
US 20220229673A1
IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2022/0229673 A1 .

Abadzhimarinov et al . (43) Pub . Date : Jul . 21 , 2022

(54) LAZY LOADING OF CODE CONTAINERS
BASED ON INVOKED ACTIONS IN
APPLICATIONS

(52) U.S. CI .
CPC GO6F 9/44521 (2013.01) ; GO6F 8/41

(2013.01) ; G06F 3/0482 (2013.01)

(71) Applicant : VMware , Inc. , Palo Alto , CA (US)

(72) Inventors : Branislav Abadzhimarinov , Sofia
(BG) ; Asen Radev , Sofia (BG) ; Petar
Nikalaev Ivanov , Sofia (BG) ; Dimitar
Kanev , Sofia (BG)

(21) Appl . No .: 17 / 154,540

(57) ABSTRACT
A system can improve application performance by using
lazy loading of code containers based on non - navigational
actions in single - page or hybrid applications . A page can
launch by loading a main bundle of code . The main bundle
can include an action manifest that maps action identifiers to
separate code modules . Those separate code modules can
include functions for handling the actions . Based on a
non - navigational action that occurs , the application can use
the action manifest to map a first action identifier of the first
action to a first code module . The application can then lazy
load a first code module asynchronously from the main
bundle . The application can also use route guards with filters
to determine child actions , validate action routes , and cache
the validated routes for later use without a remote server
call .

(22) Filed : Jan. 21 , 2021 2

Publication Classification

(51) Int . Ci .
G06F 9/445
G06F 3/0482
G06F 8/41

(2006.01)
(2006.01)
(2006.01)

110
LOADING A MAIN BUNDLE OF CODE FOR A PAGE OF AN APPLICATION ,
INCLUDING AN ACTION MANIFEST AND CODE FOR RECOGNIZING

A FIRST ACTION .

120

DETECTING THE FIRST ACTION WITHIN AN APPLICATION , WHEREIN THE
ACTION DOES NOT NAVIGATE AWAY FROM THE PAGE .

130

MAPPING , WITH THE ACTION MANIFEST , A FIRST ACTION IDENTIFIER OF THE
FIRST ACTION TO A FIRST CODE MODULE .

140

LAZY LOADING A FIRST CODE MODULE ASYNCHRONOUSLY FROM THE
MAIN BUNDLE .

110

LOADING A MAIN BUNDLE OF CODE FOR A PAGE OF AN APPLICATION , INCLUDING AN ACTION MANIFEST AND CODE FOR RECOGNIZING A FIRST ACTION .

Patent Application Publication

120

DETECTING THE FIRST ACTION WITHIN AN APPLICATION , WHEREIN THE ACTION DOES NOT NAVIGATE AWAY FROM THE PAGE .

130

MAPPING , WITH THE ACTION MANIFEST , A FIRST ACTION IDENTIFIER OF THE FIRST ACTION TO A FIRST CODE MODULE .

Jul . 21 , 2022 Sheet 1 of 5

140

LAZY LOADING A FIRST CODE MODULE ASYNCHRONOUSLY FROM THE
MAIN BUNDLE .

US 2022/0229673 A1

FIG . 1

1

MODULEL
ACTIONHANDLER

1

ACTIONINVOCATION SERVICE

MODULEFACTORY LOADER

MENU

ACTIONMANIFEST SERVICE

ACTIONHANDLER REGISTRY

USER CLICKS

INVOKE

ON MENU ITEM

(ACTIONID

GETACTIONMODULE_215
TARGETS)

205

(ACTIONID

220

210

MODULE TO LOAD AS STRING

225

230

LOAD (MODULE)

Patent Application Publication

I 1 1

-240

I

250

MODULEFACTORY

235

CUSTOMMODULE CONSTRUCTOR ()

245

1. " REGISTERINVOKER (ACTIONID , ACTIONHANDLER)

CUSTOMMODULE INSTANCE GETACTIONHANDLER (ACTIONID) ACTIONHANDLER

260

ACTIONHANDLER (TARGETS)

OPERATION IS STARTED

Jul . 21 , 2022 Sheet 2 of 5

255

1

1

T

265

FIG . 2

US 2022/0229673 A1

SUMMARY MONITOR

360

Patent Application Publication

HOST

: ID

CONFIGURE

310

APP

SUMMARY

????? ???

wynagan

SDRS - RULES

Jul . 21 , 2022 Sheet 3 of 5

MONITOR

VM

: ID

ALARM - DEFINITIONS

CONFIGURE

STORAGE - POLICIES

330

320

340

US 2022/0229673 A1

350

FIG . 3

400

6
10.30.238.75
| ACTIONS

Patent Application Publication

SUMMARY MONITOR CONFIGURE PERMISSIONS VMS RESOURCE POOLS DATASTORES NETWORKS UPDATES

ALL ISSUES ISSUE

Y TYPE

Y TRIGGER TIME Y STATUS Y

ESXI SHELL FOR THE HOST HAS BEEN ENAB ... CONFIGURATION ISSUE 12/03/2020 , 06:21 PM 430 SSH FOR THE HOST HAS BEEN ENABLED CONFIGURATION ISSUE 12/03/2020 , 06:21 PM YOUR HOST LICENSE EXPIRES IN 14 DAYS . T ... CONFIGURATION ISSUE 12/03/2020 , 06:21 PM

420

410

ISSUES AND ALARMS v
ALL ISSUES TRIGGERED ALARMS PERFORMANCE OVERVIEW ADVANCED TASKS AND EVENTS V

TASKS EVENTS RESOURCE ALLOCATION CPU MEMORY STORAGE UTILIZATION HARDWARE HEALTH SKYLINE HEALTH

Jul . 21 , 2022 Sheet 4 of 5 US 2022/0229673 A1

FIG . 4

510

515

USER DEVICE

530

APPLICATION

550

Patent Application Publication

PROCESSOR

532

COMPILER

MAIN BUNDLE

520

552

ACTION MANIFEST

534

MEMORY

CODE MODULES

554

CODE

536

ACTION MANIFEST

DISPLAY

Jul . 21 , 2022 Sheet 5 of 5

1/538

ROUTE GUARD

525

540

SERVICES

US 2022/0229673 A1

FIG . 5

US 2022/0229673 A1 Jul . 21 , 2022
1

LAZY LOADING OF CODE CONTAINERS
BASED ON INVOKED ACTIONS IN

APPLICATIONS

BACKGROUND

[0001] Lazy loading is a strategy to identify resources as
non - critical and load those resources only when needed .
This can shorten the critical rendering path for a webpage or
application , leading to reduced load times . Lazy loading can
be important for speeding up application load time and
reducing script processing during runtime by a browser . This
is because large assets that are not yet needed can be loaded
later when the user is navigating to those assets . For
example , a webpage can load large images only when they
are needed , allowing bandwidth to be utilized for those
images and items that are on screen .
[0002] Typically , lazy loading is triggered based on scroll
ing or navigation . For example , ANGULAR includes a
built - in router that enables navigation from one view to
another as a user performs navigational tasks . Navigation
can trigger loading of additional ANGULAR modules ,
which can be chunks of executable code usually packaged in
JavaScript files . For lazy loading to work in this manner , the
ANGULAR compiler can compile the application in such a
way that the code is split into several files (called modules
or containers) during build time . The compiler can split the
code into modules based on a route configuration that
describes which view corresponds to which uniform
resource locator (" URL ") . Splitting code into modules
allows for invoking individual code modules to load at
different times based on navigation .
[0003] However , these techniques do not allow for trig
gering lazy loading in other non - navigational contexts . For
example , a non - navigational action such as a menu selection
that populates new items on the same page will not trigger
lazy loading . Similarly , lazy loading is not triggered by a
button on a page that makes an application programming
interface (“ API ”) call or causes some additional prompt on
that page . Therefore , code for handling those non - naviga
tional actions must be included with the main bundle of code
for the page , potentially slowing load times for the page .
Similarly , in hybrid applications with multiple frameworks ,
code modules responsible for running frameworks that are
not immediately needed still must be loaded up front ,
slowing initial load times . In summary , existing lazy loading
techniques do not work effectively with data - driven and
action - based application flows beyond simple navigation .
[0004] Therefore , a need exists for systems and methods
for lazy loading of code containers based on invoked actions
in single - page and hybrid applications .

essential functions and objects that must be present imme
diately on the page . But the main bundle can also include an
action manifest that maps action identifiers to separate code
modules that are loaded asynchronously based on non
navigational actions within the application . Those separate
code modules can include functions for handling the actions
of the action manifest . Based on a non - navigational action
that occurs , the application can use the action manifest to
map a first action identifier of the first action to a first code
module . The application can then lazy load a first code
module asynchronously from the main bundle . The appli
cation can also use route guards with filters to determine
child actions , validate action routes , and cache the validated
routes for later use without a remote server call .
[0007] A code module can be a container of a chunk of
code that is separate from the main bundle used to initialize
an application or a page of the application . The code module
can be lazy loaded by executing the module , which can
include executable code , at some later time after the main
bundle is already loaded . This can cut down on application
load times . Additionally , an action - based route tree for
loading code modules can ensure that actions are available
when needed by the user .
[0008] To split the application code up into the main
bundle and additional code modules , a compiler can use a
routing table as a guide . The routing table can include
relations between actions such that the compiler can make
decisions on which actions are available before other
actions . Actions that are not immediately needed can be lazy
loaded by including corresponding functions , services ,
frameworks , and action handlers in code modules that are
separate from the main bundle . These code modules can then
be lazy loaded asynchronously when actions within the
application dictate loading the additional code modules .
[0009] An action manifest can allow the application to
map actions to needed code bundles . When an action is
performed , such as clicking a button , the application can
send a corresponding action identifier to an action manifest
service . That service can return the one or more code
modules to load . The code modules can be executed , which
can include registering action handlers for one or more
actions , such as the button click .
[0010] Additionally , a route guard with filters can be used
to determine which menu options or other actions are
available to a user . The application can traverse multiple
levels of a route tree specified by that route guard to
determine which options are available . The filters at multiple
levels of the route can be collected and used in a single
remote call to a server to validate which options (actions) are
available . If some of these actions rely on additional code
modules , the code modules can be lazy loaded . Additionally ,
the validated routes can be cached such that future user
interaction with the menu does not require additional remote
calls to validate an action .
[0011] These methods can result in faster application load
times while also minimizing the occurrence of users request
ing actions that are not yet available . As a result , user
experience can be positively increased with respect to a
single - page or hybrid application .
[0012] The examples summarized above can each be
incorporated into a non - transitory , computer - readable
medium having instructions that , when executed by a pro
cessor associated with a computing device , cause the pro
cessor to perform the stages described . Additionally , the

SUMMARY

[0005] Examples described herein include systems and
methods for lazy loading code modules based on non
navigational actions in a single - page application or hybrid
application . A single - page application can be a web appli
cation that interacts with the user by dynamically rewriting
the current page with new data from the webserver . A hybrid
application can have multiple frameworks within a single
application . The application can run on a server , the user
device , or in part on both .
[0006] The application can display a page by loading a
main bundle of code . The main bundle can include code for

US 2022/0229673 A1 Jul . 21 , 2022
2

example methods summarized above can each be imple
mented in a system including , for example , a memory
storage and a computing device having a processor that
executes instructions to carry out the stages described .
[0013] Both the foregoing general description and the
following detailed description are exemplary and explana
tory only and are not restrictive of the examples , as claimed .

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] FIG . 1 is a flowchart of an example method for lazy
loading of code containers for single - page applications or
hybrid applications .
[0015] FIG . 2 is a sequence diagram of an example
method for lazy loading of code containers for single - page
applications or hybrid applications .
[0016] FIG . 3 is a diagram of an example route guard for
lazy loading code modules associated with menu items .
[0017] FIG . 4 is an illustration of an example GUI screen
in a single - page application that uses lazy loading .
[0018] FIG . 5 an illustration of an example system for
lazy loading of code containers for single - page applications
or hybrid applications .

DESCRIPTION OF THE EXAMPLES

action manifest . When a user invokes an action by interact
ing with the application (such as by selecting a menu item
or clicking a button) , the application can check whether an
action manifest exists for that action . If so , the manifest can
be used to load a code module needed for performing the
action . The action manifest or an action identifier can be sent
to a load factory process , which can be responsible for
loading some or all of the code modules for the action
manifest . These code modules can load asynchronously , and
upon completion of loading , the newly registered action
invoker can be executed . In one example , a route guard can
also specify which menu items are available to a user . Using
filters , the route guard can block particular routes , allowing
the application to lazy load code modules associated with
the blocked routes at a later time .
[0024] FIG . 1 is a flowchart of an example method for
action - based lazy loading , such as for single - page applica
tions . At stage 110 , the application can load a main bundle
of code for a page of an application . This can happen , for
example , when the application is launched by the user on a
user device or on a remote server . The main bundle can
include the essential code for launching the application or
displaying information that is immediately visible on the
screen . In this way , the main bundle of code can be executed
to ensure that the application page displays , while other code
modules are left to load asynchronously at a later time and
not slow down the initial loading of the application .
[0025] The main bundle can be preconstructed by a com
piler that makes intelligent decisions on what code to
include in the main bundle versus other code modules for
lazy loading . To do this , the compiler can rely on a route
configuration that specifies which features are available
based on other features being selected . The route configu
ration can be in a hierarchical data structure , such as a tree
format , in an example . In one example , the hierarchical
structure can be represented in a table . The route configu
ration can also be part of a hand - coded action manifest that
specifies actions for lazy loading , in an example . Action
manifests can map action IDs to code modules . The actions
manifests can detach the code module loading from navi
gation by URL . Route configuration is Angular concept
which maps URL to module . The action manifests can be
registered as “ fake ” or “ dummy ” route configurations .
Although the action manifest are not navigable URLs , a
compiler can split the application code in separate modules
based on the dummy route configuration . During build time
the compiler can use the route configuration in order to
decide how to split the code in different files . The compiler
logic can remain unchanged , such that the method can work
with standard compilers . Therefore , a developer - created
action manifest can be compiled such that the application
can lazy load based on actions .
[0026] The action manifest can map user actions on the
page to code modules that are lazy loaded and not part of the
main bundle . In one example , the action manifest is loaded
as part of the main bundle . This allows the application to
recognize actions that are tied to invokers and action han
dlers provided separately in a code module that needs to be
lazy loaded
[0027] At stage 120 , the application can detect the first
action . For detection to be possible , the main bundle can
include at least enough code to identify the action . The code
can also associate the action with an action identifier that is
used to determine how to handle the action from there .

a

a

[0019] Reference will now be made in detail to the present
examples , including examples illustrated in the accompany
ing drawings . Wherever possible , the same reference num
bers will be used throughout the drawings to refer to the
same or like parts .
[0020] In an example , build - time and run - time features
allow for lazy loading code modules of an application in an
action - based manner rather than based on page navigation .
The application can be a single - page application , which can
be a web application that interacts with the user by dynami
cally rewriting the current page with new data from the
webserver . Single - page applications often load slowly , how
ever , since current methods typically load and reload the
entire page each time .
[0021] To allow for action - based lazy loading , during
build - time of the application a compiler can organize code
of an application into different code modules . The code can
be organized into the different code modules based on a
route configuration . The route configuration can be a routing
table that specifies which actions lead to other available
actions or functions . This can be used either manually or by
the compiler to create an action manifest that is utilized by
the executing application for lazy loading .
[0022] The action manifest can map an action to a unique
invoker identifier . An invoker can be a function that executes
when the action is invoked by the user , such as when a user
clicks a menu item in the application . The mapped action
need not navigate to another page , and instead can just cause
something to happen in a backend of the application or on
the current page of the application . Action invokers can be
split into different code modules by the compiler , with these
modules being registered with the application during run
time .
[0023] During runtime of the application , the action mani
fest can be loaded as part of a main bundle of code that is
part of initializing the application or a page of the applica
tion . The other code modules can lazy load later , as needed ,
asynchronously from the main code bundle . Actions that
require lazy loading of a code module can be included in the

a

a

a

US 2022/0229673 A1 Jul . 21 , 2022
3

a

[0028] The detected first action can be non - navigational in
nature . This means that the first action can impact the current
application screen or page rather than navigating to a new
page or jumping to a lower non - visible portion of the current
page . The first action can instead be used to change content
displayed on the page or effectuate change in the backend of
the application .
[0029] In one example , the non - navigational first action
can be a menu selection that provides additional menu
options or changes what is populated in an area of the
application page . The menu can be organized in a tree
structure governed by a routing table , in an example . As
routes are selected or options come available , such actions
can implicate code modules that require lazy loading . Simi
larly , buttons or other selectable options on the application
page can be used to perform actions that rely on lazy loaded
code modules . For example , the user may click a “ power on ”
option in a virtual machine context menu or select " new
virtual machine ” when clicking on a representation of a host .
(0030] These non - navigational actions traditionally have
required the loading of all associated code with the main
bundle , slowing down overall load times for the application .
But by lazy loading the code associated with such actions ,
the application can load more quickly and then the addi
tional code can load on demand or during times when
processing power is available .
[0031] At stage 130 , the application can map a first action
identifier of the first action to a first code module . The first
action identifier can be associated with the action in the main
code bundle and can be any string of letters or numbers . The
first action identifier can be associated with an invoker and
the identifier itself can be a unique identifier used by the
invoker to denote an associated invoker function , in an
example .
[0032] The invoker associated with the action identifier
can check whether an action manifest corresponds to the
action identifier . Again , the action manifest can be loaded as
part of the core bundle , allowing the application to recognize
when a separate code module is required for performing the
action . An action manifest service can check which code
module is implicated by the action identifier and identify the
code module to the invoker .
[0033] At stage 140 , the invoker can then cause the
identified code module to load if it is not already loaded . The
code module can be lazy loaded asynchronously from the
main module . This can include executing the code module .
The code module can include , for example , JavaScript that
executes to provide functionality associated with the action ,
among other things . Similarly , a view provided by a second
framework can be invoked . The second framework can be
lazy loaded as part of one of the code modules . The second
framework can be needed for an optional action that the user
may or may not attempt to perform , allowing it to be
asynchronously loaded at a later time than the main bundle .
[0034] In one example , the code module can be lazy
loaded in response to the action identifier indicating the code
module is needed . In another example , the lazy loading can
occur beforehand based on available processor capability
while the main bundle of the application is already execut
ing
[0035] FIG . 2 is a sequence diagram of an example
method for lazy loading of code containers for single - page
applications . FIG . 2 illustrates the interaction of several
services that can all execute as part of the application . The

services can be loaded as part of the main bundle of the
application , ensuring that the application then has the ability
to execute functions for lazy loading additional code
bundles . The services can execute on a processor - enabled
device . A user device , such as a laptop , phone , or personal
computer , can execute the application and the attendant
services . The application can execute as a single - page web
application also , with one or more of the services executing
on the user device or a remote server .
[0036] At stage 205 , a user can click on a menu item or
other selectable item within the application . The menu item
can be generated in a single - page application based on
execution of a main bundle of code or some other code
module that has already loaded . The menu item itself can be
generated such that selecting it causes the application to
recognize an action identifier (labeled “ actionId ”) . The
menu item can also be associated with an invoker used to
invoke an action .
[0037] At stage 210 , the application can call an application
invocation service using the action identifier and one or
more targets . The targets can be one or more context objects
impacted by the action . For example , a “ power on ” button
can have an action identifier , and a virtual machine being
powered on can be the target . Multiple targets for a single
action are possible . In one example , both the action identifier
and the targets are sent to the action invocation service .
[0038] The action invocation service can determine
whether it already has received an action handler for the
action . For example , the code module corresponding to the
action identifier may have already been lazy loaded . If so ,
the action invocation service can effectively skip to stage
260 and perform the action .
[0039] Otherwise , at stage 215 , the action invocation
service can contact the action manifest service for purposes
of getting the code module that needs to be lazy loaded . In
one example , the action invocation service can determine
whether an action manifest corresponds to the action iden
tifier . The compiled main bundle of code can include a
mapping of action identifiers to an action manifest service
for the action manifest , in one example . Alternatively , the
application can blindly supply the action identifier to the
action manifest service to see if a corresponding action
manifest exists .
[0040] In the illustrated example , the action invocation
service passes the action identifier to the action manifest
service , allowing the action manifest service to determine if
the corresponding code module needs to be loaded . This is
represented in FIG . 2 by the getActionModule (actionId)
function call .
[0041] In another example , it is possible that different
target types or numbers of targets for the same action can
require different code from a different code module . In one
example , the code module to lazy load is selected between
multiple code modules for a single action based on the
target . For example , the framework for powering on a virtual
machine may be different than the framework needed to
power on a host . The corresponding virtual machine func
tionality may be in a first code module , whereas the host
functionality can be in a second code module . As a result , the
target in conjunction with the action can be sent to the action
manifest service to select a module , in an example . The
action manifest service can maintain a table or matrix to map
the action identifier and potentially a target to the correct
code module , in an example .

a

a

US 2022/0229673 A1 Jul . 21 , 2022
4

a

[0042] At stage 220 , the action manifest service can iden
tify the code module that needs to be lazy loaded . At stage
225 , the action invocation service can then contact a module
factory loader service to lazy load the code module . This is
represented in FIG . 2 as the load (module) function call . The
module factor loader can then run an executable file that
loads the code of the code module .
[0043] At stage 230 , the module factory loader can return
a constructor , which can be a reference to the loaded code .
The code module can have one or more constructors of
registering and instantiating functions and services con
tained in the code module .
[0044] At stage 235 , the action invocation service calls the
constructor for the service or function associated with the
action identifier . In one example , the constructor can be
called for multiple different actions at once , such as by
providing multiple action identifiers or by calling a con
structor that automatically registers an invoker for many
different actions .
[0045] The code module can then register an invoker for
one or more actions at stage 240. This can include calling a
function , such as registerInvoker (actionId , ActionHandler) .
The function can include an action identifier to register
along with an action handler to use for that action identifier .
The action handler can be the service or function that
contains the code that will execute in connection with the
action . The action handler can be registered with the action
handler registry for retrieving by the action invocation
service (i.e. , by the invoker for an action) .
[0046] The code module can then return an instance at
stage 245. The module can then be loaded in runtime . The
functions , having been registered at stage 240 , can then be
accessed going forward when the user makes the corre
sponding actions in the application .
(0047] To complete the action of stage 205 , the action
invocation service can get the corresponding action handler
at stage 250. To do this , the action invocation service can call
a function , such as getActionHandler (actionId) , providing
the action identifier to the action handler registry . The action
handler , having already been registered , can be returned to
the action invocation service at stage 255 .
[0048] Then , at stage 260 , the action invocation service
can supply the targets to the action handler , causing the
action handler to perform the corresponding operations on
the targets at stage 265. For example , the action handler for
“ power on ” can be supplied with identifiers of a virtual
machine , causing functions for powering on a virtual
machine to take place at stage 265 .
[0049] In this way , a code module can be lazy loaded ,
asynchronously from the main bundle . The main bundle can
contain the above services needed to locate and load addi
tional code modules as needed . In some examples , invoking
an action can cause additional actions to become available .
Then those actions too can cause the lazy loading of addi
tional code modules . This can be the case , for example , with
a nested menu . The nested menu can act as a tree , with
certain actions only available down certain routes of the tree .
[0050] FIG . 3 is a diagram of an example routing table for
lazy loading code modules associated with nested actions ,
such as menu items . The routing table can be created to map
the ways in which one action leads to another . In one
example , the compiler can use the routing table to determine
which functions to include in which code modules . For
example , it may make sense for functionality for actions of

a particular route in the route table to be provided together .
This can allow those functions to be loaded and registered
when the user begins traversing down the particular route in
the routing table .
[0051] In the example of FIG . 3 , the routing table can start
at a root level represented by app 310. From there , the
application can give multiple action choices represented in
the level 320 of the tree hierarchy . In the illustrated example ,
one route begins with the " host " action and another route
through the tree begins with the “ vm " action . Continuing
down the tree from those two options can represent two
different routes in the routing table . Based on the user's
interactions with VMs or hosts , the corresponding code
modules for actions in those different routes may lazy load
at different times .
[0052] Route guards can prevent lazy loading of certain
portions of the application , which can help focus processing
resources on loading code available actions in the route
table . A route guard can be an interface that tells the
application whether to allow an action along a requested
route . Route guards can block actions in the routing table
from loading , at least until some other action occurs or a
lower level within the routing table is reached by the user .
In one example , a route guard can return a true or false value
with regard to actions in the routing table , notifying the
application of which actions need to be loaded . This can
cause the application to lazy load the corresponding code
modules for those action identifiers .
[0053] These example actions at level 320 (host and vm)
can represent different types of actions that a user can take
within the single - pane application . For example , the appli
cation may display one or more of a virtual machine (“ VM ”)
and a host within a graphical user interface (“ GUI ”) . When
the user selects one of those items , the actions (vm or host)
can continue to the next level in the route tree . For example ,
if a VM is selected , the ID action can become available at
level 330 for the VM . From there , summary , monitor , and
configure actions can become available at the next level 340 .
And then if the user selects configure , actions at still another
level 350 can be revealed with respect to the target VM .
[0054] The illustrated example of FIG . 3 shows that the
route path for VM is shaded differently than the route 360 for
host actions . The route guards can include filters for block
ing the loading of action routes 360 that are not needed yet .
For example , if the user has not selected a host or no host is
available yet on the screen , a filter can prevent the corre
sponding code for the host - related actions of route 360 from
being loaded . Conversely , when the user selects an action ,
such as clicking the VM , that VM route can be used to lazy
load code modules associated with one or more levels 320 ,
330 , 340 , 350 of actions associated with that route path .
[0055] In one example , the application can traverse the
route path and load modules that are not prevented by the
filters of the route guards . For example , when the user
selects a VM , the filters can still block the code associated
with the host path actions from loading or can specify
loading all of the code modules for actions in the VM route .
This can include iterating down the VM route , collecting the
filters at each level , and executing the filters to load the
corresponding code modules and register the functions for
invocation by the actions in the VM route . This can allow the
application to anticipate which code it will potentially need
and prioritize the lazy loading of those code modules .

a

a

2

US 2022/0229673 A1 Jul . 21 , 2022
5

Likewise , the application can delay lazy loading of code
modules associated with other paths , such as the host path in
this example .
[0056] As the actions traverse down the routes of the
routing table , different routes can be specified for lazy
loading by the route guards and filters . The filters can be set
such that the application can determine the nested actions to
lazy load . This can allow the corresponding functions to be
available and invokable when the actions reach lower levels
in the route table .
[0057] Example pseudocode for route guard using a filter
is shown below :

Path : ObjectTabRoutes
ActivateChild : [AppGuard]
Data : {

Filters : < RouteFilterConfiguration >
Conditions : < NetworkConditions >

}

[0058] In the above example , an object tab on the GUI can
have an action path dictated by a route tree called Object
TabRoutes . The route tree can include a route guard that
determines when to activate child actions in the tree . In this
example , the route guard is AppGuard . The route guard can
decide which child actions to activate based on a filter
configuration , such as RouteFilterConfiguration .
[0059] The filter can be based on conditions that change
the logic on whether certain child actions should be acti
vated . In this example , the conditions for the filter to
consider are network related and represented by Net
workConditions . The RouteFilterConfiguration filter can
consider network conditions , such as whether a VM is down
and a warning is on the GUI . The filter can include logic for
which routes to block based on those conditions . At different
levels of the route tree , the filter can apply the same or
differently , depending on the logic contained in the filter .
[0060] When child actions are activated , the application
can lazy load corresponding code modules for the action
handlers be used by the action invocation service . In one
example , the application can traverse the route to determine
which child actions to activate . At each level 320 , 330 , 340 ,
350 of the route , the application can collect the filtered
action identifiers to load at each level in the route . Since the
conditions of the filter can be different at each level 320 ,
330 , 340 , 350 , the application can keep a list of all the
actions to activate . The child routes of the current route can
be cached . Then , with the cached completed list , the appli
cation can gather needed permissions and parameters for
loading the code for those actions . The gathered parameters
can be supplied at once as part of the credentials to load the
corresponding code modules , in an example . Any needed
remote calls to the server can be made with the required
credentials .
[0061] The tree of available actions can then be cached to
prevent delays when the user attempts to perform those
actions . As an example , when a user clicks on a menu item
or other type of link , the route guard can already have the
route evaluation cached . This allows for returning the child
actions immediately , such as child menu items or links . This
increases the user experience because the user does not have
to wait for extra logic or remote calls to execute . Instead , the
menu can expand based on the cached route evaluation , as
specified by the filters .

[0062] Using filters with route guards in this way can
allow for providing a single route guard that applies to each
level of the route tree . This simplifies programming of route
guards , which otherwise could require a different route
guard for each level of the tree . Providing a route guard at
each level is inefficient . For example , if the route traverses
four levels of the route tree , four different remote calls may
be required if each level included its own route guard . This
can lead to delays for individual actions that negatively
impact the user experience .
[0063] In one example , to prevent this inefficiency , the
route guard can use an optimization algorithm in conjunc
tion with filters . The route guard can instead apply to all
levels of the route tree and can calculate child routes in a
single remote call . For example , a single remote call can
calculate tab routes , such as app / tab1 , app / tab2 , and app /
tab3 for a route tree with three tabs . Then , as part of that
same remote call , under each tab , the child routes can be
calculated (e.g. , as app / tabl / oc - item1 , app / tab1 / toc - item2 ,
etc.) . The route guard can cache each of these child routes
and its availability . This way , when a user clicks a tab or
child item , the route guard can validate the route using the
already populated cache without making further remote calls
to the server . Each time the user clicks on another menu
item , the route guard can validate the route using the already
populated cache rather than making another remote call .
[0064] This can provide significant performance improve
ment to single - page applications by greatly reducing the
number of remote calls . In addition , the application can
determine the code modules needed for available routes and
load those before lazy loading code modules that relate to
filtered out actions . Achieving quicker load times in this way
also does not sacrifice user experience for actions that are
lazy loaded . Rather than waiting for the actions to traverse
through the tree , action handlers can be registered for these
lower - level child actions as specified by the filters . This can
save load time by intelligently filtering which action invok
ers to register based on where in the routing table the actions
currently are taking place or what actions are currently
available to the user .
[0065] FIG . 4 is an illustration of an example GUI screen
400 in a single - page application that uses lazy loading . The
single - page application can be a web application or website
that interacts with the user by dynamically rewriting the
current page with new data from a web server instead of
navigating to entire new pages . The main bundle of code can
load to display the single page and then additional code
modules can lazy load at least in part based on non
navigational actions . Although a single - page application is
discussed for explanatory purposes , the methods herein can
also apply to multi - page applications . In those instances ,
each page can have its own main bundle , with additional
action - based lazy loading of code modules for dynamic
changes that take place on the page (and that do not rely on
navigating away from the page) . The application can execute
on a user device or on a server , with hybrid applications
having portions of the application that operate at one or the
other location .

[0066] GUI screen 400 can be presented on a single page .
A menu 410 can provide selectable options that correspond
to actions that the application will invoke upon selection .
The menu 410 is nested such that selection of one option ,
such as Resource Allocation 420 , reveals additional options .

US 2022/0229673 A1 Jul . 21 , 2022
6

2

[0067] The additional options can be provided based on a
route guard . When the user selects Resource Allocation 420
or when that option 420 is displayed , the application can use
the route guard and attendant filters to traverse the Resource
Allocation 420 route . At each level , the filter can determine
which additional actions are available . Those can be dis
played on the screen , such as the CPU , Memory , and Storage
options . One or more code modules for these child options
can be lazy loaded .
[0068] However , other options , such as External Storage ,
may be filtered out from display . As a result , the application
will not check to see that the code module for External
Memory is loaded . Instead , that code module can be lazy
loaded at some later time once the action becomes available
to the user . For example , the user may need to select some
other action related to the Storage action before an External
Storage option is displayed . This sort of criteria can be
specified by the route guard and its filters .
[0069] Likewise , when an option such as All Issues is
selected , this action may cause table 430 to populate with
various alerts . The alerts may have their own actions asso
ciated with them or may cause more menu 410 items to be
available . The alerts themselves may involve an additional
framework for displaying details about the issue . The alerts
and any attendant menu items can include action handlers in
one or more code modules that need to be lazy loaded . The
application can lazy load those code modules as the need
arises , so that the additional actions can be handled . This can
balance low load times for the page with good user expe
rience with respect to actions that may not be immediately
available on the page .
[0070] FIG . 5 is an illustration of an example system for
lazy loading of code containers for single - page applications
and hybrid applications . A computing device 510 can
execute an application 530 that incorporates action - based
lazy loading . The computing device 510 can be the user
device or a server , and the methods herein can apply to main
bundles 532 of code and lazy loaded code modules 534 that
are executed on a user device , server , or some on each
device . The computing device can be any processor - enabled
device , such as a laptop , tablet , personal computer , or
hardware - based server .
[0071] The computing device 510 can execute the appli
cation using a processor 515 , which can be a hardware
processor . A main bundle 532 can be stored in memory 520
and executed as part of initializing the application . The main
bundle 532 can initialize a page in a single - page application
530 , for example . Alternatively , each page of a multipage
application 530 can be initialized with its own correspond
ing main bundle 532. The main bundle 532 can include an
executable file for initializing the application and any num
ber of other files for providing frameworks and functionali
ties that need to be immediately available . The main bundle
532 can also include code for actions , which can specify an
action identifier and an action invoker to call for performing
the action .
[0072] Core services 540 can also be loaded as part of the
main bundle 532. Some example services 540 include those
of FIG . 2. For example , the action invocation service ,
module factory loader , and action handler registry can all be
loaded as part of the main bundle 532. This can provide
needed infrastructure for registering additional action han
dlers during run - time as other code modules 534 are lazy
loaded . In general , the services 540 needed for action - based

lazy loading can load as part of the main bundle 532. But
additional actions that are not immediately needed can
include services and functionality that is part of one or more
code modules 534 that load later and asynchronously with
respect to the main bundle 532 .
[0073] When the main bundle 532 loads , the page of the
application can display in a GUI . The GUI can be shown on
a hardware display 525 , which can be any type of display
device . The display 525 can be built into the computing
device 510 , such as the screen of a phone or laptop , or can
be separately connected to the computing device , such as a
monitor .
[0074] The code modules 534 can include additional code
that is lazy loaded at some later time than the main bundle
532. The additional code can include action handlers for
performing certain actions . The additional code can also
include additional frameworks and services that are not
immediately needed on the page . Asynchronously loading
the code modules 534 (as compared to the main bundle 532)
can speed up load times for the page , which otherwise might
get delayed in loading frameworks and functionalities that
are not immediately needed on the page . The code modules
534 instead can be intelligently lazy loaded based on actions
that occur within the application 530 .
[0075] The main bundle 532 can also include an action
manifest 536 that allows the application 532 to map actions
over to code modules 534 that need to be lazy loaded . The
action manifest 536 can include a table that links action
identifiers to code modules 534 , in an example . The action
manifest 536 can also include one or more services 540 that
execute as part of the application 530 for purposes of loading
code modules 534 and registering action handlers when
certain actions are invoked . The mapping of an action to the
code module 534 can be based on the action identifier as
well as one or more targets for the action . It is possible for
an action to rely on different functions and frameworks
depending on the target of the action , in an example . While
these different functions and frameworks may be provided
together in the same code module 534 , multiple different
code modules 534 may also be used depending on the size
and complexities of the functions and frameworks .
[0076] In one example , additional action manifests 536
can be provided in one or more code modules 534. For
example , an action can trigger lazy loading of a first code a
module 534 that defines additional actions . Those actions
can have an additional action manifest 536 that is loaded
with the first code module 534. The additional action mani
fest 536 can specify a second code module 534 that includes
action handlers for some of the actions identified in the first
code module 534. This can allow , for example , the dynamic
loading of new buttons that the user might not need initially .
Some of these buttons can have action handlers that are lazy
loaded even further into the future as part of the second code
module 534 .
[0077] One or more route guards 538 can also be provided
as part of the main bundle 532 or a code module 534. A route
guard 538 can be interfaces that tell the application 530
whether it should allow an action on a requested route . The
route guard 538 can make this decision by looking for a true
or false return value based on filters and conditions of those
filters . The application 530 can use multiple route guards
538 for different parts of the application 530 , in an example .
A menu can be displayed based on a route guard that uses
filters . The application can make a single remote call to

US 2022/0229673 A1 Jul . 21 , 2022
7

6. The method of claim 4 , wherein the filters at multiple
levels of a route are used in a single remote call to a server
to validate which actions on the multiple levels are available
to the user , wherein the available actions are cached for
future validation checks based on user interactions with the
menu .

validate all the routes and then store the validated routes in
a cache , such as in memory 520. Memory 520 can be a
physical memory , such as random - access memory , a hard
drive , or a solid - state drive . Memory 520 can be computer
readable and non - transitory .
[0078] A compiler 550 can build the application 530 such
that portions are in the main bundle 532 and portions are in
one or more code modules 534 for lazy loading . To do this ,
the compiler can read the code 554 created by programmers
and decide which portions to compile into which bundles
532 or modules 534. The compiler 550 can use a preset
action manifest 552 or route tree to determine which actions
are needed immediately versus later . This can allow for the
compilation of an action manifest 536 that is used by the
application for lazy loading based on user actions and other
actions that occur within the application 530 .
[0079] Other examples of the disclosure will be apparent
to those skilled in the art from consideration of the speci
fication and practice of the examples disclosed herein .
Though some of the described methods have been presented
as a series of steps , it should be appreciated that one or more
steps can occur simultaneously , in an overlapping fashion , or
in a different order . The order of steps presented are only
illustrative of the possibilities and those steps can be
executed or performed in any suitable fashion . Moreover ,
the various features of the examples described here are not
mutually exclusive . Rather any feature of any example
described here can be incorporated into any other suitable
example . It is intended that the specification and examples
be considered as exemplary only , with a true scope and spirit
of the disclosure being indicated by the following claims .
What is claimed is :
1. A method for action - based lazy loading , comprising :
loading a main bundle of code for a page of an applica

tion , the main bundle including :
an action manifest that maps action identifiers to sepa

rate code modules ; and
code for recognizing a first action ;

detecting the first action within the application , wherein
the action does not navigate away from the page ;

mapping , with the action manifest , a first action identifier
of the first action to a first code module ; and

lazy loading the first code module asynchronously from
the main bundle .

2. The method of claim 1 , wherein a compiler splits the
application into the main bundle and separate code modules
based on a routing configuration provided by registering the
action manifest for use with the compiler .

3. The method of claim 1 , wherein the application uses the
action identifier to identify the action manifest , and wherein
an action manifest service returns the first code module , and
wherein the first code module includes an action handler for
the first action .

4. The method of claim 1 , further comprising :
displaying , on the page , a menu with options allowed by

a route guard , wherein the route guard includes filters
for determining which of the menu items are available
to a user .

5. The method of claim 4 , further comprising :
traversing multiple levels of a route tree applied to the

route guard ; and
lazy loading at least a second code module based on the

determination of which actions are available at the
multiple levels .

7. The method of claim 4 , wherein selecting a first option
of the menu causes the lazy loading of the second code
module .

8. A non - transitory , computer - readable medium contain
ing instructions that , when executed by a hardware - based
processor , perform stages for action - based lazy loading , the
stages comprising :

loading a main bundle of code for a page of an applica
tion , the main bundle including :
an action manifest that maps action identifiers to sepa

rate code modules ; and
code for recognizing a first action ;

detecting the first action within the application , wherein
the action does not navigate away from the page ;

mapping , with the action manifest , a first action identifier
of the first action to a first code module ; and

lazy loading the first code module asynchronously from
the main bundle .

9. The non - transitory , computer - readable medium of
claim 8 , wherein a compiler splits the application into the
main bundle and separate code modules based on a routing
configuration provided by registering the action manifest for
use with the compiler .

10. The non - transitory , computer - readable medium of
claim 8 , wherein the application uses the action identifier to
identify the action manifest , and wherein an action manifest
service returns the first code module , and wherein the first
code module includes an action handler for the first action .

11. The non - transitory , computer - readable medium of
claim 8 , the stages further comprising :

displaying , on the page , a menu with options allowed by
a route guard , wherein the route guard includes filters
for determining which of the menu items are available
to a user .

12. The non - transitory , computer - readable medium of
claim 11 , the stages further comprising :

traversing multiple levels of a route tree applied to the
route guard ; and

lazy loading at least a second code module based on the
determination of which actions are available at the
multiple levels .

13. The non - transitory , computer - readable medium of
claim 11 , wherein the filters at multiple levels of a route are
used in a single remote call to a server to validate which
actions on the multiple levels are available to the user ,
wherein the available actions are cached for future valida
tion checks based on user interactions with the menu .

14. The non - transitory , computer - readable medium of
claim 8 , wherein selecting a first option of the menu causes
the lazy loading of the second code module .

15. A system for action - based lazy loading , comprising :
a memory storage including a non - transitory , computer

readable medium comprising instructions ; and
a computing device including a hardware - based processor

that executes the instructions to carry out stages com
prising :

loading a main bundle of code for a page of an applica
tion , the main bundle including :

9

a

US 2022/0229673 A1 Jul . 21 , 2022
8

18. The system of claim 15 , the stages further comprising :
displaying , on the page , a menu with options allowed by

a route guard , wherein the route guard includes filters
for determining which of the menu items are available
to a user .

an action manifest that maps action identifiers to sepa
rate code modules ; and

code for recognizing a first action ;
detecting the first action within the application , wherein

the action does not navigate away from the page ;
mapping , with the action manifest , a first action identifier

of the first action to a first code module ; and
lazy loading the first code module asynchronously from

the main bundle .
16. The system of claim 15 , wherein a compiler splits the

application into the main bundle and separate code modules
based on a routing configuration provided by registering the
action manifest for use with the compiler .

17. The system of claim 15 , wherein the application uses
the action identifier to identify the action manifest , and
wherein an action manifest service returns the first code
module , and wherein the first code module includes an
action handler for the first action .

19. The system of claim 18 , the stages further comprising :
traversing multiple levels of a route tree applied to the

route guard ; and
lazy loading at least a second code module based on the

determination of which actions are available at the
multiple levels .

20. The system of claim 18 , wherein the filters at multiple
levels of a route are used in a single remote call to a server
to validate which actions on the multiple levels are available
to the user , wherein the available actions are cached for
future validation checks based on user interactions with the
menu .

