US 20180331927A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2018/0331927 A1

Eberlein et al.

43) Pub. Date: Nov. 15, 2018

(54)

(71)
(72)

(73)

@

(22)

(1)

(52)

RESOURCE COORDINATE SYSTEM FOR
DATA CENTERS
Applicant: SAP SE, Walldorf (DE)

Peter Eberlein, Malsch (DE); Volker
Driesen, Heidelberg (DE)

Inventors:

Assignee: SAP SE, Walldorf (DE)

Appl. No.: 15/591,683

(57) ABSTRACT

Embodiments allow identifying unique locations, proximity,
and constraints of various individualization resource units in
a data center. A plurality of processes may compete for
available resources (e.g., CPU, network bandwidth,
memory) in a shared environment, which may be virtualized
(e.g., comprising host, VM, container, application server
instance resource units). A scheduling infrastructure deter-
mines individualization unit locations according to an iden-
tifier reflecting resource hierarchies. For each process, the
data sending infrastructure sends location data as an ID stack
to a central monitoring instance for analysis. That central

Filed: May 10, 2017 monitoring instance can reference the resource location
information to identify process proximity and competition
Publication Classification for resources constraining process perfqrmance. Rf:source
location information in the form of coordinates provided by
Int. C1. the ID stack, offer valuable information regarding resource
HO4L 12726 (2006.01) consumption and other information relevant for process
U.S. Cl monitoring. Embodiments may be particularly useful in
CPC HO4L 43/0876 (2013.01); HO4L 43/06 diagnosing bottlenecks arising from processes sharing
(2013.01) resource units in virtualized environments.
100
160 Mode|
= 160"
164 | [Constrart =]
C
Monitoring 154 134
>
108 1%6 _{_/
R éf T
eporting
s - i
A \| p1ID: <I.A2,i>
18f 155‘\1 p2 1D <l A 1> |
Scheduler 136/-\‘| Proximity |
O) 156\‘< Constraint Set: IxAy |
102 \\\\~\~___________—_,,—//’/
120
~ 112
pf S
110
Resource i
122
S 112
p2 o
114
S
Resource 1 Resource 2 > Hierarchy
Resource A

Resource |

Patent Application Publication Nov. 15,2018 Sheet 1 of 13 US 2018/0331927 A1

FIG. 1

160 Model

User 152 []Constraint: I=x |

| Constraint: A=y |

]
Q’1 54 134

X

Monitoring

>
165 1% S
(\
eporing S 11D: <LA2,i
N s >
130 10 =As
Y 139 p2ID: <A 1>
Seheduler 136 Proximity
é) 156 ™ Constraint Set: IxAy
102

~_

120
112
ol)
110
Resource i
132
112
p2_ O
114
o
Resource 1 Resource 2 Hierarchy
Resource A
Resource | Y,

Patent Application Publication Nov. 15,2018 Sheet 2 of 13 US 2018/0331927 A1

Location Determined and ID
Assigned

l

Unit ID Stack Read and Forwarded [204

|

ID Stacks Received and Compared

|

N\-202

N
o
(o]

/\.206

™\

Proximity Determined 208

: . . \210
Defined Constraint Received

l N\212

Set of Resource Constraints
Determined

FIG. 2

Patent Application Publication

FIG. 3

,’" %
s
)
]

Nov. 15,2018 Sheet 3 of 13 US 2018/0331927 Al

%

e

Patent Application Publication Nov. 15,2018 Sheet 4 of 13 US 2018/0331927 A1

FIG. 4

400

#d
e

2

Patent Application Publication Nov. 15,2018 Sheet 5 of 13 US 2018/0331927 A1

FIG. 5

fnfrastruct

SIS LEL LS :>
oy
o1
55 B
“ e
1
£
i

¥

ARG

&

i

& 1 2%

i‘::\.‘]

s

P ki
ren P

2
Seryer
instance
1
5

C
VM
=

Patent Application Publication Nov. 15,2018 Sheet 6 of 13 US 2018/0331927 A1

FIG. 6

St Tﬂ\‘ NE)

2

1138

X

O wrm
T asi

Y0 cont = $E0I303 ¥

= [97]
b]
o £

50102

2 i
|44 w3
% P o
1 ¥
i .
g g
b b

Patent Application Publication Nov. 15,2018 Sheet 7 of 13 US 2018/0331927 A1

FIG. 7

705

'

b
N of H
A
R e i
| £ 5
e 47
& ™
s iy
2 4
] e
b L3k
—‘f’n;r';"—"’//}'ﬂ ':‘ ?7;; qu“(%
”Ejg P ’i“‘ “%
@ 4 b et
B - % 4
QJ zv"‘i o]
) g
7
2 =
i
...... %

ation

A
Server

%

i

instance

Patent Application Publication Nov. 15,2018 Sheet 8 of 13 US 2018/0331927 A1

FIG. 8

PIT)

g
£,

%
roer

o e : | st

? o
: X

TS|
?{’; e

% r

4

£l

R&

&
B

RIE:

B owey = 00010208

3
NEJR T
S

P2

P

D
Server

Patent Application Publication Nov. 15,2018 Sheet 9 of 13 US 2018/0331927 A1

FIG. 9

Yoo
fvre

chedul
i

s I o i

w WL A

S5
S8R

23
NI

34

% . £ w
A o FREAN W ;
Ll DI E B TR T B 1y
Chi b b1 G g V=N g
<A AR, i J . Seincreriindbatnnn i P &
- 5 e [

¢ [P bi#]
¥ L% :) £ 5
G oed 0 2 =% £

£
AN

o
I

il [H

&
oSt = 2RI EER

t

¥
g
SRRV R Lt B R it R B kbt octon

3
§
A e
}
D

§
3

B&

x

N

P

pney

icat

3
S
N

App

i

ot

o]

instance

fonts

kY
How

Patent Application Publication Nov. 15,2018 Sheet 10 of 13 US 2018/0331927 A1l

100 GB

“close”: Limit of X is 100 GB/s

10 GB/s
FIG. 10

10 GB/s

“very close”: Limit of X is 10 GB/s

US 2018/0331927 Al

Nov. 15,2018 Sheet 11 of 13

Patent Application Publication

-,

~
S,
.y
.
o

Zysums Qi

13

Old

cyoums™ @i I
" \,w.\...\,ﬂ s
$/89 0T~ e
e ¥P183 Q1 pd

_EPiE2 I ¢d

TYoums Qi

e,

i -

.

50T

.

Zpiea gy

Jpiey g

1d 0d

Patent Application Publication Nov. 15,2018 Sheet 12 of 13 US 2018/0331927 A1l

Computer System

Executable

1204~

- Software

1202

~_

Database

Location |q | Engine

—1205

~_

FIG. 12

US 2018/0331927 Al

Nov. 15,2018 Sheet 13 of 13

Patent Application Publication

j' 22IAa(Induyj

€1 'Old]
|
|
OLEIn) 90Ine(
| abelolg
|
|
eoel a
|
| SOEL
M
|
"
“ aoelalu|
yoek PHOMISN
|
|
lenes |\ o GeEEL S
BAIRS | /N PEEL
YIOM)SN
8007
Oeel EIEI
lsnes |\ o~ eeel BABS |\ 1 eEL
Joneg |\, zeel

- Aeidsiq

|
|
|
|
|
|
|
|
|
|
|
|
“ NN LISl
|
|
|
|
|
|
|
|
|
|
|
|

FEYNEIS

/\, Glel

[
o
<«

US 2018/0331927 Al

RESOURCE COORDINATE SYSTEM FOR
DATA CENTERS

BACKGROUND

[0001] Unless otherwise indicated herein, the approaches
described in this section are not prior art to the claims in this
application and are not admitted to be prior art by inclusion
in this section.

[0002] The push for cost reduction in modern data centers
leads to increasing hardware utilization. Idle hardware is
considered a cost problem, and mechanisms are created to
minimize idle times.

[0003] However, running more processes to minimize idle
hardware also implies that these processes compete for
resources. This can lead to slower execution, longer run-
times, and even the abortion of processes (e.g., if no more
memory can be allocated).

[0004] Virtualization layers, virtual machines (VMs), con-
tainers, and application servers are various mechanisms that
are used to optimize hardware utilization. These allow
“overprovisioning”: VMs can be defined for certain hard-
ware, which in sum offer more resources than the hardware
that is available.

[0005] Overprovisioning succeeds most of the time, where
all VMs are not encountering peak demand conditions.
However where hardware limits are reached and processes
are slowed down or aborted, it becomes increasingly com-
plicated to identify the root cause of the delays. This task is
made more difficult by the presence of abstraction layers of
VMs, containers, and application server instances (ASIs).

SUMMARY

[0006] Embodiments offer a coordinate system allowing
the identification of resources in a data center. Particular
embodiments permit the determination of unique locations,
proximity, and constraints of various individualization
resource units, including virtualized resources. Embodi-
ments may thus be particularly useful in diagnosing resource
bottlenecks arising from processes competing for resource
units in virtualized environments.

[0007] Specifically, plurality of processes may compete
for available resources (e.g., CPU, network bandwidth,
memory) in a shared environment, which may be virtualized
(e.g., comprising host, VM, container, application server
instance resource units). A scheduling infrastructure initially
defines individualization resource unit locations as coordi-
nates in the form of an identifier (which may reflect resource
hierarchies). For each process, a data sending infrastructure
sends location data in the form of an ID stack to a central
monitoring instance for analysis of the resource situation.
That central monitoring instance can reference the resource
location information to identify process proximity and com-
petition for resources constraining process performance.
Resource location information in the form of coordinates
provided by the ID stack, offer valuable information regard-
ing resource consumption and other information relevant for
process monitoring.

[0008] An embodiment of a computer-implemented
method comprises assigning unique identifiers to each of a
plurality of resources within a hierarchy of a computing
environment to define location information, storing the
location information, and reporting the location information
to a central monitoring instance. The central monitoring

Nov. 15, 2018

instance determines from the location information, a first set
of resources consumed by a first process based upon a first
identifier stack comprising one or more of the unique
identifiers. The central monitoring instance displays the first
set of resources.

[0009] A non-transitory computer readable storage
medium embodies a computer program for performing a
method comprising assigning unique identifiers to each of a
plurality of resources within a hierarchy of a computing
environment to define location information. The method
further comprises storing the location information, and
reporting the location information to a central monitoring
instance. The central monitoring instance determines from
the location information, a first set of resources consumed by
a first process based upon a first identifier stack comprising
one or more of the unique identifiers. The central monitoring
instance receives from a modeling infrastructure, a con-
straint of one resource of the first set of resources, the central
monitoring instance displays the first set of resources and the
constraint.

[0010] An embodiment of a computer system comprises
one or more processors and a software program, executable
on said computer system. The software program is config-
ured to cause an in-memory database engine to assign
unique identifiers to each of a plurality of resources within
a hierarchy of a computing environment to define location
information, to store the location information in an in-
memory database, and to determine from the location infor-
mation, a first set of resources consumed by a first process
based upon a first identifier stack comprising one or more of
the unique identifiers. The software program is further
configured to cause an in-memory database engine to deter-
mine from the location information, a second set of
resources consumed by a second process based upon a
second identifier stack comprising one or more of the unique
identifiers, to compare the first identifier stack with the
second identifier stack to determine a proximity between the
first process and the second process, and to communicate the
proximity for display.

[0011] Certain embodiments further comprise the central
monitoring instance receiving from a modeling infrastruc-
ture a constraint of one resource of the first set of resources,
and the central monitoring instance revealing the one
resource as a performance bottleneck of the first process
based upon the constraint.

[0012] Some embodiments further comprise the central
monitoring instance determining from the location informa-
tion, a second set of resources consumed by a second
process based upon a second identifier stack comprising one
or more of the unique identifiers, and the central monitoring
instance comparing the first identifier stack with the second
identifier stack to determine a proximity between the first
process and the second process.

[0013] Particular embodiments may further comprise the
central monitoring instance receiving from a modeling infra-
structure, a constraint of one resource identified as proxi-
mate between the first process and the second process.

[0014] Various embodiments may further comprise the
central monitoring instance revealing the one resource as a
performance bottleneck of the first process based upon the
constraint.

[0015] According to some embodiments the computing
environment comprises a virtualization computing environ-

US 2018/0331927 Al

ment, and the constraint comprises a number of virtual
machines supported by a hardware central processing unit.
[0016] In particular embodiments the computing environ-
ment comprises a network topology including a switch, and
the constraint comprises a bandwidth of the switch.

[0017] In various embodiments the computing environ-
ment comprises a common resource shared between the first
process and the second process, and the constraint comprises
a number of operations per second of the common resource.
[0018] According to certain embodiments the common
resource comprises an input-output device.

[0019] In particular embodiments the common resource
comprises a memory.

[0020] In some embodiments the computing environment
comprises a virtualization computing environment, and the
hierarchy comprises a virtual machine.

[0021] The following detailed description and accompa-
nying drawings provide a better understanding of the nature
and advantages of embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

[0022] FIG. 1 shows a simplified diagram of a system
according to an embodiment.

[0023] FIG. 2 shows a simplified flow diagram of a
method according to an embodiment.

[0024] FIG. 3 shows a resource hierarchy in a virtualiza-
tion environment.

[0025] FIGS. 4-9 shows details of a process flow for
resource analysis according to a specific example involving
a virtualization environment.

[0026] FIGS. 10-11 show details of a process flow for
resource analysis according to a specific example involving
a network topology environment.

[0027] FIG. 12 illustrates hardware of a special purpose
computing machine according to an embodiment that is
configured to perform resource analysis.

[0028] FIG. 13 illustrates an example computer system.
DETAILED DESCRIPTION
[0029] Described herein are methods and apparatuses

implementing resource coordinate systems for data centers.
In the following description, for purposes of explanation,
numerous examples and specific details are set forth in order
to provide a thorough understanding of embodiments
according to the present invention. It will be evident, how-
ever, to one skilled in the art that embodiments as defined by
the claims may include some or all of the features in these
examples alone or in combination with other features
described below, and may further include modifications and
equivalents of the features and concepts described herein.

[0030] FIG. 1 shows a simplified view of a system con-
figured to implement resource analysis according to an
embodiment. Specifically, system 100 comprises engine 102
comprising a scheduler 104, reporting agent(s) 106, and
central monitoring instance 108.

[0031] Engine 102 is configured to communicate with a
data center 110 comprising a plurality of individualization
resource units 112 that are arranged according to a resource
hierarchy 114. One example of such a resource hierarchy is
a virtualization environment comprising host, VMs, con-
tainers, and application server instances. Another possible

Nov. 15, 2018

example of such a resource hierarchy is a network topology
comprising cards connected by switches having different
bandwidths.

[0032] A first process (pl) 120 operates within the data
center, consuming a set of various individualization resource
units thereof, from parent (lower) to child (middle) and
(grandchild) upper. A second process (p2) 122 also operates
within the same data center to consume various (parent/
child) individualization resource units, some of which may
be shared with the first process.

[0033] In order to provide an insightful analysis of
resource consumption by data center processes, FIG. 2
shows a process flow of various actions that are taken by the
engine. Specifically, at 202 the scheduler determines the
location of each individual resource unit within the data
center, assigning each unit an identifier. In this manner a
resource coordinate system is created, which can be used to
map processes to individualization resource units.

[0034] At 204, the reporting agent reads a respective stack
of unit IDs 130, 132 from each resource unit, the stack
corresponding to each process running in the data center.
These unit ID stacks are then forwarded by the reporting
agent to the central monitoring instance for storage in
non-transitory computer-readable storage medium 134.
[0035] At 206, the central monitoring instance receives the
data sets from the reporting agent(s). The monitoring
instance extracts the IDs and compares them for different
data sets of different processes.

[0036] At 208, where comparison of the reported stacks
reveals the presence of the same identifiers, proximity 136
between processes is indicated. For example, in the simpli-
fied embodiment of FIG. 1, the ID stacks of the processes pl
and p2 reveal that they both include resource individualiza-
tion units *I and *A (e.g., which in a virtualization environ-
ment may correspond to the same VM running on the same
host).

[0037] At 210 a resource modeling infrastructure (e.g.,
150 of FIG. 1) may define constraints 152, 154 of individual
resource units. For example, the resource modeling infra-
structure may define a constraint in the form of a maximum
number of VM units that are able to be supported by a
specific single physical CPU of the hardware. In another
example, the resource modeling infrastructure may define a
maximum bandwidth available to a particular switch in a
network topology. This constraint information is then sent to
the central monitoring instance.

[0038] At 212, the central monitoring instance receives the
individual unit constraint information from the modeling
infrastructure. The monitoring instance finds matching IDs
of units of different processes, and reads the constraints (e.g.,
from child-to-parent), thus providing to a user 160 a set of
constraint resources 156 for the competing processes.
[0039] Various details of implementing a coordinate sys-
tem for data center resource analysis according to particular
embodiments, are now discussed in connection with the
following example of FIGS. 3-10.

Example

[0040] FIG. 3 shows an example of a hardware environ-
ment 300 comprising a plurality of CPU resource units
configured in a hierarchical manner, e.g.:

[0041] host 302;
[0042] virtual machine (VM) 304;
[0043] containers 306;

US 2018/0331927 Al

[0044] application server instances 308; and
[0045] application 310.
[0046] Monitoring data and runtime evaluation of pro-

cesses deployed in that hardware environment may reveal
that one or more of these processes is running slower than
usual or expected. Then, a root-cause-analysis process com-
mences in order to identify the origin of the problem.

[0047] The next level of analysis can indicate that one of
the resources was constrained, and that the slowed process
did not receive the expected set of resources. Application of
a resource coordinate system according to embodiments
may aid in identifying such a constrained resource.

[0048] As discussed previously, initially a location of each
of the individualization resource units of the data center
environment is determined. Here, FIG. 3 generally shows
the assignment of unique IDs to the individualization units
in each layer of the resource hierarchy of the virtualization
environment. That unique ID provides the coordinate system
serving to provide a location of the individualization
resource unit within the data center environment.

[0049] Specifically, for each individualization unit, a cen-
tral scheduling infrastructure (e.g. the one creating, starting
and moving the unit) injects the unique ID of the underlying
individualization unit. This ID is updated by the scheduling
infrastructure, if the underlying individualization unit
changes (e.g. a move to another unit).

[0050] Accordingly, FIG. 4 shows a multi-layer schedul-
ing infrastructure (MLSI) 400 (which can be a group of
scheduling infrastructures). The MLSI first assigns to each
parent individualization unit (e.g., host), a unique 1D 402.
Here, the infrastructure comprises only a single parent
(host), which is assigned the media access control (MAC)
address as the unique ID.

[0051] As shown in FIG. 5, the MLSI then passes the
unique ID of the parent unit to the child unit contained
within the parent unit, with each parent unit potentially
having several child units, and each child potentially having
several parent units. If the parent changes during process
runtime, the MLSI passes the new parent unit ID to the child,
thereby allowing the child unit to know its parent unit.

[0052] As shown in FIG. 6, the MLSI also manages
parents of parents (i.e. grandparents) and children of chil-
dren (i.e. grand children). The MLSI thus passes the grand
parent unit IDs to a child unit, reading them from the parent
unit ID store (and grand-grand parent unit IDs and so forth).

[0053] At the conclusion of the location procedure shown
in FIG. 6, the specific set of resources of particular processes
pl and p2 can thus be represented by an ID stack (e.g., 600,
602). In particular, the unique ID of the host is injected into
the VM, the unique ID of the VM into the container, the
unique ID of the container into the app server instance. The
location of the resource is then a set of IDs (ID stack) for the
direct environment, the underlying environment and so on.

[0054] Next, FIG. 7 shows coordinate and resource con-
sumption reporting agents (RA) 700 and 702 for the respec-
tive processes pl and p2, reading the stack of unit IDs from
the unit ID store of the current environment. The RA sends
the stack of unit IDs to the resource topology analyzer RTA
704 for further processing. For each send event, the RA
reads the unit IDs again in order to capture updated IDs (due,
e.g., to a shifting of resources allocated to the process).

Nov. 15, 2018

[0055] FIG. 8 shows the activity of the RTA upon receiv-
ing data sets from all connected RAs, to derive location and
proximity. In particular, the RTA extracts the IDs from the
data sets.

[0056] The RTA then compares the IDs from different data
sets, sent by different RAs for different processes. Matching
IDs resulting from this comparison identify proximity
between the resources.

[0057] Proximity may be derived from resource location
as follows. Here, the two processes p1l and p2 have two ID
stacks:

[0058] Stack_pl (ID1_host, ID1_vm, ID1_cont, ID1_
asi)
[0059] Stack_p2 (ID2_host, ID2_vm, ID2_cont).

It is noted that not all resource layers are mandatory (e.g., the
process p2 does not utilize an application service instance
resource).
[0060] The two processes pl and p2 share resource con-
straints, if one of the IDs in the stack match, e.g.:
[0061] ID1_host==ID2_host, indicating both processes
run on the same host;
[0062] ID1_vm==ID2_vm, indicating both processes
run in the same VM; and
[0063] ID1_cont=ID2_cont, indicating the processes
run in different containers.
[0064] This location-based procedure also works if the
two stacks are not using the same layers. For example:

[0065] Stack_pl (ID1_host, ID1_vm, ID1_asi)—a pro-
cess running in an application server running in a VM;
and

[0066] Stack_p2 (ID2_host, ID2_cont)—a process run-

ning in a container.

[0067] Thus FIG. 8 shows that processes p1 and p2 share
resource constraints because one of the IDs in the stack
match:

[0068] ID1_host==ID2_host, indicating both processes

run on the same host.

[0069] FIG. 9 shows the activity of a resource modeling
infrastructure (RMI) 900 to analyze constraints. In particu-
lar, the RMI defines for individual units, constraints of
certain resource types or reading from physical machines.
For example, here the RMI may indicate the limit of
processing power (e.g., in operations per second) of a
particular physical CPU, which is comprised of virtualized
components (e.g., VMs, containers, etc.).
[0070] The constraint is read from the host with the ID:
ID_host (=ID1_host==ID2_host). These constraints are the
maximum value for the two processes with matching 1Ds,
but there may be more processes using the same host and
competing on the resource. These can be found, for example
by searching the monitoring system for more processes
reporting a host with the ID: ID_host.
[0071] In this manner, embodiments allow identifying if
two processes run in the same VM, and the VM is con-
strained to have 2 CPU only, even if the processes would run
in an application server instance and the application server
in a container.
[0072] The RMI then sends these constraints to the RTA,
together with the IDs. In this example these IDs indicate
host, VM, container, application server instance, etc.
[0073] The RTA then proceeds to store the resource con-
straints together with IDs. The RTA finds matching IDs of
units of processes, and reads the provided constraints. The
RTA then finds the parent units of the units with the

US 2018/0331927 Al

matching IDs, and reads the constraints from those parent
units, thus providing a set of constraint of resource types for
two processes.

[0074] According to certain embodiments, a procedure for
constraint analysis utilizing coordinate location data may
move from child-to-parent in order to identify bottlenecks.
In alternative embodiments the procedure may move from
parent-to-child through a resource hierarchy.

[0075] The specific embodiments described above are
provided for purposes of illustration only, and embodiments
are not limited to them. For example, while the above
example has described constraints defined on different levels
of CPU virtualization, embodiments are not limited to such
environments.

[0076] For example, alternative embodiments may allow
analysis of resource constraints defined on network topol-
ogy. Consider a network topology shown in FIG. 10, with
one switch serving three hosts, having a 10 GB/s line to the
next switch serving a larger number of other switches and
hosts, itself having a 100 GB/s line.

[0077] Considering a first level of the resource hierarchy
of the network topology, hosts may each have nominal
network bandwidth of 10 GB/s. Since the switch also has
only 10 GB/s, the sum of the hosts can in total only be 10
GB/s.

[0078] However, a process on a host can experience lower
bandwidth than the network card specification of 10 GB/s,
as other processes on the same switch could consume
bandwidth.

[0079] Considering a second level of the resource hierar-
chy of the network topology, even if the hosts attached to the
same switch consume less than 10 GB/s bandwidth, a
constraint on another switch can constrain the bandwidth
available for a process. Thus even if the other hosts at the
same switch do only consume 1 GB/s, a host may not get the
remaining 9 GB/s, as the next switch may be loaded already
with 99 GB/s and only has 100 GB/s capacity.
[0080] In this example, the topology of the network defi-
nition may be initially read by the scheduler component in
order to define the resource coordinate system. Then, as
shown in FIG. 11, an ID is defined for each unit in the
network (network card, switch, switch . . .):

[0081] Stack_process<x>(ID<x>_card, ID<y>_switch,

ID<z>_switch).

[0082] With such a resource coordinate system in place
determining locations of individualization resource units,
the monitoring instance is then poised to provide insight into
resource consumption. The centralized monitoring instance
may work with a modeling infrastructure to determine
proximity and constraints as has been described above.
[0083] Itis further noted that embodiments are not limited
to analysis of resource constraints that are due to virtual-
ization and/or network topology. Other examples of con-
strained resources can include input-output (I0) devices
(e.g., memory), which may perform at a given number of
operations per second. For example, processes operating in
different containers can use network mounted disk drives
and thus share potentially the same storage capacity and 10.
[0084] In certain embodiments, the resource analysis may
be implemented by a database engine, for example as
present in an in-memory database. One example of such an
in-memory database engine is that of the HANA in-memory
database available from SAP SE of Walldorf, Germany.

Nov. 15, 2018

[0085] According to particular embodiments, the process-
ing power available to an in-memory database engine may
be leveraged to perform one or more aspects as have been
described herein. For example, the in-memory database
engine may be employed to perform one or more of the
functions described above: scheduling, reporting, topology
analysis, and/or resource modeling to analyze constraints.
[0086] In summary, resource analysis according to
embodiments may find use in analyzing a resource problem
associated with one particular process. Such a single-process
analysis could be conducted as follows.

[0087] A process pl has problems with one resource
(e.g. CPU).

[0088] Embodiments use the resource coordinate sys-
tem to identify various individualization units of the
CPU, and read the constraints for every layer.

[0089] The process loops over the resource layers, look-
ing in a current layer for processes with competing
resources.

[0090] If this is a layer with higher layers above (e.g.,
children), then sum iteratively the sum of all processes
with the same ID on that layer. That is, this is a query
on matching IDs of a certain type for all monitored
processes.

[0091] If the sum of the resources matches the con-
straints, then a bottleneck has been found. If the sum of
the resources does not match the constraints, then the
analysis moves to the next layer (the parent) in order to
identify the bottleneck.

[0092] Resource analysis according to embodiments may
also find use in analyzing a resource problem that may be
associated with multiple processes. That is, a multi-process
resource analysis could be conducted to identify particular
resource units that are the subject of competition between
suspected processes. Such a multi-process analysis could be
conducted as follows.

[0093] Identify if the multiple processes have matching
IDs in the coordinate system of resource units (e.g.
CPU or network bandwidth).

[0094] If the processes do not have matching coordi-
nates (e.g., their ID stacks do not reflect common
individualization resource units), then the processes do
not compete and the root of the resource problem does
not lie in competition between those processes.

[0095] If the suspect processes do have matching coor-
dinates (e.g., share particular individualization resource
unit IDs in their stacks), they are likely in competition
for at least one individualization resource unit. A user
may then carefully inspect the constraints for the indi-
vidualization resource unit having that shared ID, and
potentially analyze more processes to hone in upon the
likely source of the resource problem.

[0096] FIG. 12 illustrates hardware of a special purpose
computing machine configured to implement resource
analysis according to an embodiment. In particular, com-
puter system 1201 comprises a processor 1202 that is in
electronic communication with a non-transitory computer-
readable storage medium comprising a database 1203. This
computer-readable storage medium has stored thereon code
1205 corresponding to an engine. Code 1204 corresponds to
location information. Code may be configured to reference
data stored in a database of a non-transitory computer-
readable storage medium, for example as may be present
locally or in a remote database server. Software servers

US 2018/0331927 Al

together may form a cluster or logical network of computer
systems programmed with software programs that commu-
nicate with each other and work together in order to process
requests.

[0097] An example computer system 1300 is illustrated in
FIG. 13. Computer system 1310 includes a bus 1305 or other
communication mechanism for communicating information,
and a processor 1301 coupled with bus 1305 for processing
information. Computer system 1310 also includes a memory
1302 coupled to bus 1305 for storing information and
instructions to be executed by processor 1301, including
information and instructions for performing the techniques
described above, for example. This memory may also be
used for storing variables or other intermediate information
during execution of instructions to be executed by processor
1301. Possible implementations of this memory may be, but
are not limited to, random access memory (RAM), read only
memory (ROM), or both. A storage device 1303 is also
provided for storing information and instructions. Common
forms of storage devices include, for example, a hard drive,
a magnetic disk, an optical disk, a CD-ROM, a DVD, a flash
memory, a USB memory card, or any other medium from
which a computer can read. Storage device 1303 may
include source code, binary code, or software files for
performing the techniques above, for example. Storage
device and memory are both examples of computer readable
mediums.

[0098] Computer system 1310 may be coupled via bus
1305 to a display 1312, such as a cathode ray tube (CRT) or
liquid crystal display (LCD), for displaying information to a
computer user. An input device 1311 such as a keyboard
and/or mouse is coupled to bus 1305 for communicating
information and command selections from the user to pro-
cessor 1301. The combination of these components allows
the user to communicate with the system. In some systems,
bus 1305 may be divided into multiple specialized buses.
[0099] Computer system 1310 also includes a network
interface 1304 coupled with bus 1305. Network interface
1304 may provide two-way data communication between
computer system 13410 and the local network 1320. The
network interface 1304 may be a digital subscriber line
(DSL) or a modem to provide data communication connec-
tion over a telephone line, for example. Another example of
the network interface is a local area network (LAN) card to
provide a data communication connection to a compatible
LAN. Wireless links are another example. In any such
implementation, network interface 604 sends and receives
electrical, electromagnetic, or optical signals that carry
digital data streams representing various types of informa-
tion.

[0100] Computer system 1310 can send and receive infor-
mation, including messages or other interface actions,
through the network interface 1304 across a local network
1320, an Intranet, or the Internet 1330. For a local network,
computer system 1310 may communicate with a plurality of
other computer machines, such as server 1315. Accordingly,
computer system 1310 and server computer systems repre-
sented by server 1315 may form a cloud computing network,
which may be programmed with processes described herein.
In the Internet example, software components or services
may reside on multiple different computer systems 1310 or
servers 1331-1335 across the network. The processes
described above may be implemented on one or more
servers, for example. A server 1331 may transmit actions or

Nov. 15, 2018

messages from one component, through Internet 1330, local
network 1320, and network interface 1304 to a component
on computer system 1310. The software components and
processes described above may be implemented on any
computer system and send and/or receive information across
a network, for example.
[0101] The above description illustrates various embodi-
ments of the present invention along with examples of how
aspects of the present invention may be implemented. The
above examples and embodiments should not be deemed to
be the only embodiments, and are presented to illustrate the
flexibility and advantages of the present invention as defined
by the following claims. Based on the above disclosure and
the following claims, other arrangements, embodiments,
implementations and equivalents will be evident to those
skilled in the art and may be employed without departing
from the spirit and scope of the invention as defined by the
claims.
What is claimed is:
1. A computer-implemented method comprising:
assigning unique identifiers to each of a plurality of
resources within a hierarchy of a computing environ-
ment to define location information;
storing the location information;
reporting the location information to a central monitoring
instance;
the central monitoring instance determining from the
location information, a first set of resources consumed
by a first process based upon a first identifier stack
comprising one or more of the unique identifiers; and
the central monitoring instance displaying the first set of
resources.
2. A method as in claim 1 further comprising:
the central monitoring instance receiving from a modeling
infrastructure, a constraint of one resource of the first
set of resources; and
the central monitoring instance revealing the one resource
as a performance bottleneck of the first process based
upon the constraint.
3. A method as in claim 1 further comprising:
the central monitoring instance determining from the
location information, a second set of resources con-
sumed by a second process based upon a second
identifier stack comprising one or more of the unique
identifiers; and
the central monitoring instance comparing the first iden-
tifier stack with the second identifier stack to determine
a proximity between the first process and the second
process.
4. A method as in claim 3 further comprising:
the central monitoring instance receiving from a modeling
infrastructure, a constraint of one resource identified as
proximate between the first process and the second
process.
5. A method as in claim 4 further comprising:
the central monitoring instance revealing the one resource
as a performance bottleneck of the first process based
upon the constraint.
6. A method as in claim 4 wherein:
the computing environment comprises a virtualization
computing environment; and
the constraint comprises a number of virtual machines
supported by a hardware central processing unit.

US 2018/0331927 Al

7. A method as in claim 4 wherein:

the computing environment comprises a network topol-

ogy including a switch; and

the constraint comprises a bandwidth of the switch.

8. A method as in claim 4 wherein:

the computing environment comprises a common

resource shared between the first process and the sec-
ond process; and

the constraint comprises a number of operations per

second of the common resource.

9. A method as in claim 8 wherein the common resource
comprises an input-output device.

10. A method as in claim 9 wherein the common resource
comprises a memory.

11. A method as in claim 1 wherein:

the computing environment comprises a virtualization

computing environment; and

the hierarchy comprises a virtual machine.

12. A non-transitory computer readable storage medium
embodying a computer program for performing a method,
said method comprising:

assigning unique identifiers to each of a plurality of

resources within a hierarchy of a computing environ-
ment to define location information;

storing the location information;

reporting the location information to a central monitoring

instance;

the central monitoring instance determining from the

location information, a first set of resources consumed
by a first process based upon a first identifier stack
comprising one or more of the unique identifiers;

the central monitoring instance receiving from a modeling

infrastructure, a constraint of one resource of the first
set of resources; and

the central monitoring instance displaying the first set of

resources and the constraint.

13. A non-transitory computer readable storage medium
as in claim 12 wherein the method further comprises:

the central monitoring instance determining from the

location information, a second set of resources con-
sumed by a second process based upon a second
identifier stack comprising one or more of the unique
identifiers; and

the central monitoring instance comparing the first iden-

tifier stack with the second identifier stack to determine
a proximity between the first process and the second
process.

14. A non-transitory computer readable storage medium
as in claim 13 wherein the method further comprises:

Nov. 15, 2018

the central monitoring instance revealing the one resource
as a performance bottleneck of the first process based
upon the constraint.

15. A non-transitory computer readable storage medium

as in claim 12 wherein:

the computing environment comprises a virtualization
computing environment; and

the hierarchy comprises a virtual machine.

16. A computer system comprising:

one or more processors;

a software program, executable on said computer system,
the software program configured to cause an
in-memory database engine to:

assigning unique identifiers to each of a plurality of
resources within a hierarchy of a computing environ-
ment to define location information;

store the location information in an in-memory database;

determine from the location information, a first set of
resources consumed by a first process based upon a first
identifier stack comprising one or more of the unique
identifiers;

determining from the location information, a second set of
resources consumed by a second process based upon a
second identifier stack comprising one or more of the
unique identifiers;

compare the first identifier stack with the second identifier
stack to determine a proximity between the first process
and the second process; and

communicate the proximity for display.

17. A computer system as in claim 16 wherein the
software program is further configured to cause the in-
memory database engine to:

receive a constraint of one resource of the first set of
resources;

store the constraint in the in-memory database; and

reveal the one resource as a performance bottleneck based
upon the constraint.

18. A computer system as in claim 17 wherein:

the computing environment comprises a virtualization
computing environment; and

the hierarchy comprises a virtual machine.

19. A computer system as in claim 17 wherein:

the computing environment comprises a network topol-
ogy including a switch; and

the constraint comprises a bandwidth of the switch.

20. A computer system as in claim 17 wherein the
constraint comprises a number of operations per second of
the one resource.

