such a
position, the inner sides of the forearm (112) and the upper
arm (103) are closest to the body of the user; and the outer
sides of the forearm (112) and the upper arm (103) are away
from the body of the user; the directions Z,, Z,, and Z; of
the upper arm (103), the forearm (112), and the hand (108)
are aligned with a direction pointing sideway to the user; and
the directions Z,, Z,, and Z; of the upper arm (103), the
forearm (112), and the hand (108) are aligned with a
direction pointing to the front of the user.

[0232] Thus, the plane XY is parallel to the direction X,
from the back side of the upper arm (103) to the front side
of the upper arm (103), parallel to the lengthwise direction
Y, of the upper arm (103), and perpendicular to the direction
Z, from the direction from the inner side of the upper arm
(103) to the outer side if the upper arm (103). The direction
Z, coincides with an axis of the elbow joint about which the
forearm (112) can rotate to form an angle with the upper arm
(103) between their lengthwise directions. When the upper
arm (103) is extended in the sideway of the user and in a
horizontal position, the directions X, and Z, are aligned with
(in parallel with) the front direction and vertical direction
respectively.

[0233] The direction Y, is aligned with the lengthwise
direction of the forearm (112) pointing from the elbow joint
(603) to the wrist (608).

[0234] The direction Y, is aligned with the lengthwise
direction of the hand (108) pointing from the wrist (608)
towards the fingers.

[0235] When the upper arm (103) is extended in the
sideway of the user and in a horizontal position, the direc-
tions Y,, Y,, and Y, coincide with the horizontal direction
pointing the sideway of the user.

[0236] When the hand (108) is moved to an orientation
illustrated in FIG. 17, the hand (108) can be considered to
have moved from the orientation of the coordinate system
X,Y,Z, through rotating (165) by an angle y along the
lengthwise direction Y, and then rotating (161) along the
shortest arc (161) such that its lengthwise direction Y,
arrives at the direction illustrated in FIG. 17. The rotation
(161) along the shortest arc (161) corresponding to a rotation
of the direction Y, by an angle f§ in a plane containing both
the directions Y, and Y along an axis perpendicular to both
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the directions Y, and Y (i.e., the axis is perpendicular to the
plane containing both the directions Y, and Y5).

[0237] The projection of the direction Y5 in the plane
X,Y, is assumed to be in the direction of the lengthwise
direction Y, of the forearm (112). The projection represents
arotation (163) of the direction Y, by an angle « in the plane
X,Y, along the direction Z, according to the shortest arc
(163).

[0238] It is assumed that the rotation (165) of the hand
(108) along its lengthwise direction is a result of the same
rotation of the forearm (112) along its lengthwise direction
while the forearm (112) is initially at the orientation aligned
with the coordinate system X,Y,Z,. Thus, when the hand
(108) has an orientation illustrated in FIG. 17 relative to the
orientation (X,Y,Z,) of the upper arm (103), the orientation
of the forearm (112) is assumed to have moved from the
orientation of the coordinate system X, Y, by rotating (165)
along the lengthwise direction Y, and then rotating (163) in
the plane) X,Y, along the direction

[0239] Since the rotations (665, 661 and 663) can be
calculated from the orientation of the hand (108) relative to
the orientation of the upper arm (103) (e.g., using the
orientation data measured by the IMUs of the arm module
(113) and the handheld module (119)), the orientation of the
forearm (112) can be calculated from the rotations (665 and
663) without measurement data from an IMU attached to the
forearm (112).

[0240] After the orientations of the upper arm (103), the
forearm (112) and the hand (108) are obtained, the motion
processor (145) can compute the positions of the upper arm
(103), the forearm (112) and the hand (108) in a three
dimensional space (relative to the shoulder (600)), which
allows the application (147) to present an arm of an avatar
in a virtual reality, augmented reality, or mixed reality in
accordance with the movement of the arm of the user. The
positions of the upper arm (103), the forearm (112) and the
hand (108) in a three dimensional space (relative to the
shoulder (600)) can also be used to determine the gesture
made by the user in the three dimensional space to control
the application (147).

[0241] Further details and examples of techniques to pre-
dict/estimate/compute the orientation of the forearm (112)
based on assumed orientation relations among the hand
(108) and the upper arm (103) can be found in U.S. patent
application Ser. No. 15/787,555, filed Oct. 18, 2017, pub-
lished as U.S. Pat. App. Pub. No. 2018/0335855 on Nov. 22,
2018, and entitled “Tracking Arm Movements to Generate
Inputs for Computer Systems,” the entire disclosure of
which is hereby incorporated herein by reference.

[0242] In at least some embodiments disclosed herein, the
orientation of a rigid part in a kinematic chain that is not
separately tracked using an attached sensor module is com-
puted using multiple different techniques separately, based
on orientation data of other rigid parts in the kinematic
chain. The computed results generated by the different
techniques are candidates of orientation measurements for
the rigid part that is not independently tracked during a
sequence of user actions. An artificial neural network is
configured to combine the candidates to generate orientation
measurements for the rigid part during the sequence of user
actions.

[0243] For example, the orientation of a forearm of a user
can be computed from the sensor data tracking the orienta-
tion of a hand of the user and the orientation of an upper arm
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of the user. The orientation of a forearm can be computed
using an RNN model (309) trained using a technique of FI1G.
4 or 6 and computed/predicted using a method of FIG. 5 or
7. The orientation of a forearm can also be computed
separately using assumed orientation relations among the
hand, forearm, and upper arm of the user, as illustrated in
FIGS. 15-17. The predictions/estimates of the orientation of
the forearm computed using the different approaches can be
combined using an artificial neural network, as further
illustrated in FIG. 18.

[0244] FIG. 18 shows a method to combine orientations of
a part in a kinematic chain computed using different
approaches.

[0245] For example, the kinematic chain can have a first
rigid part (e.g., hand (108)), a second rigid part (e.g., upper
arm (103)), and a third rigid part (e.g., forearm (112)) that
are connected via joints (e.g., elbow (603) and wrist (608)).
[0246] At block 701, a first device (e.g., 119) generates
orientation measurements of the first rigid part (e.g., hand
(109)) of the kinematic chain.

[0247] At block 703, a second device (e.g., 113) generates
orientation measurements of the second rigid part (e.g.,
upper arm (103)) of a kinematic chain.

[0248] No sensor device is required for the tracking the
orientation of the third rigid part (e.g., forearm (112)),
because the orientation of the third rigid part can be esti-
mated, predicted and/or computed from the tracked orien-
tations of the first rigid part (e.g., hand (109)) and the second
rigid part (e.g., upper arm (103)).

[0249] For example, at block 711, an RNN model (e.g.,
309 or 339) for the orientation prediction of the third rigid
part connected between the first and second rigid parts can
be used to generate, predict, and/or estimate the orientations
(717) of the third rigid part (e.g., forearm (112)) in a time
period.

[0250] For example, at block 721, assumed orientation
relations among the rigid parts (e.g., hand (109), forearm
(112) and upper arm (103) in the kinematic chain can be
used to calculate the orientations (727) of the third rigid part
(e.g., forearm (112)) during the same time period. The
estimates made using the assumed orientation relations
(721) can be more accurate than the predictions made by the
RNN model (e.g., 309 or 339) at some time instances in the
time period, but not at other time instances.

[0251] At block (705), an artificial neural network (e.g.,
RNN, FC, GRU, and/or LSTM network) is used to combine
the orientations (717 and 727) into orientation measure-
ments (707) of the third rigid part (e.g., forearm (112)) in the
kinematic chain.

[0252] For example, the user can wear the first and second
devices to track the orientations of the first and second rigid
parts of the kinematic chain. When the user performs a
sequence of actions, the orientations (717 and 727) are
generate for time instances in the sequence of actions. At
each particular time instance, the RNN mode (711) and the
assumed orientation relations (721) can lead to different
estimates/predictions of the orientation of the third rigid
part. The RNN, FC, GRU, and/or LSTM network (705) can
be trained to individually select, for the particular time
instance, one of the orientation estimates/predictions as the
most accurate result, based on the motion history of the
kinematic chain captured in the RNN, FC, GRU, and/or
LSTM network (705). Thus, the motion processor (145) can
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be configured to use the most accurate result to control the
skeleton model (143) of the kinematic chain.

[0253] Alternatively, the RNN, FC, GRU, and/or LSTM
network (706) can be trained to compute, individually for
each particular time instance, a combined orientation esti-
mate/prediction that is a weighted sum of the orientation
estimate/prediction produced by the RNN mode (711) and
the orientation estimate/prediction calculated according to
the assumed orientation relations (721). The weights can be
dependent on the motion history captured in the RNN or
LSTM network (705). Thus, the motion processor (145) can
be configured to use the combined orientation estimates/
predictions to more accurately control the skeleton model
(143) of the kinematic chain in accordance with the actions
of the user.

[0254] The technique of FIG. 18 is illustrated in connec-
tion with the kinematic chain involving a hand and an upper
arm connected by a forearm. The technique of FIG. 18 can
also be applied to other kinematic chains, where assumed
orientations among rigid parts in the kinematic chains can be
used to estimate or compute the orientation of a rigid part in
the chains to eliminate the need to independently track the
orientation of such a rigid part.

[0255] For example, assumed orientation relations among
the palm of a hand and fingers of the hand can be used to
estimate or compute the orientations of some fingers that are
not separately tracked using sensor modules. Examples of
such techniques can be found in U.S. patent application Ser.
No. 15/792,255, filed Oct. 24, 2017, published as U.S. Pat.
App. Pub. No. 2018/0335843 on Nov. 22, 2018, and entitled
“Tracking Finger Movements to Generate Inputs for Com-
puter Systems,” the entire disclosure of which is hereby
incorporated herein by reference. An RNN model (e.g., 309
or 339) can also be used to predict or estimate the orientation
measurements of the fingers that are not separately tracked,
using the techniques of FIGS. 4-14. An RNN, FC, GRU,
and/or LSTM network (e.g., 705) can be used to combine the
estimates/predictions computed using the assumed orienta-
tion relations and using the RNN model (e.g., 309 or 339) to
generate combined estimates/predictions, or select more
accurate ones of the separate estimates/predictions made
using different techniques.

[0256] For example, assumed orientation relations among
the torso of a user, the left and right upper arms of a user,
and/or the head of the user can be used to estimate or
compute the orientation of the torso of the user without
separately tracking the orientation of the torso using an
additional sensor module. Examples of such techniques can
be found in U.S. patent application Ser. No. 15/813,813,
filed Nov. 15, 2017, published as U.S. Pat. App. Pub. No.
2018/0335834 on Nov. 22, 2018, and entitled “Tracking
Torso Orientation to Generate Inputs for Computer Sys-
tems,” and U.S. patent application Ser. No. 15/864,860, filed
Jan. 8, 2018 and entitled “Tracking Torso Leaning to Gen-
erate Inputs for Computer Systems,” the entire disclosures
of which applications are hereby incorporated herein by
reference. An RNN model (e.g., 309 or 339) can also be used
to predict or estimate the orientation measurements of the
torso that is not separately tracked, using the techniques of
FIGS. 4-14. An RNN, FC, GRU, and/or LSTM network
(e.g., 705) can be used to combine the estimates/predictions
computed using the assumed orientation relations and using
the RNN model (e.g., 309 or 339) to generate combined
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estimates/predictions, or select more accurate ones of the
separate estimates/predictions made using different tech-
niques.

[0257] FIG. 19 shows a method to train an artificial neural
network (e.g., 705) to classify orientation results computed
using different techniques (711 and 721).

[0258] At block 731, tracking devices are attached to one
or more rigid parts of a kinematic chain of a user. The
tracking devices include at least the sensor modules (e.g.,
117, 119, 113, 115, and 111) that are configured to track their
orientations using inertial measurement units (e.g., 121,
131). The tracking devices can optionally include additional
sensor modules that can be subsequently omitted after the
training of the artificial neural network (e.g., 705).

[0259] For example, the kinematic chain can include a
hand (108), a forearm (112) and an upper arm (103), where
the artificial neural network (e.g., 705) is trained to avoid the
need to separately track the orientation of the forearm (112).
For example, the kinematic chain can include upper arms
(103 and 105) and the torso (101) of the user, wherein the
artificial neural network (e.g., 705) is trained to avoid the
need to separately track the orientation of the torso (101).
For example, the kinematic chain can include the palm of a
hand (108) and fingers on the hand (108), wherein the
artificial neural network (e.g., 705) is trained to avoid the
need to separately track some parts of the fingers on the hand
(108).

[0260] At block 733, the user performs a sequence of
actions involving the kinematic chain, starting from a cali-
bration pose (e.g., as a pose illustrated in FIG. 1).

[0261] At block 735, the tracking devices generate orien-
tation measurements during the sequence of actions.
[0262] At block 737, a first technique (e.g., based on an
RNN model (711) for the kinematic chain) is applied to the
orientation measurements to compute orientation measure-
ments of a rigid part in the kinematic chain.

[0263] At block 738, a second technique (e.g., based on
assumed orientation relations (721) in the kinematic chain)
to the orientation measurements to compute orientation
measurements of the same rigid part in the kinematic chain.
[0264] At block 739, the accuracy of the computed orien-
tation measurements of the rigid part generated using the
first technique is compared with the accuracy of the corre-
sponding measurements generated using the second tech-
nique.

[0265] For example, orientation measurements computed
using the first technique can be more accurate than the
orientation measurements computed using the second tech-
nique at some time instances during the sequence of actions
but not at other time instances. The comparison (739) can be
used to identify a first subset of time instances the orienta-
tion measurements computed using the first technique are
deemed preferred or accurate, and identify a second subset
of time instances the orientation measurements computed
using the second technique are deemed preferred or accu-
rate.

[0266] For example, the rigid part in the kinematic chain
can be further tracked using an additional sensor module
and/or a separate tracking technique (e.g., an optical tracking
system). The orientation measurements from the additional
sensor module and/or the separate tracking technique (e.g.,
an optical tracking system) is considered as being more
accurate than the orientation measurements computed using
the first and second techniques. Thus, a computing system
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can automatically determine which orientation measure-
ments computed using the first and second techniques is
more accurate at each time instance during the user actions.
[0267] Alternatively, and/or in combination, an operator
may examine the orientation measurements computed using
the first and second techniques to determine which of the
computed orientation measurements are accurate, correct, or
preferred and which of the computed orientation measure-
ments are inaccurate, incorrect, or not preferred.

[0268] At block 741, the orientation measures computed
using the first and second techniques during the sequence of
actions are labeled as accurate or inaccurate based on the
accuracy comparison (739).

[0269] At block 743, the artificial neural network (e.g.,
RNN, FC, GRU, and/or LSTM network) (705) is trained to
classify orientation measurements of the rigid part of the
kinematic chain, computed using the first and second tech-
niques, according to the labeling/classification of accurate/
inaccurate (or preferred/not preferred, or correct/incorrect).
[0270] Optionally, the artificial neural network (e.g.,
RNN, FC, GRU, and/or LSTM network) is further trained to
combine the orientation estimates/predictions for the rigid
part of the kinematic chain, computed using the first and
second techniques, and generate a combined orientation
measurement that is closest to the orientation measurement
determined using the additional sensor module and/or the
separate tracking technique (e.g., an optical tracking sys-
tem).

[0271] A combination of the first and second techniques
and the trained artificial neural network (e.g., RNN, FC,
GRU, and/or LSTM network) (705) allows the subsequent
elimination of the need for the additional sensor module
and/or the separate tracking technique (e.g., an optical
tracking system), as in FIG. 20.

[0272] FIG. 20 shows a method to control a computer
model (143) of a kinematic chain according to one embodi-
ment.

[0273] At block 761, tracking devices are attached to one
or more rigid parts of a kinematic chain of a user, in a way
similar to the use of tracking devices in block 731 in FIG.
19. However, the additional sensor module and/or the sepa-
rate tracking technique (e.g., an optical tracking system) can
be omitted for the orientation of a rigid part that can be
computed using the first and second techniques as in blocks
737 and 738 of FIG. 19.

[0274] At block 763, the user performs a sequence of
actions involving the kinematic chain, starting from a cali-
bration pose (e.g., as a pose illustrated in FIG. 1). The
sequence of actions can be similar to that performed in block
733 in FIG. 19.

[0275] At block 765, the tracking devices generate orien-
tation measurements during the sequence of actions.
[0276] At block 767, a computing device (e.g., 141)
applies a first technique to the orientation measurements to
compute orientation measurements of a rigid part in the
kinematic chain that has no attached tracking device, as in
block 737 in FIG. 19.

[0277] At block 768, the computing device (e.g., 141)
applies a second technique to the orientation measurements
to compute orientation measurements of the same rigid part
in the kinematic chain that has no attached tracking device,
as in block 738 in FIG. 19.

[0278] At block 751, the computing device (e.g., 141)
classifies the orientation measurements of the rigid part of
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the kinematic chain, computed using the first and second
technique, as preferred and non-preferred (or accurate and
inaccurate, or correct and incorrect) using a trained artificial
neural network, such as the RNN, FC, GRU, and/or LSTM
network (705) trained using the method of FIG. 19.

[0279] At block 753, the computing device (e.g., 141)
selects the orientation measurements that are classified as
accurate (correct or preferred) by the artificial neural net-
work (e.g., 705).

[0280] At block 755, the computing device (e.g., 141)
controls the computer model (143) of the kinematic chain
using the selected orientation measurement that are classi-
fied as accurate (correct or preferred).

[0281] For example, the artificial neural network (e.g.,
705) can select orientation estimates computed using
assumed orientation relations in the kinematic chain at some
time instances as the correct, preferred, or accurate esti-
mates, and select orientation estimates computed using the
RNN model (e.g., 309 or 339) as the correct preferred, or
accurate estimates at other time instances during the
sequence of actions. For example, the RNN model (e.g., 309
or 339) can be configured (e.g., using the technique of FIG.
4 or 6) to predict the measurements that would be produced
using another tracking system (e.g., optical tracking system)
and/or an additional tracking device (332) that is currently
omitted in the current system. The estimates classified by the
artificial neural network (e.g., 705) as being correct, accu-
rate, or preferred can be used to control the model (143) of
the kinematic chain and/or generate gesture inputs for the
application (147) running the computing device (141).
[0282] The present disclosure includes methods and appa-
ratuses which perform these methods, including data pro-
cessing systems which perform these methods, and com-
puter readable media containing instructions which when
executed on data processing systems cause the systems to
perform these methods.

[0283] For example, the computing device (141), the arm
modules (113, 115) and/or the head module (111) can be
implemented using one or more data processing systems.

[0284] A typical data processing system may include
includes an inter-connect (e.g., bus and system core logic),
which interconnects a microprocessor(s) and memory. The
microprocessor is typically coupled to cache memory.

[0285] The inter-connect interconnects the microprocessor
(s) and the memory together and also interconnects them to
input/output (/O) device(s) via /O controller(s). 1/O
devices may include a display device and/or peripheral
devices, such as mice, keyboards, modems, network inter-
faces, printers, scanners, video cameras and other devices
known in the art. In one embodiment, when the data pro-
cessing system is a server system, some of the I/O devices,
such as printers, scanners, mice, and/or keyboards, are
optional.

[0286] The inter-connect can include one or more buses
connected to one another through various bridges, control-
lers and/or adapters. In one embodiment the I/O controllers
include a USB (Universal Serial Bus) adapter for controlling
USB peripherals, and/or an IEEE-1394 bus adapter for
controlling IEEE-1394 peripherals.

[0287] The memory may include one or more of: ROM
(Read Only Memory), volatile RAM (Random Access
Memory), and non-volatile memory, such as hard drive,
flash memory, etc.
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[0288] Volatile RAM is typically implemented as dynamic
RAM (DRAM) which requires power continually in order to
refresh or maintain the data in the memory. Non-volatile
memory is typically a magnetic hard drive, a magnetic
optical drive, an optical drive (e.g., a DVD RAM), or other
type of memory system which maintains data even after
power is removed from the system. The non-volatile
memory may also be a random access memory.

[0289] The non-volatile memory can be a local device
coupled directly to the rest of the components in the data
processing system. A non-volatile memory that is remote
from the system, such as a network storage device coupled
to the data processing system through a network interface
such as a modem or Ethernet interface, can also be used.
[0290] In the present disclosure, some functions and
operations are described as being performed by or caused by
software code to simplify description. However, such
expressions are also used to specify that the functions result
from execution of the code/instructions by a processor, such
as a microprocessor.

[0291] Alternatively, or in combination, the functions and
operations as described here can be implemented using
special purpose circuitry, with or without software instruc-
tions, such as using Application-Specific Integrated Circuit
(ASIC) or Field-Programmable Gate Array (FPGA).
Embodiments can be implemented using hardwired circuitry
without software instructions, or in combination with soft-
ware instructions. Thus, the techniques are limited neither to
any specific combination of hardware circuitry and software,
nor to any particular source for the instructions executed by
the data processing system.

[0292] While one embodiment can be implemented in
fully functioning computers and computer systems, various
embodiments are capable of being distributed as a comput-
ing product in a variety of forms and are capable of being
applied regardless of the particular type of machine or
computer-readable media used to actually effect the distri-
bution.

[0293] At least some aspects disclosed can be embodied,
at least in part, in software. That is, the techniques may be
carried out in a computer system or other data processing
system in response to its processor, such as a microproces-
sor, executing sequences of instructions contained in a
memory, such as ROM, volatile RAM, non-volatile memory,
cache or a remote storage device.

[0294] Routines executed to implement the embodiments
may be implemented as part of an operating system or a
specific application, component, program, object, module or
sequence of instructions referred to as “computer pro-
grams.” The computer programs typically include one or
more instructions set at various times in various memory and
storage devices in a computer, and that, when read and
executed by one or more processors in a computer, cause the
computer to perform operations necessary to execute ele-
ments involving the various aspects.

[0295] A machine readable medium can be used to store
software and data which when executed by a data processing
system causes the system to perform various methods. The
executable software and data may be stored in various places
including for example ROM, volatile RAM, non-volatile
memory and/or cache. Portions of this software and/or data
may be stored in any one of these storage devices. Further,
the data and instructions can be obtained from centralized
servers or peer to peer networks. Different portions of the
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data and instructions can be obtained from different central-
ized servers and/or peer to peer networks at different times
and in different communication sessions or in a same com-
munication session. The data and instructions can be
obtained in entirety prior to the execution of the applica-
tions. Alternatively, portions of the data and instructions can
be obtained dynamically, just in time, when needed for
execution. Thus, it is not required that the data and instruc-
tions be on a machine readable medium in entirety at a
particular instance of time.

[0296] Examples of computer-readable media include but
are not limited to non-transitory, recordable and non-record-
able type media such as volatile and non-volatile memory
devices, read only memory (ROM), random access memory
(RAM), flash memory devices, floppy and other removable
disks, magnetic disk storage media, optical storage media
(e.g., Compact Disk Read-Only Memory (CD ROM), Digi-
tal Versatile Disks (DVDs), etc.), among others. The com-
puter-readable media may store the instructions.

[0297] The instructions may also be embodied in digital
and analog communication links for electrical, optical,
acoustical or other forms of propagated signals, such as
carrier waves, infrared signals, digital signals, etc. However,
propagated signals, such as carrier waves, infrared signals,
digital signals, etc. are not tangible machine readable
medium and are not configured to store instructions.
[0298] In general, a machine readable medium includes
any mechanism that provides (i.e., stores and/or transmits)
information in a form accessible by a machine (e.g., a
computer, network device, personal digital assistant, manu-
facturing tool, any device with a set of one or more proces-
sors, etc.).

[0299] In various embodiments, hardwired circuitry may
be used in combination with software instructions to imple-
ment the techniques. Thus, the techniques are neither limited
to any specific combination of hardware circuitry and soft-
ware nor to any particular source for the instructions
executed by the data processing system.

[0300] In the foregoing specification, the disclosure has
been described with reference to specific exemplary embodi-
ments thereof. It will be evident that various modifications
may be made thereto without departing from the broader
spirit and scope as set forth in the following claims. The
specification and drawings are, accordingly, to be regarded
in an illustrative sense rather than a restrictive sense.

What is claimed is:

1. A system, comprising:

a plurality of sensor modules attached to a kinematic
chain of a user, each respective sensor module in the
plurality of sensor modules having an inertial measure-
ment unit and being attached to a part of the kinematic
chain of the user to track an orientation of the part
during a sequence of actions of the user, wherein the
kinematic chain includes a plurality of parts connected
via joints and at least one part of the kinematic chain
has no attached sensor module with an inertial mea-
surement unit; and

a computing device coupled to the plurality of sensor
modules and configured to:
compute, using a first technique and based on measure-

ments of inertial measurement units of the sensor
modules, first orientation measurements of the part
having no attached sensor module in the kinematic
chain, the first orientation measurements being com-
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puted for a plurality of time instances respectively
during the sequence of actions of the user;
compute, using a second technique and based on the
measurements of inertial measurement units of the
sensor modules, second orientation measurements of
the part having no attached sensor module in the
kinematic chain, the second orientation measure-
ments being computed for the plurality of time
instances respectively during the sequence of actions
of the user;
determine, using an artificial neural network and for
each respective time instance in the plurality of time
instances, whether a measurement in the first orien-
tation measurements computed for the time instance
using the first technique is more accurate than a
corresponding measurement in the second orienta-
tion measurements computed for the time instance
using the second technique; and
control a computer model of the kinematic chain of the
user using a more accurate one in:
the measurement in the first orientation measure-
ments computed using the first technique for the
time instance, and
the corresponding measurement in the second orien-
tation measurements computed using the second
technique for the time instance.

2. The system of claim 1, wherein the artificial neural
network contains one or more long short-term memory
(LSTM) units.

3. The system of claim 1, wherein the artificial neural
network includes a recurrent neural network.

4. The system of claim 1, wherein the first technique
computes the first orientation measurements using an arti-
ficial neural network.

5. The system of claim 4, wherein the second technique
computes the second orientation measurements based on
assumed orientation relations in the kinematic chain of the
user.

6. The system of claim 5, wherein the kinematic chain of
the user includes a hand of the user and an upper arm of the
user connected by a forearm of the user, wherein the forearm
has no attached inertial measurement unit.

7. The system of claim 5, wherein the artificial neural
network used in the first technique is trained to predict
orientation measurements of a tracking technique not used in
the system.

8. The system of claim 7, wherein the tracking technique
is configured to determine orientations of parts of the
kinematic chain using an optical tracking system.

9. The system of claim 8, wherein the artificial neural
network used in the first technique includes Long Short-
Term Memory (LSTM) units.

10. The system of claim 1, wherein the inertial measure-
ment unit includes a micro-electromechanical system
(MEMS) gyroscope.

11. The system of claim 10, wherein the inertial measure-
ment unit further includes a magnetometer and a MEMS
accelerometer.

12. A method, comprising:

generating, by a plurality of sensor modules attached to a

kinematic chain of a user, orientation measurements,
each respective sensor module in the plurality of sensor
modules having an inertial measurement unit, the
respective sensor module being attached to a part of the
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kinematic chain of the user to track an orientation of the
part during a sequence of actions of the user, wherein
the kinematic chain includes a plurality of parts con-
nected via joints and at least one part of the kinematic
chain has no attached inertial measurement unit;

receiving, in a computing device coupled to the plurality
of sensor modules, the orientation measurements gen-
erated by the sensor modules;

computing, by the computing device using a first tech-

nique and based on the orientation measurements gen-
erated by the sensor modules, first orientation measure-
ments of the part having no attached inertial
measurement unit in the kinematic chain, the first
orientation measurements being computed for a plural-
ity of time instances respectively during the sequence
of actions of the user;

computing, by the computing device using a second

technique and based on the orientation measurements
generated by the sensor modules, second orientation
measurements of the part having no attached inertial
measurement unit in the kinematic chain, the second
orientation measurements being computed for the plu-
rality of time instances respectively during the
sequence of actions of the user;

selecting, by the computing device using an artificial

neural network and for each respective time instance in

the plurality of time instances, a more accurate one of:

a measurement in the first orientation measurements
computed using the first technique for the time
instance, and

a corresponding measurement in the second orientation
measurements computed using the second technique
for the time instance; and

controlling, by the computing device, a computer model

of the kinematic chain of the user using the more

accurate one of:

the measurement in the first orientation measurements
computed using the first technique for the time
instance, and

the corresponding measurement in the second orienta-
tion measurements computed using the second tech-
nique for the time instance.

13. The method of claim 12, wherein the artificial neural
network includes a recurrent neural network, or a fully
connected deep network, or any combination thereof.

14. The method of claim 13, wherein the artificial neural
network contains at least a long short-term memory (LSTM)
unit, or a gated recurrent unit (GRU), or any combination
thereof.

15. The method of claim 12, wherein the first technique
computes the first orientation measurements using a recur-
rent neural network; and second technique computes the
second orientation measurements based on assumed orien-
tation relations in the kinematic chain of the user.

16. A method, comprising:

receiving, in a computing device, orientation measure-

ments generated by a plurality of sensor modules
attached to a kinematic chain of a user, each respective
sensor module in the plurality of sensor modules hav-
ing an inertial measurement unit and being attached to
a part of the kinematic chain of the user to track an
orientation of the part during a sequence of actions of
the user, wherein the kinematic chain includes a plu-
rality of parts connected via joints;
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computing, by the computing device using a first tech-
nique and based on the orientation measurements gen-
erated by the sensor modules, first orientation measure-
ments of a particular part in the plurality of parts
connected via the joints, the first orientation measure-
ments being computed for a plurality of time instances
respectively during the sequence of actions of the user;

computing, by the computing device using a second
technique and based on the orientation measurements
generated by the sensor modules, second orientation
measurements of the particular part, the second orien-
tation measurements being computed for the plurality
of time instances respectively during the sequence of
actions of the user;

identifying, in the computing device, classifications of
whether a measurement in the first orientation mea-
surements computed using the first technique for each
respective time instance in the plurality of time
instances is more accurate than a corresponding mea-
surement in the second orientation measurements com-
puted using the second technique for the time instance;
and

training, by the computing device using a machine learn-
ing technique, an artificial neural network and for each
of the plurality of time instances, to classify whether
the measurement in the first orientation measurements
computed using the first technique for the time instance
is more accurate than the corresponding measurement
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in the second orientation measurements computed
using the second technique for the time instance.

17. The method of claim 16, further comprising:

generating, using a particular sensor module attached to

the particular part, orientation measurements of the
particular part at the plurality of time instances during
the sequence of actions of the user;

comparing the orientation measurements generated by the

particular sensor module with the first orientation mea-
surements and the second orientation measurements to
identify the classifications.

18. The method of claim 16, wherein the artificial neural
network includes a recurrent neural network having at least
one long short-term memory (LSTM) unit.

19. The method of claim 16, wherein the first technique
computes the first orientation measurements using a recur-
rent neural network; and second technique computes the first
orientation measurements based on assumed orientation
relations in the kinematic chain of the user.

20. The method of claim 19, further comprising:

training the recurrent neural network used in the first

technique to predict orientation measurements gener-
ated using a third technique;

wherein the third technique is configured to determine

orientations of parts of the kinematic chain using an
optical tracking system.
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