US 20240143587A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2024/0143587 A1

Falcao et al.

43) Pub. Date: May 2, 2024

(54)

(71)
(72)

(73)

@

(22)

(63)

TEMPORAL OPTIMIZATION OF DATA
OPERATIONS USING DISTRIBUTED
SEARCH AND SERVER MANAGEMENT

Applicant: Spredfast, Inc., Austin, TX (US)

Inventors: Eric Manuel Falcao, Austin, TX (US);
Brett Hoerner, Austin, TX (US);
Matthew Swain, Austin, TX (US);
Adam McElwee, Austin, TX (US)

Assignee: Spredfast, Inc., Austin, TX (US)

Appl. No.: 18/200,488

Filed: May 22, 2023

Related U.S. Application Data

Continuation of application No. 17/332,391, filed on
May 27, 2021, now Pat. No. 11,657,053, which is a
continuation of application No. 15/877,381, filed on
Jan. 22, 2018, now Pat. No. 11,061,900.

Social
Data
124

Manifest
Files
126

Publication Classification

(51) Int. CL
GOGF 16/2453 (2006.01)
GOGF 16/2458 (2006.01)
GOGF 16/27 (2006.01)
(52) US.CL
CPC ... GOGF 16/24542 (2019.01); GO6F 16/2471
(2019.01); GOG6F 16/27 (2019.01); HO4L 67/10
(2013.01)
(57) ABSTRACT

The disclosure describes temporal optimization of data
operations using distributed search and server management,
including configuring one or more host groups, determining
one or more stripes associated with one or more shards
distributed among the one or more host groups, receiving a
query to retrieve data, evaluating the query to identify a time
characteristic associated with the data, identifying a location
from which to retrieve the data, and rewriting the query to
run on at least one of the one or more host groups at the
location using a distributed search platform, the another
query being targeted at a host group associated with the
class.

100

'

<>

Metadata
128

(‘102

Cluster Manifest File Search Platform Query Manager
Manager 112 114
106 - -
(\ 103 API
115
Indexer Resource Manager Logic Module
110 108 104

136

L ©Id

9l

a
x/

US 2024/0143587 Al

wald N — 4

7ot 80T 01T
= a|npowy 21807 Jadeuep 324nosay JaX3apu|
S
o eovsvesveny
= STT
L 1dv €0l
= /\
3 FIT 411 o
K Ja8euepy Asanp wiojield Yoieas 19cBUEN
“a 314 1SIUBN JBISN|D
>
]
= b

<0l

87T
elepeldy

14
s9|iy
1Sajiuep

fz74%
ereq
|eo0s

001

Patent Application Publication

May 2, 2024 Sheet 2 of 17 US 2024/0143587 Al

Patent Application Publication

¢ Ol

STT
Idv

T
Wi0j1e|d Yoieas

f444
3NPON UOIIRI[IDUCIBY

07T
Jaxapu|

0cc
SINPON
dnoig 1So0H/4915N))

90T
J28eue

214 15341UBA J21SN]D

it
Ja8eugp AdanD

70T
anpo 2807

91¢
Ja8eue ssepd

%0

30T
Ja8euepy a2unosay

o
o~

244
Ja8euen pieys

US 2024/0143587 Al

t444
INPO
uomBIIdu0I3Y

(744
ajnpow
dnosd
1S0H

[{u4

uonesiddy

¢ Old

May 2, 2024 Sheet 3 of 17

00¢

Patent Application Publication

€€
(ussep)
FETVELS

0EE
(ussep)
SETVETS

91t

uJaaasnD

0¢E 8TE
(T ssep) (T ssep)
Janias BETIES
Fan3
Y Aa21sn|)

k43 g¢¢
{z ssep) (z ssep)
J9AIBS JBAIBS
b4 e
{z ssep) (z ssep)
BEVVEIN BETRES
gJa1sn|D

May 2, 2024 Sheet 4 of 17 US 2024/0143587 Al

Patent Application Publication

¥ Old

{

@G 0} pousIssy Xiyaid WaIsAs @
80y /\

(u)g 1soH

(sSEJ2 J9AJaS J0j Jo3edipu Suipnjoul) 7g 1SoH
T9 1SOH

9oy ai=ong swil |

(sse|d 4an43s Joy Jo1RIIpUL Bulpnpul) (U)Y 1SOH

¢V 1SOH
TV 3S0H

0V TIYdINng swil

awe N dnoio 1S0H
97ZIS DIS
9ZIS pJeys

zop aweN Jaisn|d eleq

00y

VG Ol

US 2024/0143587 Al

01s

eyeq 3yuod
91¢% 918N
— \ e1e(FTe
uoIIBI|IoU0JDY
eleq dnouo 1s0H eleq dnoJo 1S0H

May 2, 2024 Sheet 5 of 17

905 \ > 805 705
eieq AlanpD \ wuojield eleq

A

0S8
2|14 159U

Patent Application Publication

009

a9 9l

US 2024/0143587 Al

01s

eyeq yuo)
916 15N
— eleq S
¢ts UOI1B1IDU0IDY V15
eleq dnouo 1s0H eleq dnouo 1S0H

May 2, 2024 Sheet 6 of 17

90S \ > 805 (44
ejeq AJanp \ wJlojield ejeq |e1d0s

A

058
3|14 159 UB A

Patent Application Publication

0cs

May 2,2024 Sheet 7 of 17 US 2024/0143587 Al

Patent Application Publication

(u)J

4z
U JOAIDS

|e—

B=

e

Aaoy

[eAsisoy/ebeio)g

QG Old

O=

¢l

oS
a Joniss

¢l

8€S
) J9AISS

4

9¢s
g JOAISS

4

739
v JoAIDS

-,

AyAnoy

|eAsioy/ebeio)g

\.

/' \

AyAnoy

}

0€g

43
e1eq

/

J

|erslney/ebrlo)g

AyAnoy
|eAsLay/ebeI01S

May 2,2024 Sheet 8 of 17 US 2024/0143587 Al

Patent Application Publication

9 9Ol

anN3

4%}

s1soy
puE JJOMIaU elep 9]1oU0daY
K

079
sdnoud 1s0y 01 e1BP 34015

1

809
91} 1s9jiuew Aq paJndijuod sdnosd
150y uo a8eJo1s Joj elep aIndyuo)

909
ansUdIBIEYD DU
AJl3Uapi 01 e1ep PoARdal asied

Y09
wJojield 1e eiep anl0ay

<09
a4 194luew Suisn sdnoud
150y Suipnpdul yJomiau elep aundiyuo)

1yvis

009

May 2,2024 Sheet 9 of 17 US 2024/0143587 Al

Patent Application Publication

V. 9ld

anN3

0TZ
(o¢ oHd)
dnoud 1soy 9j1ou0osy

%

80L
anjea xapul
Ag palyiuapl Janas uo

uol1edo| 1e elep s4o1s

90,
o}l elep
passad0.d a3eiouUa8
01 3|1} elep 3sied

1t

7074
dV
J3A0 3|y B1EpP 2A1203Y

»

[4{V7A

(gs ©I4)
aji 1sajtuew Juisn

dnoi8 150y a1ngyuo)

1HV1S

004

d. ©ld

anN3

US 2024/0143587 Al

0tz

{{v£ '©I4) ¥0£ 01 uIN1aYy)
elep _umZmuw; $S930.4d

A

8CL
sdnoJd 150y 01 {s)uoA18s UBIssy

9L
3SE[D JOAISS

ylim saduel DU} 2]B120Ssy

1

j74A
sdnoug 5oy

10} sa8uel 2wl auILIR1a(

1

[44A
sdnoJg 1soy a1ea4)

May 2, 2024 Sheet 10 of 17

0¢L
314 Isajuew
Ul PS1BJ1PUl SSB|D JaAJSS
3[3uls

SaA

iz

Patent Application Publication

v "

= o4 9Ol
&

v

S an3

v

=

<

N

=

M 057
m pawuoiad

a8uep Jaye uonedo| o1
Adoo a1y ejep payipow 34015

-

5 1

= 374

= 28ueyo

2 40 9dA1 uo paseq Adoo
7 a4 elep uo uonesado
- e1ep Wioyiad

S

5 f

o 74

W adueyd

=

jo adA1 auiwialag

%74
éollj elep
paA1ad3al Ul pa1Ialsp
98ueyn

fé74
UOILRIIDU0D3Y DOAU]

1Hvis

ov.

Patent Application Publication

US 2024/0143587 Al

May 2, 2024 Sheet 12 of 17

Patent Application Publication

V8 9Old

anN3

[41:]
(410s ““8'9) wuoyiejd yoseas uisn dnosd
IS0y paiesipul uo uns 03 Asenb alumay

018
Adoo 8|1} e1EP JO |1}
elep paisanbaJ Jo uoed0] Ajlrusp|

%

808
JnsiaeeYd
auwit} Ajlauspi o3 Ausnb azenjeay

A

908
eiep 2AsLI18.4 01 Alanb aala0ay

A

¥08
SOIISHID10BIBYD SWIT YIIM SBSSE|D
J2AJS SUIIB120SSE UO PIse(SAIN0Sa.
9811015 JO spJieys pue saduls auiLIalQg

9

08
S21ISLURITRIBYD DWI] pUR SISSE|D Yiim
a1eposse pue sdnotd jsoy aundyuo)

1YvlsS

008

US 2024/0143587 Al

May 2, 2024 Sheet 13 of 17

Patent Application Publication

d8 9ld

anid

4]
(4jos “8'9) waopeyd
yoaeas duisn ssed JaAILs pue dnosd
1504 Pa1LdIpuUl Uo Uni o1 Aenb aumay

il

0e8
S50 J3AJ3S pue
agduel swil yoes Joj (s)pJeys auiwialaq

%

8(8
dnoJd 1soy pue
23uel 3wl yoes 01 5Se|I JoAIIS uBIssy

9¢8
3N 0} $3SSR[D JBAISS BUILIBLR(

743
(s)dnoud1soy o1
paudisse {s)a8uel awil UIWIRLBQ

%

[44
(s)dnoud 1soy sulwialaq

1HV1S

0z8

US 2024/0143587 Al

May 2, 2024 Sheet 14 of 17

Patent Application Publication

o8 9Ol

and

58
(s}oy14 IEP pPOISANbaL JO AdOD uIN1dY

il

058
{s)a|1} e1ep paisanbai jo Adod analilay

4

8r8
(ag o) (4jos “8-3) wioprejd youeas
J0J BUWIDYDS 9seqelep ut Asanb aumay

%

17
sse|d JoAJas pue dnoud

1S0Y AJ1IUBPI 0 JIISUBIDIRIEYD BUWIL BS)

1223
J11S1@10BIBYD
awnl Ajiquspl o3 Adanb asaed

4

8
Alanb PaAiadaJ JO UOIIENIBAD 3]1B11IU|

1YViS

ov8

US 2024/0143587 Al

May 2, 2024 Sheet 15 of 17

Patent Application Publication

as old

and

vZ8
elep palsanbau jo Adod winisy

4

08

pa1dniio2 JO punoj Jou elep
SuiAjiluapl a8essaw 104U UIN1dY

8

Uolles0] eiep O} anjeA paydieul 1aAUO])

$XapUl Ul anjea paydiew

ON

EL]
anjeA paJols 0} anjea
PauIWID1aP YoleW 0} XapUl 2oUDIB)9Y

4

98
elep paisenbal fpouenb
Y1IM paleID0Ssse anjea auiwIa1aQ

1dv1S

098

US 2024/0143587 Al

May 2, 2024 Sheet 16 of 17

Patent Application Publication

48 9l

aN3

888
Asanb [puiBuo 03 ssuodsau

u patianb /parssnbal ejep jo Adod uiniay

A\ 4

J

vZ8

588
po1sanbal elep 104 xapui Ag
po1e2Ipul uoedo) 18 elep Jaisew Jo Adoo alols

eiep jo Adoo paisenbau uiniay

4

1

(44

788
palsanb/palsanbal elep
40 elep Jaisew jo Adod analilay

anjea duizen|eas
UO paseq uolledo] eIEp dUIWIRIRQ

*

88
paisanbal elep yum paleposse
21EpR1aW UO paseq elep Jalsew Appuap]

898
$X3pUl Ul punoy
anjep

¥98

pauanb aq 03 PaliIUaP! SSBID 19AIBS ‘dN0JS 1S0Y JOJ XBpUI 20UDI943Y

kS

€98
pausnb

90 03 5SB|2 JBAJSS ‘dnoJg 1S0Y JO UO[IED0| DUIWIIBIDP 01 BN|EA B1BN|BAT

*

798

{s)ap} e1Ep POlsanbal/patianb yum paledosse anjea aulwislaQ

1Yvis

088

US 2024/0143587 Al

May 2, 2024 Sheet 17 of 17

Patent Application Publication

6 Old

-

[41]
ERIIVER V]!
uolieslunwwo)

Y06
10Ss3204d

8T6
|0J3U0D JOSIN)

A

|

ommJ
c06 J
H

4

:

9T6
321n2Q 1ndu|

016
anuQ Ysia

806
22IA3Q 28eJ01S

906
Aowapy

06

16
Aejdsiq

US 2024/0143587 Al

TEMPORAL OPTIMIZATION OF DATA
OPERATIONS USING DISTRIBUTED
SEARCH AND SERVER MANAGEMENT

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This nonprovisional patent application is a continu-
ation application of copending U.S. patent application Ser.
No. 17/332,391, filed May 27, 2021 and entitled, “TEMPO-
RAL OPTIMIZATION OF DATA OPERATIONS USING
DISTRIBUTED SEARCH AND SERVER MANAGE-
MENT,” U.S. patent application Ser. No. 17/332,391 is a
continuation application of U.S. patent application Ser. No.
15/877,381, filed Jan. 22, 2018 and entitled, “TEMPORAL
OPTIMIZATION OF DATA OPERATIONS USING DIS-
TRIBUTED SEARCH AND SERVER MANAGEMENT;”
all of which are herein incorporated by reference in their
entirety for all purposes.

FIELD

[0002] The present invention relates generally to computer
and data science, computer software and hardware, com-
puter and server memory, distributed server configuration,
and data storage and retrieval management. More specifi-
cally, techniques for temporal optimization of data opera-
tions using distributed search and server management are
described.

BACKGROUND

[0003] As various computer programs, applications, plat-
forms, and other users and consumers of data increase, there
are also a rising number of problems associated with man-
aging large amounts of data. Processing, storage, and
retrieval of large quantities of data, including that generated
from social media and social networks, are areas of inno-
vation that are struggling to keep pace with the rising
demand for increasingly complex and sophisticated data
storage. Searching and retrieving data stored in large
amounts across distributed data networks that use extensive
physical, virtual, and logical resources is becoming increas-
ingly difficult to deploy and manage and incurs significant
expense to users, consumers, and customers of data. In other
words, conventional techniques for managing large amounts
of data address the inherent issue of scalability by providing
expensive solutions that typically involve adding more
resources instead of managing existing resources for greater
efficiency, lower latency, and higher reliability; these tech-
niques are technologically limited and expensive in terms of
time, labor, and financial cost. With data sources such as
online commerce, social media, social networks, enterprises
(i.e., large corporate, governmental, academic, institutional,
military, financial, medical/healthcare, or other types of
private data networks) generating increasingly large quan-
tities of data, conventional techniques for processing, stor-
ing, and managing are failing to provide solutions that are
able to support these data needs. Further, finding specific
items within these large quantities of data is also increas-
ingly difficult. Still further, there are individuals, entities,
and organizations that wish to commercialize data, but due
to the large quantities, are finding it increasingly difficult to
communicate, market, sell, promote, or otherwise generate
targeted messages to intended users. Conventional data
management techniques store large amounts of data in a

May 2, 2024

manner that do not facilitate rapid and accurate searching
and retrieval. Conventional techniques typically rely upon
increasing the amount and types of data storage servers (i.e.,
adding physical, virtual, or logical processing or storage
resources) and, when combined with conventional partition-
ing techniques such as striping, are problematic because
these techniques do not scale. Often conventional techniques
are not only slow and inefficient when searching and retriev-
ing data from databases, but these also typically result in
generating server indices that are also massive in scale and
difficult to search for specific data. More importantly, these
conventional techniques are prohibitively expensive as data
storage servers tend to be expensive, complex, and difficult
to deploy, particularly for smaller enterprises and businesses
with substantially lesser technology budgets and financing
options. For hosted services such as computing cloud-based
storage services, some of the complexities of deployment
and management are lessened, but the expense of using these
services continues to remain high as different classes of
servers with different levels of performance also carry
different prices. Faster performance typically requires higher
cost, which is problematic as computer and data science
continues to improve.

[0004] Thus, what is needed is a solution for managing,
storing, and retrieving data without the limitations of con-
ventional techniques.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] Various embodiments or examples (“examples”) of
the invention are disclosed in the following detailed descrip-
tion and the accompanying drawings:

[0006] FIG. 1 illustrates an exemplary computing envi-
ronment for temporal optimization of data operations using
distributed server and shard management;

[0007] FIG. 2 illustrates an exemplary application archi-
tecture for temporal optimization of data operations using
distributed server and shard management;

[0008] FIG. 3 illustrates an exemplary host group and
server cluster configuration for temporal optimization of
data operations using distributed server and shard manage-
ment;

[0009] FIG. 4 illustrates an exemplary manifest file struc-
ture for temporal optimization of data operations using
distributed server and shard management;

[0010] FIG. 5A illustrates an exemplary data model and
flow diagram for temporal optimization of data operations
using distributed server and shard management;

[0011] FIG. 5B illustrates an alternative exemplary data
model and flow diagram for temporal optimization of data
operations using distributed server and shard management;
[0012] FIG. 5C illustrates a further exemplary data model
and flow diagram for temporal optimization of data opera-
tions using distributed server and shard management;
[0013] FIG. 6 illustrates an exemplary process for tempo-
ral optimization of data operations using distributed server
and shard management;

[0014] FIG. 7A illustrates another exemplary process for
temporal optimization of data operations using distributed
server and shard management;

[0015] FIG. 7B illustrates an exemplary process for host
group and server configuration for temporal optimization of
data operations using distributed server and shard manage-
ment;

US 2024/0143587 Al

[0016] FIG. 7C illustrates an exemplary process for rec-
onciliation operations for temporal optimization of data
operations using distributed server and shard management;
[0017] FIG. 8A illustrates an alternative exemplary pro-
cess for temporal optimization of data operations using
distributed server and shard management;

[0018] FIG. 8B illustrates an exemplary process for tem-
porally optimized data retrieval using distributed server and
shard management;

[0019] FIG. 8C illustrates an exemplary process for tem-
porally optimized data queries using distributed server and
shard management;

[0020] FIG. 8D illustrates an exemplary process for
retrieving temporally optimized data using distributed server
and shard management;

[0021] FIG. 8E illustrates an alternative exemplary pro-
cess for retrieving temporally optimized data using distrib-
uted server and shard management; and

[0022] FIG. 9 illustrates an exemplary computing system
suitable for temporal optimization of data operations using
distributed server and shard management.

DETAILED DESCRIPTION

[0023] Various embodiments or examples may be imple-
mented in numerous ways, including as a system, a process,
an apparatus, a user interface, or a series of program
instructions on a computer readable medium such as a
computer readable storage medium or a computer network
where the program instructions are sent over optical, elec-
tronic, or wireless communication links. In general, opera-
tions of disclosed processes may be performed in an arbi-
trary order, unless otherwise provided in the claims.
[0024] A detailed description of one or more examples is
provided below along with accompanying figures. The
detailed description is provided in connection with such
examples, but is not limited to any particular example. The
scope is limited only by the claims and numerous alterna-
tives, modifications, and equivalents are encompassed.
Numerous specific details are set forth in the following
description in order to provide a thorough understanding.
These details are provided for the purpose of example and
the described techniques may be practiced according to the
claims without some or all of these specific details. For
clarity, technical material that is known in the technical
fields related to the examples has not been described in detail
to avoid unnecessarily obscuring the description.

[0025] FIG. 1 illustrates an exemplary computing system
for temporal optimization of data operations using distrib-
uted server and shard management. Here, system 100
includes application 102, logic module 104, cluster manifest
file manager 106, resource manager 108, indexer 110, search
platform 112, query manager 114, application programming
interface (hereafter “API”) 115, data networks 116-118,
index database 120, database 122, social database 124,
manifest files database 126, metadata database 128, client
130, mobile clients 132-134, and computer 136. In some
examples, “system” may refer to or include the description
of a computer network system or topology associated with
a map, network, layout, environment, or the like of com-
puting resources that are used to implement a feature,
function, process, element, component, part, or multiple
instances thereof, without any particular limitation as to the
type, configuration, programming or formatting language,
service, class, resource, specification, protocol, or other

May 2, 2024

attributes thereof. As used herein, “application” may also be
used interchangeably or synonymously with, or refer to a
computer program, software, program, firmware, or any
other term that may be used to describe, reference, or refer
to a logical set of instructions that, when executed, performs
a function or set of functions within a computing system or
machine, regardless of whether physical, logical, or virtual
and without restriction or limitation to any particular imple-
mentation, design, configuration, instance, or state. Also as
used below, “platform™ may refer to any type of computer
hardware (hereafter “hardware”) and/or software environ-
ment using one or more local, remote, distributed, net-
worked, or computing cloud (hereafter “cloud”)-based com-
puting resources (e.g., computers, clients, servers, tablets,
notebooks, smart phones, cell phones, mobile computing
platforms or tablets, and the like) to execute an application,
such as those described above, without restriction or limi-
tation to any particular implementation, design, configura-
tion, instance, or state. Distributed resources such as cloud
networks (also referred to interchangeably as “computing
clouds,” “storage clouds,” “cloud networks,” or, simply,
“clouds,” without restriction or limitation to any particular
implementation, design, configuration, instance, or state)
may be used for processing and/or storage computing
resources, without restriction or limitation to any particular
implementation, design, configuration, instance, or state of a
device or machine, physical, virtual, logical, or otherwise.

[0026] Referring back to FIG. 1, in some examples, data
may be processed from various sources, including, but not
limited to index database 120, database 122, social database
124, manifest files database 126, and metadata database 128.
Data may be retrieved from local, remote, distributed, net-
worked, or cloud-based databases or data sources such as
data streams or sources of data that are generated from
various types of applications or clients. As used herein, data
may be stored in various types of data structures including,
but not limited to databases, data repositories, data ware-
houses, data stores, or other data structures configured to
store data in various computer programming languages and
formats in accordance with various types of data schemas
such as SQL, MySQL, NoSQL, DynamoDB™ from Ama-
zon® Web Services, Inc. of Seattle, Washington, FMP,
Oracle®, relational or unstructured, or others, without limi-
tation or restriction to any particular instance or implemen-
tation. Further, references to databases, data structures, or
any type of data storage facility may include any embodi-
ment as a local, remote, distributed, networked, cloud-based,
or combined implementation thereof. For example, social
networking applications being used on different types of
devices (e.g., client 130, mobile clients 132-134, and com-
puter 136) may be generating data in different forms, for-
mats, and data storage schema on different types of data
storage devices and databases that are configured to store
data generated for text messaging, image, audio or video
streams, blog (i.e., World Wide Web-posted log) or vlog
(i.e., video log) entries, instant messages, disappearing mes-
sages (e.g. snaps using Snapchat™ simple message system
(i.e., SMS, IRC, and the like) messages, and the like, without
limitation or restriction. Data may be generated from
“tweets” or messages from applications such as Twitter® of
San Francisco, California, “snaps” using the Snapchat®
application such as those developed by Snap® of Venice,
California, or “messenger” posts using applications such as
Facebook® of Menlo Park, California. In some examples,

2 <

US 2024/0143587 Al

data may be formatted using simple messaging data com-
munication and transmission protocols such as Internet
Relay Chat (IRC), SMS, instant messaging (IM), or others,
without limitation. In other examples, client 130, mobile
clients 132-134, and computer 136 may generate data in
other forms and formats using programming and formatting
languages intended to transmit, transfer, or transport data at
different levels of an application architecture (as described
in greater detail below). For example, Java®, JavaScript®,
Python™, XML, and other data formats and programs may
be used in conjunction with the techniques described herein
by application 102, which may be implemented to provide
messaging functionality at the application layer of a seven-
layer “stack” application architecture following a standard
such as the Open Systems Interconnect (OSI) model.

[0027] As shown in FIG. 1, in some examples, application
102 may be an application configured to receive data from
various sources (e.g., index database 120, database 122,
social database 124, manifest files database 126, metadata
database 128, client 130, mobile clients 132-134, computer
136, or others), which may include stored data (e.g., index
database 120, database 122, social database 124, manifest
files database 126, metadata database 128, or others) or data
generated in real-time or substantially real-time from other
applications, clients, or systems. In some examples, data
may be sent or received over data networks 116-118, which
may be local area networks (LAN), wide area networks
(WAN), municipal area networks (MAN), wireless local
area networks (WLAN), cloud computing or cloud data
networks that use disparate computing and storage resources
managed by other applications or resources to provide
storage and processing capabilities. As described herein,
data may be sent using any type of data network that is
configured to send and receive data in any type of digital
format, regardless of program or formatting language, with-
out limitation.

[0028] As shown here, data may be queried from,
retrieved, or stored to one or more of index database 120,
database 122, social database 124, manifest files database
126, metadata database 128, or other types, schema, or
structures, all, some, or none of which may be configured to
store data in data structures such as a database, data store,
data repository, data facility, data warehouse, or the like.
Data may also be generated and received from or sent to one
or more of client 130, mobile clients 132-134, computer 136,
or other clients (not shown) that consume, use, or generate
data.

[0029] As shown, client 130, mobile clients 132-134, and
computer 136 are representative of types of clients and
devices that may send data to or receive data from applica-
tion 102 over data network 118. Data may be in any type of
output format generated by an application (e.g., Twitter®,
Snapchat®, Messenger®, instant messaging, email, text
messaging, IRC, HTML, XML, Java®, or others, without
limitation), transmitted over data networks 118 to applica-
tion 102. Likewise, data may be stored in any type of format
and, in some examples, classified as various types of data
formats in one or more of index database 120, database 122,
social database 124, manifest files database 126, metadata
database 128, or other databases (not shown). For example,
messaging data may be transmitted from a mobile tablet
(e.g., mobile clients 132-134) over data network 118 to
application 102. Application 102 may be configured to
receive or send data directly or indirectly to/from any of

May 2, 2024

modules 104-115 over data networks 116-118. In some
examples, data received by or sent from application 102 may
be transmitted over application programming interface 115,
which may be configured to receive, convert, and transfer
(i.e., send) data in any type of data format from clients
130-136 for processing by application 102 (or any of mod-
ules 104-114) before being stored to one or more of index
database 120, database 122, social database 124, manifest
files database 126, metadata database 128, or other databases
(not shown). Similarly, data may be queried and retrieved
from one or more of index database 120, database 122,
social database 124, manifest files database 126, metadata
database 128, or other databases (not shown) using, for
example, API 115. Further, data may also be processed by
one or more of modules 104-114 and transferred using API
115 over data network 116 (which may also be implemented
using a single or multiple data networks) to one or more of
index database 120, database 122, social database 124,
manifest files database 126, metadata database 128, or other
databases (not shown) to be stored at a location that may be
indicated in a server or database index (hereafter “index”).
Application 102 may also be configured to transfer data
to/from one or more of clients 130-136 over API 115 to one
or more of logic module 104, cluster manifest file manager
106, resource manager 108, indexer 110, search platform
112, or query manager 114 to perform processing or other
functions on the data before transmitting data back to clients
130-136 or storing processed data (i.e., “processed data”
refers to resultant data generated by one or more of logic
module 104, cluster manifest file manager 106, resource
manager 108, indexer 110, search platform 112, query
manager 114, or application 102) on one or more of index
database 120, database 122, social database 124, manifest
files database 126, metadata database 128. For example, a
stream of “social data” (e.g., data generated by a social
media application or network such as those described above
or others, without limitation) may be received as input to
application 102 over data network 118. Social data, in some
examples, may refer to data generated from any type of
application, system, device, platform, program, or other set
of computer instructions that are intended for use in enabling
data transfer and communication between endpoints used by
and for social purposes such as the creation, management, or
participation in a computing or online community. As used
herein, “online” may refer to any type of computing envi-
ronment in which endpoints (e.g., clients 130-136) are
configured to transfer data between each other, either
directly or indirectly over one or more data networks (e.g.,
data networks 116-118). As an example, social data may be
generated from social media (e.g., content that is transmitted
digitally to/from various types of devices such as posting
digital still images, video and audio files, text-based content
such as editorials, news feeds, entertainment-related infor-
mation, and others, without limitation or restriction), social
networks (e.g., data networks that are purposes-configured
and deployed to transfer social data), or applications that can
be used for purposes such as social media, among others.
Further, social data is an example of data that application
102 may be executed upon, but is neither a limitation nor a
restriction on the types of data that may be processed by
application 102.

[0030] Referring back to FIG. 1, social data may be stored
in social database 124 and transmitted from or sent to one or
more of clients 130-136 using application 102. In other

US 2024/0143587 Al

examples, data (including social data and other types of
data) may be transferred between clients 130-136 and data
storage facilities (e.g., index database 120, database 122,
social database 124, manifest files database 126, metadata
database 128, or others as described herein) directly (not
shown) or indirectly through, for example, application 102
using data networks 116-118 or other data networks (not
shown). Regardless, data received by application 102 may
be processed by one or more of logic module 104, cluster
manifest file manager 106, resource manager 108, indexer
110, search platform 112, and/or query manager 114 in order
to temporally optimize the storage and retrieval of data
generated from, for example, clients 130-136. “Temporal
optimization” techniques are described in greater detail
below.

[0031] Here, application 102 is configured with logic
module 104, cluster manifest file manager 106, resource
manager 108, indexer 110, search platform 112, and query
manager 114. In some examples, application 102 may be
configured differently than is shown with more, fewer, or
different modules apart from those shown and described
(i.e., logic module 104, cluster manifest file manager 106,
resource manager 108, indexer 110, search platform 112,
and query manager 114). As shown, logic module 104,
cluster manifest file manager 106, resource manager 108,
indexer 110, search platform 112, and query manager 114
may be implemented as software, hardware, firmware, or a
combination thereof, without limitation or restriction to any
computer programming or formatting language, device,
type, or configuration. However, here, one or more of logic
module 104, cluster manifest file manager 106, resource
manager 108, indexer 110, search platform 112, and query
manager 114 may be implemented as software modules that
are configured to communicate with each other module over
a local or distributed data network. In some examples,
application 102 and logic module 104, cluster manifest file
manager 106, resource manager 108, indexer 110, search
platform 112, and query manager 114 may be implemented
as part of a software platform where each module may be
encoded using, for example, Java®, Python™, JavaScript
(also referred to as JS), binary encoding, machine assembly,
COBOL, HTML, xHTML, XML, or any other type of
computer programming and formatting languages.

[0032] Here, logic module 104 is configured to provide
processes and algorithms for various features and function-
ality, including providing control functionality for cluster
manifest file manager 106, resource manager 108, indexer
110, search platform 112, and query manager 114. In some
examples, logic module 104 may be a set of rules that are
manually input to provide parameters, thresholds, and other
quantitative restrictions or comparative statements to help
determine actions to be taken, which of cluster manifest file
manager 106, resource manager 108, indexer 110, search
platform 112, or query manager 114 to invoke, service calls
to make (e.g., over API 115), or any other functions that
require decisions or a determinant action to be taken. In
other examples, logic module 104 may be implemented not
as a rules-based engine or module, but instead as a heuristic,
semantic, or context evaluation set of algorithms that evalu-
ate incoming data from, for example, clients 130-136 or
elsewhere (e.g., index database 120, database 122, social
database 124, manifest files database 126, metadata database
128, or other data storage or processing resources over data
networks such as data networks 116-118) in order to parse,

May 2, 2024

evaluate, analyze, or perform other functions provided by
application 102. As shown, application 102 is configured
with several modules that provide different platform func-
tions for temporally managing data from various sources in
order to optimize or improve the efficiency of searching and
retrieval in response to queries as well as reducing latency
in returning data in response to a query, accurately and
efficiently. For example, if social data (not shown) is gen-
erated from an input or “stream” of social data coming from
one or more of clients 130-136, it may be received at API
115 and further processed by resource manager 108, which
may be configured to manage various types of storage
resources (e.g., local, distributed, networked, cloud-based,
and the like) to determine the technical configuration and
location of the social data to be stored (e.g., in social
database 124). Resource manager 108, in some examples,
may also exchange data with one or more other modules
(e.g., cluster manifest file manager 106, indexer 110, search
platform 112, query manager 114, or API 115) to perform
other functions. As shown, resource manager 108, in some
examples, can be used cooperatively with cluster manifest
file manager 106 and indexer 110 in order to determine a
location that has been temporally-optimized (as described in
further detail below) for subsequent search and retrieval in
response to query requests (hereafter “query” or “request,”
which may be used substantially synonymously or inter-
changeably with each other to indicate a request for data in
response to a request formatted in accordance with a query
language (without limitation or restriction to any particular
language) from a given location and resource (e.g., server or
group of logically or physically coupled (directly, indirectly,
or remotely) servers).

[0033] As shown, cluster manifest file manager 106 may
be configured to receive instructions from logic module 104
and/or resource manager 108 to configure one or more
databases intended to store processed data generated from
data received by application 102 from, for example, clients
130-136. Databases may include index database 120, data-
base 122, social database 124, manifest files database 126,
metadata database 128, and others, without limitation or
restriction to those shown and described. In some examples,
storage and/or processing resources such as index database
120, database 122, social database 124, manifest files data-
base 126, metadata database 128, and others may be con-
figured by cluster manifest file manager 106 to create a
managed system of resources that can store data processed
by application 102 by optimizing the storage and retrieval of
data (i.e., increasing the speed of execution of program
instructions to execute a query, delete, add, or write opera-
tion in one or more of index database 120, database 122,
social database 124, manifest files database 126, metadata
database 128, or other database(s), without limitation). As
described in further detail below, cluster manifest file man-
ager 106 is configured to provide program instructions from
application 102 to each of index database 120, database 122,
social database 124, manifest files database 126, metadata
database 128, or other databases (not shown) in order to
configure and partition by establishing shards and slicing
each storage server in order to ensure that queries, when
received by application 102, are executed and sent responses
by minimalizing search time. Distributed search platforms
or applications such as Solr™ the Apache Lucene™ Foun-
dation, or others may be used, in some examples, to imple-
ment search platform 112 to provide data searching func-

US 2024/0143587 Al

tionality. In other examples, different search platforms or
applications may be used and are not limited to the examples
shown and described. Here, search platform 112 may be
configured to receive a query from API 115 and, using the
techniques described herein, “rewrite” (i.e., structure and
configure a query request received by application 102 for a
given data schema, without limitation or restriction to any
particular data storage facility or schema shown or
described) a query and execute it against a given data
structure (i.e., database and data schema such as those
implemented by one or more of index database 120, data-
base 122, social database 124, manifest files database 126,
metadata database 128, and others).

[0034] Referring back to cluster manifest file manager
106, in some examples, one or more of index database 120,
database 122, social database 124, manifest files database
126, and metadata database 128 may be configured in one or
more host groups. In some examples, host group configu-
ration may be performed using a manifest file (not shown),
which includes various server parameters, ports, services,
rules, thresholds, limitations, restrictions, data transmission
protocols, policies, addresses, partitioning (i.e., identifying,
allocating, and/or configuring, among other functions
shards, stripes, and partitions of servers), or any other setting
that may be used to determine how to allocate storage
resources for storing data received from and retrieved by
application 102. Further, as described herein, a manifest file
may be used to configure one or more host groups in order
to partition storage resources to temporally optimize data
processing and storage functions.

[0035] In some examples, a manifest file may be used to
configure a given host group to store data that is aged within
a give time range. A time characteristic such as a time range
may be measured in seconds, minutes, hours, days, weeks,
months, or any other measurement of time that may be
useful for server configuration. As an example, a host group
may be configured using a manifest file to identify a given
resource to store data and/or processed data generated
between t=0 (i.e., time of initial generation (i.e., the time of
posting, transmission, sent, or the like)) and t=86400 sec-
onds, which may be a time range for saving data occurring
in the first twenty-four (24) hours following data generation.
As used herein, a “time characteristic” may refer to a time
range, a time bucket, a bucket of time, a time bracket, or any
expression that is used to encompass a discrete period of
time, regardless of the actual unit of time measurement.
Continuing the example described above, for data that
“ages” or is “aged” past the first twenty-hour (24) hours, a
different host group may be allocated for movement and
storage of the data. In other words, as data to be stored in one
or more of index database 120, database 122, social database
124, manifest files database 126, and metadata database 128
ages, the data may be moved from one host group to another;
from a device or resource of a given server class to another
device or resource of a different server class. This “bucket-
ing” or sharding of data permits faster query responses for
rewritten queries generated by query manager 114 because
indexer 110 can return a location to be searched by search
platform 112 for the requested (i.c., target) data to be
returned. Further detail regarding temporal optimization of
server resources for processing, storing, and retrieving data
(e.g., social data, among others, without limitation or restric-
tion) is described in greater detail below.

May 2, 2024

[0036] As described herein, any of index database 120,
database 122, social database 124, manifest files database
126, and metadata database 128 may be configured using
one or more manifest files to configure for temporal opti-
mization of data processing, storage, and retrieval. In other
words, database 122 may include multiple storage servers
configured to store data for different time ranges and, as
stored data (e.g., data and processed data that has been
directed for storage by application 102) ages, it may be
moved between different partitions (e.g., shards, slices,
stripes, and the like), host groups, and server classes in order
to provide storage and retrieval functionality that is opti-
mized to retrieve recently-generated data at higher data
retrieval speeds using servers with data retrieval speeds and
technologies that are faster and more expensive. However,
by storing data based on aging, data storage can be opti-
mized by targeting data within given time ranges onto
different host groups and different server classes, each of
which may have different costs associated with the use of
servers assigned to these classes. In so doing, data storage is
optimized to not only optimize storage and processor
resource costs, but also minimize latency and increase
accuracy of data retrieval.

[0037] In some examples, server configuration using a
manifest file may be further performed by determining, for
a given host group, a server type and class to be used to
implement the host group. In the example above, data
generated more recently (i.e., not aging significantly since
initial generation from clients 130-136) may be of greater
interest to a user or community of users. As social media
applications and networks can generate large quantities of
data and numerous discrete data files (e.g., posts, “tweets,”
messages, and the like) resulting in millions of users gen-
erating query requests for a given text, still image, audio, or
video file nearly simultaneously, the techniques described
herein for host group configuration (i.e., using a manifest
file) can partition processing and storage resources based on
time characteristics and assign different server classes hav-
ing different access speeds that are allocated amongst data
that is more likely to be requested in large numbers of query
requests as opposed to aged data that may be stored on other
servers or storage resources that have slower (i.e., and less
expensive) server classes assigned. Using the described
techniques, system 100 is capable of responding to large
numbers of queries due to increased read-write-access capa-
bilities (e.g., solid state memory technologies providing
faster addressing speeds than mechanically-addressed
memory technologies, quantum computing processors rela-
tive to conventional semiconductor, silicon-based memory
technologies, and others) and provide increased perfor-
mance by assigned to faster processing, storage, and
retrieval resources more recent data (e.g., data from clients
130-136 within the first twenty-four (24) hours since initial
generation)). Further, by periodically reconciling processing
and storage resources, data may be moved between different
server classes as aging increases, or other parameters or
characteristics, in addition to time characteristics, change. In
some examples, a periodicity for performing reconciliation
may also be indicated in a manifest file. Thus, continuing the
above example, when a query is received for recent data,
query manager 114 may be configured to parse, evaluate,
and re-write a given request into a rewritten query that is run
against those servers identified by indexer 110 as being
assigned to data stored in the first twenty-four (24) hours. As

US 2024/0143587 Al

data is stored, in one or more of index database 120,
database 122, social database 124, manifest files database
126, and metadata database 128, indexer 110 may be con-
figured to modify a server index (hereafter “index™) to
specify a location, including host group, server, shard, slice,
partition, server class, or other parameter to be used by
search platform 112 in executing a query. As shown, indices
for given servers may be stored in index database 120,
among others. Data (e.g., actual data or copies thereof as
generated by clients 130-136) may be stored in one or more
databases such as database 120 or others. Different types of
data may also be segmented, isolated, or otherwise separated
and stored in different host groups using the techniques
described herein. For example, data generated from social
media applications and networks may be stored as “social
data” in social database 124. Further examples of using
different data storage resources may also include storing
manifest files in manifest files database 126 and metadata in
metadata database 128, among others. As described herein,
metadata may refer to descriptive data that is generated
during the parsing and evaluation of data from clients
130-136 by application 102 or any modules or elements
(e.g., logic module 104, cluster manifest file manager 106,
resource manager 108, indexer 110, search platform 112,
and query manager 114, among others that may not be
shown or described in FIG. 1). Metadata may be generated
when application 102 parses data generated by clients 130-
136 such as HTML or XML tags that may be used in a
database to associate a given data file with another data file.
For example, data received from clients 130-136 by appli-
cation 102 may be parsed and evaluated prior to be stored on
database 122. A copy of the received data file(s) may be
generated and the original data may be stored as a “master”
version of the data file(s) while a copy is stored in another
database (not shown) apart from database 122. When storage
resources (e.g., index database 120, database 122, social
database 124, manifest files database 126, and metadata
database 128, among others) are updated due to changes in
data file(s) indicated by more recent incoming data received
by application 102, metadata stored in metadata database
128 may be used to identify any copies of data file(s)
intended for updating (e.g., due to data operations such as
deleting, adding, or writing data to a given data file previ-
ously stored in a different state). In some examples, metadata
may also be used to identify aging associated with a given
data file in order to determine a host group and server class
to which the data is moved in order to maintain temporal
optimization.

[0038] In some examples, a process (e.g., an algorithm or
set of algorithms that may or may not be logically related to
update a given state of stored data and storage resources)
known as reconciliation (as described in greater detail
below) may be performed by system 100 and application
102, index(s) are updated by indexer 110 to reflect modified
locations and any parameters such as those specified above.
Various types of data operations may be performed in order
to “reconcile” a previously stored version of a data file with
a more recently received data file by application 102. In
some examples, a master version of a data file (not shown)
and a copy of a data file stored (not shown), for example, in
database 122, may be stored on a server shard located on a
device of a server class that has the highest data retrieval rate
in system 100. A newly received data file may be evaluated
by application 102 to determine that one or more data

May 2, 2024

operations (e.g., add, delete, read, write, transfer, or others)
is to be performed based on, for example, time characteris-
tics that indicate the data file is to be transferred to another
host group in which a different server class is used for data
storage and retrieval. As described in greater detail below,
reconciliation may be used to manage how data files are
stored on one or more of index database 120, database 122,
social database 124, manifest files database 126, and meta-
data database 128, among others. In other examples, system
100 and the above-described elements may be implemented
differently, with variations in function, order, procedure, and
process, without limitation to any of the examples or accom-
panying descriptions.

[0039] FIG. 2 illustrates an exemplary application archi-
tecture for temporal optimization of data operations using
distributed server and shard management. Here, an alterna-
tive view of application 102 is shown with application 202,
including logic module 104 (FIG. 1), cluster manifest file
manager 106 (FIG. 1), resource manager 108 (FIG. 1),
indexer 110 (FIG. 1), search platform 112 (FIG. 1), query
manager 114 (FIG. 1), API1 115 (FIG. 1), shard manager 214,
class manager 216, cluster/host group module 220, and
reconciliation module 222. As shown, logic module 104,
cluster manifest file manager 106, resource manager 108,
indexer 110, search platform 112, query manager 114, and
API 115 may be implemented substantially similarly to the
like-numbered elements shown above and described in
connection with FIG. 1. Referring back to FIG. 2, applica-
tion 202 may be implemented as an alternative configuration
of application 102 (FIG. 1) with additional elements (i.e.,
shard manager 214, class manager 216, cluster/host group
module 220, and reconciliation module 222) that may be
implemented and configured to provide additional function-
ality. Structurally, in some examples, application 202, like
application 102, and the elements shown and described may
be implemented as hardware, software, firmware, logic-
specific circuitry, or as a combination thereof, without
restriction or limitation to any particular implementation
environment, state, or configuration.

[0040] In some examples, application 202 using API 115
may be in data communication with one or more data
processing and/or storage resources (not shown) over one or
more data networks (not shown). Using a manifest file
retrieved from manifest files database 126 (not shown), one
or more host groups can be configured by application 202
using the techniques described herein. For example, shard
manager 214 can be configured to determine how, across a
number of storage resources (as identified by resource
manager 108 (FIG. 1)), shards can be partitioned and
identified to store various segments of data and data files (as
used herein, “data” and “data files” may be used inter-
changeably without limitation and are not subject to any
particular implementation or configuration) based on a time
associated with the generation, transmission, receipt, or
other time characteristic associated with the data. When
received and parsed, data files can be determined by appli-
cation 202 to identify metadata (e.g., metadata stored in
metadata database 128) to indicate time characteristics such
as those described herein. Time characteristics can, in some
examples, be used to determine shards in which to store data
and processed data, including determining individual parti-
tions (e.g., shards, slices) and partitioning techniques such as
striping. Here, shard manager 214 may be configured to
determine how shards are partitioned across host groups

US 2024/0143587 Al

managed by application 202 as well as identifying to cluster/
host group module 220, which shards are assigned to a given
host group or, in some examples, whether given shards span
multiple servers that are being used in different host groups,
as described in greater detail below.

[0041] As shown, class manager 216 may be configured as
a software, hardware, firmware, circuitry, or combination
thereof and used as an individual component or element of
application 202 to assign or determine the assignment of
particular classes of servers to host groups being managed
by application 202. For example, if two host groups are each
assigned a server class, server class 1 may be assigned to a
host group as solid state memory for fast data access,
retrieval, and data operations for data to be stored that was
originally generated in the last 12 hours. Continuing the
above example, data that has aged past 12 hours (e.g., 12
hours and 1 second or longer) may be moved to a different
host group using older, mechanically-addressed memory
technology (e.g., disk drives, and the like). The location of
data stored on either of the above-referenced host groups
may be identified to query manager 114 (FIG. 1), which can
track and associate queries intended for data within the first
12 hour time range or the “12 hour and older” time range
and, in so doing, target more precisely and quickly, rewritten
queries so as to not consume storage and/or processing
resources searching host group(s) outside of the time range
of requested data (i.e., as indicated in a query).

[0042] As described herein, class manager 216 may be
configured to associate, assign, track, or identify which
classes of servers are assigned to various host groups. Data
transferred between class manager 216 and cluster/host
group module 220 may be used by application 202 to
implement a management system of various host groups and
clusters of servers in order to deploy the techniques
described herein. As used herein, clusters of servers may be
used interchangeably with “server cluster” or “cluster” and
is intended to refer to a computing cluster or node of servers
that are logically assigned together as a group, which may
include multiple instances of physical or virtual machines or
servers, partitions, shards, slices, or the like. Further, cluster/
host group module 220 may also exchange data with rec-
onciliation module 222 in order to reconcile (i.e., perform
reconciliation) data stored throughout various host groups
and/or server clusters if, in some examples, new incoming
data (e.g., input data streams for various social media, social
networks, or social media-oriented applications, and the
like) indicate that data previously stored has changed. As an
example, when a change is detected (e.g., an older posted
video or image is replaced with a newer version, an news
article or feed is replaced with a recent news update, an
audio file previously stored (e.g., database 122) has been
edited to be replaced by a newer version of the audio file,
and the like), cluster/host group module 220 may send data
as a command in order to trigger or initiate reconciliation
module 222 to perform one or more data operations in order
to effect the change. As used herein, “data operation” may
refer to any type of computer programming or formatting
operation that results in data being added, deleted, modified,
replaced, changed, reordered, joined, shifted, or the like,
without limitation or restriction to any particular type of
database or data schema operation. As described in greater
detail below, reconciliation may be performed on a schedule,
intermittently, infrequently, frequently, periodically, rapidly,
or on any type of schedule or random occurrence, without

May 2, 2024

limitation or restriction. Reconciliation, in some examples,
is used to ensure that host groups and clusters of servers
managed by application 202 store updated data and data
files, or copies thereof, in order to provide accurate and
updated information in response to queries. Various types of
programming and formatting languages may be used to
implement reconciliation module 222 (or any of the ele-
ments shown in FIGS. 1 and 2), including Scala, or others,
without limitation or restriction. In other examples, appli-
cation 202 and the above-described elements may be imple-
mented differently, with variations in function, order, pro-
cedure, and process, without limitation to any of the
examples or accompanying descriptions.

[0043] FIG. 3 illustrates an exemplary host group and
server cluster configuration for temporal optimization of
data operations using distributed server and shard manage-
ment. Here, computing environment 300 includes applica-
tion 202 (FIG. 2), cluster/host group module 220 (FIG. 2),
reconciliation module 222 (FIG. 2), databases 306-308, data
network 310, clusters 312-316, and servers 318-332. In
some examples, application 202 may be implemented simi-
larly to the examples shown and described above. Similarly
cluster/host group module 220 and reconciliation module
222 may also be implemented functionally and structurally
in a substantially similar manner to that described above in
connection with FIG. 2. In other examples, application 202,
cluster/host group module 220, and/or reconciliation module
222 may be implemented functionally and/or structurally
differently than the examples shown and described above in
connection with FIG. 2.

[0044] Referring back to FIG. 3, databases 306 and 308
may be placed in data communication with application 202,
directly or indirectly. For example, application 202 may
access, store, or retrieve data (among other performing other
data operations) in database 306 by transferring data over
data network 310. In some examples, data network 310 may
be implemented as a computing cloud or distributed set of
data networks that are configured to route and transfer data
between application 202, databases 306-308, or servers
318-332, the latter of which may be implemented using
various types and quantities of servers, without limitation or
restriction. Further, application 202 may also be in data
communication with database 308 in order to access, store,
or retrieve data, but using a direct data communication link.
Various types of data communication protocols such as
transport control protocol/internet protocol (TCP/IP), hyper-
text transfer protocol (HTTP or HTTPS), ICMP, or others
may be used and are not intended to be a specific limitation
or restriction to the techniques described herein.

[0045] In some examples, data or data files accessed,
stored, or retrieved by application 202 from various sources
(e.g., clients 130-136 (FIG. 1)) may be stored in any of
databases 306-308 or on any of servers 318-332 on clusters
312-316, which may be configured into one or more host
groups by application 202 using a manifest file (not shown).
Here, application 202 may invoke cluster/host group module
220 to use configuration settings and parameters in a mani-
fest file to configure clusters 312-316 into one or more host
groups. In some examples, clusters 312-316 may represent
individual host groups, wherein varying types and quantities
of servers are implemented. For example, cluster 312 may
be implemented using servers 318-320 of a given server
class (e.g., class 1). Continuing the above example, cluster
314 may be implemented using servers 322-328, which may

US 2024/0143587 Al

be of a different server class than those deployed for cluster
312 (e.g., class 2). Further, cluster 316 may be implemented
as another host group having servers 330-332, which may of
a similar or different class than those implemented for
clusters 312-314. Still further, clusters 312-316 could be
grouped logically to create one or more addressable host
groups. In other words, multiple clusters of servers can be
grouped to create a host group and the examples shown and
described are not intended to be limiting. In yet another
example, more or fewer clusters and host groups using
servers of similar or different classes can be implemented
(i.e., deployed) and the examples shown and described are
not intended to be limiting.

[0046] As shown in FIG. 3, application 202 can use
cluster/host group module 220 to configure and manage one
or more host groups, as described above. Further, applica-
tion 202 can generate control data and signals that are
intended to control, manage, and logically group, address, or
otherwise organize various servers into host groups and/or
clusters by partitioning (e.g., sharding, slicing, striping, and
the like) server resources to store data in a temporally-
optimized manner. For example, if cluster 312 includes
servers 318-320, which are “class 17 servers that utilize fast,
but expensive, solid state memory technologies that are
capable of performing data operations at a rate faster than
that of other classes (e.g., “class 2,” “class n,” or the like),
application 202 (FIG. 2) can designate cluster 312 to store
and/or process data (i.e., data files) that has “aged” beyond
an initial time range. In some examples, “aging” may refer
to a time characteristic such as the length of time that has
transpired since a subject data file was generated, transmit-
ted, or otherwise initially received from a source (e.g.,
clients 130-136). As data ages, system 300 may be config-
ured by application 202 to move data as it ages from an
initial period, for example, from server 318 to server 326
and, when further aging has occurred, to server 332. The
configuration of host groups and clusters (e.g., clusters
312-316) may be performed by application 202 to optimize
the use of different classes of servers (e.g., for storage,
processing, or other operations) for different types of data,
which may be segregated based on time characteristics such
as aging. As described herein, temporal optimization of data
processing and storage resources may be achieved by direct-
ing different classes of servers, which may be distinguished
based on read/write/access speeds, performance, and cost, to
store and/or process different types of data based on char-
acteristics such as time characteristics (e.g., aging, time
ranges, time buckets, or others). Temporal optimization
storage and processing techniques described herein also
enable data and data files (regardless of whether data (i.e.,
master versions of data and data files) or copies of data files)
to be accessed and retrieved in response to queries rapidly
and accurately by discretely identifying clusters and/or host
groups on which requested data is stored. Further, temporal
optimization may also be increased by using reconciliation,
as described herein, to ensure that requested data and data
files returned in response to queries are accurate and
updated.

[0047] In some examples, reconciliation module 222 may
be used (for example, in a Scala-implemented architecture)
to perform various data operations on data stored on one or
more of clusters 312-316 and servers 318-332. Data opera-
tions such as those described above may be performed by
reconciliation module 222 when logic module 204 (FIG. 2)

May 2, 2024

detects, in newly received data, that a change has occurred
or is indicated to data previously stored. In some examples,
logic module 204 may generate control data and signals to
servers 318-332 to identify a location, access the location,
and perform a data operation on data or data files stored at
the location. In other examples, logic module 204 may
generate control data and signals to create a copy of the data
targeted for data operations to be performed by reconcilia-
tion module 222 in order to keep an earlier version of the
data, in addition to a master version of the data as it was
originally received, for various purposes such as disaster
recovery, catastrophic recovery, rollbacks (i.e., rolling back
stored data to an earlier state in order to pre-data a cata-
strophic, destructive, or corrupting event). In other
examples, system 300, application 202, and the above-
described elements may be implemented differently, with
variations in function, order, procedure, and process, with-
out limitation to any of the examples or accompanying
descriptions.

[0048] FIG. 4 illustrates an exemplary manifest file struc-
ture for temporal optimization of data operations using
distributed server and shard management. As shown, data
structure 400 may be an example of an implementation of a
manifest file that may be used by application 102 (FIG. 1)
or 202 (FIGS. 2-3) to configure one or more servers into one
or more host groups and/or clusters to temporally optimize
data storage, processing, and retrieval. As shown, data
structure 400 includes substructure 402-408, which may be
used as described below. For example, substructure 402 may
be used to present parameters and settings that, when
received by a server (e.g., any of those described above) are
used to designate a cluster name, shard size, slice size, and
one or more host group names. In some examples, substruc-
ture 404 may be used to provide parameters and settings to
configure a first set of hosts within the host group based on
an assigned class of servers. Likewise, substructure 406 may
be used to provide parameters and settings for configuring a
second group of hosts assigned, within the host group, to one
or more servers that may be implemented using devices of
a different class than those used for the set of hosts above
(e.g., Hosts Al through A(n) comparative, based on server
class, to Hosts B1 through B(n)). Finally, substructure 408
includes a file system prefix that may be used to identify
manifest file represented by data structure 400, without
limitation or restriction to any particular parameters, set-
tings, or examples shown and described. Further, the above-
described exemplary data structure is intended to provide an
illustrative example of how a manifest file may be imple-
mented in various types of computer programming or for-
matting languages such as Java®, JavaScript, JSON, or
others, without limitation or restriction. In other examples,
data structure 400 and the above-described substructures
402-408 may be implemented differently, with variations in
function, order, procedure, and process, without limitation to
any of the examples or accompanying descriptions.

[0049] FIG. 5A illustrates an exemplary data model and
flow diagram for temporal optimization of data operations
using distributed server and shard management. Here, data
model 500 includes platform 508 (i.e., which may be imple-
mented as a process, apparatus, system, device, machine
(physical or virtual; singular or multiple instances), algo-
rithm, or as a logical set of processes or algorithms (e.g.,
such as a platform application or system, which may be a
collection of functions implemented using, for example,

US 2024/0143587 Al

various types of software, firmware, hardware, circuitry, or
a combination thereot)) and data types 504-516, one or more
of which may be used by platform 508 for various data
operations. In some examples, data types 504-516 may
include data 504, query data 506, cluster configuration data
510, host group data 512-514, and reconciliation data 516.
As shown in data model 500, data 504 may be any type of
data configured to be received by platform 508, which may
include, but is not limited to, digital and/or analog (e.g.,
binary) data in any type of format or schema, including, but
not limited to files, packets, segments, frames, partitions,
containers, .jar files, characters, strings, text, integers, real,
Boolean, alphanumeric, ASCII, RSS, or any other type
beyond those listed here), or others, without limitation or
restriction. Data 504 may include data from one or more
other applications or clients (e.g., clients 130-136 (FIG. 1);
not shown) such as social media applications, social net-
works, applications (e.g., other computer programs, appli-
cations, operating systems, services, or the like), content
feeds, computers, servers, mobile devices such as smart
phones, tablet computers, or others without limitation. As an
example, data 504 may be an input stream of data to
platform 508 with social data (i.e., data from social media
applications, social networks, or the like) including a single
or multiple data files, each of which has been assigned a time
and date stamp that might be included in, for example, a
packet header, footer or payload. When parsed by platform
508, a date and time may be determined and converted into
a time period based on resolving the assigned time into a
number of seconds, minutes, hours, or the like, as measured
against a clock or clock signal (not shown) referenced by
platform 508. In some examples, a “stream” (e.g., continu-
ous output of data) of data may be continuous, contiguous,
regular, irregular, infrequent, periodic, occasional, on-de-
mand, random, or the like. Once received by platform 508,
data 504 may be parsed, evaluated, and processed by plat-
form 508, application 102 (FIG. 1), application 202 (FIG. 2),
or other elements shown and described above. In some
examples, when data 504 is parsed and evaluated, other
types of data (e.g., query data 506, cluster configuration data
510, host group data 512-514, among others) may be gen-
erated.

[0050] Insome examples, query data 506 may be received
by platform 508 and, when received, may represent a query
request initiated by a client (e.g., clients 130-136 (FIG. 1);
not shown), application, platform, system, or other comput-
ing device, machine, or process. A query, in some examples,
may be a machine or algorithmically generated request for
previously stored data, irrespective of data type, content or
format. When platform 508 receives query data 506, for
example, parsing and evaluation may generated other data
such as control signals or instructions to one or more storage
locations implemented using virtual, physical, logical,
cloud, or other types of storage or computing resources (e.g.,
storage servers). As described herein, temporal optimization
of stored data may have stored the requested data at a
location that is assigned to a given time range, which has
been assigned to a given host group implemented using one
or more server classes.

[0051] In some examples, platform 508 may rewrite or
write a new query (not shown) using parsed data from query
data 506 and send a rewritten request that has been targeted
to a given host group based on determining a time associated
with the requested data (i.e., stored data to be returned in

May 2, 2024

response to the initial query). As an example, host group data
512-514 may include rewritten queries, queries generated by
platform 508, or other data or signals that, when sent by
application 508, or any of the elements shown and described
herein, is used to executed one or more data operations on
servers assigned to host groups, but which are targeted for
execution based on temporal optimization and identification
of time ranges in which queried data is assigned. In other
words, host group data 512-514 may be issued to retrieve
stored data from a given host group if, based on parsing
query data 506, a given host group or servers assigned to a
host group have been partitioned to encompass the time
range within which the requested stored data (i.e., data may
be stored on a server, shard, slice, stripe, or other type of
partition based on a time of when the data was generated,
transmitted, received, or otherwise assigned a given time).

[0052] Referring back to FIG. 5A, host groups and servers
assigned to given time ranges for purposes of storing data in
a temporally optimized manner may be configured using
data, signals, or instructions included within cluster con-
figuration data 510. In some examples, configuration of
clusters, host groups, and servers may be performed,
instructed, or otherwise managed by platform 508 using
cluster manifest file 502 and cluster configuration data 510.
As described above, cluster manifest file 502 may be illus-
trative of data that includes manifest files (such as those
described above) that may be used to configure one or more
storage and/or processing resources in order to temporally
optimize the storage and retrieval of data. As shown, cluster
manifest file 502 and cluster configuration data 510 may
include information on cluster and host group configuration,
server configuration, shard determination and configuration,
server striping (hereafter “striping”), server slice determi-
nation, or other partitioning and configuration data or infor-
mation that may be used to determine how to store and
retrieve (or otherwise process) data. In some examples, data
is stored based on a time assigned to the stored data.
Resources (e.g., clusters, host groups, servers, shards, slices,
stripes, partitions, or the like) may be configured to store
data according to time characteristics such as time ranges.
As stored data ages (as described above), platform 508 may
instruct moving data from a given resource (e.g., a location,
server, host group, cluster, or the like) to another resource in
response to reconciliation data 516. In other words, platform
508 may provide data and instructions in reconciliation data
516 to determine whether any stored data, based on aging,
should be deleted from a given resource and stored on
another resource (e.g., moving data that has aged from a
faster, more expensive class of server hardware to a slower,
less expensive class of server hardware). In other examples,
reconciliation data 516 may also include data or signals that
may be used to modify, by executing various data operations
(e.g., delete, copy, add, join, or others, without limitation or
restriction), stored data (not shown). In other examples, data
model 500 and the above-described elements may be imple-
mented differently, with variations in function, order, pro-
cedure, or process, without limitation or restriction to any of
the examples or accompanying descriptions.

[0053] FIG. 5B illustrates an alternative exemplary data
model and flow diagram for temporal optimization of data
operations using distributed server and shard management.
Here, data model 520 includes platform 508 (FIG. 5A),
which may be implemented in function and structure sub-
stantially similar to the like-numbered elements described

US 2024/0143587 Al

above in connection with FIG. 5A (i.e., manifest file 502,
query data 506, cluster configuration data 510, host group
data 512-514, and reconciliation data 516. Here, social data
522 is input to platform 508 and, once parsed and evaluated,
is stored in a host group. In some examples, social data 522
may be stored in a server at a location that is stored in a
server index (hereafter “index”). A location (i.e., on a
storage server) may be selected within a host group on a
cluster of servers based on parsing and evaluating the social
data to determine a time of transmission, generation, cre-
ation, receipt, or other event that, when detected by platform
508, can be used to initially store social data 522 on a server.
Further, when social data 522 ages past a given time range,
platform 508 can copy social data 522, delete it from the first
location, and save it to another location on a different server
associated with a slower class of server. In some examples,
aging may refer to the amount of time that has accrued since
the time of initial transmission, generation, posting, creation,
placement, or other event that is considered to represent an
initiating or originating time, t=0. As time passes, the time
assessed to social data 522 increments in the unit of mea-
surement (e.g., seconds, minutes, hours, days, weeks,
months, years, decades, centuries, millennia, or a fraction
thereof) assigned by platform 508 as a “time characteristic.”
When a time characteristic indicates that a given data file,
packet, frame, segment, or the like has incremented so as to
traverse a given time range to a different time range,
platform 508 may generate data and signals to direct moving
social data 522 (similarly to data 504 (FIG. 5A)) from one
location to another, which may occur by performing a series
of data operations, for example, to copy stored data from a
given location, deleting the stored data from the location,
and writing the copy to another location (e.g., “moving”
stored data from a host group to another host group, from a
server class to another server class, from a cluster to another
cluster, from a server to another server, from a shard to
another shard, from a slice to another slice, from a partition
to another partition, and the like). Consequently, as data ages
and is moved to temporally optimize data storage and
retrieval operations, instructions to store data and queries
requesting particular data (e.g., a query is received for a
given content item, which may be a blog post, a news article,
a news item from a feed, a video or audio file, or others,
without limitation or restriction to any particular type or
format of data that can be queried from a storage server or
database) may be performed at decreased speeds, reducing
processor demands and latency times for generating
responses or returning data in response to queries. In other
examples, data model 520 and the above-described elements
may be implemented differently, with variations in function,
order, procedure, or process, without limitation or restriction
to any of the examples or accompanying descriptions.

[0054] FIG. 5C illustrates a further exemplary data model
and flow diagram for temporal optimization of data opera-
tions using distributed server and shard management. Here,
data model 530 illustrates exemplary flow of data 532 across
servers 534-542, which may be implemented using different
classes of servers. As shown, data 532 may be directed,
instructed, or otherwise signaled (e.g., by application 102
(FIG. 1), application 202 (FIG. 2), platform 508 (FIGS.
5A-5B), or other elements such as those shown and
described herein) to be stored in one or more storage servers
(not shown). Here, a time scale (designed by variable “1”) is
shown across which storage and/or retrieval activity of data

May 2, 2024

532 occurs over servers A-n (servers 534-542), which may
be implemented using different classes of servers (e.g., i2,
r3, r(n), and others, without limitation or restriction as to
server type or schema, including, but not limited to, physi-
cal, virtual, logical, or others).

[0055] As shown, for example, at time t=0 data 532 is
stored on server 534, which may be implemented as a class
“i2” server. As used herein, arbitrary designation of servers
are used for purposes of illustration and the exemplary
designations of server classes (e.g., i2, r3, r(n)) are not
intended to be specific, limiting, or restrictive, and other
server classes apart from those shown and described may be
used. As used herein, “server class” or “class” may refer to
a type or categorization of processing or storage server
based on various attributes and characteristics such as
memory technology type (e.g., solid state, random access
memory (RAM), read only memory (ROM), disk drive,
quantum computing, semiconductor, or others), data transfer
rates, storage capacity or volume, compatibility (e.g., for use
in arrays such as a redundant array of independent disks
(“RAID™)), or others, without limitation or restriction to any
particular or specific type of class.

[0056] Here, as data 532 ages towards time t=a, data 532
may be retrieved from storage server 534 as a copy, deleted
from server 534, and stored on server 536 until time t=b. At
t=b, data 532 may be moved server 536 to server 538, which
may be implemented as a different class of server (e.g., 13)
until t=c, at which time data 532 may be moved in further
data operations, as illustrated by server 542, which is
representative of any number of servers and classes of
servers using the techniques described herein. As used
herein movement of data may refer to data retrieval opera-
tions to remove data from a location on a server, performing
another data operation to delete the data from the location at
the server, and performing a further data operation to write
(i.e., save) the data to a new location on a different server;
although the order of deleting and writing may be performed
synchronously, simultaneously, in reverse order, or in no
particular order. In other examples, the above-described data
model 530 and corresponding flow description may be
varied in process, order, or other aspects, without limitation
or restriction to the examples shown and described.

[0057] FIG. 6 illustrates an exemplary process for tempo-
ral optimization of data operations using distributed server
and shard management. Here, process 600 may be imple-
mented as an algorithm, program, application, process,
method, procedure, operation, or a group thereof configured
to be performed by application 102 (FIG. 1), application 202
(FIG. 2), platform 508 (FIGS. 5A-5B), or another instance
of the described techniques. In some examples, process 600
starts by configuring a data network using a manifest file, as
described above (602). Using a manifest file, a cluster or set
of clusters having one or more host groups that, in turn, have
one or more servers configured for storage or processing,
may be used to provide parameter and settings to configure
servers to store data for temporal optimization of data
operations to store and retrieve data (e.g., in response to
queries). In some examples, data (which may include any
type of data, such as those described herein including, but
not limited to, social data) is received at a platform (e.g.,
platform 508 (FIGS. 5A-5B)) (604). Once received at plat-
form 508, one or more elements such as those described
above in connection with FIGS. 1-3 may be configured to
parse the received data (606) to determine, for example, a

US 2024/0143587 Al

time characteristic such as a time of generation, transmis-
sion, creation, or other attribute of the received data, which
may be a post to a social media application or network, as
an example. In other examples, data received by platform
508 (not shown) may be parsed to determine other time
characteristics, parameters, or other quantitative or qualita-
tive attributes beyond those described herein and are not
limited to any specific example shown or described.

[0058] Referring back to FIG. 6, once parsed to determine
a time characteristic (e.g., a time associated with an event of
the data), the data may be stored to a location on one or more
servers of a given server class (608). As storage resources in
data communication with a platform (e.g., platform 508
(FIGS. 5A-5B) have been configured using a manifest file
(not shown), the stored data is written to a location (e.g.,
memory location) that is either annotated or referenced by,
for example, a pointer in a server index. By referencing the
index, the pointer can direct queries from platform 508 to the
location where requested data has been written and can be
retrieved (610). Once stored, data can be reconciled, as
described herein, at various, scheduled, regular, irregular,
periodic, occasional, on-demand, or random time intervals
(612). In other examples, the above-described process 600
may be varied in process, order, steps, sub-processes, or
other aspects, without limitation or restriction to the
examples shown and described.

[0059] FIG. 7A illustrates another exemplary process for
temporal optimization of data operations using distributed
server and shard management. Here, process 700 may be an
alternative implementation of a temporal optimization pro-
cess practicing the techniques described herein which, in
some examples, may commence by configuring a host group
having one or more servers (e.g., configured to provide
processor or storage resources) using a manifest file as
described herein (702). In some examples, configuration of
server resources using a manifest file is described in further
detail below in connection with FIG. 7B. Referring back to
FIG. 7A, data may be received by, for example, application
102 (FIG. 1), application 202 (FIGS. 2-3), or platform 508
(FIGS. 5A-5B) over an application programming interface
(hereafter referred to as “API”) (704). In some examples,
API may be used to provide an adapter or data communi-
cation structure to facilitate data transfer between, for
example, application 102 (FIG. 1), application 202 (FIGS.
2-3), or platform 508 (FIGS. 5A-5B) and one or more
applications, networks, devices, clients, computers, servers,
hosts, or any other type of computing device or machine,
physical or virtual, remote or local, single instance or
distributed, without limitation or restriction. In other
examples, multiple APIs may be implemented and the
techniques described herein are not limited to any particular
number of instances or specific configurations of said
instances of an API.

[0060] In some examples, after receiving data from an
API, the data may be parsed by application 102 (FIG. 1),
application 202 (FIGS. 2-3), platform 508 (FIGS. 5A-5B),
or one or more modules thereof such as those described
above in connection with FIGS. 1-3. For example, logic
module 104 (FIGS. 1-2) may parse received data to generate
a processed data file, which may include, for example, time
characteristics such as a time associated with the initial
posting of a “blog” (i.e., a log configured for display on
multiple devices over the World Wide Web (“Web™)) entry,
or auser’s post to a social media site, application, or network

May 2, 2024

(e.g., Instagram™, Facebook®, Snapchat®, or others), or
the like (706). Once parsed and processed, received data or
data files may be stored at a location on a server, host group,
cluster, or a set thereof based on the assignment of the data
to a given time range and, subsequently, a server class. Once
stored, the location of the stored data may be referenced in
an index by using various types of reference techniques such
as pointers, addresses, and the like (708). Once stored,
additional data may be received that, when parsed, may
indicate one or more data operation that need to be per-
formed in order to reconcile changes (710). As described
herein, data may be reconciled by performing one or more
data operations to delete, modify, move (e.g., as described
above and in reaction to aging from an initial event such as
generation, creation, initialization, posting, publishing, or
others), retrieve, copy, or other operations. In other
examples, the above-described process 700 may be varied in
process, order, steps, sub-processes, or other aspects, with-
out limitation or restriction to the examples shown and
described.

[0061] FIG. 7B illustrates an exemplary process for host
group and server configuration for temporal optimization of
data operations using distributed server and shard manage-
ment. Here, process 714 is shown and described, illustrating
an exemplary process for configuring a cluster, host group,
server, or a set thereof using a manifest file. Initially, a
determination is made by, for example, application 102
(FIG. 1), application 202 (FIGS. 2-3), platform 508 (FIGS.
5A-5B) to determine whether multiple or a single server
class is available for configuration using a manifest file
(720). If multiple classes of servers are available, multiple
host groups are created and configured in accordance with
indicated parameters and settings in a manifest file. In some
examples, available server resources may include, but are
not limited, to local, distributed, or cloud-based storage and
processing resources made available by service networks
such as Amazon™ Web Services (“AWS”) as provided by
Amazon, Inc. of Seattle, Washington, among others, without
limitation or restriction.

[0062] Referring back to FIG. 7B, a time range may be
designated to represent a time range of data to be stored on
each resource assigned to a given server class, if multiple
server classes are available. In other examples, multiple time
ranges may be further associated with each resource of a
host group of a server class (724). In some examples, time
ranges may be identified as aging (as described herein)
occurs, subsequently generating, from available server
resources, additional clusters, host groups, shards, and slices
of different servers. Partitioning of available server
resources may be performed by identifying and assigning
shards and slices of each available server resource or strip-
ing server resources in order to determine how and when
data is to be stored (i.e., multiple instances or a single
instance of a physical or virtual (i.e., virtual machine)
storage or processor-configured server) based on control
data and signals generated by application 102 (FIG. 1),
application 202 (FIGS. 2-3), and platform 508 (FIGS. 5A-B)
(726). Here, multiple server classes may be assigned to
different time ranges in order to segregate or separate stored
data into different “time buckets” (i.e., ranges of time that
indicate locations for data to be stored based on time
characteristics associated with or determined or parsed from
received data). Available server resources are then assigned

US 2024/0143587 Al

to host groups configured for temporal optimization of data
storage, processing, and retrieval operations (728).

[0063] Alternatively, if process 720 determines there is a
single class of servers, data received by application 102
(FIG. 1), application 202 (FIGS. 2-3), platform 508 (FIGS.
5A-5B may be processed (e.g., performing any type of data
operations using available server resources of the single
server class, without limitation or restriction) or stored
(730). Once stored, reconciliation may be performed as
described herein and in connection with FIG. 7C below. In
other examples, the above-described process 714 may be
varied in process, order, steps, sub-processes, or other
aspects, without limitation or restriction to the examples
shown and described.

[0064] FIG. 7C illustrates an exemplary process for rec-
onciliation operations for temporal optimization of data
operations using distributed server and shard management.
Here, process 740 begins by invoking reconciliation, which
may be a single instruction or algorithm or a logical group
or algorithms, programs, applications, or processes that are
configured to reconcile one or more available server
resources configured for temporal optimization to store or
retrieve data (742). In some examples, a determination is
made as to whether data being received by, for example,
application 102 (FIG. 1), application 202 (FIGS. 2-3),
platform 508 (FIGS. 5A-5B) indicates changes (i.e., modi-
fications in the current state of stored data) are present (744).
If received data (e.g., newly received data or data received
by application 102 (FIG. 1), application 202 (FIGS. 2-3),
platform 508 (FIGS. 5A-5B)) in an input stream, feed, data
received after previously received data is stored, or the like)
indicates no changes are to be made to stored data, process
740 ends. However, if changes are indicated by data
received after the stored data was received by application
102 (FIG. 1), application 202 (FIGS. 2-3), platform 508
(FIGS. 5A-5B), or a sub-module thereof (e.g., modules such
as those indicated in FIGS. 1-3), then the type of change is
determined by parsing the received data (746).

[0065] In some examples, determining the type of change
that has occurred to previously stored data may include
identifying one or more data operations to be performed on
stored data. Once the type(s) of change has been determined
and one or more data operations associated with enacting the
indicated change(s) has also been determined, a server index
may be referenced to determine a location associated with
the targeted stored data. After determining the location of the
stored data targeted for change (i.e., modification) by refer-
encing a pointer, address, or other locating information
included within a data structure configured as a server index
(“index”), the associated data operation(s) are performed
(748). As used herein, data operation may refer to any type
of algorithmic, digital, software, method, or process that can
modify data, regardless of programming language, format,
or application architectural level (e.g., various levels of an
application “stack” as identified in various types of models
such as the Open Systems Interconnect (“OSI”’) model).
[0066] Insome examples, performance of a data operation
may include identifying a location of stored data indicated
for change by received data (i.e., data received after the
target data was stored), copying the stored data in its
unmodified state to a cache, buffer, or temporary memory
location, performing the data operation on the copy of the
stored data, and storing the modified stored data to the
original location from which the data was retrieved or to a

May 2, 2024

different location, if specified by data received by applica-
tion 102 (FIG. 1), application 202 (FIGS. 2-3), platform 508
(FIGS. 5A-5B), or a sub-module thereof (e.g., modules such
as those indicated in FIGS. 1-3) (750). In other examples,
the above-described process 740 may be varied in process,
order, steps, sub-processes, or other aspects, without limi-
tation or restriction to the examples shown and described.

[0067] FIG. 8A illustrates an alternative exemplary pro-
cess for temporal optimization of data operations using
distributed server and shard management. Here, process 800
may be implemented as an alternative implementation or
embodiment of process 700 described above in connection
with FIG. 7A. In some examples, process 800 starts by
configuring clusters, host groups, and available server
sources (e.g., individual or multiple instances of servers
(physical, virtual, or logical), server classes, or the like) by
making assignments based on time characteristics. As
described above, available server resources and server
classes may be assigned based on time characteristics such
as time ranges into which stored data can be grouped (802).
As shown, striping of available server resources and gen-
eration and assignment of shards (as described above) may
be assigned to available storage resources based on time
characteristics (804). A query requesting data retrieval may
be received by application 102 (FIG. 1), application 202
(FIGS. 2-3), platform 508 (FIGS. 5A-5B), or a sub-module
thereof (e.g., modules such as those indicated in FIGS. 1-3)
(806). As shown, when a query requesting data retrieval of
stored data is received, it is further parsed and evaluated to
identify a time characteristic (e.g., a time range in which the
requested data was stored) associated with the stored data
(808). For example, a received query may indicate that a
news article posted eighteen (18) hours earlier is being
requested by another client, application, system, or the like,
which, once identified, indicates that a given time range and
assigned host group and its corresponding server resources
(which may be of one or more server classes) is to be
searched. As another example, a query is received requesting
a copy of a stored data feed in which various clients are
posting different types of content (e.g., content, still images,
burst image files, video, audio, or others, without limitation
or restriction) to be copied and, further, additional data
related to the stored data and which is being stored is to also
be copied in real-time or near real-time and returned in
response to the query continuously. Other examples may be
envisioned by those of ordinary skill in the art, and are not
intended to be limited or restricted to the examples shown
and described herein.

[0068] After identifying a time characteristic associated
with the stored data sought to be retrieved in response to a
query, in some examples, a location is determined to identify
one or more server resources on which the stored data is
housed (810). Upon identifying a location(s) of the stored
data to be retrieved, application 102 (FIG. 1), application
202 (FIGS. 2-3), platform 508 (FIGS. 5A-5B), or a sub-
module thereof (e.g., modules such as those indicated in
FIGS. 1-3) generates (i.e., rewrites the initial query) a
request to the location to copy the stored data to a cache,
buffer, or other temporary or permanent memory location,
which may be collectively referred to as “retrieval” (812).
As used herein, when a query is rewritten, as an example, a
request to a storage server location (i.e., “location”) may be
formatted based on the class and data storage schema of the
location, but also targeted at a given cluster, host group,

US 2024/0143587 Al

and/or server based on comparing the determined time
characteristic with one of the indexed time ranges associated
with available server resources. By comparing the time
characteristic of the requested stored data and identifying a
time range within which the stored data is likely to be stored,
server resources assigned to time ranges inside or outside
that of the stored data may be excluded, thus preventing
unnecessary server and processor resources being con-
sumed. As another example, a precise location of data being
requested by a given query may not be readily identified
within a server index. However, by parsing the query to
determine a characteristic for the data sought, an enveloping
time range can be identified and, once identified, assigned
server resources can be searched in a targeted manner
avoiding expending processor and computing sources on
unrelated server resources, which not only reduces latency in
returning accurate results in response to queries, but also
improves the allocation of server resources to storage of
large amounts of stored. In some examples, when stored data
requested for retrieval is copied into a cache, buffer, or other
temporary or permanent memory location, a copy may be
maintained for disaster or catastrophic recovery or rollback
(i.e., resetting a state of a memory device to a previous state
in order to restore data from a destructive, catastrophic, or
corrupting event) purposes. In other examples, when stored
data is requested for retrieval in response to a query, a copy
is made to a cache, buffer, or other temporary or permanent
memory location and then the stored data is deleted from the
location. In still other examples, stored data may be handled
differently and is not limited to the specific examples shown
and described. In other examples, the above-described pro-
cess 800 may be varied in process, order, steps, sub-
processes, or other aspects, without limitation or restriction
to the examples shown and described.

[0069] FIG. 8B illustrates an exemplary process for tem-
porally optimized data retrieval using distributed server and
shard management. Here, process 820 starts by determining
clusters and host groups to be configured (822). Upon
determining the number and configuration of clusters and/or
host groups to be configured, application 102 (FIG. 1),
application 202 (FIGS. 2-3), platform 508 (FIGS. 5A-5B),
or a sub-module thereof (e.g., logic module 104 (FIGS. 1-2))
determines times ranges to assign to each host group or, in
some examples, individual hosts, or sub-host groups (824).
Next, a determination is made as to which server classes are
available (826). Once available server classes have been
determined, server classes are assigned to host groups,
individual hosts, or sub-host groups being temporally opti-
mized for data retrieval (828). Once assigned, shards may be
determined for assigned to various time ranges assigned to
host groups (830). In other words, some shards may be
implemented using one or multiple server resources (e.g.,
physical, virtual, or logical) of a single or multiple server
classes. Logically, shards may be assigned to a given time
range and server class, but actually implemented using a
server resource or a fraction thereof, in some examples.

[0070] After configuring cluster(s), host group(s), server
resources, and shards, a query requesting stored data may be
rewritten in the data schema, format, or programming or
formatting language of databases installed the elements set
forth above (832). In some examples, queries may also be
rewritten in order to be executed using a given search
facility, application, platform, or system. For example, que-
ries may be rewritten by query manager 114 (FIG. 2) in order

May 2, 2024

to transform a query from a web-input, text-based submis-
sion from one or more of clients 130-136 (FIG. 1) into a
query request in Solr, which may be used as an enterprise-
level search platform. When rewritten, a Solr query may be
run against various, disparate databases and server resources
within a given time range in order to locate, retrieve (as
discussed above), and return targeted stored data in response
to the original request. By using an enterprise-level search
platform (e.g., Solr) that is configured to search various,
disparate databases and data structures deployed on server
resources that have been configured to store data on host
groups supporting different server classes, latency is
decreased and accuracy is increased in return stored data in
response to queries by avoiding the need to search all server
resources deployed for a given cluster or host group. In other
examples, the above-described process 820 may be varied in
process, order, steps, sub-processes, or other aspects, with-
out limitation or restriction to the examples shown and
described.

[0071] FIG. 8C illustrates an exemplary process for tem-
porally optimized data queries using distributed server and
shard management. Here, process 840 starts by logic module
104 (FIGS. 1-2) initiating evaluation of a query received by,
for example, application 102 (FIG. 1), application 202
(FIGS. 2-3), platform 508 (FIGS. 5A-5B), or a sub-module
thereof (e.g., logic module 104 (FIGS. 1-2)) (842). Once
initiated, query manager 114 (FIGS. 1-2) parses the received
query to identify one or more time characteristics (844).
Once determined, the identified time characteristics may be
used by logic module 104, class manager 216 (FIG. 2), and
cluster/host group module 220 (FIG. 2) to identify a given
host group and one or more server resources and classes
assigned to the host group on which the requested data is
likely stored (846). In some examples, search platform 112
(FIGS. 1-2) may be configured to rewrite and execute a
received query in a data schema and format of a given host
group, server, or class as identified in sub-process 846 above
(848), which is described in greater detail below in connec-
tion with FIG. 8D.

[0072] In some examples, when a rewritten query is
executed by search platform 114 (e.g., in Solr or another
enterprise-level search language or format), a copy of the
data being sought by the query is retrieved (850). Once
retrieved, the copy of the requested data is returned in
response to the request in a format and language (e.g.,
HTML, XML, Java®, JavaScript, command line interface,
binary, or any other type of programming or formatting
language that may be used to display data) to the client that
initiated the query (852). In other examples, the above-
described process 840 may be varied in process, order, steps,
sub-processes, or other aspects, without limitation or restric-
tion to the examples shown and described.

[0073] FIG. 8D illustrates an exemplary process for
retrieving temporally optimized data using distributed server
and shard management. Here, an exemplary process 860 for
rewriting queries using a search platform (e.g., search plat-
form 112 (FIGS. 1-2)) is shown and described. In some
examples, a query is evaluated to determine a value asso-
ciated with the queried or requested data (862). For example,
a query may request stored data has an assigned value such
as a hash value or index value that, when matched with a
value in a query, enables requested stored data to be located
rapidly without searching all server resources to find a
complete and comprehensive match of each element of the

US 2024/0143587 Al

stored data. In other words, instead of performing a search
of all stored data to located a requested data file or set of
data, data, when stored, may also be hashed or transformed
into a value that is stored in an index file. When a query is
executed a value is submitted to be matched in order to
identify a location from which to retrieve stored data to
return in response to the query.

[0074] Here, the value determined from a received query
is used to reference an index to determine a match to locate
stored data to be returned in response to a query (864). In
some examples, a determination is then made to determine
if a value in the index matches the value parsed from the
original query (868). If not match is found, an error message
may be returned and the process ends (870). If a match is
found, then the matched value is converted into the data
schema for the server resource on which the requested data
is stored (872). The requested data is then retrieved and
returned in response to the original query (874). In other
examples, the above-described process 860 may be varied in
process, order, steps, sub-processes, or other aspects, with-
out limitation or restriction to the examples shown and
described.

[0075] FIG. 8E illustrates an alternative exemplary pro-
cess for retrieving temporally optimized data using distrib-
uted server and shard management. Here, process 880
illustrates an alternative process for rewriting and executing
a query in a database format or schema for a target server
resource. In some examples, several sub-processes of pro-
cess 880 may be similar to those described above in con-
nection with FIG. 8D. For example, when a query is
received, it is evaluated to determine or identify a value
associated with or indicated of the data requested (862; FIG.
8D). Once a value has been determined, a location associ-
ated with the value is identified to the extent that a host
group and/or a server class are identified for querying (863).
Once a host group and a server class have been identified, an
index associated with the host group can be referenced with
the value to find a matching value that provides a location of
the requested data (864; FIG. 8D). In some examples, a
determination is made as to whether the value is found in the
referenced index (868; FIG. 8D). If a match is found, a given
location may be found using, for example, an address,
pointer, or other indexing information associated with the
matched value (872; FIG. 8D). A copy of the data may be
retrieved from the location and returned in response to the
original request (874; FIG. 8D). However, unlike FIG. 8D,
when a value is not found to match another value in an
index, a different process may be invoked.

[0076] In some examples, when a value parsed from a
query does not have a corresponding matching value in an
index for a server resource(s) assigned to a host group
assigned to a time range in which the requested data is
stored, a master copy of the requested data may be located
using metadata parsed from the original query. For example,
a query may be parsed to identify various types and formats
of metadata that may be used to identify data requested.
Using the metadata, a search may be performed of the host
group and associated server resources to locate a master
copy of the requested data (882). Once located, a copy of the
master data (or master data file(s)) may be retrieved (884).
Once retrieved, in some examples, a data operation to
reconcile the stored data may be performed by storing a copy
of the master data at the location indicated by the index
(886). After storing the copy of the master data at the

May 2, 2024

location where the queried data should have been stored
(i.e., but was damaged or deleted), another copy of the
master data is returned in response to the original query
(888). In some examples, the above-described process 880
may be used to replace, modify, fix, replace, address, write,
or otherwise save data to a location that may have been
corrupted for various reasons, including, but not limited, to
power outages, disasters, catastrophic loss, server damage,
corrupted memory or data structures, or others. In other
examples, when data stored on a server resource does not
match a state indicated by an index, process 880 may be used
to restore stored data to an uncorrupted or undamaged state.
In other examples, the above-described process 880 may be
varied in process, order, steps, sub-processes, or other
aspects, without limitation or restriction to the examples
shown and described.

[0077] FIG. 9 illustrates an exemplary computing system
suitable for temporal optimization of data operations using
distributed server and shard management. In some
examples, computer system 900 may be used to implement
computer programs, applications, methods, processes, or
other software to perform the above-described techniques.
Computing system 900 includes a bus 902 or other com-
munication mechanism for communicating information,
which interconnects subsystems and devices, such as pro-
cessor 904, system memory 906 (e.g., RAM), storage device
908 (e.g., ROM), disk drive 910 (e.g., magnetic or optical),
communication interface 912 (e.g., modem or Ethernet
card), display 914 (e.g., CRT or LCD), input device 916
(e.g., keyboard), cursor control 918 (e.g., mouse or track-
ball), communication link 920, and network 922.

[0078] According to some examples, computing system
900 performs specific operations by processor 904 executing
one or more sequences of one or more instructions stored in
system memory 906. Such instructions may be read into
system memory 906 from another computer readable
medium, such as static storage device 908 or disk drive 910.
In some examples, hard-wired circuitry may be used in place
of or in combination with software instructions for imple-
mentation.

[0079] The term “computer readable medium” refers to
any tangible medium that participates in providing instruc-
tions to processor 904 for execution. Such a medium may
take many forms, including but not limited to, non-volatile
media and volatile media. Non-volatile media includes, for
example, optical or magnetic disks, such as disk drive 910.
Volatile media includes dynamic memory, such as system
memory 906.

[0080] Common forms of computer readable media
includes, for example, floppy disk, flexible disk, hard disk,
magnetic tape, any other magnetic medium, CD-ROM, any
other optical medium, punch cards, paper tape, any other
physical medium with patterns of holes, RAM, PROM,
EPROM, FLASH-EPROM, any other memory chip or car-
tridge, or any other medium from which a computer can
read.

[0081] Instructions may further be transmitted or received
using a transmission medium. The term “transmission
medium” may include any tangible or intangible medium
that is capable of storing, encoding or carrying instructions
for execution by the machine, and includes digital or analog
communications signals or other intangible medium to
facilitate communication of such instructions. Transmission

US 2024/0143587 Al

media includes coaxial cables, copper wire, and fiber optics,
including wires that comprise bus 902 for transmitting a
computer data signal.
[0082] In some examples, execution of the sequences of
instructions may be performed by a single computer system
900. According to some examples, two or more computing
system 900 coupled by communication link 920 (e.g., LAN,
PSTN, or wireless network) may perform the sequence of
instructions in coordination with one another. Computing
system 900 may transmit and receive messages, data, and
instructions, including program, i.e., application code,
through communication link 920 and communication inter-
face 912. Received program code may be executed by
processor 904 as it is received, and/or stored in disk drive
910, or other non-volatile storage for later execution. In
other examples, the above-described techniques may be
implemented differently in design, function, and/or structure
and are not intended to be limited to the examples described
and/or shown in the drawings.
[0083] Although the foregoing examples have been
described in some detail for purposes of clarity of under-
standing, the above-described inventive techniques are not
limited to the details provided. There are many alternative
ways of implementing the above-described invention tech-
niques. The disclosed examples are illustrative and not
restrictive.

What is claimed:

1. A method, comprising:

receiving data in association with an application imple-

mented with one or more processors and memory, the

May 2, 2024

application being configured to manage disparate com-
puting and storage resources;

accessing, by the application, a manifest file including
data representing parameters to configure one or more
clusters of servers to allocate storage of the data among
partitioned portions of the one or more clusters of
servers in accordance with the parameters specifying
classes of servers and ranges of time characteristics;

determining aging of partitioned data associated with the
partitioned portions based on the classes of servers and
the ranges of time characteristics;

moving one or more subsets of the partitioned data
associated with one or more of the partitioned portions
to different partitioned portions of different server
classes based on the aging of the partitioned data;

receiving a query at a processor to retrieve the data stored
as stored data among the among the partitioned por-
tions;

evaluating the query to identify a time characteristic
associated with the stored data;

identifying a location from which to retrieve the stored
data based on the query to determine a partitioned
portion of the different server classes in which the
stored data resides as a function of the time character-
istic; and

rewriting the query to run on at least one server of the one
or more clusters of servers.

#* #* #* #* #*

