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PROCESS TEST SUBSTRATES WITH NOMINAL VALUES OF TUNING PARAMETERS 301
(OR VALUES DEFINED BY AN OPERATOR OF A MANUFACTURING TOOL SUCH AS A |~
PROCESS ENGINEER OR TECHNICIAN) OF AT LEAST ONE MANUFACTURING TOOL.

v

COLLECT, WITH A SYSTEM, DATA (E.G., TEST SUBSTRATE DATA OBTAINED FROM 302
MEASUREMENTS OF THE TEST SUBSTRATES, OTHER METROLOGY DATA, FAULT |~/

DETECTION DATA, THICKNESS STATISTICAL PROCESS CONTROL (SPC) DATA, ETC))

v
DETERMINE A RELATIONSHIP BETWEEN TOOL PARAMETER SETTINGS (E.G.,
TEMPERATURE, LAMP POWER RATIOS, GAS FLOWS DURING PROCESS RECIPES,
CHAMBER PRESSURE, DOWNFORCE FOR A CHEMICAL MECHANICAL
PLANARIZATION TOOL, ETC.) FOR THE AT LEAST ONE MANUFACTURING TOOL
AND AT LEAST SOME OF THE COLLECTED DATA (E.G., TEST SUBSTRATE DATA,
FAULT DETECTION DATA, THICKNESS STATISTICAL PROCESS CONTROL (SPC)
DATA, ETC.).

v

COMPARE WITH THE SYSTEM TEST SUBSTRATE DATA TO AT LEAST ONE TARGET 305
PARAMETER (E.G., A RANGE OF TARGET VALUES FOR EACH TARGET PARAMETER) [~/
FOR THE TEST SUBSTRATES OF THE AT LEAST ONE MANUFACTURING TOOL.
¥
UTILIZE ZERO OR MORE {OR AT LEAST ONE) VIRTUAL METROLOGY PREDICTIVE
ALGORITHMS (E.G., PARTIAL LEAST SQUARED (PLS), SUPPORT VECTCOR
REGRESSION (SVR), ETC.) AND AT LEAST SOME OF THE COLLECTED DATA TO
OBTAIN A METROLOGY PREDICTION IF AT LEAST ONE TARGET PARAMETER
(E.G., ELECTRICAL PARAMETERS) OR OTHER METROLOGY DATA IS NOT MEASURED
OR AVAILABLE

304

306

YES | COMPLETETHE | 320
REQUALIFICATION |~/
PROCESS

SATISFIES THE AT LEAST
ONE TARGET
PARAMETER?

APPLY R2R CONTROL MODELING TO OBTAIN A STATE ESTIMATION INCLUDING 310
A CURRENT OPERATING REGION AND CONDITION OF THE AT LEAST ONE Ny
MANUFACTURING TOOL BASED ON THE TEST SUBSTRATE DATA (E.G,,
MEASUREMENTS OBTAINED FROM THE TEST SUBSTRATES AT OPERATION 301)
AND THE CORRESPONDING TUNING PARAMETERS APPLIED DURING THE
PROCESSING OF THE TEST SUBSTRATES.

v
PROVIDE AT LEAST ONE TOOL PARAMETER ADJUSTMENT FOR A TOOL 319
PARAMETER ADJUSTMENT EVENT TO MOVE OR TRANSITION THE CURRENT Ny,
OPERATING REGION OF THE AT LEAST MANUFACTURING TOOL TO AN IDEAL OR
NEARLY IDEAL OPERATING REGION HAVING IDEAL OR NEARLY IDEAL TARGET
PARAMETERS BASED ON THE R2ZR CONTROL MODELING.

FIG. 3
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METHODS AND SYSTEMS FOR APPLYING
RUN-TO-RUN CONTROL AND VIRTUAL
METROLOGY TO REDUCE EQUIPMENT

RECOVERY TIME

TECHNICAL FIELD

[0001] Embodiments of the present invention relate to
methods and systems for applying run-to-run control and
virtual metrology to reduce equipment recovery time includ-
ing mean-time-to-repair (MTTR) for equipment and com-
ponents.

BACKGROUND

[0002] In manufacturing there are a number of processes
where maintenance is a requirement either at specific inter-
vals or in response to an event such as a broken component
or low quality production. Following the maintenance there
is often a process that is executed whereby the equipment is
“requalified” to a certain state such as “ready to return to
production”. This requalification can be a long and iterative
process whereby process and equipment parameters are
adjusted or “tuned”. After a tuning iteration the equipment
is evaluated, e.g., by producing a test product and then
measuring the quality of the test product. If the evaluation
indicates that the equipment or process has not met certain
criteria another tuning iteration is conducted. This iterative
process is often manual, and even if partially automated, is
often addressed in a univariate adhoc fashion where a few of
the total set of parameters are tuned at each iteration. The
time taken for these tuning iterations is considered to be part
of the mean-time-to-repair (MTTR) for the equipment.

SUMMARY

[0003] Described herein are methods, apparatuses, and
systems for reducing equipment repair time. In one embodi-
ment, a computer implemented method includes collecting,
with a system, data including test substrate data or other
metrology data and fault detection data for maintenance
recovery of at least one manufacturing tool in a manufac-
turing facility and determining, with the system, a relation-
ship between tool parameter settings for the at least one
manufacturing tool and at least some collected data includ-
ing the test substrate data. The method further includes
utilizing zero or more virtual metrology predictive algo-
rithms and at least some collected data to obtain a metrology
prediction and applying multivariate run-to-run (R2R) con-
trol modeling to obtain a state estimation including a current
operating region of the at least one manufacturing tool based
on the test substrate data and obtain at least one tool
parameter adjustment for at least one target parameter for the
at least one manufacturing tool. Applying multivariate run-
to-run (R2R) control modeling to obtain tool parameter
adjustments for at least one manufacturing tool occurs after
maintenance to reduce maintenance recovery time and to
reduce requalification time.

[0004] In another embodiment, a computer system
includes a memory to store one or more sets of instructions
and a processor that is coupled to the memory. The processor
is configured to execute instructions to collect data including
test substrate data or metrology data and fault detection data
for maintenance recovery of at least one manufacturing tool
in a manufacturing facility, determine a relationship between
tool parameter settings for the at least one manufacturing
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tool and at least some collected data including the test
substrate data. The method further includes utilizing zero or
more virtual metrology predictive algorithms and at least
some collected data to obtain a metrology prediction and
applying multivariate run-to-run (R2R) control modeling to
obtain a state estimation including a current operating region
of the at least one manufacturing tool based on the test
substrate data and obtain at least one tool parameter adjust-
ment for at least one target parameter for the at least one
manufacturing tool.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] The present invention is illustrated by way of
example, and not by way of limitation, in the figures of the
accompanying drawings and in which:

[0006] FIG. 1 is a time line of a maintenance recovery
process in accordance with one embodiment;

[0007] FIG. 2 illustrates an exemplary architecture of a
manufacturing environment 100 for reducing maintenance
time (e.g., MTTR) in accordance with one embodiment;
[0008] FIG. 3 illustrates a flow diagram of one embodi-
ment for a computer implemented method of multivariate
analysis utilizing run-to-run control and virtual metrology to
reduce MTTR and improve G2G time during post preven-
tative maintenance (PM) recovery;

[0009] FIG. 4A illustrates a plot 400 of thickness versus
gas flow for different temperatures of a deposition tool in
accordance with one embodiment;

[0010] FIG. 4B illustrates a plot 420 of thickness versus
gas flow for a specific temperature T* of a deposition tool at
post PM in accordance with one embodiment;

[0011] FIG. 4C illustrates a plot 440 of thickness versus
gas flow for a temperature T* of a deposition tool in
accordance with one embodiment, and finding the recom-
mended gas flow for a desired thickness target;

[0012] FIG. 5A illustrates lamp failure modes in accor-
dance with one embodiment;

[0013] FIG. 5B illustrates a diagram in which multivariate
R2R control with VM is applied in accordance with one
embodiment;

[0014] FIG. 6 illustrates a diagram in which multivariate
R2R and VM models are applied during maintenance recov-
ery in accordance with one embodiment;

[0015] FIG. 7 illustrates a diagram in which multivariate
R2R control with VM is applied in accordance with one
embodiment;

[0016] FIG. 8 illustrates a diagram in which multivariate
R2R control with VM is applied in accordance with one
embodiment;

[0017] FIG. 9 illustrates an exemplary architecture of a
system (e.g., an equipment engineering system (EES)), in
accordance with one embodiment; and

[0018] FIG. 10 illustrates a block diagram of an exemplary
computer system, in accordance with one embodiment of the
present invention.

DETAILED DESCRIPTION

[0019] Described herein are methods, apparatuses, and
systems for multivariate analysis utilizing run-to-run control
and virtual metrology to reduce MTTR during post preven-
tative maintenance (PM) recovery. In some embodiments,
systems and methods for reducing the time for tuning
iterations (e.g., by reducing the needed number of iterations)
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results in reduced MTTR and reduced green-to-green (G2G)
time (i.e., the time between production-worthy states).
Embodiments of this invention reduce the MTTR and G2G
time by reducing the number of tuning iterations required to
bring an equipment or manufacturing tool to a specified state
after a maintenance or other non-production event. The
methods and systems of the present disclosure leverage
capabilities that include “run-to-run” (R2R) control and
virtual metrology (VM).

[0020] Following maintenance there is often a process that
is executed in which the equipment is “requalified” to a
certain state such as a ready to return to production state.
FIG. 1 is a time line of a maintenance recovery process in
accordance with one embodiment. There are a number of
techniques that can be used during the production cycle
(from producing wafers during production state 2, through
predicting and scheduling maintenance state 4, seasoning
state 6, requalification state 8 and returning to a production
state 9 after a maintenance event) that can improve produc-
tion capabilities. MTBI is defined as mean-time-between-
interrupts for a production state 2. Many of these techniques
are components or extensions of existing Advanced Process
Control (APC) systems capabilities and can therefore lever-
age the data management environment provided by an
existing manufacturing system’s APC infrastructure. The
specific capabilities of the solution, their definitions, and
example of their manner of utilization are described as
follows.

[0021] Fault Detection (FD) is the technique of monitoring
and analyzing variations in tool and/or process data to detect
anomalies. Fault detection includes both univariate and
multivariate statistical analysis techniques. FD analysis is
often used to identify excursions. Also FD analysis output
feed EHM, PdM and VM solutions (see below).

[0022] Equipment Health Monitoring (EHM) is the tech-
nology of monitoring tool parameters to assess the tool
health as a function of deviation from normal behavior.
EHM is not necessarily predictive in nature, but is often a
component of predictive systems. EHM can be used during
production (e.g., t;,) to monitor tool health and during the
maintenance recovery process to assess “fingerprints” indi-
cating successful maintenance procedures (e.g., t,,), ready
to move to requalification (e.g., t5,) or during requalification
(e.g., tgo) to help determine if a component is ready to return
to a production state (e.g., maintenance success verification).

[0023] Predictive Maintenance (PdM) is the technology of
utilizing process and equipment state information to predict
when a tool or a particular component in a tool might need
maintenance, and then utilizing this prediction as informa-
tion to improve maintenance procedures. This could mean
predicting and avoiding unplanned downtimes and/or relax-
ing un-planned downtime schedules by replacing schedules
with predictions. PdM solutions (e.g., PdM at t,,) have been
illustrated to provide a number of benefits including reduc-
tion of unscheduled downtime.

[0024] Run-to-Run (R2R) control is the technique of
modifying recipe or other equipment parameters, or the
selection of control parameters between runs to improve
processing performance. A “run” can be a batch, lot, or an
individual substrate, wafer, or other product. R2R control
(e.g., ty) is typically used during production to improve
processes through improved closeness to quality targets and
reduce variability of quality parameters. R2R control (e.g.,
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t5o) can also be used during a maintenance state to determine
maintenance settings or process adjustments.

[0025] Virtual Metrology (VM) is the technology of pre-
diction of post process metrology variables (e.g., either
measurable or nonmeasurable) using process and wafer state
information that could include upstream metrology and/or
sensor data. Typical uses of VM are to enhance the R2R
control capabilities (e.g., t;,, t30) and reduce average pro-
duction cycle time by reducing the need for metrology. Best
practices and domain knowledge are procedures that lever-
age understanding of or experience with the equipment and
process and related components to improve capabilities
throughout the production cycle.

[0026] In the following description, numerous details are
set forth. It will be apparent, however, to one skilled in the
art, that the present invention may be practiced without these
specific details. In some instances, well-known structures
and devices are shown in block diagram form, rather than in
detail, in order to avoid obscuring the present invention.
[0027] Some portions of the detailed descriptions which
follow are presented in terms of algorithms and symbolic
representations of operations on data bits within a computer
memory. Unless specifically stated otherwise, as apparent
from the following discussion, it is appreciated that through-
out the description, discussions utilizing terms such as
“collecting”, “predicting”, “performing”, “adjusting”,
“comparing”, or the like, refer to the action and processes of
a computer system, or similar electronic computing device,
that manipulates and transforms data represented as physical
(electronic) quantities within the computer system’s regis-
ters and memories into other data similarly represented as
physical quantities within the computer system memories or
registers or other such information storage, transmission or
display devices.

[0028] Embodiments of the present invention also relates
to an apparatus for performing the operations herein. This
apparatus may be specially constructed for the required
purposes, or it may comprise a general purpose computer
selectively activated or reconfigured by a computer program
stored in the computer. Such a computer program may be
stored in a computer readable storage medium, such as, but
not limited to, any type of disk including floppy disks,
optical disks, CD-ROMs, and magnetic-optical disks, read-
only memories (ROMs), random access memories (RAMs),
EPROMs, EEPROMSs, magnetic or optical cards, or any type
of media suitable for storing electronic instructions, each
coupled to a computer system bus.

[0029] The algorithms and displays presented herein are
not inherently related to any particular computer or other
apparatus. Various general purpose systems may be used
with programs in accordance with the teachings herein, or it
may prove convenient to construct more specialized appa-
ratus to perform the required method steps. The required
structure for a variety of these systems will appear as set
forth in the description below. In addition, the present
invention is not described with reference to any particular
programming language. It will be appreciated that a variety
of programming languages may be used to implement the
teachings of the invention as described herein.

[0030] The present invention may be provided as a com-
puter program product, or software, that may include a
machine-readable medium having stored thereon instruc-
tions, which may be used to program a computer system (or
other electronic devices) to perform a process according to
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the present invention. A machine-readable medium includes
any mechanism for storing information in a form readable
by a machine (e.g., a computer). For example, a machine
(e.g., a computer) readable storage medium includes read
only memory (“ROM”), random access memory (“RAM”),
magnetic disk storage media, optical storage media, flash
memory devices, etc.

[0031] FIG. 2 illustrates an exemplary architecture of a
manufacturing environment 100 for reducing maintenance
time (e.g., MTTR), in accordance with one embodiment.
The manufacturing environment 100 may be a semiconduc-
tor manufacturing environment, an automotive manufactur-
ing environment, aerospace equipment manufacturing envi-
ronment, medical equipment manufacturing environment,
display and solar manufacturing environment, etc. In one
embodiment, the manufacturing environment 100 includes
an equipment engineering system (EES) 105, a VM multi-
algorithm predictive subsystem 107 within the EES system
105 or some other system coupled to the EES via a network,
a manufacturing execution system (MES) 110, a yield man-
agement system (YMS) 120 and a consolidated data store
115. The EES 105, MES 110, YMS 120 and consolidated
data store 115 may be connected via a network (not shown),
such as a public network (e.g., Internet), a private network
(e.g., Ethernet or a local area Network (LAN)), or a com-
bination thereof.

[0032] The manufacturing execution system (MES) 110 is
a system that can be used to measure and control production
activities in a manufacturing environment. The MES 110
may control some production activities (e.g., critical pro-
duction activities) or all production activities of a set of
manufacturing equipment (e.g., all photolithography equip-
ment in a semiconductor fabrication facility), of a manufac-
turing facility (e.g., an automobile production plant), of an
entire company, etc. The MES 110 may include manual and
computerized off-line and/or on-line transaction processing
systems. Such systems may include manufacturing
machines, metrology devices, client computing devices,
server computing devices, databases, etc. that may perform
functions related to processing.

[0033] In one embodiment, the MES 110 is connected
with a consolidated data store 115. The consolidated data
store 115 may include databases, file systems, or other
arrangements of data on nonvolatile memory (e.g., hard disk
drives, tape drives, optical drives, etc.), volatile memory
(e.g., random access memory (RAM)), or combination
thereof. In one embodiment, the consolidated data store 115
includes data from multiple data stores (e.g., a YMS data
store, a maintenance data store, a metrology data store,
process data stores, etc.) that are interconnected. The con-
solidated data store 115 may store, for example, historical
process information of manufacturing recipes (e.g., tempera-
tures, pressures, chemicals used, process times, etc.), equip-
ment maintenance histories, inventories, etc. The consoli-
dated data store 115 may also store data generated by the
MES 110, YMS 120 and/or EES 105. For example, the EES
105 may store fault detection and characterization data in the
consolidated data store 115, the YMS 120 may store yield
analysis data in the consolidated data store 115, and the MES
110 may store historical process information in the consoli-
dated data store 115. This permits each of the YMS 120, EES
105 and MES 110 to leverage data generated by the other
systems. The consolidated data store 115 may reside on one
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or more computing devices hosting any of the MES 110, the
YMS 120 and EES 105, or on one or more different
computing devices.

[0034] The EES 105 is a system that manages some or all
operations of a manufacturing environment (e.g., factory).
The EES 105 may include manual and computerized off-line
and/or on-line transaction processing systems that may
include client computing devices, server computing devices,
databases, etc. that may perform the functions of equipment
tracking, dispatching (e.g., determining what material goes
to what processes), product genealogy, labor tracking (e.g.,
personnel scheduling), inventory management, costing,
electronic signature capture, defect and resolution monitor-
ing, key performance indicator monitoring and alarming,
maintenance scheduling, and so on.

[0035] The EES 105 draws inferences from, reports out,
and/or acts upon the combined information that is collected
and stored in the consolidated data store 115 and/or the
metrology data and process data that is reported by the MES
110. For example, EES 105 can act as an early warning
system (e.g., predict scrap, initiate product rework, etc.),
provide bottleneck analysis, provide asset management
(e.g., reduce unscheduled equipment downtime, reduce
scheduled equipment downtime, reduce MTTR), improve
lean practices, etc. The EES 105 can be used to gain an
understanding of the manufacturing environment 100, and
can enable a user to determine an efficiency of the manu-
facturing environment 100 and/or how to improve all or
components of the manufacturing environment 100. In one
embodiment, the EES 105 includes components (e.g., VM
multi-algorithm predictive subsystem 107 having VM mod-
ule with prediction algorithm switching module, multivari-
ate R2R controller 112, etc.) that enable the EES 105 to
utilize and determine predictive algorithms for adaptive
virtual metrology, perform R2R control, reduce MTTR, and
reduce green-to-green (G2G) time, which is a time period
between production production-worthy states.

[0036] The yield management system (YMS) 120 ana-
lyzes end-of-line data such as electronic test (e-test) data to
determine product yield. The end-of-line data may include
wafer acceptance testing (WAT), wafer sort results and/or
final test operations. The yield manager 120 can provide
product yield trends, lot level analysis of product yield, yield
correlation to manufacturing processes, statistical analysis
of yield, etc. In one embodiment, the YMS 120 uses inte-
grated circuit design, visible defect, parametric and e-test
data to identify causes of low yield.

[0037] In one example, with many maintenance events in
semiconductor manufacturing, process “tuning” is required
as part of the maintenance recovery process, where test
wafers are processed and measured and the process is
adjusted based on the results. The process is determined
ready-for-production when the test wafer measurements
meet specified quality criteria. This tuning can oftentimes be
costly both in terms of wafers and lost production time. The
tuning process itself can often be inexact with adjustments
determined manually and often in a univariate (one-by-one
or a-few-by-one) fashion.

[0038] In one embodiment, the tuning process can be
improved by utilizing multivariate R2R control along with
VM (as necessary) to more precisely determine tuning
recommendations and reduce tuning iteration steps. A mul-
tivariate analysis is based on a statistical principle of mul-
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tivariate statistics in which observation and analysis of more
than one statistical outcome variable occurs at a time.

[0039] FIG. 3 illustrates a flow diagram of one embodi-
ment for a computer implemented method of multivariate
analysis utilizing run-to-run control and virtual metrology to
reduce MTTR and improve G2G time during post preven-
tative maintenance (PM) recovery. The method may be
performed by processing logic that may comprise hardware
(e.g., circuitry, dedicated logic, programmable logic, micro-
code, etc.), software (such as instructions run on a process-
ing device), or a combination thereof. In one embodiment,
a computer implemented method 300 is performed by the
equipment engineering system 105 or some other system
(e.g., a system hosting a VM multi-algorithm prediction
subsystem 107, R2R controller, and coupled to the EES 105
via a network). The computer implemented method 300 is
designed to transition a manufacturing tool to an ideal or
nearly ideal operating region after PM (or any maintenance)
with some constraints. The ideal or nearly ideal operating
region is defined by key parameters (e.g., thickness profile,
electrical properties, etc.). Constraints may include tuning
parameters (e.g., gas flows, temperature) that have certain
boundaries and possible relationships with other tuning
parameters or variables in order for the tool to be qualified
for a production state. The tool is transitioned to the pro-
duction state typically using multiple iterations of test sub-
strates and adjusting tuning parameters.

[0040] Referring to FIG. 3, the computer implemented
method 300 includes processing test substrates with nominal
values of tuning parameters (or values defined by an opera-
tor of a manufacturing tool such as a process engineer or
technician) of at least one manufacturing tool at operation
301. The computer implemented method 300 includes col-
lecting data (e.g., test substrate data obtained from measure-
ments of the test substrates, other metrology data, fault
detection data, thickness statistical process control (SPC)
data, etc.) by a system (e.g., an equipment engineering
system) at operation 302. The collected data includes data
associated with a manufacturing process, the at least one
manufacturing tool and/or a manufactured product. Process-
ing logic of the system determines a relationship between
tool parameter settings (e.g., temperature, lamp power
ratios, gas flows during process recipes, chamber pressure,
downforce for a chemical mechanical planarization tool,
etc.) for the at least one manufacturing tool and the collected
data (e.g., test substrate data, other metrology data, fault
detection data, thickness statistical process control (SPC)
data, etc.) at operation 304. Processing logic then compares
test substrate data to at least one target parameter (e.g., a
range of target values for each target parameter) for the test
substrates of the at least one manufacturing tool at operation
305. If at least one target parameter (e.g., electrical param-
eters) or metrology data is not measured or available, then
processing logic of the system utilizes zero or more (or at
least one) virtual metrology predictive algorithms (e.g.,
Partial Least Squared (PLS), Support Vector Regression
(SVR), etc.) and at least some of the collected data to obtain
a metrology prediction for the at least one target parameter
or metrology data that is not measured or available at
operation 306.

[0041] Processing logic of the system determines whether
the test substrate data satisfies the at least one target param-
eter (e.g., within a range of target values for each target
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parameter) at operation 308. If so, then the processing logic
completes the requalification process at operation 320.
[0042] Otherwise, processing logic then applies R2R con-
trol modeling (e.g., linear, nonlinear) to obtain a state
estimation including a current operating region and condi-
tion of the at least one manufacturing tool based on the test
substrate data (e.g., measurements obtained from the test
substrates at operation 301) and the corresponding tuning
parameters applied during the processing of the test sub-
strates at operation 310. The processing logic of the system
provides recommended tool parameter adjustments of a tool
parameter adjustment event to move or transition the current
operating region of the at least manufacturing tool to an ideal
or nearly ideal operating region having ideal or nearly ideal
target parameters based on the R2R control modeling at
operation 312. A virtual metrology predictive algorithm if
virtual metrology is necessary is tuned prior to or during its
use in a tool parameter adjustment event of the tool param-
eter adjustments The method proceeds to operation 301 for
a next iteration with the recommended (or similar) tool
parameter adjustments having at least one different tuning
parameter than the initial iteration at operation 301. In this
manner, the method 300 reduces a tool or component
downtime after PM or unplanned maintenance during main-
tenance recovery and requalification which results in higher
product output. Thus, better utilization of manufacturing
tools increases profits for the manufacturing environment.
[0043] In another example, the method 300 does not
include utilizing one or more virtual metrology predictive
algorithms to obtain a metrology prediction for the at least
one target parameter that is not measured or available at
operation 306. FIGS. 4A-4C illustrate one implementation
of the method 300 for a deposition tool in accordance with
one embodiment. FIG. 4A illustrates a plot 400 of thickness
versus gas flow for different temperatures of a deposition
tool in accordance with one embodiment. The different
temperatures includes T1, T2, and T3. R2R control model-
ing uses this plot 400 to determine a current operating region
and condition of the deposition tool based on the test
substrate data (e.g., thickness measurements obtained from
the test substrates, operation 301) illustrated in FIG. 4A and
the corresponding tuning parameters (e.g., temperature, gas
flow) applied during the processing of the test substrates. If
test substrate data is not available, then VM can be used for
predicting metrology data. The R2R control modeling mod-
els this plot 400 with the following equation:

[ YCentralThickness } [ Si(XGeras Xpcs, Xucr» Xpane)

YGe% Jf2(Xgenas Xpcs, Xucr» Xpane)

[0044] FIG. 4B illustrates a plot 420 of thickness versus
gas flow for a temperature T* of a deposition tool in
accordance with one embodiment. R2R control modeling
obtains a state estimation including a current operating
region and condition of the deposition tool as illustrated in
plot 420. The R2R control model estimate state for the
deposition tool with the following equation:

[ YCentralThickness } [ Si' (Xena» Xpcs, Xucrs Xpans)

YGe% Jf2(Xenas Xpcs» Xucr» Xpane)
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[0045] FIG. 4C illustrates a plot 440 of thickness versus
gas flow for a temperature T* of a deposition tool for
modeling predictive control in accordance with one embodi-
ment. This plot 440 includes a target 450 having a target
central thickness 452 and a target gas flow 454 (e.g., target
Ge dopant % for set of gas flows). R2R control modeling
provides recommended tool parameter adjustments to move
or transition the current operating region of the deposition
tool to an ideal or nearly ideal operating region having ideal
or nearly ideal target parameters based on the R2R control
modeling. The R2R control modeling models the ideal or
nearly ideal operating region for the deposition tool with the
following equation:

XGeH4
Xpcs
XHCH
XB2H6
Target *
YCoreratThickness — Ji (XGetia XpCs» Xucts Xpans)|
min
Target
XGett4-Xpes Xucr-Xp2ne |y = 5 ceas Xpcs» Xucrs Xgams)|
[0046] For one example in semiconductor manufacturing,

a R2R control maintenance recovery approach can be
applied to a thermal process, where the lamp maintenance
effort can be costly and time consuming.

[0047] FIG. 5A illustrates lamp failure modes in accor-
dance with one embodiment. In a typical system, lamps can
fail unexpectedly causing unscheduled downtime and scrap.
The lamp failure modes include a filament 410 that is
sagging below a center line, a short circuit 412 between
filament helix and support pillar, and a short circuit 414
between turns. The maintenance recovery can be time con-
suming as there are usually multiple post-maintenance (i.e.,
after lamp kit replacement) iterations of lamp parameter
“tuning” that include running a number of test wafers with
specific characterization recipes, analyzing metrology data,
and making hardware and software adjustments. This pro-
cess continues until the metrology data meets specified
quality criteria. Four to ten iterations of this type are not
uncommon leading to MTTR on the order of 2 days or more.
[0048] FIG. 5B illustrates a diagram in which multivariate
R2R control with VM is applied in accordance with one
embodiment. PM process metrology 502 is utilized along
with VM models based on FD output data 504 to determine
a state of the system. PM tuning models utilize this state
information to determine tuning advices in a multivariate
fashion. The result is that fewer tuning iterations are
required to bring the chamber to a satisfactory matched state
for release back into production.

[0049] FIG. 6 illustrates a diagram in which multivariate
R2R and VM models are applied during maintenance recov-
ery in accordance with one embodiment. In one example,
more than one tuning iteration is usually required because
the R2R control tuning model often has to be re-centered
with the first set of metrology results. This is due to the
variability in and length of time between PMs. Note also that
VM information used to enhance the determination of a
system state has been shown to provide an improved R2R
control system capability. However, depending on the main-
tenance event type and tuning procedures, it may not always
be necessary (i.e., PM process metrology may be sufficient).
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The diagram 600 illustrates test wafer quality (normalized)
on a vertical axis versus tuning iterations for chambers A and
B on a horizontal axis. For chamber A with no R2R control
and VM, 5 iterations were need for maintenance recovery.
For chamber A with R2R control and VM, only 2 iterations
were need for maintenance recovery. Thus, the R2R control
and VM during the maintenance recovery reduces the
MTTR by 3 iterations.

[0050] For chamber B with no R2R control and VM, 3
iterations were need for maintenance recovery. For chamber
B with R2R control and VM, only 2 iterations were need for
maintenance recovery. Thus, the R2R control and VM
during the maintenance recovery reduces the MTTR by 1
iteration.

[0051] In one example of a thin film deposition PM (e.g.,
CVD PM, epitaxial PM, etc.), a recovery period typically
takes at least five tuning iterations for testing processing
recipes with test substrates, performing metrology (e.g.,
measuring thickness profiles, determining dopant concen-
trations, etc.) for multiple recipes, and then making tuning
adjustments for returning a film deposition tool to a produc-
tion state. This causes PM recovery time period of greater
than 3 days in which the deposition tool cannot be used in
the production state for producing product.

[0052] FIG. 7 illustrates a diagram in which multivariate
R2R control with VM is applied in accordance with one
embodiment. Process metrology data 702 (e.g., SPC data,
test substrate data, FD data, film thickness SPC data, etc.)
and tool parameter and sensor data for at least one manu-
facturing tool are received as inputs for a multivariate
prediction model 720 to determine state information of at
least one system, equipment, or manufacturing tool. Process
tuning models of the MVA prediction model utilize this state
information to determine tuning advices in a multivariate
fashion. The result is that fewer tuning iterations are
required to bring the system or tool to a satisfactory state for
release back into a production state.

[0053] In one example of MTTR modeling, a system
collects historical test substrate data (e.g., FD data, film
thickness SPC data, etc.). The system then determines a
relationship between tool parameters settings and SPC data
that corresponds to the tool parameter settings. Multivariate
models are then utilized to rapidly identify critical param-
eters of the manufacturing tool to be adjusted or tuned. The
models can identify values for multivariate variables or
parameters that are out of tool or process specifications and
then make appropriate corrections. In this manner, a down-
time (i.e., non-production state) of the manufacturing tool is
significantly reduced resulting in additional product output.
For example, a number of tuning iterations can be reduced
from at least 5 to 2 or 3 tuning iterations.

[0054] FIG. 8 illustrates a diagram in which multivariate
R2R control with VM is applied in accordance with one
embodiment for reducing maintenance recovery time. Pro-
cess metrology data 802 (e.g., SPC data, test substrate data,
FD data, film thickness SPC data, etc.) and tool parameter
and sensor data 804 for at least one manufacturing tool are
received as inputs for at least one of the VM module 810 and
the run-to-run control module 820. The VM module 810
utilizes at least one prediction algorithm for a virtual metrol-
ogy function which can be a linear or nonlinear function F
(u,) with u, being sensor data (e.g., temperature, lamp
power, lamp power ratios, gas flows for processing gases
during a processing recipe, etc.) for at least one manufac-
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turing tool at time k. The linear or nonlinear function F (u,)
generates a metrology prediction 812 based on at least the
sensor data 804. The metrology prediction 812 may also be
based on metrology data 802. The R2R controller 820
receives the metrology prediction 812 and determines tool
parameter adjustments 830 based on the metrology predic-
tion and R2R parameters including sensor data, a state x; at
time k (e.g., a state of the manufacturing tool at time k such
as), a state X, ; attimek+1 (e.g., a state of the manufacturing
tool at time k+1), sensor noise w,, metrology measurement
noise v,, metrology measurement y, at time k, a state
transition function f(*), and observation function g(*).
[0055] Inoneembodiment, the R2R controller 820 utilizes
the following equations for generating tool parameter adjust-
ments 830:

Ko 1S Wi)

V=gV

[0056] Improved knowledge of a state x,,, at time k+1
(e.g., a state of the manufacturing tool at time k+1) and
identification of critical parameters leads to a reduced num-
ber of tuning iterations for tool parameters adjustments 830.
The manufacturing tool can be returned to a production state
in a shorter time period with reduced maintenance recovery
and requalification.

[0057] In another embodiment, the R2R controller 820
does not need the metrology prediction 812 for determining
tool parameter adjustments 830.

[0058] In this manner, the R2R controller 820 utilizes this
state information to determine tuning advices in a multivari-
ate fashion.

[0059] In one example, the VM module 810 and R2R
controller 820 are utilized to make adjustments to tool
parameters based on a first set of input parameters (e.g., 3-5
input parameters). After the adjustments are made to tool
parameters (e.g., process recipes) then the VM module 810
and R2R controller 820 are again utilized to make adjust-
ments to tool parameters based on a different second set of
input parameters (e.g., 3-5 input parameters).

[0060] FIG. 9 illustrates an exemplary architecture of a
system (e.g., equipment engineering system (EES)), in
accordance with one embodiment. In one embodiment, the
system 900 is implemented with an Applied E3™ APC
Infrastructure in which methods of the present disclosure are
integrated. The EES 900 leverages an E3 application adapter
610 that provides an interface to Web services. Multivariate
prediction module 920 can be integrated through Web ser-
vices. This multivariate prediction module 920 integration
approach enables rapid prototyping, customization, and
technology transfer. The multivariate prediction module 920
includes a predictive VM module 922 that enables the EES
900 to utilize and determine predictive algorithms for adap-
tive virtual metrology and also R2R control module 924 for
reducing tuning iterations for post maintenance recovery.
[0061] The adapter 910 communicates with the strategy
engine 930, the client handler 940, the data service provider
950, and the log server 960. The strategy engine 930
includes general blocks 931, run to run blocks 932 (e.g.,
R2R controller, R2R module), FD blocks 933, EPT blocks
934, and custom blocks 935. The FD blocks 933 obtain FD
data. The run to run blocks 932 include pre-configured or
adaptive R2R models for implemented operations of meth-
ods and embodiments of the present disclosure. The EPT
blocks 934 obtain equipment performance tracking infor-
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mation. The data access layer 970 provides access to a
database 980. This database 980 includes process data,
FDC/EPT/R2R data, control rules, and data collection plans.
The discovery manager 990 provides discovery features for
identifying capabilities integrated into the system. The strat-
egy engine is used to govern the interaction of blocks in
terms of “strategies” to achieve specific objectives in
response to events received.

[0062] For example, for substrate-to-substrate control
(e.g., Wafer-to-Wafer (W2W) Control), a strategy housed by
the strategy engine 930 could be envisioned that captures FD
outputs from a FD implementation formulated with the FD
blocks 933 and stored in the database 980, sends this
information to a formulation in the multivariate prediction
module 920 (integrated via the web-services adaptor 910)
for calculation of VM outputs (e.g., metrology predictions),
determination of tool parameter adjustments using R2R 924
(or alternatively R2R 932), and output this tool parameter
adjustments for reducing tuning iterations after PM and
during requalification state. Collected metrology data is used
to update VM models.

[0063] There are a number of extensions to prediction
algorithms that utilize feedback of actual output measure-
ment data, such as metrology or yield analysis, to continu-
ally improve or “tune” the prediction models. As an
example, NIPALS and EWMA (Exponentially Weighted
Moving Average) are two documented adaptive extensions
to the Project on Latent Structure prediction mechanisms. In
one embodiment of this invention, the VM algorithms are
tuned as necessary at the start of an MTTR event to account
for changes in process, equipment or other conditions
between downtimes that require an adjustment of the VM
model. The type and level of adjustment can be determined
by techniques such as a VM switching algorithm. These
various extensions for handling the dynamics perform dif-
ferently depending on the prediction and adaptation envi-
ronment. Further many of the extensions also represent a
tradeoff between computational complexity or time, and
accuracy.

[0064] VM models include a predictive algorithm having
a VM prediction equation:

S=B*t+c

[0065] In some embodiments, S is a predicted output, B
represents a matrix, t is an input factor, and c is zero’th order
term. S, B, t, and ¢ are components vectors or matrices.
Given two prediction adaptation algorithms EWMA and
NIPALS, EWMA is fast and easy, but can be inaccurate
when the VM equation changes. The EWMA can utilize
zero’th order adaptation of the VM equation (e.g., updates
the “c” vector). NIPALS is complex, but more accurate.
NIPALS reformulates the VM equation (e.g., updates both
“B” and “c”). The VM multi-algorithm prediction subsystem
107 may compare predictions of metrology data (Y') to
actual metrology data (Y) on occasion with this difference
being E.

[0066] FIG. 10 illustrates a diagrammatic representation
of' a machine in the exemplary form of a computer system
1000 in accordance with one embodiment within which a set
of instructions, for causing the machine to perform any one
or more of the methodologies discussed herein, may be
executed. In alternative embodiments, the machine may be
connected (e.g., networked) to other machines in a Local
Area Network (LAN), an intranet, an extranet, or the Inter-
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net. The machine may operate in the capacity of a server or
a client machine in a client-server network environment, or
as a peer machine in a peer-to-peer (or distributed) network
environment. The machine may be a personal computer
(PC), a tablet PC, a set-top box (STB), a Personal Digital
Assistant (PDA), a cellular telephone, a web appliance, a
server, a network router, switch or bridge, or any machine
capable of executing a set of instructions (sequential or
otherwise) that specify actions to be taken by that machine.
Further, while only a single machine is illustrated, the term
“machine” shall also be taken to include any collection of
machines (e.g., computers) that individually or jointly
execute a set (or multiple sets) of instructions to perform any
one or more of the methodologies discussed herein.

[0067] The exemplary computer system 1000 includes a
processor 1002, a main memory 1004 (e.g., read-only
memory (ROM), flash memory, dynamic random access
memory (DRAM) such as synchronous DRAM (SDRAM)
or Rambus DRAM (RDRAM), etc.), a static memory 1006
(e.g., flash memory, static random access memory (SRAM),
etc.), and a secondary memory 1018 (e.g., a data storage
device), which communicate with each other via a bus 1030.
[0068] Processor 1002 represents one or more general-
purpose processing devices such as a microprocessor, cen-
tral processing unit, or the like. More particularly, the
processor 1002 may be a complex instruction set computing
(CISC) microprocessor, reduced instruction set computing
(RISC) microprocessor, very long instruction word (VLIW)
microprocessor, processor implementing other instruction
sets, or processors implementing a combination of instruc-
tion sets. Processor 1002 may also be one or more special-
purpose processing devices such as an application specific
integrated circuit (ASIC), a field programmable gate array
(FPGA), a digital signal processor (DSP), network proces-
sor, or the like. Processor 1002 is configured to execute the
processing logic 1026 for performing the operations and
steps discussed herein.

[0069] The computer system 1000 may further include a
network interface device 1008. The computer system 1000
also may include a video display unit 1010 (e.g., a liquid
crystal display (LCD) or a cathode ray tube (CRT)), an
alphanumeric input device 1012 (e.g., a keyboard), a cursor
control device 1014 (e.g., a mouse), and a signal generation
device 1016 (e.g., a speaker).

[0070] The secondary memory 1018 may include a
machine-readable storage medium (or more specifically a
computer-readable storage medium) 1031 on which is stored
one or more sets of instructions (e.g., software 1022)
embodying any one or more of the methodologies or func-
tions described herein. The software 1022 may also reside,
completely or at least partially, within the main memory
1004 and/or within the processing device 1002 during
execution thereof by the computer system 1000, the main
memory 1004 and the processing device 1002 also consti-
tuting machine-readable storage media. The software 1022
may further be transmitted or received over a network 1020
via the network interface device 1008.

[0071] The machine-readable storage medium 1031 may
also be used to store one or more subsystems of a yield
management system (YMS) 1020, an equipment engineer-
ing system (EES) 105 and/or a manufacturing execution
system (MES) 110 (as described with reference to FIG. 1),
and/or a software library containing methods that call sub-
systems of a YMS, EES and/or MES. The machine-readable
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storage medium 1031 may further be used to store one or
more additional components of a manufacturing information
and control system (MICS), such as a decision support logic
component, a real-time monitor, and/or an execution logic
component. While the machine-readable storage medium
1031 is shown in an exemplary embodiment to be a single
medium, the term “machine-readable storage medium”
should be taken to include a single medium or multiple
media (e.g., a centralized or distributed database, and/or
associated caches and servers) that store the one or more sets
of instructions. The term “machine-readable storage
medium” shall also be taken to include any medium that is
capable of storing or encoding a set of instructions for
execution by the machine and that cause the machine to
perform any one or more of the methodologies of the present
invention. The term “machine-readable storage medium”
shall accordingly be taken to include, but not be limited to,
solid-state memories, and optical and magnetic media.

In one embodiment, a computer system includes a memory
to store one or more sets of instructions and a processor that
is coupled to the memory. The processor is configured to
execute instructions to collect data including test substrate
data and fault detection data for maintenance recovery of at
least one manufacturing tool in a manufacturing facility,
determine a relationship between tool parameter settings for
the at least one manufacturing tool and at least some
collected data including the test substrate data. The method
further includes utilizing zero or more virtual metrology
predictive algorithms and at least some collected data to
obtain a metrology prediction and applying multivariate
run-to-run (R2R) control modeling to obtain a state estima-
tion including a current operating region of the at least one
manufacturing tool based on the test substrate data and
obtain at least one tool parameter adjustment for at least one
target parameter for the at least one manufacturing tool. In
one example, the R2R control modeling utilizes the follow-
ing parameters: sensor data obtained from a sensor of the at
least manufacturing tool, state at time k, state at time k+1,
sensor noise, metrology measurement noise, metrology
measurement at time k, a state transition matrix, a process
sensitivity matrix, and an observation model matrix.
[0072] In one example, the virtual metrology predictive
algorithm is tuned prior to or during its use in a tool
parameter adjustment event of the at least one tool parameter
adjustment. In one embodiment, the collected data includes
a thickness profile and a dopant concentration for mainte-
nance recovery of a deposition tool. The tool parameter
adjustments include adjusting a temperature parameter,
lamp power ratios, and gas flow parameters for the deposi-
tion tool.

[0073] In one example, applying multivariate run-to-run
(R2R) control modeling to obtain tool parameter adjust-
ments for the at least one manufacturing tool occurs after
maintenance to reduce maintenance recovery time and to
reduce requalification time.

[0074] It is to be understood that the above description is
intended to be illustrative, and not restrictive. Many other
embodiments will be apparent to those of skill in the art
upon reading and understanding the above description.
Although the present invention has been described with
reference to specific exemplary embodiments, it will be
recognized that the invention is not limited to the embodi-
ments described, but can be practiced with modification and
alteration within the spirit and scope of the appended claims.
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Accordingly, the specification and drawings are to be
regarded in an illustrative sense rather than a restrictive
sense. The scope of the invention should, therefore, be
determined with reference to the appended claims, along
with the full scope of equivalents to which such claims are
entitled.

What is claimed is:

1. A computer implemented method comprising:

collecting, with a system, data including test substrate

data or other metrology data and fault detection data for
maintenance recovery of at least one manufacturing
tool in a manufacturing facility;

determining, with the system, a relationship between tool

parameter settings for the at least one manufacturing
tool and at least some collected data including the test
substrate data;

utilizing zero or more virtual metrology predictive algo-

rithms and at least some collected data to obtain a
metrology prediction; and

applying multivariate run-to-run (R2R) control modeling

to obtain a state estimation including a current operat-
ing region of the at least one manufacturing tool based
on the test substrate data and obtain at least one tool
parameter adjustment for at least one target parameter
for the at least one manufacturing tool, wherein apply-
ing multivariate run-to-run (R2R) control modeling to
obtain tool parameter adjustments for at least one
manufacturing tool occurs after maintenance to reduce
maintenance recovery time and to reduce requalifica-
tion time.

2. The computer implemented method of claim 1, wherein
the R2R control modeling utilizes the following parameters:
sensor data obtained from a sensor of the at least manufac-
turing tool, state at time k, state at time k+1, sensor noise,
metrology measurement noise, metrology measurement at
time k, a state transition matrix, a process sensitivity matrix,
and an observation model matrix.

3. The computer implemented in method of claim 1,
wherein the virtual metrology predictive algorithm is tuned
prior to or during its use in a tool parameter adjustment event
of the at least one tool parameter adjustment.

4. The computer implemented method of claim 1, wherein
the collected data includes a thickness profile and a dopant
concentration for maintenance recovery of a deposition tool.

5. The computer implemented method of claim 4, wherein
the tool parameter adjustments includes adjusting a tem-
perature parameter, lamp power ratios, and gas flow param-
eters for the deposition tool.

6. The computer implemented method of claim 1, further
comprising:
determining whether the test substrate data satisfies the at
least one target parameter.

7. A computer-readable storage medium comprising
executable instructions to cause a processor to perform
operations, the instructions comprising:

collecting, with a system, data including test substrate

data or metrology data and fault detection data for
maintenance recovery of at least one manufacturing
tool in a manufacturing facility;

determining, with the system, a relationship between tool

parameter settings for the at least one manufacturing
tool and at least some collected data including the test
substrate data;
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utilizing zero or more virtual metrology predictive algo-
rithms and at least some collected data to obtain a
metrology prediction; and

applying multivariate run-to-run (R2R) control modeling

to obtain a state estimation including a current operat-
ing region of the at least one manufacturing tool based
on the test substrate data and obtain at least one tool
parameter adjustment for at least one target parameter
for the at least one manufacturing tool, wherein apply-
ing multivariate run-to-run (R2R) control modeling to
obtain tool parameter adjustments for at least one
manufacturing tool occurs after maintenance to reduce
maintenance recovery time and to reduce requalifica-
tion time

8. The computer-readable storage medium of claim 7,
wherein the R2R control modeling utilizes the following
parameters: sensor data obtained from a sensor of the at least
manufacturing tool, state at time k, state at time k+1, sensor
noise, metrology measurement noise, metrology measure-
ment at time k, a state transition matrix, a process sensitivity
matrix, and an observation model matrix.

9. The computer-readable storage medium of claim 8,
wherein the virtual metrology predictive algorithm is tuned
prior to or during its use in a tool parameter adjustment event
of the at least one tool parameter adjustment.

10. The computer-readable storage medium of claim 7,
wherein the collected data includes a thickness profile and a
dopant concentration for maintenance recovery of a depo-
sition tool.

11. The computer-readable storage medium of claim 10,
wherein the tool parameter adjustments includes adjusting a
temperature parameter, lamp power ratios, and gas flow
parameters for the deposition tool.

12. The computer implemented method of claim 7, further
comprising:

determining whether the test substrate data satisfies the at

least one target parameter.

13. A computer system comprising:

a memory to store one or more sets of instructions; and

a processor, coupled to the memory, is configured to

execute instructions to:

determining, with the system, a relationship between tool

parameter settings for the at least one manufacturing
tool and at least some collected data including the test
substrate data;

utilizing zero or more virtual metrology predictive algo-

rithms and at least some collected data to obtain a
metrology prediction;

applying multivariate run-to-run (R2R) control modeling

to obtain a state estimation including a current operat-
ing region of the at least one manufacturing tool based
on the test substrate data and obtain at least one tool
parameter adjustment for at least one target parameter
for the at least one manufacturing tool, wherein apply-
ing multivariate run-to-run (R2R) control modeling to
obtain tool parameter adjustments for at least one
manufacturing tool occurs after maintenance to reduce
maintenance recovery time and to reduce requalifica-
tion time.

14. The computer system of claim 13, wherein the R2R
control modeling utilizes the following parameters: sensor
data obtained from a sensor of the at least manufacturing
tool, state at time k, state at time k+1, sensor noise, metrol-
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ogy measurement noise, metrology measurement at time k,
a state transition matrix, a process sensitivity matrix, and an
observation model matrix.

15. The computer system of claim 14, wherein the virtual
metrology predictive algorithm is tuned prior to or during its
use in a tool parameter adjustment event of the at least one
tool parameter adjustment.

16. The computer system of claim 13, wherein the col-
lected data includes a thickness profile and a dopant con-
centration for maintenance recovery of a deposition tool.

17. The computer system of claim 16, wherein the tool
parameter adjustments includes adjusting a temperature
parameter, lamp power ratios, and gas flow parameters for
the deposition tool.

18. The computer system of claim 13, further comprising:

determining whether the test substrate data satisfies the at

least one target parameter.
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