US 20240146505A1
a9y United States

a2y Patent Application Publication o) Pub. No.: US 2024/0146505 A1

Tsuchida 43) Pub. Date: May 2, 2024
(54) SECURE COMPUTATION SYSTEM, SECURE  (52) U.S. CL

COMPUTATION SERVER APPARATUS, CPC ... HO4L 9/0631 (2013.01); HOAL 2209/08

SECURE COMPUTATION METHOD, AND (2013.01)

SECURE COMPUTATION PROGRAM
(71) Applicant: NEC Corporation, Minato-ku, Tokyo 7 ABSTRACT

JpP . .
(IP) An secure computation server apparatus in a secure com-

putation system includes: a local shuffle part that computes,

(72)  Inventor: - Hikaru Tsuchida, Tokyo (IP) by using a shared permutation shared by four of the five

(73) Assignee: NEC Corporation, Minato-ku, Tokyo secure computation server apparatuses, permuted values of
IP) a share for a remaining one of the five secure computation

server apparatuses and sends the permuted values of the

(21) Appl. No.: 18/272,733 share to the remaining secure computation server apparatus;
) a comparison and verification part that compares values with

(22) PCT Filed: Jan. 18, 2021 each other, which are received from at least three of the four

secure computation server apparatuses and which are sup-

(86) PCT No.: PCT/JP2021/001468 posed to be a same value, and adopts the values that are same
§ 371 (c)(1), at least two values as an accurate permutation; and a shuffle
(2) Date: Jul. 17, 2023 synthesis part that synthesizes mini-shuffles, by using a

shared permutation shared by a corresponding combination

of four secure computation server apparatuses and a permu-

(51) Int. CL tation adopted by a corresponding one of the comparison
HO4L 9/06 (2006.01) and verification parts.

Publication Classification

SECURE
COMPUTATION [/~ 100_0 100
SEVER
APPARATUS
100 4 100 1
SECURE SECURE
COMPUTATION COMPUTATION
SEVER SEVER
APPARATUS APPARATUS
100 3 100 2
SECURE SECURE
COMPUTATION COMPUTATION
SEVER SEVER
APPARATUS APPARATUS




Patent Application Publication

FIG. 1

100_4

\\

May 2, 2024 Sheet 1 of 6

SECURE
COMPUTATION
SEVER
APPARATUS

/,100_0

SECURE
COMPUTATION
SEVER
APPARATUS

100_3

\\

SECURE
COMPUTATION
SEVER
APPARATUS

US 2024/0146505 A1l

‘//,»-100

100_1

~

SECURE
COMPUTATION
SEVER
APPARATUS

100_2

fJ

SECURE
COMPUTATION
SEVER
APPARATUS




Patent Application Publication = May 2, 2024 Sheet 2 of 6 US 2024/0146505 A1

FIG. 2

100_i
101_i 102_]
COMPARISON
LOCAL AND
SHUFFLE PART VERIFICATION
PART
103_i
SHUFFLE
SYNTHESIS
PART




Patent Application Publication = May 2, 2024 Sheet 3 of 6 US 2024/0146505 A1

FIG. 3

< START >

S11
. LOCAL SHUFFLE

S12~
COMPARISON AND VERIFICATION

S13
- SHUFFLE SYNTHESIS

(oo )




Patent Application Publication

FIG. 4

200_4

\\

May 2, 2024 Sheet 4 of 6

US 2024/0146505 A1l

SECURE
COMPUTATION
SEVER
APPARATUS

//200_0

*///—200

SECURE
COMPUTATION
SEVER
APPARATUS

200_3

SECURE
COMPUTATION
SEVER
APPARATUS

200_1

/

SECURE
COMPUTATION
SEVER
APPARATUS

200_2

/J

SECURE
COMPUTATION
SEVER
APPARATUS




Patent Application Publication = May 2, 2024 Sheet 5 of 6 US 2024/0146505 A1

FIG. 5

200_i
201_i 202_i
COMPARISON
LOCAL AND
SHUFFLE PART VERIFICATION
PART
203_i
SHUFFLE
SYNTHESIS
PART




Patent Application Publication = May 2, 2024 Sheet 6 of 6 US 2024/0146505 A1

FIG. 6

/10
13 11
/ p
‘ AUXILIARY I C P U
ORAGE DEV]
14 12
/ /
| F MAIN STORAGE
DEVICE




US 2024/0146505 Al

SECURE COMPUTATION SYSTEM, SECURE
COMPUTATION SERVER APPARATUS,
SECURE COMPUTATION METHOD, AND
SECURE COMPUTATION PROGRAM

TECHNICAL FIELD

[0001] The present invention relates to a secure compu-
tation system, a secure computation server apparatus, a
secure computation method, and a secure computation pro-
gram.

BACKGROUND ART

[0002] In recent years, researches and developments on
techniques referred to as secure computation are active.
Secure computation is one of the techniques for executing
predetermined processing while keeping its computation
processes and the results thereof secret to third parties. One
typical technique used for secure computation is a multi-
party computation technique. In this multiparty computation
technique, data that needs to be kept secret is distributed to
a plurality of servers (secure computation server appara-
tuses), and each server performs various operations on the
data distributed thereto while keeping the data secret. The
data distributed to the individual secure computation server
apparatuses is called “shares”. Hereinafter, unless otherwise
stated, the term “secure computation” signifies the multi-
party computation technique.

[0003] In the secure computation as described above,
computation protocols for specific use are usually imple-
mented in addition to four basic arithmetic operations. One
example of these computation protocols for specific use is a
shuflle protocol. If the shuffle protocol is used as one of the
secure computation protocols, for example, sorting of the
shares can be performed efficiently.

[0004] This sorting is a process of comparing the magni-
tudes of the values, which are kept secret as the shares, with
each other and rearranging the shares based on the magni-
tude comparison result. The magnitude comparison result
obtained in the sorting also needs to be kept secret. For
example, information about the result of the comparison
between the value of the share having a sequence number i
and the value of the share having a sequence location j
indirectly includes information about the values of the
shares having the sequence numbers i and j. If this infor-
mation is leaked, a security problem is caused. Thus, it is
necessary to perform the sorting while keeping secret not
only the values of the shares but also the magnitude com-
parison result. However, performing the computation while
keeping the magnitude comparison result secret results in a
poor efficiency (a large communication cost).

[0005] If a shuffle is performed before the sorting, the
relationship between the sequence numbers and the values
of the shares is lost. Thus, there is no need to keep the
magnitude comparison result secret. In this way, since there
is no need to keep the comparison result secret, the ineffi-
cient computation does not need to be performed, and the
sorting efficiency is consequently improved. Therefore,
implementing the shuffle protocol as one of the secure
computation protocols is highly beneficial.

CITATION LIST

Non-Patent Literature

[0006] NPL 1: Byali, M., Chaudhari, H., Patra, A., &
Suresh, A. (2020). FLASH: fast and robust framework for

May 2, 2024

privacy-preserving machine learning. Proceedings on Pri-
vacy Enhancing Technologies, 2020(2), 459-480.

SUMMARY

Technical Problem

[0007] The disclosure of the above citation list is incor-
porated herein in its entirety by reference thereto. The
following analysis has been made by the present inventor.
[0008] Different techniques that are generally referred to
as secure computation achieve different security levels. For
example, a case in which one of the participants in a
multiparty secure computation is a dishonest person will be
considered. In this case, it is possible to adopt a secure
computation technique that can detect the presence of the
dishonest person and can abort its processes. Alternatively,
it is possible to adopt a secure computation technique that
can obtain an accurate computation result without aborting
its processes even if there is the dishonest person. The latter
technique achieves a higher security than the former tech-
nique. The secure computation satisfying the latter security
is referred to as Guaranteed Output Delivery (GOD), and an
example of the secure computation realizing this GOD is
known (for example, see NPL 1).

[0009] In addition, regarding the evaluation of the security
in the secure computation, not only the advantageous effects
of the security that can be achieved, but also pre-conditions
have significant implications. A typical pre-condition is use
of a random oracle model as a hash function.

[0010] Ahash function is a function that responds a unique
output to an input, and it is difficult to deduce the input from
the output. However, although it is difficult to deduce the
input from the output, there is no guarantee that the input
cannot be deduced from the output. Thus, the security is
evaluated on the assumption that the hash function used does
not have vulnerability. The security based on this assump-
tion is called “as being secure in the random oracle model”.
The security of the secure computation in NPL 1 is “as being
secure in the random oracle model”.

[0011] In contrast, there is an expression “as being secure
in the standard model”, as opposed to “as being secure in the
random oracle model”. That is, although the input could be
deduced from the output of the hash function, if this itself
does not mean vulnerability of the secure computation, the
security is referred to “as being secure in the standard
model”. Of course, if the same security level is achieved, the
security of the standard model is higher than the security of
the random oracle model. Thus, when the shuffle protocol is
used, too, it is desirable to achieve Guaranteed Output
Delivery (GOD) in the standard model.

[0012] The present invention has been made in view of the
above problem, and it is an object of the present invention
to provide a secure computation system, a secure computa-
tion server apparatus, a secure computation method, and a
secure computation program that contribute to a bit conver-
sion that achieves Guaranteed Output Delivery (GOD) in the
standard model.

Solution to Problem

[0013] According to a first aspect of the present invention,
there is provided a secure computation system, which
includes five secure computation server apparatuses con-
nected to each other via a network, an individual one of the



US 2024/0146505 Al

secure computation server apparatuses including: a local
shuffle part that computes, by using a shared permutation
shared by four of the five secure computation server appa-
ratuses, permuted values of a share for a remaining one of
the five secure computation server apparatuses and sends the
permuted values of the share to the remaining secure com-
putation server apparatus; a comparison and verification part
that compares values with each other, which are received
from at least three of the four secure computation server
apparatuses and which are supposed to be a same value, and
adopts the values that are same at least two values as an
accurate permutation; and a shuffle synthesis part that syn-
thesizes, regarding five combinations of four secure com-
putation server apparatuses selected from the five secure
computation server apparatuses, mini-shuffles, each of
which is constructed by using a shared permutation shared
by a corresponding combination of four secure computation
server apparatuses and a permutation adopted by a corre-
sponding one of the comparison and verification parts.

[0014] According to a second aspect of the present inven-
tion, there is provided a secure computation server appara-
tus, which is one of five secure computation server appara-
tuses connected to each other via a network, the secure
computation server apparatus including: a local shuffle part
that computes, by using a shared permutation shared by four
of the five secure computation server apparatuses, permuted
values of a share for a remaining one of the five secure
computation server apparatuses and sends the permuted
values of the share to the remaining secure computation
server apparatus; a comparison and verification part that
compares values with each other, which are received from at
least three of the four secure computation server apparatuses
and which are supposed to be a same value, and adopts the
values that are same at least two values as an accurate
permutation; and a shuffle synthesis part that synthesizes,
regarding five combinations of four secure computation
server apparatuses selected from the five secure computation
server apparatuses, mini-shuffles, each of which is con-
structed by using a shared permutation shared by a corre-
sponding combination of four secure computation server
apparatuses and a permutation adopted by a corresponding
one of the comparison and verification parts.

[0015] According to a third aspect of the present inven-
tion, there is provided a secure computation method, which
uses five secure computation server apparatuses connected
to each other via a network, the secure computation method
including: causing an individual one of the secure compu-
tation server apparatuses to compute, by using a shared
permutation shared by four of the five secure computation
server apparatuses, permuted values of a share for a remain-
ing one of the five secure computation server apparatuses;
causing the individual one of the secure computation server
apparatuses to send the permuted values of the share to the
remaining secure computation server apparatus; causing the
individual one of the secure computation server apparatuses
to compare values with each other, which are received from
at least three of the four secure computation server appara-
tuses and which are supposed to be a same value; causing the
individual one of the secure computation server apparatuses
to adopt the values that are same at least two values as an
accurate permutation; and causing the individual one of the
secure computation server apparatuses to synthesize, regard-
ing five combinations of four secure computation server
apparatuses selected from the five secure computation server

May 2, 2024

apparatuses, mini-shuffles, each of which is constructed by
using a shared permutation shared by a corresponding
combination of four secure computation server apparatuses
and a corresponding permutation adopted.

[0016] According to a fourth aspect of the present inven-
tion, there is provided a secure computation program, caus-
ing at least five secure computation server apparatuses
connected to each other via a network to perform a secure
computation, the program including: computing, by using a
shared permutation shared by four of the five secure com-
putation server apparatuses, permuted values of a share for
a remaining one of the five secure computation server
apparatuses; sending the permuted values of the share to the
remaining secure computation server apparatus; comparing
values with each other, which are received from at least three
of'the four secure computation server apparatuses and which
are supposed to be a same value; adopting the values that are
same at least two values as an accurate permutation; and
synthesizing, regarding five combinations of four secure
computation server apparatuses selected from the five secure
computation server apparatuses, mini-shuffles, each of
which is constructed by using a shared permutation shared
by a corresponding combination of four secure computation
server apparatuses and a corresponding permutation
adopted. The program can be recorded in a computer-
readable storage medium. The storage medium may be a
non-transient storage medium such as a semiconductor
memory, a hard disk, a magnetic recording medium, or an
optical recording medium. The present invention can be
embodied as a computer program product.

Advantageous Effects of Invention

[0017] According to the individual aspects of the present
invention, it is possible to provide a secure computation
system, a secure computation server apparatus, a secure
computation method, and a secure computation program that
contribute to a bit conversion that achieves Guaranteed
Output Delivery (GOD) in the standard model.

BRIEF DESCRIPTION OF DRAWINGS

[0018] FIG. 1 is a block diagram illustrating a functional
configuration example of a secure computation system
according to a first example embodiment.

[0019] FIG. 2 is a block diagram illustrating a functional
configuration example of a secure computation server appa-
ratus according to the first example embodiment.

[0020] FIG. 3 is a flowchart illustrating an outline of a
procedure of a secure computation method.

[0021] FIG. 4 is a block diagram illustrating a functional
configuration example of a secure computation system
according to a second example embodiment.

[0022] FIG. 5 is a block diagram illustrating a functional
configuration example of a secure computation server appa-
ratus according to the second example embodiment.
[0023] FIG. 6 is a diagram illustrating a hardware con-
figuration example of a secure computation server appara-
tus.

DESCRIPTION OF EMBODIMENTS

[0024] Hereinafter, example embodiments of the present
invention will be described with reference to the accompa-
nying drawings. However, the present invention is not
limited to the following example embodiments. In addition,



US 2024/0146505 Al

in the drawings, the same or equivalent elements are denoted
by the same reference characters, as necessary. In addition,
the drawings are schematic drawings, and therefore, it
should be noted that the sizes, ratios, etc. of the individual
elements may differ from their actual sizes, ratios, etc. An
element in a drawing may have a portion whose size or ratio
differs from that of the portion of the element in a different
drawing.

First Example Embodiment

[0025] Hereinafter, a secure computation system and
secure computation server apparatuses according to a first
example embodiment will be described with reference to
FIGS. 1 and 2. The first example embodiment is an example
embodiment for describing only a basic concept of the
present invention.

[0026] FIG. 1 is a block diagram illustrating a functional
configuration example of a secure computation system
according to the first example embodiment. As illustrated in
FIG. 1, a secure computation system 100 according to the
first example embodiment includes a first secure computa-
tion server apparatus 100_0, a second secure computation
server apparatus 100_1, a third secure computation server
apparatus 100_2, a fourth secure computation server appa-
ratus 100_3, and a fifth secure computation server apparatus
100_4. The first secure computation server apparatus 100_0,
the second secure computation server apparatus 100_1, the
third secure computation server apparatus 100_2, the fourth
secure computation server apparatus 100_3, and the fifth
secure computation server apparatus 100_4 are connected to
each other via a network such that these apparatuses can
communicate with each other.

[0027] Inthe secure computation system 100 including the
first to fifth secure computation server apparatuses 100_;
(1=0, 1, 2, 3, 4), it is possible to compute target shares from
a value inputted to any one of the first to fifth secure
computation server apparatuses 100_i (i=0, 1, 2, 3, 4) while
keeping the input value and the values acquired in the
computation processes secret, and it is possible to dis-
persedly store the computation results in the first to fifth
secure computation server apparatuses 100_i (i=0, 1, 2, 3, 4).
[0028] In addition, in the secure computation system 100
including the first to fifth secure computation server appa-
ratuses 100_; (i=0, 1, 2, 3, 4), it is possible to compute target
shares from the shares dispersedly stored in the first to fifth
secure computation server apparatuses 100_; (i=0, 1, 2, 3, 4)
while keeping the values in the computation processes
secret, and it is possible to dispersedly store the computation
results in the first to fifth secure computation server appa-
ratuses 100_; (i=0, 1, 2, 3, 4).

[0029] The shares of the computation results may be
reconstructed by causing the first to fifth secure computation
server apparatuses 100_0 to 100_4 to exchange their shares
with each other. Alternatively, the shares may be decoded by
transmitting the shares to an external apparatus other than
the first to fifth secure computation server apparatuses 100_0
to 100_4.

[0030] In addition, in the secure computation system 100
including the first to fifth secure computation server appa-
ratuses 100_; (i=0, 1, 2, 3, 4), even when one of the first to
fifth secure computation server apparatuses 100_i (i=0, 1, 2,
3, 4) is operated by a dishonest person, it is possible to
continue an accurate secure computation without stopping
the processes.

May 2, 2024

[0031] For example, the following construction may be
adopted as the construction of the shares that enables
continuation of an accurate secure computation without
stopping the processes even when one of the first to fifth
secure computation server apparatuses 100_; (i=0, 1, 2, 3, 4)
is operated by a dishonest person as described above.
[0032] Shares of an element x of a residue class ring Z,, of
modulo n, that is, X€Z,,, on the residue class ring Z, are
defined as follows (the shares may be referred to as arith-
metic shares, as necessary). Note that n=2"', where m is an
integer of 2 or more. That is, a residue class ring Z, of
modulo 2 is distinguished from the residue class ring Z,, of
modulo n.

[0033] An clement x of the residue class ring Z,, of modulo
n, that is, X€Z,,, is decomposed to satisty the following
relationship:

[0034] x=xX,+X;+X,+X3+X, mod n

[0035] [x], dispersedly held by the individual partici-

pants P,, (i=0, 1, 2, 3, 4) is defined as follows.

[0036] [X],~(Xy X;11, Xivos Xips, DOtE that X, 7Kg
[0037] Shares of an element x of the residue class ring Z,
of modulo 2, that is, XEZ,, on the residue class ring 7, (the
shares may be referred to as logic shares, as necessary) are
defined in the same way as the above shares on the residue
class ring Z,, where n=2. However, a different notation [x]?
is used to distinguish the residue class ring 7, of modulo 2
from the residue class ring Z, of modulo n. That is, the
shares are specifically defined as follows.

[0038] An element x of the residue class ring Z, of modulo
2, that is, XEZ,, is decomposed as follows. In Equation 1,

TR

+” inside a circle represents an exclusive-or.
x=x¢Px, Dx,Dx3Px,y mod 2

[0039] [x]?,dispersedly held by the individual participants
P,, (i=0, 1, 2, 3, 4) is defined as follows.

[0040]  [X]”~(X,. X, 1. X 20 X;y3), Dote that x,,, =X,

[0041] Ifthese shares [x],, [X];, [X]s, [X]s, and [x], held by
the individual participants P,, (i=0, 1, 2, 3, 4) are determined
as described above, the individual participants P,, (i=0, 1, 2,
3, 4) cannot reconstruct x from their shares [x],, [X];, [X]s,
[x];, and [x], held thereby. However, it is possible to realize
secret sharing in which x can be reconstructed if the shares
held by at least two of the participants P, (=0, 1, 2, 3, 4) are
combined. This secret sharing scheme is referred to as a
2-out-of-5 Replicated Secret Sharing Scheme.
[0042] Herein, a shuffle is used when a share sequence
constructed as described above is dispersedly held by the
individual participant. That is, an individual component x; of
a sequence having a sequence length M is decomposed into
shares as follows, and the shares are dispersedly held by the
individual participants P, (i=0, 1, 2, 3, 4).

[Equation 1]

E & CONE T Xpr_1)

X7 H 4 4 349 4 mod L

Y=oy - - - ar1)(=0,1,2,34) [Equations 2]
[0043] In this secure computation based on the secret

sharing scheme, not only when x is reconstructed but also
when the locations in a sequence are shuffled, there is a
situation in which the individual participants directly or
indirectly receive the values of the sub-shares not held
thereby from other participants. This is because it is neces-
sary to shuffle the locations in a sequence while maintaining
the values indicated by the shares held in a secret sharing



US 2024/0146505 Al

manner by the individual participants. In addition, it is
necessary that the values indicated by the shares be main-
tained even after the locations in the sequence are changed
without letting the individual participants know the values
indicated by their shares held thereby.

[0044] Thus, when a bit conversion is performed, too,
there is a situation in which the individual participants also
directly or indirectly receive the values of the sub-shares not
held thereby from other participants. In this situation, if one
of the other participants is a dishonest person, a participant
could receive a different value instead of a value that the
participant is originally supposed to receive. If this happens,
the secure computation is performed based on an erroneous
value, resulting in an erroneous result. In some cases, the
computation itself cannot be performed properly.

[0045] To solve this problem, in the secure computation
system 100 according to the present example embodiment,
as illustrated in FIG. 2, an individual one of the first to fifth
secure computation server apparatuses 100_; (i=0, 1, 2, 3, 4)
includes a local shuffle part 101_i, a comparison and veri-
fication part 102_i, and a shuffle synthesis part 103_i. FIG.
2 is a block diagram illustrating a functional configuration
example of a secure computation server apparatus according
to the first example embodiment.

[0046] The local shuffle part 101_;i computes, by using a
shared permutation shared by four of the first to fifth secure
computation server apparatuses 100_; (i=0, 1, 2, 3, 4),
permuted values of a share for a remaining one of the first
to fifth secure computation server apparatuses 100_i (i=0, 1,
2, 3, 4) and sends the permuted values of the share to the
remaining secure computation server apparatus. The com-
parison and verification part 102_;i compares the permuted
values of the share with each other, which are received from
at least three of the four secure computation server appara-
tuses and which are supposed to be the same value, and
adopts the values that are same at least two values as an
accurate permutation. The shuffle synthesis part 103_i syn-
thesizes, regarding five combinations of four secure com-
putation server apparatuses selected from the five secure
computation server apparatuses 100_; (i=0, 1, 2, 3, 4),
mini-shuffles, each of which is constructed by using a shared
permutation shared by a corresponding combination of four
secure computation server apparatuses and a permutation
adopted by a corresponding one of the comparison and
verification parts 102_i.

[0047] As described above, in the secure computation
system 100 according to the present example embodiment,
an individual one of the four of the first to fifth secure
computation server apparatuses 100_i (i=0, 1, 2, 3, 4)
permutes the locations of its sub-shares by using a permu-
tation completed thereby and also performs a permutation
for the remaining one of the secure computation server
apparatuses. This remaining secure computation server
apparatus receives the sub-shares permuted by the four
secure computation server apparatuses from these four
secure computation server apparatuses, compares the per-
muted values of the share, which are received from at least
three of the four secure computation server apparatuses and
which are supposed to be the same value, and adopts the
values that are same at least two values as an accurate
permutation. As a result, mini-shuffles are constructed in the
first to fifth secure computation server apparatuses 100_;
(=0, 1, 2, 3, 4).

May 2, 2024

[0048] It should be noted here that, since each of the four
secure computation server apparatuses completes a permu-
tation by itself, each computation server apparatus knows
how the locations in the share sequence have been permuted,
and that because the remaining one of the secure computa-
tion server apparatuses receives a permuted result, this
remaining secure computation server apparatus does not
know how the locations in the share sequence have been
permuted. Thus, regarding the five combinations of four
secure computation server apparatuses selected from the first
to fifth secure computation server apparatuses 100_i (i=0, 1,
2, 3, 4), if all the mini-shuffles constructed as described
above are synthesized, a permutation (shuffle) that cannot be
traced by any one of the first to fifth secure computation
server apparatuses 100_i (i=0, 1, 2, 3, 4) can be constructed.
[0049] Next, a secure computation method according to
the present example embodiment will be described. FIG. 3
is a flowchart illustrating an outline of a procedure of the
secure computation method.

[0050] As illustrated in FIG. 3, the secure computation
method according to the present example embodiment
includes a local shuffle step (S11), a comparison and veri-
fication step (S12), and a shuflle synthesis step (S13). In the
local shuffle step (S11), an individual secure computation
server apparatus computes, by using a shared permutation
shared by four of the first to fifth secure computation server
apparatuses 100_; (i=0, 1, 2, 3, 4), permuted values of a
share for a remaining one of the first to fifth secure com-
putation server apparatuses 100_i (i=0, 1, 2, 3, 4) and sends
the permuted values of the share to the remaining secure
computation server apparatus. Next, in the comparison and
verification step (S12), the individual secure computation
server apparatus compares the permuted values of the share
with each other, which are received from at least three of the
four secure computation server apparatuses and which are
supposed to be the same value, and adopts the values that are
same at least two values as an accurate permutation. Finally,
in the shuffle synthesis step (13), the individual secure
computation server apparatus synthesizes, regarding five
combinations of four secure computation server apparatuses
selected from the five secure computation server apparatuses
100_i (i=0, 1, 2, 3, 4), mini-shuffles, each of which is
constructed by using a shared permutation shared by a
corresponding combination of four secure computation
server apparatuses and a permutation adopted by a corre-
sponding one of the comparison and verification parts 102_;.
[0051] As described above, in the secure computation
system 100 and the secure computation method according to
the present example embodiment, a participant receives
received values, which are received from at least three of the
other participants and which are supposed to be the same
value, and adopts the received values that are same at least
two received values as an accurate value. In this way, even
if one of the other participants is a dishonest person, the
participants can determine an accurate value. That is, even
if there is a dishonest person, it is possible to realize
Guaranteed Output Delivery (GOD) that can acquire an
accurate computation without stopping the processes. In
addition, because no hash function is used in the above
processes, Guaranteed Output Delivery (GOD) is realized in
a normal model.

[0052] The first example embodiment described above is
an example embodiment for describing only a basic concept
of the present invention. A second example embodiment



US 2024/0146505 Al

described below is a practical example embodiment to
which the above-described concept is applied.

Second Example Embodiment

[0053] Hereinafter, a secure computation system and
secure computation server apparatuses according to a second
example embodiment will be described with reference to
FIGS. 4 and 5.

[0054] FIG. 4 is a block diagram illustrating a functional
configuration example of a secure computation system
according to the second example embodiment. As illustrated
in FIG. 4, a secure computation system 200 according to the
second example embodiment includes a first secure compu-
tation server apparatus 200_0, a second secure computation
server apparatus 200_1, a third secure computation server
apparatus 200_2, a fourth secure computation server appa-
ratus 200_3, and a fifth secure computation server apparatus
200_4. The first secure computation server apparatus 200_0,
the second secure computation server apparatus 200_1, the
third secure computation server apparatus 200_2, the fourth
secure computation server apparatus 200_3, and the fifth
secure computation server apparatus 200_4 are connected to
each other via a network such that these apparatuses can
communicate with each other.

[0055] Inthe secure computation system 200 including the
first to fifth secure computation server apparatuses 200_i
(1=0, 1, 2, 3, 4), it is possible to compute target shares from
a value inputted to any one of the first to fifth secure
computation server apparatuses 200_i (i=0, 1, 2, 3, 4) while
keeping the input value and the values acquired in the
computation processes secret, and it is possible to dis-
persedly store the computation results in the first to fifth
secure computation server apparatuses 200_i (i=0, 1, 2, 3, 4).
[0056] In addition, in the secure computation system 200
including the first to fifth secure computation server appa-
ratuses 200_i (i=0, 1, 2, 3, 4), even when one of the first to
fifth secure computation server apparatuses 200_i (i=0, 1, 2,
3, 4) is operated by a dishonest person, it is possible to
continue an accurate secure computation without stopping
the processes.

[0057] FIG. 5 is a block diagram illustrating a functional
configuration example of a secure computation server appa-
ratus according to the second example embodiment. As
illustrated in FIG. 5, in the secure computation system 200
according to the present example embodiment, an individual
one of the first to fifth secure computation server apparatuses
200_i (i=0, 1, 2, 3, 4) includes a local shuffle part 201_i, a
comparison and verification part 202_i, and a shuffle syn-
thesis part 203_;.

[0058] The local shuffle part 201_i computes, by using a
shared permutation shared by four of the first to fifth secure
computation server apparatuses 200_i (i=0, 1, 2, 3, 4),
permuted values of a share for a remaining one of the first
to fifth secure computation server apparatuses 200_i (i=0, 1,
2, 3, 4) and sends the permuted values of the share to the
remaining secure computation server apparatus. The com-
parison and verification part 202_i compares the permuted
values of the share with each other, which are received from
at least three of the four secure computation server appara-
tuses and which are supposed to be the same value, and
adopts the values that are same at least two values as an
accurate permutation. The shuffle synthesis part 203_i syn-
thesizes, regarding five combinations of four secure com-
putation server apparatuses selected from the five secure

May 2, 2024

computation server apparatuses 200_i (i=0, 1, 2, 3, 4),
mini-shuffles, each of which is constructed by using a shared
permutation shared by a corresponding combination of four
secure computation server apparatuses and a permutation
adopted by a corresponding one of the comparison and
verification parts 202_i.

[0059] Hereinafter, building blocks used for execution of
the bit conversion according to the present example embodi-
ment will be described.

[Generation of Pseudo Random Numbers and Sharing of
Seeds] A pseudo-random function F,, seeds, and an identi-
fier have a relationship as follows. The pseudo-random
function F,, is a binary operation defined with a security
parameter x.

F,:{0,1}K"%{0,1}*={0,1}"

Seeds seed, €{0,1}* ((i=0, 1, 2, 3, 4) are values appropriately
shared by the individual secure computation server appara-
tuses 200_i, and an identifier vid €{0,1}* is a public value
such as a counter. The pseudo-random function F, deter-
minably generates pseudo random numbers by using the
seeds and the identifier as its inputs.

[0060] Regarding the five seeds seed, €{0,1}* ((=0, 1, 2,
3, 4), an individual one of the secure computation server
apparatuses 200_; holds (seed,, seed,,,, seed,,,, seed,,).
Note that seed,,,=seed,. That is, an individual one of the
secure computation server apparatuses 200_i holds the seeds
seed, other than the seed seed,,,. For example, the sharing
of these seeds can be appropriately set by an administrator
or the like as a presetting of the secure computation server
apparatuses 200_i.

[0061] [Creation of Mask]

[0062] Next, a pseudo random number (Correlated Ran-
domness) that is seen as a random number by the participant
P,,, and cannot be removed and that can be determinably
computed by the other participants P, P,,;, P,,,, and P, ; is
created, and this pseudo random number will be used as a
mask when the permuted shares, which will be described
below, are sent.

[0063] First, since the participant P,,, does not hold the
seed seed,, ,, if the seed seed,,, is used as an input of the
pseudo-random function F,,, the following pseudo random
number satisfies the above condition. That is, although the
following r; is seen as a random number by the participant
P,,, and cannot be removed, the following r, can be deter-
minably computed by the other participants P,, P,, , P;,,,
and P,, ;. r,=F (vid,, seed,,;)-F, (vid,,,, seed,,;) mod n
[0064] In addition, by changing the index k in the identi-
fier vid, from k=0 to k=4, five pseudo random numbers r,
can be created. A set of these pseudo random numbers 1, is
defined as follows. Whether the following pseudo random
numbers r,, t,, 5, I3, and r, determined as follows satisfy
Io+r, +1,+15+r,=0 can be easily determined.

(o b1 7073, 7)) =CR(i+4,{vidi }*_q s0ed,,3)

[0065] Although the pseudo random numbers r,, r}, r5, I3,
and r, created as described above are seen as random
numbers by the participant P,,, and cannot be removed,
these pseudo random numbers can be determinably com-
puted by the other participants P,, P,,,, P,,,, and P, ;.
However, although the pseudo random numbers r,, r, 1,, 5,
and r, cannot be removed by the participant P,,,, if all the
pseudo random numbers r,, r;, t,, I3, and r, are collected,
because the sum is 0, the pseudo random numbers r, 1y, I,
r;, and r, can be removed by the participant P, ,.



US 2024/0146505 Al

[0066] [Construction of Mini-Shuffles]

[0067] The construction of a mini-shuffle corresponds to
the local shuffle step (S11) and the comparison and verifi-
cation step (S12) described in the above first example
embodiment.

[0068] The following description will be made on an
example in which, among the participants P, (i=0, 1, 2, 3, 4),
each of the participants P, (i=1, 2, 3, 4) computes a permu-
tation of the participant P, for the participant P, by using a
permutation shared thereby and sends the computed permu-
tation to the participant P,

[0069] A permutation o, €S,,shared by the participants P,
(1=1, 2, 3, 4) is constructed as follows. As described above,
the participants P,, (i=0, 1, 2, 3, 4) hold the seeds (seed,,
seed,, ;, seed,,,, seed,, ;). In other words, each participant P,
(1=0, 1, 2, 3, 4) does not hold the seed seed,,,. That is, while
the participant P, does not hold the seed seed,, the other
participants P, (i=1, 2, 3, 4) hold the seced seed, Thus, the
permutation o, €S,,shared by the participants P, (i=1, 2, 3,
4) is constituted by using a pseudo random number gener-
ated by using the seed seed,. In this way, although the
permutation o, €8S, is traceable by the participants P, (i=1,
2, 3, 4), the permutation (To €8S,, is not traceable by the
participant P,.

[0070] Next, by using the permutation o, €S, ,constructed
as described above and the pseudo random number r,, each
of' the participants P, (i=1, 2, 3, 4) computes the permutation
of the participant P, for the participant P, and sends the
computed permutation to the participant P, as follows. It
should be noted here that, from the method of constructing
the shares in secret sharing, there are shares shared by the
participants P, (i=1, 2, 3, 4) and the participant P, and that
the participants P, (i=1, 2, 3, 4) can compute the permutation
of the participant P, for the participant P,,.

- N
{P2,P3,Pa}: 7ytO0(%y) [Equations 3]

- -
{P P3Py}t +04(x,)

= -
{P P3Py}t ry+04(x,)

- N
{P1,Po,P3}i7r3+00(x3)

oty s 41 47, 70 mod L(=0, . . . ;m-1)

[0071] Inthe above transmission, note that the participants
P,, P, P, send the same value to the participant P, the
participants P, P;, P, send the same value to the participant
P,, the participants P, P,, P, send the same value to the
participant P, the participants P,, P,, P; send the same value
to the participant P,. From this nature, the participant P, can
compare the values of the permuted shares, which are
received from three participants and which are supposed to
be the same value, and can adopt the received values that are
same at least two received values as an accurate permuta-
tion. That is, even if one of the other participants is a
dishonest person, the participants can determine an accurate
value. That is, even if there is a dishonest person, it is

May 2, 2024

possible to realize Guaranteed Output Delivery (GOD) that
can acquire an accurate computation without stopping the
processes.

[0072] In addition, in the above transmission, by using a
hash function shared by the participants P, (i=1, 2, 3, 4) and
transmitting the hash value as follows, the communication
amount can be reduced. First, one of the three participants
converts a value by using the hash function and sends the
obtained hash value to the participant P,. The other two
participants send the value, not a hash value, to the partici-
pant P, without change. Upon receiving the value, the
participant P, converts the value into a hash value by using
the hash function. Next, the participant P, compares the hash
values with each other. If at least two of the hash values are
the same value, the participant P, adopts this value as an
accurate value.

[0073] By performing the process as described above, a
share corresponding to the permutation o, €8S, that can be
computed by the participants P, (i=1, 2, 3, 4) and that cannot
be computed by the participant P, can be constituted as
follows.

. N
Pi[oo( )] 1= +06(x a4 +00(Xis1) i H00(Fis0)s
.

iy
71,300(%i3))

oty o sy =0 mod L(G=0, . . . ,m~1) [Equations 4]

[0074] [Synthesis of Mini-Shuffles]

[0075] Inthe above construction of mini-shuffles, of all the
participants P, (i=0, 1, 2, 3, 4), each of the participants P,
(i=1, 2, 3, 4) computes the permutation of the participant P,
for the participant P, by using a permutation shared by the
participants P, (i=1, 2, 3, 4) and sends the computed per-
mutation to the participant P,. However, alternatively, a
combination of four participants P, and one participant P,
may be changed. In this way, five mini-shuffles can be
constructed. Each of these five mini-shuffles represents a
permutation that is not traceable by one of the participants
P, (i=0, 1, 2, 3, 4).

[0076] Thus, by synthesizing all the permutations o, (i=0,
1,2, 3, 4)E8,, each of which is not traceable by one of the
participants P,, (i=0, 1, 2, 3, 4), a permutation o (shuflle) that
is not traceable by any one of the participants P, (i=0, 1, 2,
3, 4) can be constructed.

0=0,"0,"0,° 03°0, [Equation 5]

[0077] Regarding the communication cost of the shuffle
constructed as described above, the number of communica-
tion rounds is 5, and the communication amount is 40 nm
bits. Regarding a single mini-shufile, the number of com-
munication rounds is 1, and the communication amount is 8
nm bits. Because five mini-shuffles are performed, the above
communication cost is achieved.

Hardware Configuration Example

[0078] FIG. 6 is a diagram illustrating a hardware con-
figuration example of a secure computation server appara-
tus. That is, the hardware configuration example illustrated
in FIG. 6 is a hardware configuration example of any one of



US 2024/0146505 Al

the secure computation server apparatuses 100_; and 200_i
(1=0, 1, 2, 3, 4). An information processing apparatus (a
computer) that adopts the hardware configuration illustrated
in FIG. 6 can realize the individual functions of any one of
the secure computation server apparatuses 100_; and 200_i
(1=0, 1, 2, 3, 4) by executing the corresponding one of the
above secure computation methods as a program.

[0079] The hardware configuration example illustrated in
FIG. 6 is an example of the hardware configuration that
realizes the individual functions of any one of the secure
computation server apparatuses 100_; and 200_i (i=0, 1, 2,
3, 4), and does not limit the hardware configuration of any
one of the secure computation server apparatuses 100_; and
200_; (i=0, 1, 2, 3, 4). The secure computation server
apparatuses 100_; and 200_; (i=0, 1, 2, 3, 4) may include
hardware not illustrated in FIG. 6.

[0080] As illustrated in FIG. 6, a hardware configuration
10 that can be adopted by any one of the secure computation
server apparatuses 100_i and 200_; (i=0, 1, 2, 3, 4) includes,
for example, a CPU (Central Processing Unit) 11, a main
storage device 12, an auxiliary storage device 13, and an IF
(Interface) part 14, which are connected to each other via an
internal bus.

[0081] The CPU 11 executes various commands included
in the secure computation program executed by the corre-
sponding one of the secure computation server apparatuses
100_i and 200_; (i=0, 1, 2, 3, 4). The main storage device 12
is, for example, a RAM (Random Access Memory) and
temporarily stores various kinds of programs such as the
secure computation program executed by the corresponding
one of the secure computation server apparatuses 100_; and
200_7 (i=0, 1, 2, 3, 4) so that the CPU 11 can execute the
programs.

[0082] The auxiliary storage device 13 is, for example, an
HDD (Hard Disk Drive) and can store, in the mid-to-long
term, various kinds of programs such as the secure compu-
tation program executed by the corresponding one of the
secure computation server apparatuses 100_; and 200_; (i=0,
1, 2, 3, 4). These various kinds of programs such as the
secure computation program can be recorded in a non-
transitory computer-readable storage medium and can be
provided as a program product. The auxiliary storage device
13 can be used to store, in the mid-to-long term, various
kinds of programs such as the secure computation program
recorded in a non-transitory computer-readable storage
medium. The IF part 14 provides an interface regarding the
input and output among the corresponding secure compu-
tation server apparatuses 100_; and 200_; (i=0, 1, 2, 3, 4).
[0083] An information processing apparatus that adopts
the hardware configuration 10 as described above realizes
the functions of any one of the secure computation server
apparatuses 100_i and 200_i (i=0, 1, 2, 3, 4) by executing the
corresponding one of the above-described secure computa-
tion methods as a program.

[0084] The above example embodiments can partially or
entirely be described, but not limited to, as the following
notes.

[Note 1]

[0085] A secure computation system, which includes five
secure computation server apparatuses connected to each
other via a network, an individual one of the secure com-
putation server apparatuses including:

May 2, 2024

[0086] a local shuffle part that computes, by using a
shared permutation shared by four of the five secure
computation server apparatuses, permuted values of a
share for a remaining one of the five secure computa-
tion server apparatuses and sends the permuted values
of the share to the remaining secure computation server
apparatus;

[0087] acomparison and verification part that compares
values with each other, which are received from at least
three of the four secure computation server apparatuses
and which are supposed to be a same value, and adopts
the values that are same at least two values as an
accurate permutation; and

[0088] a shuffle synthesis part that synthesizes, regard-
ing five combinations of four secure computation
server apparatuses selected from the five secure com-
putation server apparatuses, mini-shuffles, each of
which is constructed by using a shared permutation
shared by a corresponding combination of four secure
computation server apparatuses and a permutation
adopted by a corresponding one of the comparison and
verification parts.

[Note 2]

[0089] The secure computation system according to note
1; wherein the mini-shuffles are each determinably gener-
ated by using seeds held by the four secure computation
server apparatuses and an identifier held by the five secure
computation server apparatuses as input and are each
masked by pseudo random numbers whose total is zero
regarding the five secure computation server apparatuses.

[Note 3]

[0090] The secure computation system according to note 1
or 2; wherein the shared permutation is determinably gen-
erated by using a seed shared by the four secure computation
server apparatuses as input.

[Note 4]

[0091] The secure computation system according to any
one of'notes 1 to 3; wherein the comparison and verification
part determines that the received values are each an accurate
value by determining that hash values of the received values
are same.

[Note 5]

[0092] A secure computation server apparatus, which is
one of five secure computation server apparatuses connected
to each other via a network, the secure computation server
apparatus including:

[0093] a local shuffle part that computes, by using a
shared permutation shared by four of the five secure
computation server apparatuses, permuted values of a
share for a remaining one of the five secure computa-
tion server apparatuses and sends the permuted values
of the share to the remaining secure computation server
apparatus;

[0094] a comparison and verification part that compares
values with each other, which are received from at least
three of the four secure computation server apparatuses
and which are supposed to be a same value, and adopts
the values that are same at least two values as an
accurate permutation; and



US 2024/0146505 Al

[0095] a shuffle synthesis part that synthesizes, regard-
ing five combinations of four secure computation
server apparatuses selected from the five secure com-
putation server apparatuses, mini-shuffles, each of
which is constructed by using a shared permutation
shared by a corresponding combination of four secure
computation server apparatuses and a permutation
adopted by a corresponding one of the comparison and
verification parts.

[Note 6]

[0096] A secure computation method, which uses five
secure computation server apparatuses connected to each
other via a network, the secure computation method includ-
ing:

[0097] causing an individual one of the secure compu-
tation server apparatuses to compute, by using a shared
permutation shared by four of the five secure compu-
tation server apparatuses, permuted values of a share
for a remaining one of the five secure computation
server apparatuses;

[0098] causing the individual one of the secure compu-
tation server apparatuses to send the permuted values of
the share to the remaining secure computation server
apparatus;

[0099] causing the individual one of the secure compu-
tation server apparatuses to compare values with each
other, which are received from at least three of the four
secure computation server apparatuses and which are
supposed to be a same value;

[0100] causing the individual one of the secure compu-
tation server apparatuses to adopt the values that are
same at least two values as an accurate permutation;
and

[0101] causing the individual one of the secure compu-
tation server apparatuses to synthesize, regarding five
combinations of four secure computation server appa-
ratuses selected from the five secure computation
server apparatuses, mini-shuffles, each of which is
constructed by using a shared permutation shared by a
corresponding combination of four secure computation
server apparatuses and a corresponding permutation
adopted.

[Note 7]

[0102] The secure computation method according to note
6; wherein the mini-shuffles are each determinably gener-
ated by using seeds held by the four secure computation
server apparatuses and an identifier held by the five secure
computation server apparatuses as input and are each
masked by pseudo random numbers whose total is zero
regarding the five secure computation server apparatuses.

[Note 8]

[0103] The secure computation method according to note
6 or 7; wherein the shared permutation is determinably
generated by using a seed shared by the four secure com-
putation server apparatuses as input.

[Note 9]

[0104] The secure computation method according to any
one of notes 6 to 8; wherein it is determined that the

May 2, 2024

permuted values of the share are each an accurate value by
determining that hash values of the received values are
same.

[Note 10]

[0105] A secure computation program, causing at least
five secure computation server apparatuses connected to
each other via a network to perform a secure computation,
the program including:

[0106] computing, by using a shared permutation
shared by four of the five secure computation server
apparatuses, permuted values of a share for a remaining
one of the five secure computation server apparatuses;

[0107] sending the permuted values of the share to the
remaining secure computation server apparatus;

[0108] comparing values with each other, which are
received from at least three of the four secure compu-
tation server apparatuses and which are supposed to be
a same value;

[0109] adopting the values that are same at least two
values as an accurate permutation; and

[0110] synthesizing, regarding five combinations of
four secure computation server apparatuses selected
from the five secure computation server apparatuses,
mini-shuffles, each of which is constructed by using a
shared permutation shared by a corresponding combi-
nation of four secure computation server apparatuses
and a corresponding permutation adopted.

[0111] The disclosure of the above NPL is incorporated
herein by reference thereto. Modifications and adjustments
of the example embodiments or examples are possible
within the scope of the overall disclosure (including the
claims) of the present invention and based on the basic
technical concept of the present invention. Various combi-
nations or selections (including partial deletion) of various
disclosed elements (including the elements in each of the
claims, example embodiments, examples, drawings, etc.) are
possible within the scope of the disclosure of the present
invention. That is, the present invention of course includes
various variations and modifications that could be made by
those skilled in the art according to the overall disclosure
including the claims and the technical concept. The descrip-
tion discloses numerical value ranges. However, even if the
description does not particularly disclose arbitrary numeri-
cal values or small ranges included in the ranges, these
values and ranges should be deemed to have been specifi-
cally disclosed. In addition, as needed and based on the gist
of the present invention, partial or entire use of the indi-
vidual disclosed matters in the above literatures that have
been referred to in combination with what is disclosed in the
present application should be deemed to be included in what
is disclosed in the present application, as a part of the
disclosure of the present invention.

REFERENCE SIGNS LIST

[0112] 100, 200 secure computation system

[0113] 100_i, 200_; secure computation server appara-
tus

[0114] 101_i, 201_;i local shuffle part

[0115] 102_i, 202_i comparison and verification part

[0116] 103_i, 203_; shuffle synthesis part

[0117] 10 hardware configuration

[0118] 11 CPU (Central Processing Unit)



US 2024/0146505 Al

[0119] 12 main storage device
[0120] 13 auxiliary storage device
[0121] 14 IF (Interface) part

What is claimed is:

1. A secure computation system, which includes five
secure computation server apparatuses connected to each
other via a network, an individual one of the secure com-
putation server apparatuses comprising:

a local shuffle part that computes, by using a shared
permutation shared by four of the five secure compu-
tation server apparatuses, permuted values of a share
for a remaining one of the five secure computation
server apparatuses and sends the permuted values of the
share to the remaining secure computation server appa-
ratus;

a comparison and verification part that compares values
with each other, which are received from at least three
of the four secure computation server apparatuses and
which are supposed to be a same value, and adopts the
values that are same at least two values as an accurate
permutation; and

a shuffle synthesis part that synthesizes, regarding five
combinations of four secure computation server appa-
ratuses selected from the five secure computation
server apparatuses, mini-shuffles, each of which is
constructed by using a shared permutation shared by a
corresponding combination of four secure computation
server apparatuses and a permutation adopted by a
corresponding one of the comparison and verification
parts.

2. The secure computation system according to claim 1;
wherein the mini-shuffles are each determinably generated
by using seeds held by the four secure computation server
apparatuses and an identifier held by the five secure com-
putation server apparatuses as input and are each masked by
pseudo random numbers whose total is zero regarding the
five secure computation server apparatuses.

3. The secure computation system according to claim 1;
wherein the shared permutation is determinably generated
by using a seed shared by the four secure computation server
apparatuses as input.

4. The secure computation system according to claim 1;
wherein the comparison and verification part determines that
the received values are each an accurate value by determin-
ing that hash values of the received values are same.

5. A secure computation server apparatus, which is one of
five secure computation server apparatuses connected to
each other via a network, the secure computation server
apparatus comprising:

a local shuffle part that computes, by using a shared
permutation shared by four of the five secure compu-
tation server apparatuses, permuted values of a share
for a remaining one of the five secure computation
server apparatuses and sends the permuted values of the
share to the remaining secure computation server appa-
ratus;

a comparison and verification part that compares values
with each other, which are received from at least three
of the four secure computation server apparatuses and
which are supposed to be a same value, and adopts the
values that are same at least two values as an accurate
permutation; and

a shuffle synthesis part that synthesizes, regarding five
combinations of four secure computation server appa-

May 2, 2024

ratuses selected from the five secure computation
server apparatuses, mini-shuffles, each of which is
constructed by using a shared permutation shared by a
corresponding combination of four secure computation
server apparatuses and a permutation adopted by a
corresponding one of the comparison and verification
parts.

6. A secure computation method, which uses five secure
computation server apparatuses connected to each other via
a network, the secure computation method comprising:

causing an individual one of the secure computation
server apparatuses to compute, by using a shared per-
mutation shared by four of the five secure computation
server apparatuses, permuted values of a share for a
remaining one of the five secure computation server
apparatuses;

causing the individual one of the secure computation
server apparatuses to send the permuted values of the
share to the remaining secure computation server appa-
ratus;

causing the individual one of the secure computation
server apparatuses to compare values with each other,
which are received from at least three of the four secure
computation server apparatuses and which are sup-
posed to be a same value;

causing the individual one of the secure computation
server apparatuses to adopt the values that are same at
least two values as an accurate permutation; and

causing the individual one of the secure computation
server apparatuses to synthesize, regarding five com-
binations of four secure computation server appara-
tuses selected from the five secure computation server
apparatuses, mini-shuffles, each of which is constructed
by using a shared permutation shared by a correspond-
ing combination of four secure computation server
apparatuses and a corresponding permutation adopted.

7. The secure computation method according to claim 6;
wherein the mini-shuffles are each determinably generated
by using seeds held by the four secure computation server
apparatuses and an identifier held by the five secure com-
putation server apparatuses as input and are each masked by
pseudo random numbers whose total is zero regarding the
five secure computation server apparatuses.

8. The secure computation method according to claim 6;
wherein the shared permutation is determinably generated
by using a seed shared by the four secure computation server
apparatuses as input.

9. The secure computation method according to claim 6;
wherein it is determined that the permuted values of the
share are each an accurate value by determining that hash
values of the received values are same.

10. A non-transient computer readable medium storing a
secure computation program, causing at least five secure
computation server apparatuses connected to each other via
a network to perform a secure computation, the program
comprising:

computing, by using a shared permutation shared by four

of the five secure computation server apparatuses,
permuted values of a share for a remaining one of the
five secure computation server apparatuses;

sending the permuted values of the share to the remaining
secure computation server apparatus;



US 2024/0146505 Al

comparing values with each other, which are received
from at least three of the four secure computation
server apparatuses and which are supposed to be a same
value;

adopting the values that are same at least two values as an

accurate permutation; and

synthesizing, regarding five combinations of four secure

computation server apparatuses selected from the five
secure computation server apparatuses, mini-shuffles,
each of which is constructed by using a shared permu-
tation shared by a corresponding combination of four
secure computation server apparatuses and a corre-
sponding permutation adopted.

11. The secure computation server apparatus according to
claim 5; wherein the mini-shuffles are each determinably
generated by using seeds held by the four secure computa-
tion server apparatuses and an identifier held by the five
secure computation server apparatuses as input and are each
masked by pseudo random numbers whose total is zero
regarding the five secure computation server apparatuses.

12. The secure computation server apparatus according to
claim 5; wherein the shared permutation is determinably
generated by using a seed shared by the four secure com-
putation server apparatuses as input.

May 2, 2024

13. The secure computation server apparatus according to
claim 5; wherein the comparison and verification part deter-
mines that the received values are each an accurate value by
determining that hash values of the received values are
same.

14. The non-transient computer readable medium storing
the secure computation program according to claim 10;
wherein the mini-shuffles are each determinably generated
by using seeds held by the four secure computation server
apparatuses and an identifier held by the five secure com-
putation server apparatuses as input and are each masked by
pseudo random numbers whose total is zero regarding the
five secure computation server apparatuses.

15. The non-transient computer readable medium storing
the secure computation program according to claim 10;
wherein the shared permutation is determinably generated
by using a seed shared by the four secure computation server
apparatuses as input.

16. The non-transient computer readable medium storing
the secure computation program according to claim 10;
wherein it is determined that the permuted values of the
share are each an accurate value by determining that hash
values of the received values are same.

#* #* #* #* #*



