US 20200319913A1

a2y Patent Application Publication o) Pub. No.: US 2020/0319913 A1

a9y United States

KUMAR et al.

43) Pub. Date: Oct. 8, 2020

(54) SYSTEM, APPARATUS AND METHOD FOR
ACCESSING MULTIPLE ADDRESS SPACES
VIA A VIRTUALIZATION DEVICE

(71) Applicant: Intel Corporation, Santa Clara, CA
(US)

(72) Inventors: SANJAY K. KUMAR, Hillsboro, OR
(US); RAJESH SANKARAN,
Portland, OR (US); UTKARSH Y.
KAKAIYA, Folsom, CA (US);
PRATIK M. MAROLIA, Hillsboro,
OR (US)

(21) Appl. No.: 16/909,068

Publication Classification

(51) Int. CL
GOGF 9/455 (2006.01)
GOGF 12/10 (2006.01)
(52) US.CL
CPC ... GOGF 9/45558 (2013.01); GOGF 12/10

(2013.01); GO6F 2212/657 (2013.01); GO6F
2009/45583 (2013.01); GOGF 2009/45579
(2013.01)

(57) ABSTRACT

In one embodiment, an apparatus includes an input/output
virtualization (IOV) device comprising: at least one function
circuit to be shared by a plurality of virtual machines (VMs);
and a plurality of assignable device interfaces (ADIs)
coupled to the at least one function circuit, wherein each of
the plurality of ADIs is to be associated with one of the
plurality of VMs and comprises a first process address space

(22) Filed: Jun. 23, 2020 identifier (PASID) field to store a first PASID to identify a
descriptor queue stored in a host address space and a second
(30) Foreign Application Priority Data PASID field to store a second PASID to identify a data buffer
located in a VM address space. Other embodiments are
Apr. 30, 2020 (IN) e 202041018444 described and claimed.
100
140400
Address
1306 Space
110 0
Job Control Execution
Descriptor Circuit Circuit(s)
1 Address
Space
N
A
PASID 14000
Permissions
Table \
120




L Old

US 2020/0319913 A1l

0ci
/ 2iqe |
SUCISSIULIR

“Oop L aisvd

aoedg
SSRUPDY

Oct. 8,2020 Sheet 1 of 9
=z

oduosag

(shinos HNDUI
2 D e qopr

LONNoexd [OHUOD

A
A 4

/ _ 0 S\

0
aoeds

S82UPPY

/

i —

Patent Application Publication



US 2020/0319913 A1l

Oct. 8,2020 Sheet 2 of 9

Patent Application Publication

¢ 'Ol

0ce 0ce

/ /
95 10129183 (IISYd 82405 |10198}8S (ISYd UOReuUlSaq]
oy paniasay
Oy g7 SSPIPPY UOHEDYHON uonewiss(
A% 0% 9z1S sjsuri] SIPUBH 18NS} %mmwmﬁou PBAIBSEY
e $T7 SSeUppy uoneunssq /
91 T77 SS8IppPY 95In0g 057
8 Gle $SIPPY pI0oay uonsjdwon
0 diSvd , | PRAIBSSY Al sbej4 uonesadO™_ 0/Z

soiig | ooMa | Laka S zoMa  calg | poka | ceka S9eikg | Loeig
QNN @mm

X-00z



US 2020/0319913 A1l

Oct. 8,2020 Sheet 3 of 9

Patent Application Publication

£ 'Ol
L1g 81¢ 118 91¢ Zie GLe 1g £1e
/ / / / / / / /
QISYd | uoIssiwied | uoissiuisd | uoissiued | QISvd m%% u3 m%wm{ 8zg
Bpiwgng uigi(] B peSy §S900Y Mmgmw m@%mm sbuey
R-01¢
. 8je SUOISSILLRd JISYd
AR 0 Aug 1dd
L AUT [dd | «—
||||| 1010898
o .l —eee- aisyd
g—————————————————————
R-00¢




Patent Application Publication  Oct. 8,2020 Sheet 4 of 9

-
3

US 2020/0319913 A1l

Receive Request From VMM
To Access VM Address Space

410

l

Allocate Entry In PASID Permissions
Table in Response To Reqguest

N\
420

'

Configure Entry In PASID Permissions
Table in Response To Request

430

'

Send PASID Selector To VMM For Use As
index Into PASID Permissions Table

N\
440

FIG. 4



Patent Application Publication

Oct. 8,2020 Sheet 5 of 9

Receive Reguest From First Application
To Allow Second Application To Access
Address Space

510

!

Allocate Entry In PASID Permissions
Table In Response To Request

520

'

Configure Entry In PASID Permissions
Table In Response To Request

N
530

!

Send PASID Selector To First Application For
Use As Index into PASID Permission Table

N\
540

!

Send PASID Selector To Second Application

Change
To Sharing
FPolicy?

555

Notify Second Application
Regarding Change

N\
560

Recsive

580

US 2020/0319913 A1l

00

Communicate
Updaied Address
Range(s; To
Second
Application

580

Receive
Completion?

Send PASID
Permissions
Table Setup
Descriptor To
Data Mover

570

!

Acknowledgement?

565



Patent Application Publication  Oct. 8,2020 Sheet 6 of 9 US 2020/0319913 A1

600
Csen >

Receive Job Descriptor In
Data Mover From First Client [\

810
Job
N Descriptor Include
i PASID
elector(s)? 620
Perform

Operation Of T T T
Job Descriptor [ Communicate
Reguest In Use PASID Selector To Index | Completion To
Single Address Into PASID Permissions Table ' First Client And

Space < : 830 Destination
¢ 630 | Client
825 |
Access Indexed Entry OF I T
635/ PASID Permissions Table : Barform
I Operation Of
I Job Descriptor
_ | Request Across
Submitter | Multiple

PASID l Address Spaces

Abort Job
Descriptor
Reguest N

Address
Range Of Job
Descriptor
Permiited?

660

FIG. 6



US 2020/0319913 A1l

Oct. 8,2020 Sheet 7 of 9

Patent Application Publication

L Ol
Woeys VOcps o 5e) Uzes  Ozey
/ \\ \ \ \\ \\
L[] B (Asowepy| || | Asowepy|
94 av av 200 00" REER
T4 Yopi 7 gy~
391AB(1 AQ) 8l0BIeIS JB]jOIU0Y) YBWIS
opl- ' 0¢84
\ 4 A
NANO!
AIOWB \
Welshg ONY gl
G/ (s)ai0n
S0zl s e
00,—" 01/




=
= g 'Oid
= u 0
: 07 08 _ocs
5 "\ 991420 AOI BIGE[EdS / 121|007 HEWS
)
av av Urgg~, Ogggn,
o 4 e o« |1QISYd | |QISYd JISvd | |diISVd | ° o
< Y Bleq | | 0sa(] ereq | | osaq |[* AQA | | AJOA
o gy ), / N \
2 ~ —- —- = =
s 08 L Uepe  Olgpg HOgpg | O0cyg
m’ Y
i ananp b~ 78
S aseq [©
E SO ISOH/IINA
S J
= 0c8 Ypg  Yzug Op g
“ o
S ' [Jeung | [enanp |1 1 [seung | [enenp ™
E y VB | |oseQ |l | Bleq | | oseq [
2 UERN . _
= | Jeutgjuog Jo WA 1 1 Jeureyuod o WA MNOpjg
m e d e - /mow
=W




Patent Application Publication  Oct. 8,2020 Sheet 9 of 9 US 2020/0319913 A1

800
Csen >

Prepare First /O Job
Descriptor For First Application N

l 810

Submit First /O Job Descriptor To Virtual
Device Of Smart Controlier N

920

Frocess First /0O Job Descriptor To Prepare
Second /O Job Descriptor And Store In N
Descriptor Queue In Host Memory 9

l

Submit Second 1O Job Descriptor To
Assignable Device interface OF Scalable /0 N
Virtualization Device 940

l

Fetch Second 1/O Job Descriptor From
Descriptor Queue In Host Memory using N
Descriptor PASID 950

'

Process Second /O Job Descriptor N

8960

Access Data In Address Space Of First
Application According fo Second VO Job N
Descriptor 970

FIG. 9



US 2020/0319913 Al

SYSTEM, APPARATUS AND METHOD FOR
ACCESSING MULTIPLE ADDRESS SPACES
VIA A VIRTUALIZATION DEVICE

[0001] This application claims priority to Indian Provi-
sional Patent Application No. 202041018444, filed on Apr.
30, 2020, in the names of Sanjay Kumar; Philip Lantz;
Rajesh Sankaran; Narayan Ranganathan; Saurabh Gayen;
David Koufaty; and Utkarsh Y. Kakaiya, entitled “SYS-
TEM, APPARATUS AND METHOD FOR ACCESSING
MULTIPLE ADDRESS SPACES VIA A DATA MOVER,”
the disclosure of which is hereby incorporated by reference.

TECHNICAL FIELD

[0002] Embodiments relate to data operations in a com-
puting system.

BACKGROUND

[0003] A data mover is a device/accelerator that offloads
memory copy and other related operations from a processor.
For example, besides doing memory copy from source to
destination, a data mover can also do a variety of other
operations on memory. Data movers may support shared
virtual memory (SVM), where they can access the same
virtual address space as user space applications. However
state of the art data mover devices support only a single
address space per job descriptor, which limits use cases.
[0004] Many computing systems also provide support for
scalable input/output virtualization (IOV) devices. These
devices, which may include network interface circuits and
memories among others, define assignable device interfaces
(ADIs) that can be assigned to a virtual machine (VM) as
part of a virtual device (VDEV) emulation. The ADIs are
configured with a process address space identifier (PASID)
to access the VM’s memory directly. However using only a
single PASID on the ADIs may cause high overhead in
certain scalable IOV device usages.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] FIG. 1 is a block diagram of a data mover in
accordance with an embodiment of the present invention.
[0006] FIG. 2 is a block diagram of a memory move job
descriptor in accordance with an embodiment.

[0007] FIG. 3 is a block diagram of a PASID permissions
table according to one embodiment.

[0008] FIG. 4 is a flow diagram of a method in accordance
with one embodiment.

[0009] FIG.5 is a flow diagram of a method in accordance
with another embodiment.

[0010] FIG. 6 is a flow diagram of a method in accordance
with yet another embodiment.

[0011] FIG. 7 is a block diagram of a computing system in
accordance with an embodiment of the present invention.
[0012] FIG. 8is a block diagram of a system in accordance
with another embodiment.

[0013] FIG.9 is a flow diagram of a method in accordance
with yet another embodiment of the present invention.

DETAILED DESCRIPTION

[0014] In various embodiments, offload devices in various
computing systems may be configured in a manner to enable
such offload devices to perform data operations amongst
multiple address spaces. With this arrangement, various

Oct. 8, 2020

memory-based tasks can be offloaded to these offload
devices. Still further, such operations may be performed
more efficiently by enabling a single device, in response to
a single request, to access securely multiple address spaces
(or at least portions thereof). As a result, various overheads
in obtaining precursor data for such offload operations from
different address spaces and collecting them into a single
address space can be avoided. While embodiments herein
are described in the context of data mover devices and
virtualization devices such as input/output virtualization
devices, understand that embodiments are not limited in this
regard, and the techniques described herein can be used in
a wide variety of computing environments.

[0015] In contrast, typical data movers operate on a job
descriptor that is associated with a single process address
space 1D (PASID) corresponding to the application that
submitted the descriptor. As part of descriptor processing,
the data mover may access the submitter’s memory (for
source, destination, and completion addresses) using the
PASID of the descriptor. However, using only a single
address space for processing a descriptor limits various use
cases where it is desired to access multiple address spaces.
With embodiments herein, a process having a PASID (e.g.,
PASID X) may submit to a data mover a job descriptor
having additional information to enable access to address
spaces in addition to the process’s own address space.

[0016] Although embodiments are not limited in this
regard, various use cases may benefit from submitting a job
descriptor having information for multiple PASIDs to enable
a data mover to securely access multiple address spaces in
response to this single job descriptor. One example is in the
context of a virtual switch (vswitch) in a virtual machine
monitor (VMM). This vswitch provides the functionality of
switching packets between virtual machines (VMs) on the
same system. As an example, the vswitch may be used to
directly copy packets from a source VM’s memory to a
destination VM’s memory. With embodiments, a job
descriptor may provide information including addresses
from three different address spaces, i.e., source address from
source VM, destination address from destination VM, and
completion address (to notify of completion) from vswitch
application in the VMM. And as such, a data mover may, in
response to this job descriptor, perform this memory opera-
tion to directly copy the packets, securely accessing three
different address spaces.

[0017] As another example, in a multi-key total memory
encryption (MKTME) usage where a different key is used to
encrypt each VM’s memory and the key ID is stored in
cachelines of a central processing unit (CPU), a VMM may
seek to flush CPU caches when it switches a VM on a CPU.
With an embodiment, the VMM may offload this CPU cache
flush for all of the VM’s memory to the data mover by
providing a job descriptor having addresses from two dif-
ferent address spaces, i.e., cache flush address range from
the VM and completion address from the VMM. A still
further example is in the context of shared memory usage.
Assume here that two processes (e.g., message passing
interface (MPI) ranks) may setup a shared memory and
send/receive data through the shared memory pages. These
processes may use a data mover for copying data between
the two address spaces, via a job descriptor that includes
addresses from two different address spaces (corresponding
to the two applications).



US 2020/0319913 Al

[0018] Of course, a data mover may be configured to
perform a variety of additional memory operations, in addi-
tion to copy or move operations. As examples, a data mover
may also be configured to perform memory fill, copy with
cyclic redundancy check (CRC), memory compare, dual-
cast, generating memory diffs between two memory regions,
applying diffs to a memory region, flush CPU caches, etc.
[0019] In addition, embodiments enable a data mover to
control access to a limited address range within address
spaces. With embodiments, a data mover may control access
to an address space on a more fine-grained manner for better
isolation. For example, for some of the above usage cases,
a data mover may control access to limited address ranges
within an address space.

[0020] With embodiments, a data mover may be config-
ured to securely access multiple address spaces in response
to a single job descriptor that specifies multiple PASIDs. To
verify an access requested by a first agent to an address
space of a second agent is permitted, the data mover may
include or be coupled to a PASID permissions table (PPT).
This permissions table may be used to validate a job
submitter’s access permissions for accessing the other
PASIDs, as well as limiting access to certain address ranges.
The data mover may be configured by writing to the PASID
permissions table directly by the privileged data mover
driver software. In addition, the data mover may be config-
ured, in response to a setup descriptor, to allow an unprivi-
leged client to directly setup and modify its own address
ranges and access permissions in the PASID permissions
table.

[0021] In this way, a data mover can access memory from
multiple address spaces to process individual jobs. As a
result, clients and system software can avoid: 1) copying
data into a single address space; or 2) mapping data into a
single address space. Embodiments thus may reduce the
overhead of data mover operations and enable offload from
the CPU for one or more usage cases.

[0022] Referring now to FIG. 1, shown is a block diagram
of a data mover in accordance with an embodiment of the
present invention. As shown in FIG. 1, data mover 100 may
be a hardware accelerator configured to perform data move-
ment operations offloaded from a CPU or other requester. As
such, data mover 100 may be implemented as a hardware
circuit included in a processor such as system on chip (SoC),
e.g., implemented on the same semiconductor die or within
a common package or socket with the SoC. In yet other
cases, data mover 100 may be implemented as a standalone
device such as may be implemented within a datacenter
system. In many implementations, data mover 100 may
appear to the CPU or other requester as a peripheral device,
e.g., a Peripheral Component Interconnect Express (PCle)
device.

[0023] In any event, as shown in the high level of FIG. 1,
data mover 100 includes a control circuit 110 configured to
receive incoming job descriptors from one or more request-
ers. While described herein as receiving offload requests
from a CPU or other agent, understand that more typically
these requests may be initiated in response to a memory
operation requested by a software agent such as a given
application, virtual machine, container, virtual machine
monitor or other such software agent. Such requests may
thereafter be offloaded from CPU to data mover 100.
[0024] In embodiments herein this job descriptor may
include information to enable data mover 100 to access

Oct. 8, 2020

multiple address spaces. To this end, to verify that a
requester is permitted to access additional address spaces,
certain information included in the job descriptor may be
used to access a PASID permissions table 120. As will be
described herein, permissions table 120 may include mul-
tiple entries each to store information regarding permitted
accesses to a given address space (referred to herein as an
access address space) by a particular requester (also referred
to herein as a submitter).

[0025] Assuming permission is verified, control circuit
110 may send information associated with a requested
memory operation to one of multiple execution circuits
130,-130,,. Execution circuits 130 may be pipeline circuits
that execute the requested operation such as a cyclic redun-
dancy checksum (CRC). As will be described herein, each
execution circuit 130 may be configured to issue memory
operations to one of multiple address spaces 140,-140,, using
their respective PASID. Understand that in typical situations
any one of execution circuits 130 may issue memory opera-
tions to any one of address spaces 140. As used herein, the
term “address space” is used to refer to virtual address
ranges accessible by a particular agent, such as a software
agent. In different embodiments, supervisor software such as
an operating system, virtual machine monitor, hypervisor or
so forth may allocate different portions of a physical
memory to different applications or other entities by creating
a virtual address to physical address mapping in their
address spaces. In addition, hardware circuitry of the pro-
cessor, including a memory management unit, can be con-
figured to provide address space protection such that only
authorized agents are allowed to access a given address
space. Understand while shown at this high level in the
embodiment of FIG. 1, a data mover may include many
other components and may be configured differently in other
embodiments.

[0026] To enable a data mover’s client to specify multiple
address spaces in the job descriptor, the job descriptor may
include additional fields for one or more PASID selectors for
addresses specified in the descriptor. These PASID selectors
specify additional PASIDs, called access PASIDs, that are to
be accessed. Understand that these access PASIDs are in
addition to a submitter PASID included in the job descriptor,
which identifies the submitter’s address space (i.e., submit-
ter PASID). When the data mover receives a job descriptor
having one or more PASID selectors, it accesses, via index-
ing using the PASID selector, the PASID permissions table
entry to identify the access PASIDs and the submitter’s
permissions for the access PASID:s.

[0027] Referring now to FIG. 2, shown is a block diagram
of a memory move job descriptor in accordance with an
embodiment. In the embodiment of FIG. 2, job descriptor
200 may be an example job descriptor for performing a
memory move operation in which data stored at a source
location is copied to a destination location. With embodi-
ments herein, job descriptor 200 enables this memory move
operation to occur across multiple address spaces, thus
reducing overhead of the operation. As shown, job descrip-
tor 200 is a data structure including various fields. Of
interest herein, a submitter PASID field 210 is used to
identify a submitter of job descriptor 200. Although the
submitter PASID is part of the descriptor initialized by an
unprivileged entity (e.g., application), the submitter PASID
field cannot be initialized by unprivileged software. Sub-
mitter PASID field 210 is initialized by a CPU when sending



US 2020/0319913 Al

the descriptor to the data mover or by a privileged entity
(e.g., host device driver for the data mover) so the data
mover always treats it as a trusted field. As shown, a
completion record address field 215 may be used to identify
an address within the address space of this submitter to
which a completion record is to be written, upon completion
of the memory move operation.

[0028] With embodiments herein, job descriptor 200
enables access to additional address spaces. More particu-
larly here, in a first PASID selector field 220, a source
PASID selector may be provided to indicate a source access
address space from which source data for the memory move
operation may be obtained. Thus a source address field 225
may be used to identify a source address within this source
address space from which data to be moved may be
accessed. Similarly, in a second PASID selector field 230, a
destination PASID selector may be provided to indicate a
destination access address space to which the source data is
to be stored. Thus a destination address field 235 may be
used to identify a destination address within this destination
address space to which the data is to be copied. As further
shown a destination notification address field 238 may be
used to indicate where in the destination address space a
notification regarding the completion can be written.

[0029] In the embodiment shown, note that job descriptor
200 may include other fields, including a completion inter-
rupt handle field 250 to indicate where completion interrupt
processing may occur. In some cases an additional PASID
selector may identify an address space to which this field
refers. Understand that additional fields, including a flags
field 260 to store various flags, an operation field 270 to store
an opcode (of the particular data move operation), among
others also may be present. A transfer size field 280 may
store size information for the move operation.

[0030] Additionally, while in the embodiment of FIG. 2,
two PASID selector fields are shown, it is possible for a job
descriptor to include more than two PASID selector fields,
such as an additional PASID selector field for purposes of
interrupt handling, and one or more other PASID selector
fields for other purposes such as reporting completions,
errors, telemetry information or job notifications. Under-
stand while this particular job descriptor is shown in FIG. 2,
similar PASID selector fields may be included in other types
of job descriptors as well.

[0031] Thus job descriptor 200 includes additional fields
to support a copy across two different address spaces, and
which may be submitted by a third application. As discussed
above, the PASID permissions table (PPT) translates a
PASID selector in a job descriptor to an access PASID and
its access permissions. The PASID selector is used as an
index into the PPT. In an embodiment, the PPT may include
a plurality of entries, each containing the submitter PASID
and the access PASID to be used for accessing the memory.
The submitter PASID field in the PPT entry is validated
against the job submitter’s PASID. The PPT entry also
contains the access permissions (e.g., read, write, and drain)
allowed for the submitter. Each PPT entry also contains one
or more address ranges in the access PASID’s address space
that the submitter is allowed to access. Each PPT entry may
either enable or disable the address range check. If address
range check is disabled, the entire address space of access
PASID is accessible by the submitter. Each PPT entry may

Oct. 8, 2020

also optionally disable the submitter PASID check, if the
owner desires to open an address window for global access
by any submitter PASID.

[0032] Inone embodiment, the PASID permissions table is
located on the data mover device (in SRAM or on-device
memory). In another embodiment, the PASID permissions
table is located in system memory and is pointed to by
device memory mapped input output (MMIO) registers
(base PPT address and size). If implemented in memory, the
data mover may cache frequently accessed PPT entries on
the device in a caching structure to improve performance.
The PPT may be implemented as single level table or
multi-level table, in different implementations. One imple-
mentation of a multi-level table may be such that the first
level holds information on the access PASID and submitter
PASID pairs, and the set of next level tables hold informa-
tion about different address windows and their correspond-
ing permissions. An implementation may also allow the
second level tables to be directly mapped into the address
space of the owner PASID to allow direct modification of the
address window and permissions parameters.

[0033] Referring now to FIG. 3, shown is a block diagram
of'a PASID permissions table according to one embodiment.
As shown in FIG. 3, only one address range is implemented
per PPT entry. Besides read and write access permissions,
the PPT entry also specifies whether the Submitter is
allowed to perform a drain operation on the access PASID,
which allows software to ensure that all jobs which access
the specified PASID have been completed in the device.
[0034] As shown in FIG. 3, PASID permissions table 300
includes a plurality of entries 310,-310,. As shown, an
incoming PASID selector may be used to index into table
300 to access a given entry 310. FIG. 3 further shows details
of a representative entry within PASID permissions table
300 in accordance with an embodiment. As illustrated,
example entry 310 includes various fields, including a
submitter PASID field 311 to store a submitter PASID,
which identifies a submitter of a given request (e.g., by way
of work or job descriptor), and an access PASID field 312 to
store an access PASID for another address space to be
accessed. In addition to these fields, example entry 310
further includes a range size field 313 to indicate an address
range, when address range permissions are implemented.
Further in this regard, a range base address 314 identifies a
base address of an address range, and range check enable
315, which when set, indicates that address range permis-
sions are enabled. As further shown, example entry 310 also
includes additional permission fields, including a read per-
mission field 316, a write permission field 317 and a drain
permission field 318. Understand while shown with this
particular implementation in the embodiment of FIG. 3,
many variations and alternatives are possible.

[0035] The PASID permissions table can be setup by a
privileged resource (e.g., a host driver for the data mover).
To this end, applications may request the host driver to setup
address ranges and access permissions. This may cause
some amount of overhead if applications frequently want to
change address ranges and/or access permissions for those
address ranges. For example, two MPI applications may
want to share different address ranges with each other for
short periods of time and this requires frequent changes to
the PPT entry.

[0036] To reduce this overhead, embodiments may allow
applications to directly change PPT entry information (e.g.,



US 2020/0319913 Al

address ranges and access permissions) without going
through the privileged host driver. To this end, an application
may send a job descriptor called a PPT setup descriptor for
updating PPT entries. The PPT setup descriptor contains the
PASID selector corresponding to the PPT entry to be modi-
fied. The PPT entry’s access PASID field is validated against
the descriptor Submitter’s PASID before updating the PPT
entry. In one embodiment, an application is allowed to
change the following fields in the PPT entry through this
descriptor; Range Size, Range Base Address, Range Check
Enable, Read Permission, Write Permission, and Drain Per-
mission. Note that the PPT setup descriptor is a special case
where the descriptor submitter’s PASID is validated against
the access PASID field rather than the submitter PASID
field. The PPT setup descriptor can only modify an existing
valid PPT entry. It cannot allocate and setup a new PPT
entry.

[0037] Insome embodiments, before the PPT entry can be
updated, the access PASID is drained to ensure previously
submitted descriptors use the old PPT entry values. In one
embodiment, it is software’s responsibility to ensure that the
access PASID is drained from the device. In another embodi-
ment, it is the data mover’s responsibility to ensure the
access PASID is drained from the device as part of process-
ing the PPT setup descriptor. In an implementation where
the data mover caches frequently accessed PPT entries in a
cache, it may also evict an entry from the cache before,
during or after processing the PPT setup descriptor.

[0038] The data mover may handle incoming requests for
multi-PASID secure access differently dependent on
whether a peer application wants to access another peer
application’s address space, or whether a privileged resource
(e.g., OS or VMM) wants to access its deprivileged appli-
cation or VM’s address space respectively.

[0039] When a VMM wants to access a VM’s address
space through the data mover, it requests the host driver to
setup a PASID permissions table entry. The host driver
allocates a PPT entry, sets it up and returns the correspond-
ing PASID selector to the VMM. The VMM may setup the
PPT entry to access the entire VM’s address space (i.e.,
guest physical address (GPA) space) or part of the address
space through an address range check in the PPT entry.
Alternately, the VMM may allow the VM to implicitly or
explicitly set the address range in the PPT entry to limit the
VMM’s access to VM’s address space through the data
mover. Such operation may be used for vswitch and
MKTME usages described above.

[0040] After this setup, the VMM can submit job descrip-
tors to the data mover with the corresponding PASID
selector. The data mover validates the submitter’s access
permissions for the access PASID and then accesses the
VM’s memory using the access PASID in the PPT entry.
[0041] For the case of an application accessing a peer
application’s address space, operation may proceed as fol-
lows. Assume Application A wants to share its address space
with Application B. Application A first requests the data
mover (e.g., via its host driver) to allow Application B
access to its address space. Application A may initially
provide an address range or the whole address space. The
host driver allocates a PPT entry, sets it up, and returns the
corresponding PASID selector (PPT entry index) to Appli-
cation A. Application A then sends the PASID selector to
Application B. This communication, in an embodiment, may
be via an out-of-band mechanism (e.g., through inter-pro-

Oct. 8, 2020

cess communication). Application B may then use the
PASID selector in job descriptors that it sends to the data
mover.

[0042] If Application A seeks to change the sharing (either
disable sharing or change the address range), it notifies
Application B of the impending change. After receiving
acknowledgement from Application B, Application A sub-
mits a PPT setup descriptor to the data mover to change the
PPT entry. If address ranges were changed, after completion
of the PPT setup descriptor, Application A communicates to
Application B the new address ranges, to allow Application
B to access those address ranges.

[0043] Referring now to FIG. 4, shown is a flow diagram
of a method in accordance with one embodiment. More
specifically, method 400 of FIG. 4 is a method for setting up
aprivileged entity to access an address space associated with
an unprivileged entity. As such, method 400 may be per-
formed by a host driver, e.g., a privileged driver software
that executes within a host OS. Accordingly, method 400
may be performed by hardware circuitry, firmware, software
and/or combinations thereof.

[0044] As shown in FIG. 4, method 400 may be used to
enable a VMM to access an address space of a VM that
executes under the VMM. Of course many other examples
of setting up address space permissions are possible, includ-
ing allowing a privileged resource to access an address space
associated with another privileged resource, a different type
of unprivileged resource or so forth. Still further it is
possible that unprivileged resources may seek to access
address spaces associated with other unprivileged resources.
[0045] In FIG. 4, method 400 begins by receiving a
request from a VMM (block 410). More specifically, at
block 410 this request received in the data mover driver may
be for seeking access to an address space associated with a
VM such as a guest application that executes under the
VMM. In one embodiment, this request may be imple-
mented as a setup request. As seen, in response to this
request, at block 420 the data mover driver may allocate an
entry in the PASID permissions table. Note that if no
available entries are present, the request may be denied.
[0046] Next at block 430 this entry may be configured.
More specifically, various information from the received
request, e.g., setup request, may be stored in this entry. As
an example, in response to the setup request, the data mover
driver may initialize the first entry in the PASID permissions
table to store a submitter PASID for the VMM to enable the
VMM’s secure access to the second address space, along
with a PASID selector for the address space of the VM. In
addition, various permissions to be granted to this submitter
for the address space of the access PASID may be filled out.
As examples, these permissions may include read and write
access and drain access, among others. Of course other
access permissions are possible in other embodiments. Then
at block 440 a PASID selector is returned to the VMM. More
specifically, this PASID selector may be used by the VMM
to act as an index into the PASID permissions table when the
VMM later issues a job descriptor to perform a memory
operation, offloaded to the data mover, for the VMM as
requester. Understand while shown at this high level in the
embodiment of FIG. 4, many variations and alternatives are
possible.

[0047] Referring now to FIG. 5, shown is a flow diagram
of a method in accordance with another embodiment. More
specifically, method 500 of FIG. 5 is a method for setting up



US 2020/0319913 Al

a unprivileged entity accesses, and updates to the same. As
such, method 500 may be performed by a host driver and
multiple, e.g., unprivileged applications. Accordingly,
method 500 may be performed by hardware circuitry, firm-
ware, software and/or combinations thereof.

[0048] In FIG. 5, method 500 begins by receiving a
request from a first application to allow another application
to access its address space, e.g., via a setup descriptor from
a VMM (block 510). In response to this request, at block 520
the data mover driver may allocate an entry in the PASID
permissions table. Next at block 530 this entry may be
configured. Then at block 540 a PASID selector is returned
to the first application.

[0049] Next, at block 550 this PASID selector is sent to the
application. In embodiments herein, the first application may
send this PASID selector to the second application via an
out-of-band mechanism, such as via an MPI interface. Thus
at this point, with this provision of the PASID selector, the
second application may issue a request to a data mover that
seeks to access at least part of an address space associated
with the first application.

[0050] In some cases, it is possible that the application
may seek to change the permission and/or address range of
the shared region at some point. Accordingly, with further
reference to FIG. 5, it may be determined at diamond 555
whether there is a change to a sharing policy. For example,
a change in access permissions, and/or a permitted address
range may occur. If it is determined that such change to
sharing policy is to occur, control passes to block 560 where
the first application may notify the second application
regarding the change. In response to this notification, the
second application may send an acknowledgment back to
the first application, e.g., via the out-of-band mechanism.
Thus as illustrated it is determined at diamond 565 whether
an acknowledgment has been received.

[0051] When this acknowledgment is received such that
the second application has been made aware of the impend-
ing change, control passes to block 570 where the first
application may send a setup descriptor to the data mover.
More specifically, the first application may send a PASID
permissions table setup descriptor to request a change in
permissions or address range for the second application.
Once the data mover effects this change, e.g., by updating
the appropriate entry of the PASID permissions table, it
sends a completion back to the first application. And, as
further illustrated in FIG. 5 when the first application
receives this completion (as determined at diamond 580), it
communicates an updated address range and/or permissions
to the second application (block 590). As such, from this
point going forward the second application may issue
offload requests to the data mover only for addresses falling
within the updated address range and/or updated permis-
sions. Understand while shown at this high level in the
embodiment of FIG. 5, many variations and alternatives are
possible.

[0052] Referring now to FIG. 6, shown is a flow diagram
of'a method in accordance with yet another embodiment. As
shown in FIG. 6, method 600 is a method for performing a
data operation by a data mover on behalf of a client.
Accordingly, method 600 may be performed by hardware
circuitry, firmware, software and/or combinations thereof.
[0053] As illustrated, method 600 begins by receiving a
job descriptor in the data mover from a first client (block
610). Note that this client may be a software entity such as

Oct. 8, 2020

a privileged or non-privileged resource. In typical embodi-
ments, this job descriptor may be received in the data mover
by way of an offloading from a CPU or other processing
circuit. Next, control passes to diamond 620 to determine
whether the job descriptor includes one or more PASID
selectors. If not, control passes to block 625 where the
requested operation of the job descriptor may be performed
in a single address space, namely the address space associ-
ated with this first client.

[0054] Otherwise when it is determined that the job
descriptor includes at least one PASID selector, control
passes to block 630. At block 630, this PASID selector may
be used to index into the PASID permissions table. Thus
based on this indexing, a given entry of the PASID permis-
sions table may be accessed and information from this entry
can be analyzed to determine whether the submitter PASID
is validated (diamond 640). Namely, this determination may
be based on veritying that the submitter PASID received in
the job descriptor matches the submitter PASID stored in the
indexed entry. If not, control passes to block 650 where this
job descriptor request may be aborted.

[0055] Assuming that the submitter PASID is validated,
control next passes to diamond 660 to determine whether the
address range of the job descriptor is permitted. For
example, the job descriptor may identity source and desti-
nation addresses and at diamond 660, it may be determined
whether these addresses fall within an address range to
which the first client is permitted access as per the permis-
sions in the PPT entry. If not, control passes again to block
650 to abort the job descriptor request.

[0056] When it is determined that the job descriptor is thus
validated (by way of validating submitter PASID, address
ranges, and additional permissions (such as read/write per-
missions or so forth)), control next passes to block 670
where the operation of the job descriptor request may be
performed. More specifically here, the operation may be
performed securely across multiple address spaces, includ-
ing possibly the address space of the first client, and one or
more additional address spaces. To this end, optionally it
may be determined whether there are additional PASID
selectors in the job descriptor (diamond 665). If so, control
passes back to block 630 for further analysis of an additional
one or more entries within the PASID permissions table.
[0057] Finally, after the operation has been completed
control passes to block 680. At block 680 a completion may
be communicated to the first client and also to a destination
client. To this end, the data mover may send a completion
message to the first client, namely to a completion record
address identified in the job descriptor. In addition, the data
mover may send another completion message to the desti-
nation client, and more specifically to a destination notifi-
cation record address identified in the job descriptor. Under-
stand while shown at this high level in the embodiment of
FIG. 6, many variations and alternatives are possible.

[0058] Referring now FIG. 7, shown is a block diagram of
a computing system in accordance with an embodiment of
the present invention. As shown in FIG. 7, computing
system 700 may be any type of computing device, ranging
from a small portable device such as smartphone, tablet
computer, to larger devices such as client systems and even
larger devices such as server systems or so forth. In the high
level view of FIG. 7, a system on chip (SoC) 710 couples to
a system memory 720, which may be implemented as a
dynamic random access memory (DRAM). In addition, SoC



US 2020/0319913 Al

710 further couples to a smart controller 730 and a scalable
1OV device 740. As examples, smart controller 730 may be
a smart NIC or other such device, while as one example
scalable IOV device 740 may be implemented as a scalable
storage device such as a non-volatile memory express
(NVMe) device. Other examples of scalable IOV devices
may include general purpose graphics processing unit
(GPGPU) or other accelerators (crypto, compression, Al,
etc.), or high speed network interface.

[0059] In the high level shown, SoC 700 includes one or
more cores 712, integrated memory controller 715 to inter-
face with system memory 720 and an 10 memory manage-
ment unit (IOMMU) 718. Of course many more components
may be present within SoC 710. In a virtualization environ-
ment, understand that a plurality of virtual machines (not
shown for ease of illustration in FIG. 7) may execute under
a given virtual machine monitor or other supervisor soft-
ware. Each of these entities may have independent address
spaces mapped to portions of system memory 720.

[0060] As further shown, smart controller 730 includes
virtual devices (VDEVs) 732, and, optionally a local
memory 735. In an embodiment, each VDEV 732 may be
associated with a given virtual machine and may include one
or more storages, such as registers to store associations for
VMs and other information. To interface with scalable IOV
device 740, smart controller 730 may communicate to the
scalable IOV device 740 by accessing its registers (similar
to driver software running on CPU cores). As shown,
scalable IOV device 740 itself includes Assignable Device
Interfaces (ADIs) 742, ,. With embodiments herein, each
ADI 742 may be configured with multiple PASIDs, such as
PASIDs 743, ,,,. To this end, each ADI 742 may be
associated with a given virtual machine and may include one
or more storages, such as registers to store these PASIDs.
Scalable IOV device 740 may further include at least one
functional circuit 748. In different examples, functional
circuit 748 may implement a storage, an accelerator, or other
device functionality that may be used by ADIs to perform
the device’s functions. And as shown, scalable IOV device
740 also may optionally include a local memory 745.

[0061] Note that system 700 may take the form of a wide
variety of computing platforms. In one particular example,
computing system 700 may be implemented using one or
more servers such as implemented rack-mounted system of
a cloud services provider. In such use cases, a cloud services
provider may use smart controller 730 (e.g., a smart NIC) to
virtualize /O device 740 (e.g., NVMe, GPU) to the VM. All
upstream memory requests from smart controller 730 and
scalable IOV device 740 go through IOMMU 718, which
translates the memory addresses from a guest physical
address, e.g., of a corresponding VM, to a host physical
address that is used to access the VM’s data in system
memory 720. This translated host physical address is then
routed to destination memory through the platform’s physi-
cal address-based routing circuitry.

[0062] In an embodiment, VDEV emulation is done using
a Virtual Device Composition Module (VDCM) in the
VMM or in a hardware component such as a smart control-
ler. In some cases a smart NIC may be used to emulate
VDEVs for the VMs. Typically, a VM’s slow path 1/O
operations (such as control and configurations) are inter-
cepted and emulated by the VDCM and fast path operations
(e.g., work submissions) are submitted directly to IOV
device 740.

Oct. 8, 2020

[0063] Smart controller 730 may intercept the fast-path
work submission operations (and slow-path operations)
from the VMs to perform some value-added services on the
VM’s 1/O requests. After processing the work requests from
the VM, the smart controller creates new work descriptors
in its own address space. Smart controller 730 in turn may
submit the new /O work descriptors to a corresponding ADI
742 of scalable IOV device 740. Without an embodiment, if
an ADI only supports a single PASID (i.e., can access only
a single address space), undue overhead would be incurred.
As an example, an ADI would have to access both work
descriptors and data buffers from a single address space.
This in turn would cause smart controller 730 to copy the
data buffers from VM’s address space to the smart control-
ler’s address space (since the new work descriptors are also
created in the smart controller’s address space) before
submitting descriptors to the ADI, which would unduly
impact performance overhead.

[0064] When a given ADI 742 of scalable IOV device 740
issues a direct memory access DMA request, it is tagged
with a PASID. In turn, IOMMU 718 uses this PASID to
identify the VM’s address space and perform DMA remap-
ping.

[0065] Instead with embodiments, scalable IOV device
740 may be optimized by enabling ADIs 742 to access
multiple address spaces. For example, in one embodiment,
ADIs 742 may access work descriptors from an address
space of smart controller 730, in addition to directly access-
ing data stored in a VM’s address space.

[0066] As such, embodiments avoid incurring smart con-
troller copy operations to copy I/O data from VM memory
into its own memory, which incurs a large performance
overhead. And further overhead reductions may be realized
by enabling an ADI of a scalable IOV device to access both
descriptors and data buffers stored in multiple address
spaces, via configuration of ADIs with multiple PASIDs.
[0067] In an embodiment, such multiple PASIDs per scal-
able IOV ADI may improve performance, especially for
smart controller usages. As an example, ADI 742 can use
one PASID (e.g., 743, ) to access work descriptors from
one address space and another PASID (e.g., 743, ) to access
data from another address space. With this arrangement,
ADI 742, can access multiple address spaces, and the host
OS/VMM/smart controller can avoid copying data around to
ensure all data is in one address space, thus reducing /O
virtualization overhead.

[0068] In embodiments, scalable 1/O devices support a
work submission interface using a work queue in system
memory. The work queue contains work descriptors, which
describe the I/O operation to be performed. Note the terms
“work descriptor” and “job descriptor” may be used inter-
changeably herein. Each I/O work descriptor may contain
one or more addresses pointing to data. I/O requests may be
submitted by enqueuing work descriptors in the work or
descriptor queue and then informing the /O device. In an
embodiment this notification may be implemented using a
doorbell mechanism (typically a MMIO register in the
device). The device first reads the descriptor from the queue
and processes it. As part of the processing, the device also
reads/writes the addresses in the descriptor to access the data
and perform the requested function.

[0069] Referring now to FIG. 8, shown is a block diagram
of a system in accordance with another embodiment. As
shown in FIG. 8, system 800, which may be implemented



US 2020/0319913 Al

similarly to system 700 of FIG. 7, shows interaction between
software entities, including virtual machines or containers
810, and corresponding smart controller 830 and scalable
10V device 840. As further shown, interaction between
these components and an underlying host software, e.g. a
VMM/host OS 820, also is illustrated.

[0070] As shown, each VM 810 may include correspond-
ing descriptor queues 812 and data buffers 814. Smart
controller 830, via VDEVs 832, , may generate one or more
descriptor queues 825 stored in host memory 820 (in smart
controller’s address space). In turn, by way of multiple
PASIDs 843 (namely 843, 5 1 .,,.0..,1)» ADIs 842 may access
multiple address spaces, including a corresponding descrip-
tor queue 825 in host memory 820 and a data buffer 814 in
corresponding VM memory 810. In this way, at least one
functional circuit 848 within scalable IOV device 840 may
be shared by ADIs 842 to process the work descriptors (or
in other words, perform the device’s functions).

[0071] In the embodiment of FIG. 8, an ADI 842 may be
assigned to a given VM by emulating a VDEV 832 in smart
controller 830. Note in another embodiment, the VDEV can
be emulated in the VMM/Host OS using a VDCM.

[0072] A guest driver in VM 8100 prepares descriptor
queue 812, which contains I/O work descriptors. These [/O
work descriptors are submitted to VDEV 832 using a device
specific method (e.g., a doorbell). This triggers smart con-
troller 830 to fetch the I/O descriptors from VM’s descriptor
queue 812,. After processing the descriptors, smart control-
ler 830 prepares new 1/O descriptors in a descriptor queue
825 in host memory 820. Note in another embodiment, a
smart controller may prepare new /O descriptors in a
descriptor queue in controller’s local memory.

[0073] As shown in FIG. 8, ADI 843, is configured to
point to descriptor queue 825 of smart controller 830 via a
descriptor PASID 843, ,, which is used to access descriptor
queue 825 in host memory 820. In turn ADI 843, may access
data buffer 814, in VM memory 810, using a data PASID
843, .

[0074] After preparing the /O descriptors in host descrip-
tor queue 825, smart controller 830 submits them to ADIs
842 using a device specific method (e.g., doorbell). This
triggers ADIs 842 to fetch the I/O work descriptor from host
memory 820 using descriptor PASIDs 843. As part of
processing the descriptors, ADIs 842 may access data stored
in data buffers 814 of VM memory 810 using data PASIDs
843. This allows the VMM/smart controller to avoid copy-
ing the data buffers from VM memory to host memory
beforehand, improving /O virtualization performance.
[0075] In an embodiment in which a smart controller
creates a descriptor queue is its own local memory, descrip-
tor fetch from the ADI is routed to the local memory. To this
end, a VMM may enable peer-to-peer DMA from scalable
IOV device to smart controller. On ADI’ s descriptor fetch,
an IOMMU performs an address translation to obtain a
physical address of the smart controller’s local descriptor
queue. The platform’s physical address-based routing
ensures that the descriptor queue access is redirected to the
smart controller’s memory for a peer-to-peer DMA.

[0076] In another embodiment, an ADI may support addi-
tional PASIDs (i.e., more than 2 PASIDs) to access other
device-specific data from additional address spaces. For
example, a scalable IOV device may store message signaled
interrupt (MSI) interrupt messages (i.e., MSI address and
data) in a table (e.g., an interrupt table) in host memory. The

Oct. 8, 2020

interrupt table may be created in a separate address space
than descriptor queues and data buffers. Consequently, the
ADIs may use a third PASID to fetch the MSI message from
the interrupt table for generating an interrupt to notity (e.g.,
requester and/or target) as to completion of descriptors.

[0077] Referring now to FIG. 9, shown is a flow diagram
of' a method in accordance with yet another embodiment of
the present invention. More specifically, method 900 is a
method for accessing multiple address spaces by a scalable
IOV device in accordance with an embodiment. Accord-
ingly, method 900 may be performed by hardware circuitry,
firmware, software and/or combinations thereof.

[0078] As illustrated, method 900 begins by preparing a
first I/O job descriptor for a first application (block 910). In
one embodiment, a guest driver, e.g., of a given VM may
prepare this job descriptor. Next at block 920 this first I/O
job descriptor may be submitted to a virtual device emulated
by a smart controller. In an embodiment, a device specific
method such as a doorbell mechanism may be used to
communicate this /O job descriptor.

[0079] Still with reference to FIG. 9, next at block 930 the
smart controller may process this first I/O job descriptor to
prepare a second 1/O job descriptor and store it in a descrip-
tor queue in host memory. Note that this descriptor queue
may be associated with a corresponding ADI, namely an
ADI associated with the first application. Then, the smart
controller may submit this job to the scalable /O virtual-
ization device (block 940). More particularly, this second
1/O job descriptor may be submitted to an ADI of the
scalable 1/0O virtualization device. In response to this sub-
mission, at block 950 the ADI may obtain the job descriptor
from the descriptor queue in host memory. To this end, the
ADI may use a descriptor PASID to obtain the second I/O
job descriptor. Then at block 960 the ADI may process this
second [/O job descriptor to determine the requested opera-
tion, permissions and other information. Then at block 970
in response to this second I/O job descriptor, data within an
address space of the first application may be accessed. More
specifically, the ADI may use a data PASID that points to an
address space, e.g., of a VM including a data buffer that
includes the data to be accessed. Understand while shown at
this high level in the embodiment of FIG. 9, many variations
and alternatives are possible.

[0080] The following examples pertain to further embodi-
ments.
[0081] In one example, an apparatus comprises an IOV

device including: at least one function circuit to be shared by
a plurality of VMs; and a plurality of ADIs coupled to the at
least one function circuit, where each of the plurality of
ADIs is to be associated with one of the plurality of VMs and
comprises a first PASID field to store a first PASID to
identify a descriptor queue stored in a host address space and
a second PASID field to store a second PASID to identify a
data buffer located in a VM address space.

[0082] In an example, in response to a request from a first
VM, a first ADI is to fetch a first IO work descriptor from
the descriptor queue stored in the host address space using
the first PASID and in response to the first 10 work descrip-
tor, to access a first data buffer of a first VM address space
using the second PASID.

[0083] In an example, the first VM is to issue the request

comprising a second 10 work descriptor to a virtual device
coupled to the IOV device.



US 2020/0319913 Al

[0084] In an example, a first virtual device emulated by a
smart controller, in response to the request, is to access the
second 10 work descriptor from a second descriptor queue
of the first VM address space, process the second 10 work
descriptor, prepare the first IO work descriptor from the
second 10 work descriptor and store the first 10 work
descriptor in the descriptor queue stored in the smart con-
troller or the host address space.

[0085] In an example, the smart controller is to issue a
message to the first ADI to cause the first ADI to fetch the
first IO work descriptor from the descriptor queue stored in
the smart controller or the host address space using the first
PASID.

[0086] In an example, in response to the first IO work
descriptor, the first ADI is to access the first data buffer
located in the first VM address space using the second
PASID.

[0087] In an example, the smart controller is to issue the
message to the first ADI via a doorbell mechanism.

[0088] In an example, the apparatus further comprises a
SoC coupled to the IOV device, where the SoC comprises a
/0 memory management unit to receive a first virtual
address from the first ADI and send a first physical address
corresponding to the first virtual address to the first VM
address space to enable the access to a first data buffer
located in the first VM address space.

[0089] Inanexample, the SoC is coupled with one or more
of the smart controller and the IOV device.

[0090] In an example, at least some of the plurality of
ADIs comprise a third PASID field to store a third PASID to
identify another address space to which the ADI is allowed
access.

[0091] In an example, a first ADI of the at least some of
the plurality of ADIs is to access an interrupt table stored in
the another address space using the third PASID.

[0092] In another example, a method comprises: fetching,
by a first ADI of an IOV device, a first job descriptor from
a descriptor queue of a second address space, using a
descriptor PASID of the first ADI, where the descriptor
PASID is associated with the second address space; and in
response to the first job descriptor, accessing data stored in
a first data buffer of a first address space associated with a
first entity, using a data PASID of the first ADI, where the
data PASID is associated with the first address space that
contains the first data buffer.

[0093] Inan example, the method further comprises fetch-
ing the first job descriptor in response to an indication
received from a first virtual device of a smart controller
coupled to the IOV device.

[0094] Inan example, the method further comprises fetch-
ing, by the first virtual device, a second job descriptor from
a descriptor queue of the first address space, in response to
an indication received from the first entity.

[0095] In an example, the method further comprises: pro-
cessing the second job descriptor, generating the first job
descriptor from the second job descriptor, and storing the
first job descriptor into the descriptor queue of the second
address space comprising a host memory; and after storing
the first job descriptor into the descriptor queue of the host
memory, indicating to the first ADI presence of the first job
descriptor in the descriptor queue of the host memory.
[0096] In an example, the method further comprises after
processing the data, writing, by the first ADI, an interrupt
message into an interrupt table stored in a third address

Oct. 8, 2020

space, using a third PASID of the first ADI that points to the
interrupt table, where the interrupt message comprises a
completion for an operation on the data.

[0097] In an example, the method further comprises con-
figuring the first ADI with the descriptor PASID and the data
PASID.

[0098] In another example, a computer readable medium
including instructions is to perform the method of any of the
above examples.

[0099] In a further example, a computer readable medium
including data is to be used by at least one machine to
fabricate at least one integrated circuit to perform the
method of any one of the above examples.

[0100] In a still further example, an apparatus comprises
means for performing the method of any one of the above
examples.

[0101] In another example, a computing system com-
prises: a processor having one or more cores and a memory
controller to interface with a system memory; a smart
controller coupled to the processor, where the smart con-
troller is to emulate a first virtual device, and in response to
a request from a first VM access a first work descriptor from
a first descriptor queue of a first address space of the first
VM, prepare a second work descriptor from the first work
descriptor and store the second work descriptor in a descrip-
tor queue of a host address space; and an IOV device
coupled to the smart controller. The IOV device may
include: at least one function circuit to be shared by a
plurality VMs; and a plurality of ADIs coupled to the at least
one function circuit, where each of the plurality of ADIs is
to be associated with one of the plurality of VMs and
comprises a first PASID field to store a first PASID to
identify the descriptor queue of the host address space and
a second PASID field to store a second PASID to identify a
data buffer located in an address space of one of the plurality
of VMs. The computing system may further include the
system memory coupled to the processor, where the system
memory is to be used as a backing memory for the host
address space and address spaces of the plurality of VMs.
[0102] In an example, in response to the request from the
first VM, a first ADI is to fetch the second work descriptor
from the descriptor queue of the host address space using the
first PASID and in response to the second work descriptor,
to access a first data buffer of the address space of the first
VM using the second PASID.

[0103] In an example, in response to the request from the
first VM to the first virtual device, the smart controller is to
issue another request to the first ADI to cause the first ADI
to fetch the second work descriptor from the descriptor
queue of the host address space.

[0104] Understand that various combinations of the above
examples are possible.

[0105] Note that the terms “circuit” and “circuitry” are
used interchangeably herein. As used herein, these terms and
the term “logic” are used to refer to alone or in any
combination, analog circuitry, digital circuitry, hard wired
circuitry, programmable circuitry, processor circuitry,
microcontroller circuitry, hardware logic circuitry, state
machine circuitry and/or any other type of physical hard-
ware component. Embodiments may be used in many dif-
ferent types of systems. For example, in one embodiment a
communication device can be arranged to perform the
various methods and techniques described herein. Of course,
the scope of the present invention is not limited to a



US 2020/0319913 Al

communication device, and instead other embodiments can
be directed to other types of apparatus for processing
instructions, or one or more machine readable media includ-
ing instructions that in response to being executed on a
computing device, cause the device to carry out one or more
of the methods and techniques described herein.

[0106] Embodiments may be implemented in code and
may be stored on a non-transitory storage medium having
stored thereon instructions which can be used to program a
system to perform the instructions. Embodiments also may
be implemented in data and may be stored on a non-
transitory storage medium, which if used by at least one
machine, causes the at least one machine to fabricate at least
one integrated circuit to perform one or more operations.
Still further embodiments may be implemented in a com-
puter readable storage medium including information that,
when manufactured into a SoC or other processor, is to
configure the SoC or other processor to perform one or more
operations. The storage medium may include, but is not
limited to, any type of disk including floppy disks, optical
disks, solid state drives (SSDs), compact disk read-only
memories (CD-ROMs), compact disk rewritables (CD-
RWs), and magneto-optical disks, semiconductor devices
such as read-only memories (ROMs), random access memo-
ries (RAMs) such as dynamic random access memories
(DRAMs), static random access memories (SRAMs), eras-
able programmable read-only memories (EPROMs), flash
memories, electrically erasable programmable read-only
memories (EEPROMs), magnetic or optical cards, or any
other type of media suitable for storing electronic instruc-
tions.

[0107] While the present invention has been described
with respect to a limited number of embodiments, those
skilled in the art will appreciate numerous modifications and
variations therefrom. It is intended that the appended claims
cover all such modifications and variations as fall within the
true spirit and scope of this present invention.

What is claimed is:

1. An apparatus comprising:

an input/output virtualization (IOV) device comprising:

at least one function circuit to be shared by a plurality
of virtual machines (VMs); and

a plurality of assignable device interfaces (ADIs)
coupled to the at least one function circuit, wherein
each of the plurality of ADIs is to be associated with
one of the plurality of VMs and comprises a first
process address space identifier (PASID) field to
store a first PASID to identify a descriptor queue
stored in a host address space and a second PASID
field to store a second PASID to identify a data buffer
located in a VM address space.

2. The apparatus of claim 1, wherein in response to a
request from a first VM, a first ADI is to fetch a first IO work
descriptor from the descriptor queue stored in the host
address space using the first PASID and in response to the
first IO work descriptor, to access a first data buffer of a first
VM address space using the second PASID.

3. The apparatus of claim 2, wherein the first VM is to
issue the request comprising a second 10 work descriptor to
a virtual device coupled to the IOV device.

4. The apparatus of claim 3, wherein a first virtual device
emulated by a smart controller, in response to the request, is
to access the second 10 work descriptor from a second
descriptor queue of the first VM address space, process the

Oct. 8, 2020

second IO work descriptor, prepare the first IO work descrip-
tor from the second 10 work descriptor and store the first IO
work descriptor in the descriptor queue stored in the smart
controller or the host address space.

5. The apparatus of claim 4, wherein the smart controller
is to issue a message to the first ADI to cause the first ADI
to fetch the first IO work descriptor from the descriptor
queue stored in the smart controller or the host address space
using the first PASID.

6. The apparatus of claim 5, wherein in response to the
first IO work descriptor, the first ADI is to access the first
data buffer located in the first VM address space using the
second PASID.

7. The apparatus of claim 5, wherein the smart controller
is to issue the message to the first ADI via a doorbell
mechanism.

8. The apparatus of claim 4, further comprising a system
on chip (SoC) coupled to the IOV device, wherein the SoC
comprises a [/O memory management unit to receive a first
virtual address from the first ADI and send a first physical
address corresponding to the first virtual address to the first
VM address space to enable the access to a first data buffer
located in the first VM address space.

9. The apparatus of claim 8, wherein the SoC is coupled
with one or more of the smart controller and the IOV device.

10. The apparatus of claim 1, wherein at least some of the
plurality of ADIs comprise a third PASID field to store a
third PASID to identify another address space to which the
ADI is allowed access.

11. The apparatus of claim 10, wherein a first ADI of the
at least some of the plurality of ADIs is to access an interrupt
table stored in the another address space using the third
PASID.

12. At least one computer readable storage medium hav-
ing stored thereon instructions, which if performed by a
machine cause the machine to perform a method compris-
ing:

fetching, by a first assignable device interface (ADI) of an

input/output virtualization (IOV) device, a first job
descriptor from a descriptor queue of a second address
space, using a descriptor process address space identi-
fier (PASID) of the first ADI, wherein the descriptor
PASID is associated with the second address space; and

in response to the first job descriptor, accessing data
stored in a first data buffer of a first address space
associated with a first entity, using a data PASID of the
first ADI, wherein the data PASID is associated with the
first address space that contains the first data buffer.

13. The at least one computer readable storage medium of
claim 12, wherein the method further comprises fetching the
first job descriptor in response to an indication received from
a first virtual device of a smart controller coupled to the IOV
device.

14. The at least one computer readable storage medium of
claim 13, wherein the method further comprises fetching, by
the first virtual device, a second job descriptor from a
descriptor queue of the first address space, in response to an
indication received from the first entity.

15. The at least one computer readable storage medium of
claim 14, wherein the method further comprises:

processing the second job descriptor, generating the first

job descriptor from the second job descriptor, and



US 2020/0319913 Al

storing the first job descriptor into the descriptor queue
of'the second address space comprising a host memory;
and

after storing the first job descriptor into the descriptor
queue of the host memory, indicating to the first ADI
presence of the first job descriptor in the descriptor
queue of the host memory.

16. The at least one computer readable storage medium of
claim 12, wherein the method further comprises after pro-
cessing the data, writing, by the first ADIL, an interrupt
message into an interrupt table stored in a third address
space, using a third PASID of the first ADI that points to the
interrupt table, wherein the interrupt message comprises a
completion for an operation on the data.

17. The at least one computer readable storage medium of
claim 12, wherein the method further comprises configuring
the first ADI with the descriptor PASID and the data PASID.

18. A computing system comprising:

a processor having one or more cores and a memory
controller to interface with a system memory;

a smart controller coupled to the processor, wherein the
smart controller is to emulate a first virtual device, and
in response to a request from a first virtual machine
(VM) access a first work descriptor from a first descrip-
tor queue of a first address space of the first VM,
prepare a second work descriptor from the first work
descriptor and store the second work descriptor in a
descriptor queue of a host address space;

an input/output virtualization (IOV) device coupled to the
smart controller, the IOV device comprising:

Oct. 8, 2020

at least one function circuit to be shared by a plurality
VMs; and
a plurality of assignable device interfaces (ADIs)
coupled to the at least one function circuit, wherein
each of the plurality of ADIs is to be associated with
one of the plurality of VMs and comprises a first
process address space identifier (PASID) field to
store a first PASID to identify the descriptor queue of
the host address space and a second PASID field to
store a second PASID to identify a data buffer
located in an address space of one of the plurality of
VMs; and
the system memory coupled to the processor, wherein the
system memory is to be used as a backing memory for
the host address space and address spaces of the
plurality of VMs.

19. The computing system of claim 18, wherein in
response to the request from the first VM, a first ADI is to
fetch the second work descriptor from the descriptor queue
of the host address space using the first PASID and in
response to the second work descriptor, to access a first data
buffer of the address space of the first VM using the second
PASID.

20. The computing system of claim 19, wherein in
response to the request from the first VM to the first virtual
device, the smart controller is to issue another request to the
first ADI to cause the first ADI to fetch the second work
descriptor from the descriptor queue of the host address
space.



