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OBJECT-OF-INTEREST DETECTION AND
RECOGNITION WITH SPLIT,
FULL-RESOLUTION IMAGE PROCESSING
PIPELINE

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This disclosure is related to the subject matter of
commonly-assigned U.S. patent application Ser. No. ,
entitled, “Credit Card Auto-Fill,” Atty. Docket No.
P22829US1 (119-0805US1), which was filed on May 30,
2014 (“the ’ application) and commonly-assigned
U.S. patent application Ser. No. , entitled, “Systems
and Methods for Character Sequence Recognition with no
Explicit Segmentation,” Atty. Docket No. P22963US1 (119-
0807US1), which was filed on May 30, 2014 (“the ’
application). The ’ application and ’ applica-
tion are each hereby incorporated by reference in their entire-
ties.

BACKGROUND

[0002] This disclosure relates generally to the field of
image processing and, more particularly, to various tech-
niques for object detection and recognition within digital
images using a split processing pipeline operating in both
high-resolution and low-resolution modes concurrently.
[0003] The advent of portable integrated computing
devices has caused a wide-spread proliferation of digital cam-
eras. These integrated computing devices commonly take the
form of smartphones or tablets and typically include general
purpose computers, cameras, sophisticated user interfaces
including touch-sensitive screens, and wireless communica-
tions abilities through Wi-Fi, LTE, HSDPA and other cell-
based or wireless technologies. The wide proliferation of
these integrated devices provides opportunities to use the
devices’ capabilities to perform tasks that would otherwise
require dedicated hardware and software. For example, as
noted above, integrated devices such as smartphones and
tablets typically have one or two embedded cameras. These
cameras comprise lens/camera hardware modules that may
be controlled through the general purpose computer using
system software and/or downloadable software (e.g., “Apps™)
and a user interface including, e.g., programmable buttons
placed on the touch-sensitive screen and/or “hands-free” con-
trols such as voice controls.

[0004] One opportunity for using the features of an inte-
grated device is to capture and evaluate images. The devices’
camera(s) allows the capture of one or more images, and the
general purpose computer provides processing power to per-
form analysis. In addition, any analysis that is performed for
anetwork service computer can be facilitated by transmitting
the image data or other data to a service computer (e.g., a
server, a website, or other network-accessible computer)
using the communications capabilities of the device.

[0005] These abilities of integrated devices allow for rec-
reational, commercial and transactional uses of images and
image analysis. For example, images may be captured and
analyzed to decipher information from the images such as
characters, symbols, and/or other objects of interest located in
the captured images. The characters, symbols, and/or other
objects of interest may be transmitted over a network for any
useful purpose such as for use in a game, or a database, or as
part of a transaction such as a credit card transaction. For
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these reasons and others, it is useful to enhance the abilities of
these integrated devices and other devices for deciphering
information from images.

[0006] In particular, when trying to read a credit card with
a camera, there are multiple challenges that a user may face.
Because of the widely-varying distances that the credit card
may be from the camera when the user is attempting to read
the credit card, one particular challenge is the difficulty in
focusing the camera properly on the credit card. Another
challenge faced is associated with the difficulties in reading
characters with perspective correction, thus forcing the user
to hold the card in a parallel plane to the camera to limit any
potential perspective distortions. One of the solutions to these
problems available today is that the user has to be guided
(e.g., viathe user interface on the device possessing the cam-
era) to frame the credit card (or other object-of-interest) in a
precise location and orientation—usually very close to the
camera—so that sufficient image detail may be obtained. This
is challenging and often frustrating to the user—and may
even result in a more difficult and time-consuming user expe-
rience than simply manually typing in the information of
interest from the credit card. It would therefore be desirable to
have a system that detects the credit card (or other object-of-
interest) in three-dimensional space, utilizing scaling and/or
perspective correction on the image, thus allowing the user
more freedom in how the credit card (or other object-of-
interest) may be held in relation to the camera during the
detection process.

[0007] Another challenge often faced comes from the com-
putational costs of credit card recognition (or other object-of-
interest recognition) algorithms, which scale in complexity as
the resolution of the camera increases. Therefore, in prior art
implementations, the camera is typically running in a low
resolution mode, which necessitates the close framing of the
card by the user in order for the camera to read sufficient
details on the card for the recognition algorithm to work
successfully with sufficient regularity. However, placing the
card in such a close focus range also makes it more challeng-
ing for the camera’s autofocus functionality to handle the
situation correctly. A final shortcoming of prior art optical
character recognition (OCR) techniques, such as those used
in credit card recognition algorithms, is that they rely on
single-character classifiers, which require that the incoming
character sequence data be segmented before each individual
character may be recognized—a requirement that is diffi-
cult—if not impossible—in the credit card recognition con-
text.

[0008] The inventors have realized new and non-obvious
ways to make it easier for the user’s device to detect and/or
recognize the credit card (or other object-of-interest) by over-
coming one or more of the aforementioned challenges. As
used herein, the term “detect” in reference to an object-of-
interest refers to an algorithm’s ability to determine whether
the object-of-interest is present in the scene; whereas the term
“recognize” in reference to an object-of-interest refers to an
algorithm’s ability to extract additional information from a
detected object-of-interest in order to identify the detected
object-of-interest from among the universe of potential
objects-of-interest.

SUMMARY

[0009] Someimages contain decipherable characters, sym-
bols, or other objects-of-interest that users may desire to
detect and/or recognize. For example, some systems may
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desire to recognize such characters and/or symbols so that
they can be directly accessed by a computer in a convenient
manner, such as in ASCII format. Some embodiments of this
disclosure seek to enhance a computer’s ability to detect
and/or recognize such objects-of-interest in order to gain
direct access to characters or symbols visibly embodied in
images. Further, by using an integrated device, such as a
smartphone, tablet or other computing device having an
embedded camera(s), a user may capture an image, have the
image processed to decipher characters, and use the deci-
phered information in a transaction.

[0010] One example of using an integrated device as
described above to detect and/or recognize an object-of-in-
terest is to capture an image of an object having a sequence of
characters, such as a typical credit card, business card,
receipt, menu, or sign. Some embodiments of this disclosure
provide for a user initiating a process on an integrated device
by activating an application or by choosing a feature within an
application to begin a transaction. Upon this user prompt, the
device may display a user interface that allows the user to
initiate an image capture or that automatically initiates an
image capture, with the subject of the image being of an
object having one or more sub-regions comprising sequences
of characters that the user wishes to detect, such as the holder
name, expiration date, and account number fields on a typical
credit card. The sequences of characters may also be com-
prised of raised or embossed characters, especially in the case
of a typical credit card.

[0011] Differing embodiments of this disclosure may
employ one or all of the several techniques described herein to
perform credit card recognition using electronic devices with
integrated cameras. According to some embodiments, the
credit card recognition process may comprise: obtaining a
first representation of a first image, wherein the first repre-
sentation comprises a first plurality of pixels; identifying a
first credit card region within the first representation; extract-
ing a first plurality of sub-regions from within the identified
first credit card region, wherein a first sub-region comprises a
credit card number, wherein a second sub-region comprises
an expiration date, and wherein a third sub-region comprises
a card holder name; generating a predicted character
sequence for the first, second, and third sub-regions; and
validating the predicted character sequences for at least the
first, second, and third sub-regions using various credit card-
related heuristics, e.g., expected character sequence length,
expected character sequence format, and checksums.

[0012] Still other embodiments of this disclosure may
employ one or all of several techniques to use a “split” image
processing pipeline that runs the camera at its full resolution
(also referred to herein as “high-resolution”), while feeding
scaled-down and cropped versions of the capture image
frames to a credit card recognition algorithm. (It is to be
understood that, although the techniques described herein
will be discussed predominantly in the context of a credit card
detector and recognition algorithm, the split image process-
ing pipeline techniques described herein could be applied
equally to any other object-of-interest for which sufficient
detection and/or recognition heuristics may be identified and
exploited, e.g., faces, weapons, business cards, human bod-
ies, etc.) Thus, one part of the “split” image processing pipe-
line described herein may run the credit card recognition
algorithm on scaled down (also referred to herein as “low-
resolution”) frames from the camera, wherein the scale is
determined by the optimum performance of that algorithm.
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Meanwhile, the second part of the “split” image processing
pipeline may run a rectangle detector algorithm (or other
object-of interest detector algorithm) with credit card-spe-
cific constrains (or other object-of interest-specific con-
straints) in the background. If the rectangle detector finds a
rectangle matching the expected aspect ratio and minimum
size of a credit card that can be read, then it may crop the card
out of the “high-resolution” camera buffer, perform a per-
spective correction, and/or scale the rectangle to the desired
size needed by the credit card recognition algorithm and then
send the scaled, high-resolution representation of the card to
the detection algorithm for further processing.

[0013] One reason for using the split image processing
pipeline to operate on the “high resolution” and “low resolu-
tion” representations of the object-of-interest concurrently
(rather than using solely the “full” or “high resolution” pipe-
line) is that there are known failure cases associated with
object-of-interest detector algorithms (e.g., rectangle detec-
tor algorithms). Examples of failure cases include: 1.) The
user holding the credit card too close to the camera, resulting
in some edges being outside the frame. This may fail in the
rectangle detector (i.e., not enough edges located to be reli-
ably identified as a valid rectangle shape) but work fine in the
direct path of feeding the “low-resolution” version of the
image directly to the credit card recognition engine. 2.) Some
particular kinds of credit cards or lighting and background
scenarios will make it very difficult for the edge detector
portion of the rectangle detector to reliably identify the
boundaries of the credit card. In this second case, the user
would likely be instructed to attempt to frame the card very
closely to the camera, so that the credit card recognition
engine alone can read the character sequences of the card. In
some embodiments, if no valid credit card has been found by
the rectangle detector after a predetermined amount of time,
the user interface (UI) on the device may be employed to
“guide” the user to frame the card closely.

[0014] Advantages of this split image processing pipeline
approach to object-of-interest recognition include the ability
of the user to hold the card more freely when the camera is
attempting to detect the card and read the character sequences
(as opposed to forcing the user to hold the card at a particular
distance, angle, orientation, etc.). The techniques described
herein also give the user better ability to move the credit card
around in order to avoid specular reflections (e.g., reflections
off of holograms or other shiny card surfaces). In most cases,
the credit card will also be read earlier than in the prior art
approaches in use today.

[0015] Still other embodiments of this disclosure may be
employed to perform character sequence recognition with no
explicit character segmentation. According to some such
embodiments, the character sequence recognition process
may comprise generating a predicted character sequence for
a first representation of a first image comprising a first plu-
rality of pixels by: sliding a well-trained single-character
classifier, e.g., a Convolutional Neural Network (CNN), over
the first representation of the first image one pixel position at
atime until reaching an extent of the first representation of the
first image in a first dimension (e.g., image width); recording
alikelihood value for each ofk potential output classes at each
pixel position, wherein one of the k potential output classes
comprises a “background class™; determining a sequence of
most likely output classes at each pixel position; decoding the
sequence by removing identical consecutive output class
determinations and background class determinations from
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the determined sequence; and validating the decoded
sequence using one or more predetermined heuristics, such as
credit card-related heuristics.

[0016] Instill other embodiments, the techniques described
herein may be implemented as methods, encoded in instruc-
tions stored in non-transitory program storage devices, or
implemented in apparatuses and/or systems, such as elec-
tronic devices having cameras, memory, and/or program-
mable control devices.

BRIEF DESCRIPTION OF THE DRAWINGS

[0017] FIG. 1 illustrates the output of a rectangle detector
on an exemplary image comprising a representation of a
credit card, in accordance with one embodiment.

[0018] FIG. 2 illustrates a single-path, low-resolution,
object-of-interest recognition image processing pipeline, in
accordance with the prior art.

[0019] FIG. 3 illustrates an example of a cropped, perspec-
tive corrected, and scaled object-of-interest comprising a rep-
resentation of a credit card, in accordance with one embodi-
ment.

[0020] FIG. 4 illustrates a split path, high resolution,
object-of-interest detection and recognition image process-
ing pipeline, in accordance with one embodiment.

[0021] FIG. 5 illustrates an exemplary rectangle detector
process in flowchart form, in accordance with one embodi-
ment.

[0022] FIG. 6 illustrates an exemplary credit card recogni-
tion process in flowchart form, in accordance with one
embodiment.

[0023] FIG.7 illustrates an exemplary convolutional neural
network (CNN), in accordance with one embodiment.
[0024] FIG. 8 illustrates an exemplary digit sequence in a
natural image, in accordance with one embodiment.

[0025] FIG. 9A illustrates an exemplary activation lattice
using a pre-trained CNN, in accordance with one embodi-
ment.

[0026] FIG. 9B illustrates an exemplary activation lattice
using an adapted CNN and a decoded character sequence, in
accordance with one embodiment.

[0027] FIG. 10 illustrates an exemplary credit card recog-
nition process using a sliding CNN window in flowchart
form, in accordance with one embodiment.

[0028] FIG. 11 illustrates a simplified functional block dia-
gram of an illustrative electronic device, according to one
embodiment.

DETAILED DESCRIPTION

[0029] Systems, methods and program storage devices are
disclosed herein for performing object-of-interest detection
and recognition within digital images using a split image
processing pipeline operating in both high-resolution and
low-resolution modes concurrently. The techniques disclosed
herein are applicable to any number of electronic devices with
displays and cameras, such as: digital cameras, digital video
cameras, mobile phones, personal data assistants (PDAs),
portable music players, monitors, and, of course, desktop,
laptop, and tablet computers.

[0030] In the following description, for purposes of expla-
nation, numerous specific details are set forth in order to
provide a thorough understanding of the inventive concept.
As part of this description, some of this disclosure’s drawings
represent structures and devices in block diagram form in
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order to avoid obscuring the invention. In the interest of
clarity, not all features of an actual implementation are
described in this specification. Moreover, the language used
in this disclosure has been principally selected for readability
and instructional purposes, and may not have been selected to
delineate or circumscribe the inventive subject matter, resort
to the claims being necessary to determine such inventive
subject matter. Reference in this disclosure to “one embodi-
ment” or to “an embodiment” means that a particular feature,
structure, or characteristic described in connection with the
embodiment is included in at least one implementation of the
invention, and multiple references to “one embodiment” or
“an embodiment” should not be understood as necessarily all
referring to the same embodiment.

[0031] TItwill be appreciated that, in the development of any
actual implementation (as in any development project),
numerous decisions must be made to achieve the developers’
specific goals (e.g., compliance with system- and business-
related constraints), and that these goals may vary from one
implementation to another. It will also be appreciated that
such development efforts might be complex and time-con-
suming, but would nevertheless be a routine undertaking for
those of ordinary skill in the design of an implementation of
image processing systems having the benefit of this disclo-
sure.

[0032] Referring now to FIG. 1, the output 110/115 of a
rectangle detector on an exemplary image 100 comprising a
representation of a credit card 105 is illustrated, in accordance
with one embodiment. As shown in FIG. 1, the credit card 105
that the system is attempting to detect (and presumably to
subsequently read the relevant, credit card-related informa-
tion from) is being held in the hand of a user at a comfortable
distance from the camera, with no user interface guidelines or
instructions directing the user where to hold the credit card
with respect to the image frame. In the example shown in FI1G.
1, credit card 105 comprises three pieces of relevant, credit
card-related information that a credit card recognition algo-
rithm would likely want to read: the credit card number 105A,
the credit card expiration date 105B, and the credit card
holder name 105C. Various challenges associated with
detecting and recognizing character sequences in these three
canonical credit card information fields will be discussed in
further detail below. As is typical, the rectangle detector that
has been run on exemplary image 100 has located two poten-
tial valid rectangles: rectangle 110 (shown in dashed-line
form) and rectangle 115 (shown in solid-line form). The
various components of a rectangle detector may be config-
ured to select the best rectangle from among the located
rectangle candidates returned by the rectangle detector, as
will be discussed in further detail below.

[0033] Referring now to FIG. 2, a single-path, low-resolu-
tion, object-of-interest recognition image processing pipeline
200 is illustrated, in accordance with the prior art. In the
exemplary image processing pipeline 200, camera 205
returns an image 210 considered to be “low-resolution.”” A
low-resolution image may comprise, for example, a video
frame having a 640 pixel by 480 pixel resolution. The low-
resolution image 210 is then simply passed to an object rec-
ognition engine 215. In the example shown in FIG. 2, the
object-of-interest is a credit card, so the object recognition
engine 215 may attempt to identify and read the various
information fields on the credit card, such as the credit card
number, credit card expiration date, and credit card holder
name fields, as discussed above with reference to FIG. 1.
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[0034] Because the algorithm to identify and read the vari-
ous information fields on the credit card can be very compu-
tationally expensive, in some implementations, there is no
computationally feasible choice other than to use low-reso-
Iution images (e.g., 640 pixels by 480 pixels) for object-of-
interest recognition. Otherwise, there would be too many
image pixels to operate on and read the credit card informa-
tion in real-time off the camera’s video stream. Additionally,
for most character recognition algorithms, there is a mini-
mum height required for the algorithm to be able to recognize
the letters, so the credit card needs to be positioned fairly
close to the camera for any implementation operation on
low-resolution image data. With the object-of-interest posi-
tioned very close to the camera, i.e., in the macro-focus range,
the camera’s lens moves very little, so the depth of field is
very shallow. This makes it difficult for the camera to achieve
proper focus. The farther away the object-of-interest is from
the camera, the less the camera has to move to achieve proper
focus. As will be discussed below, this provides further moti-
vation for the split image processing pipeline to be run con-
currently in both low-resolution and high-resolution modes.

[0035] Referring now to FIG. 3, an example of a cropped,
perspective corrected, and scaled object-of-interest compris-
ing a representation of a credit card is illustrated, in accor-
dance with one embodiment. As discussed above with refer-
ence to FIG. 1, image 100 has been analyzed, and potential
rectangles 110 and 115 have been detected by a rectangle
detector tuned to detect typical credit card shapes. For the
sake of example, rectangle 110 has been chosen in FIG. 3 as
the best rectangle candidate in image 100. Located rectangle
110 has been cropped from image 100, and each of'its corners
have been perspective corrected via process 300, resulting in
scaled, cropped, and perspective-corrected representation
305 of credit card 105. As may now be seen more clearly, the
various credit card information fields, i.e., credit card number
305A, the credit card expiration date 305B, and the credit card
holder name 305C, are now likewise scaled to larger heights,
straightened into a horizontal row of characters, and at a
higher resolution (since they have been cropped from the
full-resolution image frame 100. According to some embodi-
ments, the act of perspective correction may be performed by
calls to existing image processing code modules, such as a
CORE IMAGE filter, provided by APPLE INC. According to
other embodiments, the resulting scaled, cropped, and per-
spective-corrected representation 305 of credit card 105 may
be scaled to the same size of the low-resolution image frame
(e.g., 640 pixels by 480 pixels), so that the object-of-interest
recognition algorithm may be run identically on the frames
provided by both the low-resolution and high-resolution
paths of the split image processing pipeline. As may now be
more clearly understood, in the case of the high-resolution
path, the object-of-interest, i.e., credit card, will take up the
entire extent of the 640 pixel by 480 pixel image frame,
whereas, in the case of the low-resolution path, the extent of
the 640 pixel by 480 pixel image frame taken up by the
object-of-interest will be determined by how closely the user
was holding the object-of-interest to the camera at the time of
capture. (In some embodiments, it has been empirically deter-
mined that the object-of-interest should comprise at least
20% of the extent of the larger dimension of the image frame
to have a realistic probability of successful object-of-interest
recognition.) Thus, it may be expected that the high-resolu-
tion path may lead to higher quality recognition results in
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many scenarios, e.g., scenarios in which the user is not hold-
ing the object-of-interest very close to the camera.

[0036] Referring now to FIG. 4, a split path, high resolu-
tion, object-of-interest detection and recognition image pro-
cessing pipeline 400 is illustrated, in accordance with one
embodiment. In the exemplary image processing pipeline
400, camera 405 returns a full resolution image 410 consid-
ered to be “high-resolution.” A high-resolution image may
comprise, for example, a video frame having a 3,264 pixel by
2,448 pixel resolution (i.e., 8 megapixels) or a 2,592 pixel by
1,936 pixel resolution (i.e., 5 megapixels). The high-resolu-
tion image 410 is then concurrently processed on both the
high-resolution and low-resolution paths of the split image
processing pipeline. In the example shown in FIG. 4, the
low-resolution path begins by scaling the full resolution
image 410 to a more manageable low-resolution size, e.g.,
640 pixels by 480 pixels. In some embodiments, this scaling
may be performed by hardware scaler 415, such as a memory-
to-memory (i.e., “M2M”) scaler, resulting in low resolution
image 420. In other embodiments, scaler 415 may also be
implemented in software or performed by a graphics process-
ing unit (GPU). Low-resolution image 420 may then be
passed to object recognition engine 215, which, as discussed
above with reference to FIG. 2, may attempt to identify and
read the various information fields on the credit card, such as
the credit card number, credit card expiration date, and credit
card holder name fields.

[0037] With respect to the high-resolution path, an object-
of-interest detector 425 may be run on the full resolution
image 410. According to some embodiments, object-of-inter-
est detector 425 may comprise a rectangle detector, as will be
described in greater detail with reference to FIG. 5. Once the
most likely object-of-interest candidate has been detected by
object-of-interest detector 425, the high-resolution path may
proceed to crop, perspective correct, and scale the detected
object-of-interest (block 430), resulting in a well-aligned,
appropriately-sized, high-resolution image 435, consisting of
only the object-of-interest cropped out of the original full
resolution image 410. High-resolution image 435 may then
also be passed to object recognition engine 215 in order to
attempt to identify and read the various information fields on
the credit card, such as the credit card number, credit card
expiration date, and credit card holder name fields. Because
the image data from the two paths of the split image process-
ing pipeline may reach the object recognition engine 215 at
different times, according to some embodiments, the first
image that is evaluated as having a quality metric exceeding a
first quality threshold value may be selected to have its rec-
ognized information returned to the requesting process.

[0038] According to some embodiments, the split image
processing pipeline may be implemented in an electronic
device having a multi-core architecture. In particular, each of
the pipelines may run on a different core.

[0039] Referring now to FIG. 5, an exemplary rectangle
detector process 500 is illustrated in flowchart form, in accor-
dance with one embodiment. First, the input image (502) is
taken and scaled to an appropriate size (504). According to
some embodiments, the image may be scaled down to only
256 pixels by 256 pixels before performing edge detection.
Detecting edges at a lower resolution filters out noise from the
image. Once the edges have been located, the image data can
be scaled back up to full-resolution so that the character
recognition process is more likely to be successful.
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[0040] Next, the process 500 will compute a gradient image
(506) and perform a desired edge detection algorithm (508).
According to some embodiments, a Canny edge detection
process is used, although this is not strictly necessary. Next,
the process 500 may find edge pairs that are approximately
orthogonal, i.e. nearly perpendicular to each other (510), and
generate potential quadrilateral candidates. The potential
quadrilateral candidates may then be pruned by size, aspect-
ratio, or whatever other object-of-interest heuristics are
known to the detector process. The process finally considers
the quadrilateral candidates in conjunction with the edge
detection information to find areas of strong overlap with
image edges (512), which serves as a final check in the pro-
cess’s determination of the strongest quadrilateral candidates
to output to the requesting process (514).

[0041] Many variants to the rectangle detector process
described with reference to FIG. 5 may be employed, and
other detectors may also be employed for shapes other than
rectangles, such as squares, circles, human faces, etc. In par-
ticular, according to some embodiments disclosed herein, the
rectangle detector is taking advantage of the known aspect
ratio of the credit card, while dealing with perspective distor-
tion, noise, background objects, patterns on the credit cards
themselves, motion blur (e.g., due to motion of the camera,
the motion of the hand holding the card, or both) and occlu-
sion of edges (in the hand-held credit card case), etc.

[0042] Referring now to FIG. 6, an exemplary credit card
recognition process 600 is illustrated in flowchart form, in
accordance with one embodiment. First, as described above,
the process may receive a representation of a credit card (or
other object-of-interest) from both the high-resolution path of
the split image processing pipeline (i.e., the path where the
rectangle detector has been used to crop and scale only the
representation of the credit card out from the high-resolution
of the captured image) (Step 605), as well as from the low-
resolution path of the split image processing pipeline (i.e., the
path where the scaled preview frame has been sent directly to
the object-of-interest recognition algorithm) (Step 610).
[0043] As the object-of-interest recognition algorithm is
receiving image frames concurrently from each path of the
split path image processing pipeline (e.g., in different threads
and/or on different cores), it will perform region extraction
(Step 615) and string recognition techniques (Step 620) in
real-time on each stream of incoming image frames and com-
pare the quality of the recognized objects-of-interest in the
incoming images to established quality metrics in order to
determine whether an object-of-interest has been recognized
with sufficient confidence (Step 625). In some embodiments,
determining whether the object-of-interest has been recog-
nized with sufficient confidence comprises determining
whether the quality metric exceeds a first quality threshold
value. The region extraction (Step 615) and string recognition
(Step 620) steps will be described in further detail below.
[0044] Insomeembodiments, determining whether there is
an object-of-interest representation present in the incoming
image with sufficient confidence may involve reliance on the
object-of-interest recognition algorithm, as well as other
object-of-interest-related heuristics. For example, in the case
of credit cards, checksums may be used to validate that the
process is getting back a valid card number from the recog-
nition engine. The checksum, as provided by ISO/IEC-7811
Part 1, uses a set of mathematical equations to involving each
of the digits in the credit card number (other than the last
digit) in order to set the last digit of the credit card number.
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Thus, if any recognized digit in the credit card number is
wrong, the checksum will not equal the correct number for the
last digit of the credit card number. When the object-of-
interest is a credit card, checks may also be done against the
prefix of the credit card number to determine whether the
prefix represents a valid prefix for a major credit card vendor
(e.g., American Express, MasterCard, VISA, etc.). Other
high-level filtering heuristics may also be used, such as the
potential character classes the CNN or other single-character
classifier should recognize in the incoming image. In one
embodiment, the only valid character classes are the numbers
0-9 and a “background” class, as will be described in further
detail below. In the case of credit card holder names, the
characters A-Z may also be valid character classes. Because
image backgrounds are often quite complex, numbers may be
clipped incorrectly, e.g., a ‘9* might appear to be a ‘1’ if it the
region around the credit card number field is extracted incor-
rectly. If an object-of-interest passes each of these object-of-
interest-related constraints, the process may have sufficient
confidence that it has detected a valid object-of-interest and
proceed to Step 650 to perform string clean up and validation
and, finally, return the formatted and validated credit card
data to the requesting process (Step 655). According to some
embodiments, the credit card should be extracted at a resolu-
tion high enough that the credit card number, expiration date
and card holder name images can be extracted at minimum
pixel height in a first dimension, e.g., 28 pixels in height.

[0045] In some embodiments, the process 600 will use the
first image frame passed to it that has a sufficient confidence
score—whether it came from the high-resolution path or the
low-resolution path. If, at Step 625, no object-of-interest rep-
resentation is recognized with sufficient confidence after a
first predetermined amount of time, t1, has passed (but before
a second predetermined amount of time, t2, has passed,
wherein t2>11), the process may proceed to use the Ul on the
display of the camera-enabled device to guide the user’s
placement of the credit card with respect to the camera in
order to lead to a higher likelihood of detection with sufficient
confidence (Step 645). Once an object-of-interest represen-
tation is recognized with sufficient confidence, the process
will proceed to Step 650 to perform string clean up and
validation. If no object-of-interest representation may be rec-
ognized with sufficient confidence after a second predeter-
mined amount of time, t2, has passed (Step 635)—even after
using the Ul to guide the user’s placement of the credit card—
the process may time out and exit (Step 640) and inform the
user to try again later, perhaps under different lighting con-
ditions or against a different background. Additionally, or
alternatively, a user may be informed of known suboptimal
conditionals without requiring a timeout. For example, low-
lighting conditions could be detected and reported to the user
before a full timeout occurred.

[0046] Region Extraction (Step 615)

[0047] The credit card number region may be extracted
from the incoming credit card image based on the ISO/IEC-
7811 Part 1 standard, which specifies the embossed regions of
the credit card (Step 615). In one embodiment, a full cut of the
credit card identification region is passed to the card object
recognition engine 215, which will attempt to recognize the
region as a credit card number. The object recognition engine
215 may then provide potential 15- and 16-digit results back
to the process 600, which results may then be evaluated to
determine whether they represent a valid credit card number,
e.g., using Luhn checksums, as well as a prefix verification
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that checks to ensure that the first digit(s) of the credit card
number are not outside the range of expected banking insti-
tutions.

[0048] If a valid credit card number is found, further card
regions may be examined to attempt to find a valid card
expiration date and card holder name. The second embossed
region from ISO/IEC-7811 Part 1 specifies a name and
address area. This area may be extracted, and a series of cuts
madebased on a set of probable locations given from a variety
of genuine cards. For example, expiration dates are expected
to be in one of two general formats: either day-month-and-
year or just month-and-year. “Wide” and “narrow” regions
may then be cut in the expected date locations and passed to
the object recognition engine 215. Due to the variability of the
overall credit card cut itself, several vertical offsets—as well
as cuts of varying widths—may be made to attempt to cover
cases where the date lies slightly above, below, or beyond the
expected regions. Once a valid date is found, it may be saved,
and the extraction process may proceed to attempt to find
cardholder name is made.

[0049] For the card holder name field, full lines from the
address area are passed to the engine also using half-line
increments to handle cardholder name appearing in between
image lines. Once a valid name is found it is returned and
results are returned to the user. If cardholder name or expira-
tion date regions are not found, the system makes several
more attempts through the whole pipeline to try to recover
cardholder name and expiration date. If both are still not
found whatever results are found on the final frame are
returned to the user.

[0050]

[0051] Once a region of interest containing a credit card
number, an expiration date or a cardholder name is isolated,
the resulting image may be sent to the string recognition
portion of the object recognition engine 215 (Step 620).
According to some embodiments, the object recognition
engine 215 takes an image as its input and returns a list of
possible character label sequences. As will be discussed in
further detail below, the string recognizer is designed to work
without any a priori knowledge of the length of the label
sequence, but, if known a priori, may also be used to produce
a character label sequence of a given character length.

[0052] For each of the three fields, i.e., credit card number,
expiration date, and cardholder name, an independent single
character classifier may be pretrained before the classifier is
put into use. According to some embodiments, a Convolu-
tional Neural Network (CNN) with one output for each sym-
bol in the alphabet (plus an additional “background class™) is
used for this task. Instead of trying to explicitly segment the
character string into individual characters and recognize
potential character candidates one at a time, according to
some embodiments described herein, the CNN classifier
slides over the whole image, pixel by pixel, and the best-
matching character sequence may be extracted from the
resulting collection of activations. The resulting collection of
activation probabilities at each pixel position in the image will
also be referred to herein as the “activation lattice”” When
creating the activation lattice, the CNN recognizes the correct
character class when it is centered (or nearly-centered) over it,
and predicts the “background class” when positioned over
parts of the background image falling in between valid char-
acters. As may now be more fully appreciated, by utilizing the

String Recognition (Step 620)
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novel “background class” concept, the character string may
be recognized without performing explicit a priori segmen-
tation.

[0053] As will be discussed further with reference to FIGS.
9A and 9B, sliding a single-character CNN classifier over the
input image may result in a noisy activation lattice, from
which extracting the correct label sequence may prove diffi-
cult and error-prone. The pre-trained single-character recog-
nizer may therefore be adapted over a training set consisting
of'a collection of images with corresponding label sequences.
Training the character recognizer may comprise changing the
CNN’s parameters such that the predicted character string
matches the label sequence. This type of sequence training
ensures that the optimization criterion is better aligned with
the task at hand, which is to recognize a string of several
characters. As compared to the pre-trained CNN, extracting
the correct character label sequence from the trained CNN’s
activation lattice is more accurate and more robust.

[0054] As will be understood, the character classifiers may
also be customized for the particular credit card information
fields that they are operating on:

[0055] Credit card number: The alphabet for the credit card
number recognizer may consist of the ten digits (i.e., 0-9), and
the string recognizer may return two possible label
sequences—one with 15 digits and one with 16 digits (since
both sequence lengths are supported by different credit card
vendors). Then, the potential credit card number sequence
that passes the aforementioned checksum tests may be
selected as the most likely credit card number character
sequence.

[0056] Expiration date: The alphabet for the expiration date
recognizer may consist of nineteen uppercase letters (i.e.,
those that are used in the various month abbreviations), ten
digits (i.e., 0-9) and three special characters (i.e., the period,
dash, and forward slash). Because expiration dates on credit
cards have two common formats, i.e., those of length five and
those of length eight, the expiration date recognizer may
return label sequences of both length five and length eight,
with the date sequence more strongly matching a tailored
regular expression search and/or an expected date format
being selected as the most likely expiration date character
sequence.

[0057] Card holder name: The alphabet for the card holder
name recognizer may consist of twenty-six uppercase letters
(i.e., A-Z), six special characters (e.g., hyphens, periods,
commas, forward slashes, apostrophes, and ampersands), and
a space. Cardholder names have no fixed length, and the name
recognizer therefore returns the most likely sequence for this
task.

[0058] For all three tasks, training data may be extracted
from annotated credit cards. For the single-character classi-
fier, single characters and the corresponding labels may be
extracted. For the sequence training phase, images of the
entire strings with the sequence labels are required.

[0059] String Clean Up and Validation (Step 650)

[0060] Signals returned from the object recognition engine
215 are often noisy and include additional or incorrect infor-
mation, so to improve results, fields may be validated before
being returned to the user (Step 650).

[0061] For example, expiration dates returned from the
object recognition engine 215 can appear in several different
formats/styles: dd.mm.yy; dd/mm/yy; dd-mm-yy; mm/yy;
mm.yy; mm-yy; and mm/yy. In some embodiments, the rec-
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ognized expiration dates are only returned if they match, e.g.,
by a regular expression search, one of these expected date
formats.

[0062] Names often come back very close (but not exact) to
the expected names, so, according to some embodiments, a
post-processing step of searching a user’s “Address Book”
application (or similar database directory of known, i.e.,
valid, contacts) may be employed in order to find the closest
edit-distance match in the Address Book to the recognized
card holder name string. In this context, valid character
strings refer to strings for which there is a particular reason or
confirmation from an authoritative third party source that the
string in question is, in fact, a valid string for the relevant
context (e.g., a name may be pre-validated by appearing in a
user’s Address Book application, and a word or sequence of
characters may be identified as valid by virtue of appearing in
a language model of a language of interest). If the match
between the predicted card holder name string and the
Address Book entry is sufficient close, some embodiments
may replace the recognized card holder name string with the
closest match from the Address Book or similar application.
Multiple checks may be made, as names appearing on credit
cards sometimes include middle names, prefixes (e.g., Mr.,
Mrs., Dr., etc.), abbreviations, etc.—and sometimes they do
not.

[0063] Some embodiments may additionally employ sup-
port for what will be referred to herein as a “language model.”
Utilizing such a language model, the string validation process
may analyze the distribution of characters and leverage
knowledge from the language model regarding how likely
certain characters are to follow other characters. Language
models may be established by first examining a large corpus
of valid and relevant names and then computing models,
which may later be used to provide a confidence measure as to
whether a recognized string is or is not likely a name—even if
it’s not in the user’s Address Book. Incorporating the lan-
guage model during the decoding phase may potentially help
the CNN classification engine recover from ambiguous or
low-confidence activations. Such incorporation may be done
in various ways, e.g., lattice rescoring, simple score weight-
ing, or more sophisticated integration into the recognition
engine. Common linguistics techniques, such as those
employed in handwriting/drawing recognition engines may
be employed to leverage a character’s surrounding context in
order to help disambiguate the true identity of characters.
Thus, the character recognition scores from the object recog-
nition engine 215 may be intelligently combined with the
language model scores to enhance the string validation por-
tion of the object recognition engine 215.

[0064] Convolutional Neural Networks (CNN’s)

[0065] The ability of multi-layer neural networks trained
with gradient descent to learn complex, high-dimensional,
non-linear mappings from large collections of examples
make them good candidates for image recognition tasks. A
trainer classifier (normally, a standard, fully-connected multi-
layer neural network can be used as a classifier) categorizes
the resulting feature vectors into classes. However, it could
have some problems that may influence the character recog-
nition results. The convolution neural network solves this
shortcoming of traditional classifiers to achieve improved
performance on pattern recognition tasks.

[0066] The CNN is a special form of multi-layer neural
network. Like other networks, CNNs are trained by back
propagation algorithms. The difference is that the convolu-
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tional network combines three architectural ideas to ensure
some degree of shift, scale, and distortion invariance: local
receptive field, shared weights (or weight replication), and
spatial or temporal sub-sampling. CNN’s have been designed
especially to recognize patterns directly from digital images
with a minimum of pre-processing operations. The prepro-
cessing and classification modules are within a single inte-
grated scheme.

[0067] A typical convolutional neural network may consist
of a set of several layers. The values of the feature maps for
each layer are computed by convolving the input layer with
the respective kernel and applying an activation function to
get the results. Each convolution layer may be followed by a
sub-sampling layer, which reduces the dimension of the
respective convolution layer’s feature maps by a constant
factor. The layers of the neural network may be viewed as a
trainable feature extractor. Then, a trainable classifier may be
added to the feature extractor, in the form of various fully-
connected layers (i.e., a universal classifier).

[0068] Referring now to FIG. 7, an exemplary convolu-
tional neural network (CNN) 700 is illustrated, in accordance
with one embodiment. According to this exemplary CNN; the
model extracts simple feature maps at a higher resolution, and
then converts them into more complex feature maps at a
coarser resolution by sub-sampling a layer, e.g., by a factor of
two. After two layers of convolution and subsampling, the
resulting feature map is too small for a third layer of convo-
Iution. Thus, the first two layers of this neural network can be
viewed as a trainable feature extractor. Then, a trainable clas-
sifier is added to the feature extractor, in the form of two
fully-connected layers (i.e., a universal classifier). Finally, the
weights for each layer may be updated via the process of back
propagation, which may begin with the last layer and move
backwards through the layers until the first layer is reached.
[0069] Asshown in FIG. 7, input layer 705 comprises a ‘4’
character, e.g., as read from an exemplary credit card. The
input layer 705 may undergo convolution sub-sampling,
resulting in a first plurality of smaller feature maps 710. Each
of'these smaller feature maps 10 may undergo a second round
of convolution sub-sampling, resulting in a second plurality
of yet smaller feature maps 715. These features may then be
combined with a trainable classifier and used as a universal
classifier, i.e., a set of fully connected neurons 720. The
universal classifier may be used to generate an output layer
725 by classifying incoming characters into one of the poten-
tial output classes 730 (in one embodiment, the output classes
comprise 0-9) or a “background” class 735. As will be under-
stood, FIG. 7 is merely exemplary, and represents just one
embodiment of a possible CNN that may be used to classify
incoming characters. The various parameters and layers may
be adjusted to fit a particular implementation.

[0070] Character Sequence Recognition with No Explicit
Segmentation
[0071] In recent years, focus in research and industry has

been on developing and employing powerful machine learn-
ing techniques that are applied to optical character recogni-
tion (OCR) problems, where a grayscale image is assigned to
one out of k predefined output classes. Many benchmarks are
most successfully solved with CNNs (and variants thereof)
that use raw pixel intensities as their inputs.

[0072] A common shortcoming of such single-character
classifiers is that sequences need to be segmented before each
individual character may be recognized. As a consequence,
the success of such a sequence classifier relies on good char-
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acter segmentation. Using standard image processing tech-
niques (e.g., binarization and connected component analysis)
only works for images with a relatively uniform background.
For OCR in natural images, often characterized by highly-
varying backgrounds, it is almost impossible to obtain a good
segmentation. For these scenarios, a successful algorithm not
only needs to classify segmented characters—but also has to
learn the segmentation. Various techniques have been used to
attempt to solve this problem, e.g., over-segmentation, or
using recurrent neural networks (RNNs) that learn to classify
sequences from input images. Both approaches have draw-
backs, to which the inventors have discovered novel and
non-obvious solutions.

[0073] Thus, disclosed herein are systems and methods that
adapt to varying backgrounds and varying character spacings
without substantially degrading the classification accuracy of
character sequences in natural images. Referring now to FIG.
8, an exemplary digit sequence in a natural image 800 is
illustrated, in accordance with one embodiment. In this
example, the image has the sequence “523” across several
different noisy backgrounds and with several intervening
non-character features interspersed with the characters. As
will be discussed below with respect to FIGS. 9A and 9B, a
sliding, pretrained CNN window may be used to construct
activation lattice(s) that may be “decoded” to extract a char-
acter sequence from the natural image without performing
segmentation.

[0074] Instead of explicitly trying to segment and recog-
nize potential candidates, according to some embodiments
described herein, a CNN slides over the whole image, pixel-
by-pixel, and the best matching character sequence may be
extracted from the resulting collection of activations, referred
to herein as the “activation lattice.” Each column in this lattice
(see, e.g., activation lattice 930 in FIG. 9A and activation
lattice 975 in FIG. 9B) corresponds to the activations of a
CNN centered at this pixel in the input image (see, e.g., input
image 900 in FIG. 9A and input image 950 in FIG. 9B). The
CNN outputs may then be normalized, e.g., with a sofimax
activation function, to be between 0 (white) and 1 (black) (and
sum to unity), and can be interpreted as posterior class prob-
abilities of the input image belonging to class k. Each row
corresponds to the activations of the k” class across the
image. In FIGS. 9A and 9B, activations in each row 915
correspond to digits (0 to 9 from top to bottom) and an
additional background class, ‘g’ (bottom row).

[0075] Sliding a pretrained digit classifier 905/955 over the
input image (e.g., along the path of arrows 920/980 in FIGS.
9A and 9B) results in a noisy activation lattice (see, e.g.,
activation lattice 930 in FIG. 9A). Arrows 910/960 illustrate
the correspondence between the position of the classifiers
905/955 and their corresponding activations 925/965 in the
activation lattices 930/975, respectively.

[0076] Thus, as may now be better appreciated, obtaining
the correct label sequence “523” from this activation lattice
may prove difficult and error-prone. In particular, the labels
“5” and “2” are likely to be extract successfully, but the label
“3” is likely to be missed (as evidenced by the lack of a
defined activation position under the “3” digit in activation
lattice 930). Furthermore, due to relatively high activations
for different classes at various positions throughout the
image, an additional wrong label is very likely to be included
in any prediction derived from the activation lattice 930.
[0077] One goal of this process is to obtain an activation
lattice from which the correct sequence is extracted consis-
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tently, with high accuracy, and without knowing the string
length a priori. To this end, according to some embodiments,
the pretrained CNN may be trained over a “training set,” i.e.,
a collection of images with corresponding label sequences,
and then back propagating the sequence errors through a
Connectionist Temporal Classification layer (CTC)—with-
out ever having to segment the sequence explicitly.

[0078] As opposed to the pretrained CNN shown in FIG.
9 A, extracting the correct label “523” from the trained CNN’s
activation lattice is more accurate and more robust (see acti-
vation lattice 975 in FIG. 9B). Furthermore, the trained CNN
learned to predict the background class ‘g,” for all but the
regions that coincide with the digits “5,” “2,” and “3”—
making any explicit segmentation unnecessary.

[0079] Compared with prior art solutions, this approach
benefits from all advantages of CTC training. Furthermore,
this approach results in gained efficiencies—not only because
amore efficient CNN is used instead of notoriously difficult to
train RNNSs, but also because the pretrained CNN remedies
the slow convergence seen with conventional CTC training.
[0080] Turning now to a preferred embodiment of the CNN
classification without explicit segmentation process, a pre-
trained CNN with k+1 outputclasses, i.e., one output for each
symbol in the alphabet plus an additional “background class,”
is created. For the sake of explanation, it will be assumed that
the image containing the sequence to be classified is horizon-
tally aligned, with its shorter, i.e., vertical, dimension equal to
the height of the CNN’s receptive field. As shown in FIGS. 9A
and 9B, the height of the CNN’s receptive field 905/955 is
equal to the vertical dimension of the natural image with the
“523” number sequence in it. In cases where a broader cut is
made from the incoming image, the incoming image may be
scaled to ensure that its height is at the predetermined fixed
size (e.g., a height of 28 pixels and a width that covers full
image). Scaling of the image is permissible because the CNN
can be made resilient to scaling issues as it is trained. Alter-
natively, if the image is not scaled, the classifier could be
shifted vertically, with the activation likelihoods summed (or
averaged) over the vertical extent of the image at each pixel
position.

[0081] Sliding the pretrained CNN from left to right over
the input image (e.g., along the path of arrows 920/980 in
FIGS. 9A and 9B) and recording the activations at every pixel
position, p, results in the activation lattice, y,7, i.e., the pos-
terior class probability of a window centered at pixel p
belonging to class k. The conditional probability of any path
o of length P through the activation lattice given an input
image X is:

P-1 [§8)]
pelx =]z,
p=0

[0082] The conditional probability of any sequence s of
length S<P, given an input image x is:

pisl =" peln, @

oel)

where Q is the set of all paths o of length P that result in the
identical sequence s after removing repetitive labels and the
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background class. The goal, then, as in standard neural net-
work training, is to maximize equation 2 over a training set
T={x,, s;}. The adaptation of the pretrained CNN is then
performed using stochastic gradient descent may proceeds in
the following way:

[0083] 1. Randomly pick an image xi with the corre-
sponding label sequence xi from the training set T.

[0084] 2. Compute the derivative of equation 2 with
respect to the network outputs y, 2.

[0085] 3. Back propagate the error signal through the
network and perform a weight update.

[0086] 4. Repeat Steps 1-3 above until reaching conver-
gence. (Convergence is reached when any further
change in the model parameters will no longer meaning-
fully impact recognition accuracy.)

[0087] Referring againto FIG. 9A, an exemplary activation
lattice 930 using a pre-trained CNN is illustrated, in accor-
dance with one embodiment. FIG. 9A depicts an activation
lattice that would be created with a CNN that recognized the
characters “5,” “2.” and “3.” The area in the activation lattice
930 corresponding to the “3” is a bit noisy because the clas-
sifier may not have seen a “3” before. If the CNN were then
retrained, resulting in the trained CNN of FIG. 9B, the acti-
vation lattice 975 would be more likely to show the isolated
“blobs” corresponding to the correct character classes,
located at the positions in the lattice corresponding to the
positions of the characters in the image.

[0088] Activation Lattice Decoding

[0089] Once the activation lattice has been created for a
given input image, it must be decoded to determine which
characters (and how many characters total) are in the input
image. Different heuristics have been developed by the inven-
tors to find so-called “clusters” of activations within the lat-
tice that may be segmented into a single character, e.g. a “3.”
Once a region has been located, the process may be iterated
until the entire sequence has been traversed.

[0090] A naive approach to activation lattice decoding may
simply take the largest activation(s) across the lattice only.
However, according to some embodiment disclosed herein,
the character sequence as a whole may be analyzed to deter-
mine the most likely final result. For example, it is known that
valid credit card numbers will have either fifteen or sixteen
digits, so, according to some embodiments, the activation
energies of consecutive blocks may be summed, and the
fifteen (and/or sixteen) largest activation energies may be
kept as the decoded fifteen (and/or sixteen)-digit credit card
number sequence. [In some embodiments, both fifteen and
sixteen digit sequences are checked because it is not always
known a priori which vendor’s credit card is being read.]
Other credit card-related heuristics may also be employed,
such as the checksum and vendor-prefix heuristics described
above, in order to validate whether the recognized sequence
of characters is valid. Similar techniques may be employed
with respect to expiration dates, which typically comprise
sequences of five or eight characters. With the credit card
holder names, the length of the sequence is not known a
priori, so different techniques may be employed, such as
removing consecutive repetitive activations and backgrounds
character classes, as will be discussed in further detail below
with reference to FIG. 9B.

[0091] Other credit card-related heuristics that may help
with the decoding of the activation lattice include the fact that
the fixed geometry of embosser machines provides an
“expected width” between digits. For example, if it is known
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that certain characters in the credit card number sequence
have center lines that are 2 mm apart, the decoding of the
activation lattice may be biased towards strong activations (as
would be typical), with the additional requirement that suc-
cessive activation are located 2 mm apart. This further heu-
ristic may be used to reject certain cases where, e.g., the
engine hasn’t learned a particular character well yet or where
the engine still thinks a particular activation is ambiguous.

[0092] Turning back to FIG. 9B, an exemplary a decoded
character sequence 970 is shown based on the activation
lattice 975. As mentioned above, the CTC retraining process
may involve taking the activation lattice output, looking at the
likelihoods for each of the potential output classes at each
pixel position, and determining a sequence with a length
equal to the number of pixels in the image’s width. Steps 1-4
in FIG. 9B illustrate the following of the exemplary decoding
heuristics outlined above: 1) Repetitive positions are
removed; and 2) each time a background class is repeated, it
is also removed. For example: at Step 1, the status of the
decoded sequence is:
« 55 222 33 ” (wherein under-
scores represent a finding of the “background class™). After
removing repetitive positions and background classes, at Step
2, the status of the decoded sequence is: “_5 _3 _3 _” After
removing the background classes from consideration, at Step
3, the status of the decoded sequence is: “S 2 3. Finally, at
Step 4, after removing blank spaces, the decoded sequence is
determined to be: <523

[0093] Referring now to FIG. 10, an exemplary credit card
recognition process using a sliding CNN window 1000 is
summarized at a high-level and illustrated in flowchart form,
in accordance with one embodiment. First, the process
receives the image with the candidate characters for recogni-
tion (Step 1005). Next, the neural network classifier may be
placed over the image (after appropriate scaling, if necessary)
at a starting position (Step 1010). In some embodiments, the
starting position may be the far left of a mainly horizontal
image (i.e., an image that is much wider than it is tall), the
process may proceed by moving the classifier in a rightward
direction across the extent of the image. Next, the process
may record a likelihood value for each of k potential output
classes at the current position of the neural network classifier
over the image (Step 1015). In some embodiments, one of the
k potential output classes comprises a “background class.”
When the various likelihood values (also referred to herein as
“activation strengths”) have been recorded, the process may
determine whether there are further positions in the image for
the neural network classifier to be placed over (Step 1020). If
there are further positions, the process may slide the neural
network classifier over the image by one position, e.g., by one
pixel (Step 1025). The process may then proceed by recording
the likelihood values at each position across the extent of the
image until there are no further positions in the image for the
neural network classifier to be placed over (‘NO’ at Step
1020).

[0094] At step 1030, a single “activation lattice” for the
image may be created by aggregating all the likelihood values
recorded from all the image positions over which the classi-
fier has been evaluated. Next, the process may determine the
sequence of most likely output classes for each pixel position
(Step 1035). Next, various decoding heuristics, such as those
described above, may be employed by the process to decode
the sequence of output classes into a single string of output
characters likely to correspond to the characters in the input
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image (Step 1040). A final step may involve validating the
decoded sequence using predetermined heuristics, such as
expected sequence length, validated string values (e.g.,
names in an Address Book), known valid sequence prefixes,
known accepted string formats, etc. (Step 1045). Finally, the
predicted character sequence for the image may be returned to
the requesting process (Step 1050).

[0095] Referring now to FIG. 11, a simplified functional
block diagram of an illustrative electronic device 1100 is
shown according to one embodiment. Electronic device 1100
may include processor 1105, display 1110, user interface
1115, graphics hardware 1120, device sensors 1125 (e.g.,
proximity sensor/ambient light sensor, accelerometer and/or
gyroscope), microphone 1130, audio codec(s) 1135, speaker
(s) b 1140, communications circuitry 1145, digital image
capture unit 1150, video codec(s) 1155, memory 1160, stor-
age 1165, and communications bus 1170. Electronic device
1100 may be, for example, a personal digital assistant (PDA),
personal music player, mobile telephone, or a notebook, lap-
top, or tablet computer system.

[0096] Processor 1105 may be any suitable programmable
control device capable of executing instructions necessary to
carry out or control the operation of the many functions
performed by device 1100 (e.g., such as the processing of
images in accordance with operations in any one or more of
the Figures). Processor 1105 may, for instance, drive display
1110 and receive user input from user interface 1115 which
can take a variety of forms, such as a button, keypad, dial, a
click wheel, keyboard, display screen and/or a touch screen.
Processor 1105 may be a system-on-chip such as those found
in mobile devices and include a dedicated graphics process-
ing unit (GPU). Processor 1105 may be based on reduced
instruction-set computer (RISC) or complex instruction-set
computer (CISC) architectures or any other suitable architec-
ture and may include one or more processing cores. Graphics
hardware 1120 may be special purpose computational hard-
ware for processing graphics and/or assisting processor 1105
process graphics information. In one embodiment, graphics
hardware 1120 may include one or more programmable
graphics processing units (GPUs).

[0097] Sensor and camera circuitry 1150 may capture still
and video images that may be processed to generate images,
at least in part, by video codec(s) 1155 and/or processor 1105
and/or graphics hardware 1120, and/or a dedicated image
processing unit incorporated within circuitry 1150. Images so
captured may be stored in memory 1160 and/or storage 1165.
Memory 1160 may include one or more different types of
media used by processor 1105, graphics hardware 1120, and
image capture circuitry 1150 to perform device functions. For
example, memory 1160 may include memory cache, read-
only memory (ROM), and/or random access memory (RAM).
Storage 1165 may store media (e.g., audio, image and video
files), computer program instructions or software, preference
information, device profile information, and any other suit-
able data. Storage 1165 may include one more non-transitory
storage mediums including, for example, magnetic disks
(fixed, floppy, and removable) and tape, optical media such as
CD-ROMs and digital video disks (DVDs), and semiconduc-
tor memory devices such as Flectrically Programmable
Read-Only Memory (EPROM), and Electrically Erasable
Programmable Read-Only Memory (EEPROM). Memory
1160 and storage 1165 may be used to retain computer pro-
gram instructions or code organized into one or more modules
and written in any desired computer programming language.
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When executed by, for example, processor 1105, such com-
puter program code may implement one or more of the meth-
ods described herein.

[0098] It is to be understood that the above description is
intended to be illustrative, and not restrictive. The material
has been presented to enable any person skilled in the art to
make and use the invention as claimed and is provided in the
context of particular embodiments, variations of which will
be readily apparent to those skilled in the art (e.g., some of the
disclosed embodiments may be used in combination with
each other). In addition, it will be understood that some of the
operations identified herein may be performed in different
orders. The scope of the invention therefore should be deter-
mined with reference to the appended claims, along with the
full scope of equivalents to which such claims are entitled. In
the appended claims, the terms “including” and “in which”
are used as the plain-English equivalents of the respective
terms “comprising” and “wherein.”

1. A non-transitory program storage device, readable by a
programmable control device and comprising instructions
stored thereon to cause one or more processing units to:
obtain a first representation of a first image, wherein the
first representation comprises a first plurality of pixels;

downscale the first representation of the first image to
create a first low-resolution representation of the first
image;

in a first thread, identify a first low-resolution representa-

tion of an object-of-interest within the first low-resolu-
tion representation of the first image;
in a second thread, identify and crop out a first region
within the first representation of the first image to create
a first full-resolution representation of the object-of-
interest, wherein the first and second threads are
executed concurrently by the one or more processing
units;
evaluate a quality metric for each of the first low-resolution
representation of the object-of-interest and the first full-
resolution representation of the object-of-interest; and

select the first representation of the object-of-interest that
is evaluated as having a quality metric exceeding a first
quality threshold value.

2. The non-transitory program storage device of claim 1,
wherein the instructions to identify and crop out a first region
within the first representation of the first image to create a first
full-resolution representation of the object-of-interest further
comprise instructions to: perform an edge detection process
on the first representation of the first image.

3. The non-transitory program storage device of claim 2,
wherein the instructions to perform edge detection further
comprise instructions to perform a Canny edge detection
process.

4. The non-transitory program storage device of claim 1,
further comprising instructions to guide placement of the
object-of-interest within the first image if neither the first
low-resolution representation of the object-of-interest nor the
first full-resolution representation of the object-of-interest
have been identified within a first predetermined amount of
time.

5. The non-transitory program storage device of claim 1,
wherein the instructions to identify and crop out a first region
within the first representation of the first image to create a first
full-resolution representation of the object-of-interest further
comprise instructions to perform at least one of the following
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operations on the first representation of the first image: per-
spective correction, scaling, and corner detection.

6. The non-transitory program storage device of claim 1,
wherein the object-of-interest comprises one or more sub-
regions-of-interest.

7. The non-transitory program storage device of claim 6,
wherein the instructions to evaluate a quality metric for each
of the first low-resolution representation of the object-of-
interest and the first full-resolution representation of the
object-of-interest further comprise instructions to: evaluate a
quality metric for each of the one or more sub-regions-of-
interest.

8. A system, comprising:

a memory having, stored therein, computer program code;

a digital camera; and

one or more processing units operatively coupled to the

digital camera and memory and configured to execute

instructions in the computer program code that cause the

one or more processing units to:

obtain a first representation of a first image from the
digital camera, wherein the first representation com-
prises a first plurality of pixels;

downscale the first representation of the first image to
create a first low-resolution representation of the first
image;

in a first thread, identify a first low-resolution represen-
tation of an object-of-interest within the first low-
resolution representation of the first image;

in a second thread, identify and crop out a first region
within the first representation of the first image to
create a first full-resolution representation of the
object-of-interest, wherein the first and second
threads are executed concurrently by the one or more
processing units;

evaluate a quality metric for each of the first low-reso-
lution representation of the object-of-interest and the
first full-resolution representation of the object-of-
interest; and

select the first representation of the object-of-interest
that is evaluated as having a quality metric exceeding
a first quality threshold value.

9. The system of claim 8, wherein the instructions to iden-
tify and crop out a first region within the first representation of
the first image to create a first full-resolution representation of
the object-of-interest further comprise instructions to: per-
form an edge detection process on the first representation of
the first image.

10. The system of claim 9, wherein the instructions to
perform edge detection further comprise instructions to per-
form a Canny edge detection process.

11. The system of claim 8, wherein the computer program
code further comprises instructions to guide placement of the
object-of-interest within the first image if neither the first
low-resolution representation of the object-of-interest nor the
first full-resolution representation of the object-of-interest
have been identified within a first predetermined amount of
time.

12. The system of claim 8, wherein the instructions to
identify and crop out a first region within the first represen-
tation of the first image to create a first full-resolution repre-
sentation of the object-of-interest further comprise instruc-
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tions to perform at least one of the following operations on the
first representation of the first image: perspective correction,
scaling, and corner detection.

13. The system of claim 8, wherein the object-of-interest
comprises one or more sub-regions-of-interest.

14. The system of claim 13, wherein the instructions to
evaluate a quality metric for each of the first low-resolution
representation of the object-of-interest and the first full-reso-
Iution representation of the object-of-interest further com-
prise instructions to: evaluate a quality metric for each of the
one or more sub-regions-of-interest.

15. A computer-implemented method, comprising:

obtaining a first representation of a first image from a first

digital camera, wherein the first representation com-
prises a first plurality of pixels;

downscaling, using a computer, the first representation of

the first image to create a first low-resolution represen-
tation of the first image;

in a first computer thread, identifying a first low-resolution

representation of an object-of-interest within the first
low-resolution representation of the first image;

in a second computer thread, identifying and cropping out

a first region within the first representation of the first
image to create a first full-resolution representation of
the object-of-interest, wherein the first and second
threads are executed concurrently by the one or more
processing units;

evaluating, using a computer, a quality metric for each of

the first low-resolution representation of the object-of-
interest and the first full-resolution representation of the
object-of-interest; and

selecting, using a computer, the first representation of the

object-of-interest that is evaluated as having a quality
metric exceeding a first quality threshold value.

16. The computer-implemented method of claim 15,
wherein the acts of identifying and cropping out a first region
within the first representation of the first image to create a first
full-resolution representation of the object-of-interest further
comprise the act of: performing an edge detection process on
the first representation of the first image.

17. The computer-implemented method of claim 16,
wherein the act of performing an edge detection process
further comprises performing a Canny edge detection pro-
cess.

18. The computer-implemented method of claim 15,
wherein the acts of identifying and cropping out a first region
within the first representation of the first image to create a first
full-resolution representation of the object-of-interest further
comprise performing at least one of the following acts on the
first representation of the first image: perspective correction,
scaling, and corner detection.

19. The computer-implemented method of claim 15,
wherein the object-of-interest comprises one or more sub-
regions-of-interest.

20. The computer-implemented method of claim 19,
wherein the act of evaluating a quality metric for each of the
first low-resolution representation of the object-of-interest
and the first full-resolution representation of the object-of-
interest further comprises the act of evaluating a quality met-
ric for each of the one or more sub-regions-of-interest.
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