
US 20190034357A1
(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2019 / 0034357 A1

Nunez Mencias et al . (43) Pub . Date : Jan . 31 , 2019

(54) COMPUTER SYSTEM
SOFTWARE / FIRMWARE AND A
PROCESSOR UNIT WITH A SECURITY
MODULE

Related U . S . Application Data
(63) Continuation of application No . 15 / 658 , 441 , filed on

Jul . 25 , 2017 .

(71) Applicant : International Business Machines
Corporation , Armonk , NY (US)

(72) Inventors : Angel Nunez Mencias , Stuttgart (DE) ;
Jakob C . Lang , Weil im Schoenbuch
(DE) ; Martin Recktenwald ,
Schoenaich (DE) ; Ulrich Mayer , Weil
im Schoenbuch (DE)

Publication Classification

(51) Int . Cl .
GO6F 12 / 14 (2006 . 01)
G06F 13 / 24 (2006 . 01)

2) U . S . Cl .
CPC . . GO6F 12 / 1408 (2013 . 01) ; G06F 2212 / 1052

(2013 . 01) ; G06F 13 / 24 (2013 . 01)
(57)

(21) Appl . No . : 15 / 806 , 440
ABSTRACT

Technology for decrypting and using a security module in a
processor cache in a secure mode such that dynamic address
translation prevents access to portions of the volatile
memory outside of a secret store in a volatile memory . (22) Filed : Nov . 8 , 2017

ouTurn
0 8080800cheddadadadadadadhee8

How to cook H
8 800808080808080808080808 EEEEEEEEE , # ts 582

VHSM content
HEHICHHHHHHHHHHHHHHHHH

. citE . . E . . E 000 . Dodabod DD2 : 22

Public
{ { e }

Create VHSM
API / SDK e

r be XXXXXXX Protected build environment ?????????? .
H

?? BE

100000000000000066666666666666 6 6 6 66666666666666??604 aadadadadadaaaaaaaaaaaaaaaaaaaaa +

22 *

*

reddadadade ???????? ??????????848666 + +

*

+ +

* * ???? , # 66 6 66666666 6 666666666666??
??? ??? / 12

+

* * - - - - * * * - - - - * - - - 1

+ +

Program
using VHSM * * VHSM content (encrypted)

+ +
* *

. ! 200448808080808 ?????????????????????? wated HABHABHARE
+ +

*

+ + OS * *

+
* - ?? . . ??????????? . . ?? . ? . ??????????????????????????? . ' '

+ +
* *

+ +
* * ??

58
+ + [{ [* F ? I { } } k AM . 4 (} . *

+ +

*

+

* * ????edunnogranat a naboobnox
+ +

* *

???????dedicatedBadabaddaddeddababu 40666666666666666 6 66666666666 HTTA + +
* *

????????????raswa????? + +

*

+ +

* G aana Herence
h???? 15808080100 . HER

+ ??
* * VHSM content +
* 080808080808080808080808080804 & deededecadeebacobaccobd ????????????????????????????????? + +
* * Buddhadakudadadadada 20 - | ?????? + + Visit * * * 42 Processor cache

+ +
Secret

| key
Public
Key

HEAL TH
* *

+
*

200mbmodaromorooms +

*

:
+ +

* *

+ ' * * * * * * * * * *
*

THEIMHH

- ~ - ~ ~ - ~ ~ ~ - ~ ~ - ~

SOOOOOOOOOOOOOO000222222

VASM content VHSM content

12

0000000000ooooooooooooooooooo000000000000

Patent Application Publication

PERPOO

OOO OOM

Public key

Create VHSM API / SDK

Protected build environment

6666??????????????w
ada &

???????????????

?

??????????????????

?

?????????????????

?

???????????????
?

???????????????????

? ???????? :

0000000000oooooooooooo0000000000000000000000000ccoudooooooooooooo0000000000000 ogoooooooooooooooooooooo0000000000000ooooooooo00000000000000000000000000ooooooooooooooooo00000000000000000000oooooooooooooooooo00000000000000000000oooooooooooooo000000000000000000000000ccocoo000000000ooood
A

212
o ooooo

166666666666

866KMHHHH 8888888H

H HHHHH86666666666666666666666666666

6

666666666666666

dooooooooooooooooo00000000000000000000000000000
SOQOOOOOOOO0000000000000000000000

0000000000CCCCCC

HSM content (encrypted) 77412 _ _ _

Osland
* * * RRRRRRRRRRRR

Program using VHSM

+

+

+

+

XXXXcovou osobom

. 2 : 12

Jan . 31 , 2019 Sheet 1 of 5

01 . HAFRALD

VHSM crypto architecture API

BoooooooooooooooooOOOOOOOOOOOOOOOOOOOoooooooooooo
HHHH866666666666 & # # # # 311686

ooooooOOOOOOOOOOOOO00000000000 boscosocoooooooOOOOOOOOOOOOOOOOoooop !
?MHH

Soccors
H - 40

Roccoooooooooo000000000000000000 000ccogoo000000000000000000 dood ooogodoogooo

RE

doo

0

conocna

VHSM content

o

* * * *

???????????

BUS
* * *

Secret
Public

1620
42

Processor cache

??

key

toooo66666xx

* * *

Wwwwwwwwwwddddo

FW / HW

Processor

US 2019 / 0034357 A1

000000ooo

00000000000

Fig . 1

212 Processor unit

goooooooooooooooooo00000000000soopodoogooo00000000000soo0000000000ssous
Ooooo

* *

Patent Application Publication

Processor

* * -

XXX

POCOD000000000OOOOOOOOOOOOoooogopgODOODOOOOOOOOOooood

. .

00000000000000000000 - 00

000 00000000000000000000000
. .

+ 0000

.

man 8x64 lines RO , NS

L1d
8x64 lines
RO , EX , TX , NS

WWWWWWWWWWWWWWWWWWWWWWWWMMMMMMMMMMMMMMMWWWWWWWWWWWWWWWWW

H

20 , 24

* . * .

20 , 22 ~

*

|

. . . .

000000000000000000000000000000
oooooooooooooooooooooooooooooooo

. * * . * .

oooooooooooOOOOOOOOOOO

Jan . 31 , 2019 Sheet 2 of 5

cuccodz360 .

derobocurituot
teet

005bbudotood tooted

20 , 26

L2i RO , NS

L2d RO , EX , TX , NS

- 20 . 28

* XXXXXWWW

spoggonggoogrouporgggo xo9000
+ + + + +

L3 RO , EX , TX , NS

30

Xogogogogog

000 000 0000000000000000000000000 000
L4 (SC) never NS

Hoo - 000000000000000 - 000 - 00000000000000000 000 - 0000000000000000
Main memory (drawer / CEC) never NS

US 2019 / 0034357 A1

Fig . 2

Patent Application Publication Jan . 31 , 2019 Sheet 3 of 5 US 2019 / 0034357 A1

Wooooo Program A Program B 09 .

S300 S302 X XXXXX00 * biod : 0000 . do O DDddddddddd

. dowX * * * TEE68769270222 66666666666633 X

Lock
semaphore
for VHSM 1 1212XXXXI

Lock
semaphore
for VHSM 1 S304 cic . . xccdc : : 8888 mid : 860033dcccccc . xxxxx

00

VHSM 1
lock

0000000

S306 S314

Got Got No
semaphore con semaphore

S308 Yes Yes S316
26 IZZIVI .

106060606 Use VHSM 1 00000000000000000 Use VHSM 1
Copper

Release VHSM
1 lock

1000000000000 - 00X0 Release VHSM
1 lock

999922294

S310 S318

Fig . 3

Patent Application Publication Jan . 31 , 2019 Sheet 4 of 5 US 2019 / 0034357 A1

15400 Execute
program Loooooossgooooogcocoooo

S402
3doc oooossscodood S406 Load VHSM

code / data in
memory Zoooooooooooooooooooooo ?HHHHHHHH Pass reference to VHSM address

66

Wooooooo S408 px dod third SW switch processor to secure mode DTXORDI * * * * XExsKKHSXXXXXXEKHAR
Call VHSM

crypto
architecture pooooooooooboosoooooooo S410 600 xbox . com

25404 BHAKTHI SW disable cache write
waxxx

$ 412
SW decrypt the VHSM code / data

boddog 6033

' * * ' ' - . * + + ' 111111 111 1 1 + + + ' + ' . $ 414 SW reconfigure DAT
EKKKKKKHH

S416
SW trigger execution of VHSM

008666666668066666666666666666

Fig . 4 5418 oooo
VHSM execute work package

???

S420
Perform " leave VHSM mode " instruction

666666666666666666zx660 xborot box600 . .

S422
SW re - encrypt VHSM

S424 ARR :

SW re - enable cache write

S426
SW switch back to normal OS mode 000000 op

S428
Program retrieve result VHSM operation

Patent Application Publication Jan . 31 , 2019 Sheet 5 of 5 US 2019 / 0034357 A1

210

212
Computer System / Server 228

230 Memory 234

216 RAM Storage
System

Processing Unit
??L }

240
Cache

CIKKSTERXXKNEER 218 242
232

222 WWWWW 224

220
VO Display Network Adapter Display To Interfaces

VVV

u

wen

214 comment 214 External
Devices Externe Fig . 5

COM

US 2019 / 0034357 A1 Jan . 31 , 2019

COMPUTER SYSTEM
SOFTWARE / FIRMWARE AND A

PROCESSOR UNIT WITH A SECURITY
MODULE

BACKGROUND
[0001] The present invention relates to security modules
(SMS) used for performing encrypted related operations (for
example , encryption of target data , decryption of target data ,
key management) .
[0002] A hardware security module (HSM) is a physical
computing device that safeguards and manages digital keys
for strong authentication and provides crypto processing .
These modules traditionally come in the form of a plug - in
card or an external device that attaches directly to a com
puter or network server . HSMs may possess controls that
provide tamper evidence such as logging and alerting and
tamper resistance such as deleting keys upon tamper detec
tion . Each module contains one or more secure crypto
processor chips to prevent tampering and bus probing .
[0003] Many HSM systems have means to securely
backup the keys they handle either in a wrapped form via the
computer ' s operating system or externally using a smartcard
or some other security token . Because HSMs are often part
of a mission - critical infrastructure such as a public key
infrastructure or online banking application , HSMs can
typically be clustered for high availability . Some HSMS
feature dual power supplies and field replaceable compo
nents such as cooling fans , to conform to the high - avail
ability requirements of data center environments and to
enable business continuity .
10004) Few of the HSMs have the ability to execute
specially developed modules within the HSM ' s secure
enclosure . Such an ability is useful , for example , in cases
where special algorithms or business logic have to be
executed in a secured and controlled environment . The
modules can be developed in native C language , in . NET ,
Java , or other programming languages . While providing the
benefit of securing application - specific code , these execu
tion engines obey an HSM ' s Federal Information Processing
Standard (FIPS) or Common Criteria validation .
[0005] A hardware security module can be employed in
any application that uses digital keys . Typically , the keys
must be of high - value , meaning there would be a significant ,
negative impact to the owner of the key if it were compro
mised . The functions of an HSM are : (i) onboard secure
cryptographic key generation ; (ii) onboard secure crypto
graphic key storage and management ; (iii) use of crypto
graphic material ; and (iv) use of sensitive data material ; and
(v) offloading application servers for complete asymmetric
and symmetric cryptography . HSM are also deployed to
manage Transparent Data Encryption keys for databases .
HSMs provide both logical and physical protection of these
materials , including cryptographic keys , from non - autho
rized use and potential adversaries . The cryptographic mate
rial handled by most HSMs are asymmetric key pairs (and
certificates) used in public - key cryptography . Some HSMS
can also handle symmetric keys and other arbitrary data .
10006] Physical HSMs are very expensive to produce .
Further , HSMs are dedicated to virtual machines (or at least
one of a fixed amount of domains) Thus , if there are a lot of
virtual machines in a mainframe computer system there may
be not enough physical HSMs to cover all virtual machines ,
but privacy / security requirements still apply . In currently

conventional HSMs , encrypted memory mechanisms may
be used for crypto processing . Besides using HSMs , certain
commercially - available cryptographic accelerators or a plas
tic card with a built - in microprocessor , used typically for
electronic processes such as financial transactions and per
sonal identification may be used . Mechanisms known as
Central Processor Assist for Cryptographic Function
(CPACF) or network HSMs , like certain commercially
available information security solutions may be used for
these purposes .
[0007] Further , a so - called Virtual HSM (VHSM) being a
software suite for storing and manipulating secret data
outside a virtualized application environment may be used .
While a HSM is a physical device connected to the com
puter , this software provides HSM functionality through an
application programming interface (API) in a virtual envi
ronment based on the Linux - based OpenVZ container tech
nology .
[0008] The architecture of the virtual HSM consists of the
following key components : (i) a VHSM virtual environment
(VHSM VE) is the isolated environment that contains the
VHSM server and secure storage . The server performs
operations on secret data and storage keeps encrypted user
data . Further a transport layer , where transport exchanges
data between client and server virtual environments , is based
on : (i) the Linux - based Netlink socket technology ; and (ii)
a client virtual environment , with a client API and accom
panying utilities for accessing the VHSM server from a
client environment .
[0009] Further in the art , there is a certain commercially
available set of CPU (central processing unit) code instruc
tions that allows user - level code to allocate private regions
of memory , called enclaves . Unlike normal process memory ,
" enclaves ” are protected from processes running at higher
privilege levels .
[0010] Support for the CPU instructions mentioned in the
foregoing paragraph in the CPU is indicated in a CPUID
command “ Structured Extended Feature Lear , EBX bit 02 ,
but its availability to applications requires BIOS (Basic
Input / Output System) support and opt - in enabling which is
not reflected in CPUID bits . The CPU instructions men
tioned in the foregoing paragraph are based on a special
trusted memory , in other words , processor reserved memory .
Further code is sent to the machine as plain text .

SUMMARY
[0011] A computer system software with a security mod
ule is proposed , the security module having a secret store for
secret data and an interface for operating systems to interact
with the security module , the security module stored
encrypted with a public key in a memory of a computer
system , and the computer system comprising at least one
processor with at least one processor cache , wherein , in
response to an access to the interface , the software is
performing (i) switching the processor of the computer
system to a secure mode ; (ii) disabling a write operation of
program code and data of the security module from the
processor cache to the memory ; (iii) decrypting the program
code and / or data of the security module in the processor
cache with a secret key ; (iv) configuring dynamic address
translation to prevent access to the memory outside of the
areas used by the security module ; (v) executing the pro
gram code of the security module with data provided on the
interface ; (vi) encrypting the data in the processor cache

US 2019 / 0034357 A1 Jan . 31 , 2019

with the public key ; (vii) enabling the write operation of
program code and data of the security module from the
processor cache to the memory ; and (viii) switching the
processor to a normal operating system mode .
[0012 Advantageously the inventive software with a
security module allows to emulate a virtual hardware secu
rity module in software , firmware and / or hardware . As such
an emulated security module may not be tampered , there is
no need to trust a system administrator . Customers are
allowed to program their own virtual security modules ,
populate the security modules with their own secrets or
certificates and deploy them on remote systems in emulated
security modules . Software / Hardware secures the memory
and / or interfaces of the virtual security module by encrypt
ing the content of the security module and limitation of read
access processes . The decrypted security module , including
internal information , never leaves the processor unit chip .
The interface of the security module enables operating
systems to manage and in particular enables operating
systems to retrieve the content of the secret store in an
encrypted state only . Writing program code from the pro
cessor cache to the memory might particularly concern
self - modifying code .
[0013] According to an embodiment the write operation to
the memory may be disabled for data tagged with a non
secure flag . Using the non - secure flag enables favourably to
distinguish between data being allowed to leave the proces
sor chip or not .
[0014] According to an embodiment the processor cache
may comprise at least first level caches and second level
caches . Processors with different level caches advanta
geously allow to control availability of programs or data
with different attributes for disabling access to specific
programs or data .
[0015] According to an embodiment the interface to the
security module may be implemented as an application
programming interface using a crypto architecture . By this
way , a customer may program his own security module
guaranteeing a high security for his private data .
[0016] According to an embodiment , execution of the
security module may be suspended during an interrupt
request to the processor , and the security module may be
encrypted before passing control to an interrupt handling
program . Thus , favourably , access to decrypted private data
of the security module may be prevented .
[0017] According to an embodiment , the security module
may be restarted after termination of the interrupt request .
By this way reliable functioning of the security module can
be achieved even after interruption by an interrupt request .
[0018] According to an embodiment the security module
may be restarted after controlled abortion of the security
module . By this way reliable functioning of the security
module can be achieved even after interruption by an
interrupt request .
[0019] According to an embodiment the security module
being shared between multiple programs may use a sema
phore mechanism to serialize access to the area of the
memory used by the security module . Thus , correct use of
the same memory regions and / or data by different programs
can be achieved in a synchronized manner without the risk
of destroying data of one program by another program .
[0020] According to an embodiment , on executing a
thread in a multithreading process on the processor , multi -
threading may be disabled during execution of the security

module . By this way , the problem of losing cache lines of the
security module by aging out and / or accessing decrypted
data by other threads may be avoided if the processor is
sharing caches between threads .
[0021] According to an embodiment , cache lines may be
tagged with non - secure flags for blocking a cache line access
to other threads and / or cache lines may be prevented from
being purged or aged - out by other threads . Thus , cache
access by unauthorized threads may be avoided even with
multithreading enabled in a processor sharing caches
between threads .
[0022] According to an embodiment , on executing a
thread in a multithreading process on the processor , cache
sharing between threads may be disabled during execution
of the security module and cache lines may be purged before
restarting multithreading . By this way , the problem of losing
cache lines of the security module by aging out and / or
accessing decrypted data by other threads may be avoided .
[0023] Further a computer system firmware is proposed
with software implemented as described above . Implement
ing the software system with an emulated security module
may additionally increase the security level of a computer
system in an advantageous way .
[0024] Further a processor unit is proposed for implement
ing a security module in a software , with at least one
processor comprising at least one processor cache , the
processor unit comprising at least another cache , the security
module having a secret store for secret data and an interface
for operating systems to interact with the security module ,
the security module stored encrypted with a public key in a
memory of a computer system , wherein the processor is
configured to , in response to an access to the interface , (i) if
being switched to a secure mode disabling a write operation
of program code and data of the security module from the
caches to the memory ; (ii) decrypting the program code
and / or data of the security module in the processor cache
with a secret key ; (iii) configuring dynamic address trans
lation to prevent access to the memory outside of the areas
used by the security module ; (iv) executing the program
code of the security module with data provided on the
interface ; (v) encrypting the data in the processor cache with
the public key ; and (vi) if being switched to a normal
operating system mode enabling the write operation of
program code and data of the security module from the
processor cache to the memory .
[0025] Advantageously the inventive processor unit for
implementing a security module in a software allows to
emulate a hardware security module in software , firmware
and / or hardware . As such an emulated security module may
not be tampered , there is no need to trust a system admin
istrator . Customers are allowed to program their own virtual
security modules , populate the security modules with their
own secrets or certificates and deploy them on remote
systems in emulated security modules . Software / Hardware
secures the memory and / or interfaces of the virtual security
module by encrypting the content of the security module and
limitation of read access processes . The decrypted security
module , including internal information , never leaves the
processor unit chip . The interface of the security module
enables operating systems to manage and retrieve the con
tent of the secret store in an encrypted state only .
(0026] According to an embodiment , the write operation
to the memory may be disabled for data tagged with a

US 2019 / 0034357 A1 Jan . 31 , 2019

non - secure flag . Using the non - secure flag enables favour
ably to distinguish between data being allowed to leave the
processor chip or not .
[0027] According to an embodiment , the processor may
comprise at least first level caches and second level caches ,
and the processor unit may comprise at least a third level
cache , wherein a program code and / or data of the security
module may be unencrypted when used in the first and / or
second level caches and in the third level cache . Processors
with different level caches advantageously allow to control
availability of programs or data with different attributes for
disabling access to specific programs or data .
10028] According to an embodiment , the program code
and / or data of the security module may be encrypted when
leaving the processor unit . By this way , a high privacy may
be guaranteed to the customer data encoded in the security
module , as well as data accessed by a customer program via
the interface using the security module .
[0029] According to an embodiment , on performing a
cross interrogate process on the memory , a semaphore
mechanism may be used to serialize access to the area of the
memory shared between processes . Thus , favourably
memory coherency may be maintained if multiple processes
sharing security modules try to use cache lines of security
modules from each other .
[0030] According to an embodiment , on performing a
transactional memory , a semaphore mechanism may be used
to serialize access to the area of the memory shared between
processes . Thus , favourably memory coherency may be
maintained if multiple processes sharing security modules
try to use cache lines of security modules from each other .
[0031] According to an embodiment , during an interrupt
request to the processor , execution of the security module
may be suspended and the security module may be
encrypted before passing control to an interrupt handling
program . Thus , favourably , access to decrypted private data
of the security module may be prevented .
[0032] According to an embodiment , the security module
may be restarted after termination of the interrupt request .
By this way reliable functioning of the security module can
be achieved even after interruption by an interrupt request .
[0033] According to an embodiment , the security module
may be restarted after controlled abortion of the security
module . By this way reliable functioning of the security
module can be achieved even after interruption by an
interrupt request .
[0034] According to an embodiment , on executing a
thread in multithreading on the processor , multithreading
may be disabled during execution of the security module . By
this way , the problem of losing cache lines of the security
module by aging out and / or accessing decrypted data by
other threads may be avoided if the processor is sharing
caches between threads .
[0035] According to an embodiment , cache lines may be
tagged with non - secure flags for blocking a cache line access
to other threads and / or cache lines may be prevented from
being purged or aged - out by other threads . Thus , cache
access by unauthorized threads may be avoided .
[0036] According to an embodiment , on executing a
thread in multithreading on the processor , a cache sharing
between threads may be disabled during execution of the
security module and cache lines may be purged before
restarting multithreading . By this way , the problem of losing

cache lines of the security module by aging out and / or
accessing decrypted data by other threads may be avoided .
10037] When multithreading is allowed while a security
module is active another thread might load cache lines and
by this replace cache lines currently tagged non - secure . Such
situations can either be handled similarly to cross interro
gates or cache lines with the NS - flag set might be protected
from being replaced by the other thread , thus being protected
from aging out .
[0038] Further a favourable method is proposed for imple
menting a security module in a computer system software ,
the security module having a secret store for secret data and
an interface for operating systems to interact with the
security module , the security module stored encrypted with
a public key in a memory of the computer system , and the
computer system comprising at least one processor with at
least one processor cache , wherein , in response to an access
to the interface , the method comprising software operations :
(i) switching the processor of the computer system to a
secure mode ; (ii) disabling a write operation of program
code and data of the security module from the processor
cache to the memory ; (iii) decrypting the program code
and / or data of the security module in the processor cache
with a secret key ; (iv) configuring dynamic address trans
lation to prevent access to the memory outside of the areas
used by the security module ; (v) executing the program code
of the security module with data provided on the interface ;
(vi) encrypting the data in the processor cache with the
public key ; (vii) enabling the write operation of program
code and data of the security module from the processor
cache to the memory ; and (viii) switching the processor to
a normal operating system mode .
(0039) Advantageously the inventive software with a
security module allows to emulate a hardware security
module in software , firmware and / or hardware . As such an
emulated security module may not be tampered , there is no
need to trust a system administrator . Customers are allowed
to program their own virtual security modules , populate the
security modules with their own secrets or certificates and
deploy them on remote systems in emulated security mod
ules . Software / Hardware secures the memory and / or inter
faces of the virtual security module by encrypting the
content of the security module and limitation of read access
processes . The decrypted security module , including inter
nal information , never leaves the processor unit chip . The
interface of the security module enables operating systems
to manage and in particular enables operating systems to
retrieve the content of the secret store in an encrypted state
only .
[0040 According to an embodiment , the write operation
to the memory may be disabled for data tagged with a
non - secure flag . Using the non - secure flag enables favour
ably to distinguish between data being allowed to leave the
processor chip or not .
[0041] Further a favourable computer program product is
proposed for implementing a security module in a computer
system software , the security module having a secret store
for secret data and an interface for operating systems to
interact with the security module , the security module stored
encrypted with a public key in a memory of the computer
system , and the computer system comprising at least one
processor with at least one processor cache , the computer
program product comprising a computer readable storage
medium having program instructions embodied therewith ,

US 2019 / 0034357 A1 Jan . 31 , 2019

a volatile memory ; (iv) decrypting , in the processor cache ,
the data constituting the security module with the secret key ;
(v) configuring dynamic address translation to prevent
access to portions of the volatile memory outside of the
secret store ; (vi) receiving data through the interface of the
security module ; (vii) encrypting , by the security module
and in the processor cache , the data received through the
interface of the security module using a public key ; (viii)
enabling the write operation ; and (ix) switching the proces
sor to a normal operating system mode .

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

the program instructions executable by a computer to cause
the computer , in response to an access to the interface , to
perform a method comprising software operations : (i)
switching the processor of the computer system to a secure
mode ; (ii) disabling a write operation of program code and
data of the security module from the processor cache to the
memory ; (iii) decrypting the program code and / or data of the
security module in the processor cache with a secret key ; (iv)
configuring dynamic address translation to prevent access to
the memory outside of the areas used by the security
module ; (v) executing the program code of the security
module with data provided on the interface ; (vi) encrypting
the data in the processor cache with the public key ; (vii)
enabling the write operation of program code and data of the
security module from the processor cache to the memory ;
and (viii) switching the processor to a normal operating
system mode .
[0042] According to an embodiment , the write operation
to the memory may be disabled for data tagged with a
non - secure flag . Using the non - secure flag enables favour
ably to distinguish between data being allowed to leave the
processor chip or not .
[0043] Further a favourable data processing system with at
least one processor unit with at least one processor , for
execution of a data processing program is proposed , com
prising computer readable program instructions for imple
menting a security module in a computer system software ,
the security module having a secret store for secret data and
an interface for operating systems to interact with the
security module , the security module stored encrypted with
a public key in a memory of a computer system , wherein , in
response to an access to the interface , the software perform
ing , (i) switching the processor of the computer system to a
secure mode ; (ii) disabling a write operation of program
code and data of the security module from the processor
cache to the memory ; (iii) decrypting the program code
and / or data of the security module in the processor cache
with a secret key ; (iv) configuring dynamic address trans
lation to prevent access to the memory outside of the areas
used by the security module ; (v) executing the program code
of the security module with data provided on the interface ;
(vi) encrypting the data in the processor cache with the
public key ; (vii) enabling the write operation of program
code and data of the security module from the processor
cache to the memory ; and (viii) switching the processor to
a normal operating system mode .
00441 According to an embodiment , the write operation

to the memory may be disabled for data tagged with a
non - secure flag . Using the non - secure flag enables favour
ably to distinguish between data being allowed to leave the
processor chip or not .
[0045] According to an embodiment , there is a method ,
computer program product and / or system for use with a
security module including program instructions for provid
ing a secret store in a volatile memory for secret data and an
interface for interacting with an operating system that per
forms the following operations (not necessarily in the fol
lowing order) : (i) storing , in a processor cache of a proces
sor , data constituting the security module in an encrypted
form that can be decrypted by a secret key ; (ii) switching the
processor to a secure mode ; (iii) responsive to the switching
to the secure mode , disabling a write operation , with the
write operation being an operation that writes the data
constituting the security module from the processor cache to

[0046] The present invention together with the above
mentioned and other objects and advantages may best be
understood from the following detailed description of the
embodiments , but not restricted to the embodiments .
100471 FIG . 1 depicts a block diagram of an implementa
tion of a security module on a computer system software
according to an embodiment of the invention .
[0048] FIG . 2 depicts a cache and memory hierarchy of a
computer system with a security module according to an
embodiment of the invention .
100491 . FIG . 3 depicts a flow diagram for using a shared
security module by two programs restricting access with a
semaphore locking mechanism according to an embodiment
of the invention .
[0050] FIG . 4 depicts a flowchart for using a security
module implemented on a computer system software
according to an embodiment of the invention .
[0051] FIG . 5 depicts an example embodiment of a data
processing system for executing a method according to the
invention .

DETAILED DESCRIPTION

[0052] In the drawings , like elements are referred to with
equal reference numerals . The drawings are merely sche
matic representations , not intended to portray specific
parameters of the invention . Moreover , the drawings are
intended to depict only typical embodiments of the invention
and therefore should not be considered as limiting the scope
of the invention .
[0053] As mentioned , above , in the Background section ,
there is a certain commercially - available set of CPU (central
processing unit) code instructions that allows user - level
code to allocate private regions of memory , called enclaves .
Some embodiments of the present invention may recognize
that this may : (i) add complication for feature detection of
applications (because of the use of CPUID) ; and / or (ii) raise
security issues (because of information sent as plain text) .
[0054] The illustrative embodiments provide a computer
system software with : (i) a security module , the security
module having a secret store for secret data and an interface
for operating systems to interact with the security module ;
(ii) the security module stored encrypted with a public key
in a memory of a computer system and (iii) the computer
system includes at least one processor with at least one
processor cache .
[0055] The illustrative embodiments are sometimes
described herein using particular technologies only as an
example for the clarity of the description . The illustrative
embodiments may be used for an access to the interface , the
software performing : (i) switching the processor of the

US 2019 / 0034357 A1 Jan . 31 , 2019

by the software in the processor cache 20 with the public key
42 . The write operation of data from the processor cache 20 ,
to the memory 18 , for the program code of the security
module 12 is re - enabled by the software Encrypted data is
written back to the memory 18 and the processor 16 is
switched back to a normal operating system mode by the
software . The program 14 retrieves the result of the security
module operation and continues its normal execution .
100600 . FIG . 2 depicts a cache and memory hierarchy of a
computer system 212 with a security module according to an
embodiment of the invention . The processor unit 216 , as part
of the computer system 212 , serves for implementing a
security module in software , with at least one processor 16 ,
including at least processor caches 20 , 22 , 24 , 26 , 28 , and the
processor unit includes at least another cache 30 . The
processor 16 , shown in the embodiment in FIG . 2 , includes
two first level caches 22 , 24 (Lli as an instruction cache and
Lid as a data cache) and two second level caches 26 , 28 ,
(L2i as an instruction cache and L2d as a data cache) . The
processor unit 216 further includes a third level cache 30
(L3) . The computer system 212 in the embodiment in FIG .
2 also includes a fourth level cache 32 (L4) and main
memory 18 . Cache lines typically have a length of 256 bytes .
Level one caches 22 , 24 , 26 , 28 of the embodiment , for
example , include 8x64 - bit cache lines . The instruction
caches 22 and 26 are generally configured as read - only
(RO) , whereas content of the data caches 24 and 28 , as well
as the level three cache 30 , may be flagged as : (i) read - only
(RO) ; (ii) exclusive (EX) or (iii) transactional memory (TX) .
The level four cache 32 is related to a system controller
(SC) .

computer system to a secure mode ; (ii) disabling a write
operation of program code and data of the security module
from the processor cache to the memory ; (iii) decrypting the
program code and / or data of the security module in the
processor cache with a secret key ; (iv) configuring dynamic
address translation to prevent access to the memory outside
of the areas used by the security module ; (v) executing the
program code of the security module with data provided on
the interface ; (vi) encrypting the data in the processor cache
with the public key ; (vii) enabling the write operation of
program code and data of the security module from the
processor cache to the memory ; and (viii) switching the
processor to a normal operating system mode .
[0056] FIG . 1 depicts a block diagram of an implementa
tion of a security module 12 , denoted as virtual hardware
security module (VHSM) , on a computer system software
according to an embodiment of the invention . The software
for implementing the security module 12 may also be
implemented in the firmware 10 of the computer system 212 .
[0057] The computer system 212 in FIG . 1 includes at
least one processor 16 , with at least one processor cache 20 ,
the processor 16 running in a firmware / hardware (FW / HW)
environment 10 , with an interface 40 . The interface 40 to the
security module 12 is implemented as an application pro
gramming interface using a crypto architecture . The proces
sor cache 20 may include at least first level caches 22 , 24 and
second level caches 26 , 28 as shown , for example , in FIG .
2 . The computer system 212 further includes memory 18 ,
where program 14 , operated by an operating system OS ,
may be executed .
[0058] The security module 12 has a secret store for secret
data and may be created using a software development kit
(SDK) 50 in a protected build environment 48 by a cus
tomer . The security module 12 is stored encrypted with a
public key 42 in the memory 18 of the computer system 212
by request of the program 14 . The public key 42 is the public
part of a certificate and available to the customer . The
security module 12 is encrypted by this public key 42 and
sent to the computer system 212 . The program code of the
security module 12 implements the interface 40 described by
a crypto architecture . The interface 40 serves for the oper
ating system to interact with the security module 12 in order
to manage and retrieve the content of the secret store of the
security module 12 in an encrypted state .
[0059] Accessing interface 40 by program 14 , reference to
an address of the security module 12 , as well as memory
pointers to input / output areas of the memory 18 , are passed
to the interface 40 . The processor 16 of the computer system
212 is switched to a secure mode by the software . A write
operation of data , from the processor cache 20 to the
memory 18 , by a program code of the security module 12 ,
is disabled for data tagged with a non - secure flag . The
program code and / or data of the security module 12 is
decrypted in the processor cache 20 with the secret key 44 .
Dynamic address translation is reconfigured to prevent
access to the memory 18 , outside of the areas used by the
security module 12 , but access to input / output areas of the
security module 12 , whose memory pointers were passed
before , is still allowed . The software triggers the execution
of the security module 12 with the passed parameters . The
program code of the security module 12 is executed with
data provided on the interface 40 . Then , an instruction for
leaving the security module mode is executed by the pro -
gram code of the security module 12 . The data is encrypted

[0061] Advantageously , a program code and / or data of the
security module are unencrypted when used in the first
and / or second level caches 22 , 24 , 26 , 28 and in the third
level cache 30 . This is achieved by tagging the program code
and / or the data by a non - secure flag (NON - SECURE = NS) .
Program code and / or data is encrypted when leaving the
processor unit 216 , thus the level four cache 32 , as well as
the memory 18 , only receive program code and / or data
tagged as secure (never NS) .
[0062] From a performance point of view , the amount of
cache lines which can reside within the processor chip 16
does matter . Hence , the NS flag / tag is used on cache levels
one , two and three .
10063] . There is also a distinction between instruction and
data handling . Data naturally needs to be stored , and hence
the security module typically ensures that decrypted data is
not drained . This is also achieved by the NS flag . Non - secure
data may not be written back , or written through , beyond
chip cache levels . Instructions are usually fetched read - only .
However , depending on where the encrypting / decrypting
operation occurs (for example on the boundary between L1
and L2 versus on the boundary between L2 and L3) ,
decrypted instruction cache lines may write through from L1
to L2 .
10064] Instruction caches 22 and 26 get the non - secure
cache lines pushed from the data caches 24 and 28 . On
abortion , the non - secure cache lines are purged from data
caches 24 and 28 as well as instruction caches 22 and 26 .
Data marked as non - secure in the level three cache 30 never
leave the processor unit 216 , but are first encrypted before
leaving the processor unit 216 .
(0065] On performing a cross interrogate process (XI) , as
part of memory coherency mechanisms , the cross interro

US 2019 / 0034357 A1 Jan . 31 , 2019

gate process removes the cache line from cache 22 , 24 , 26 ,
28 and 30 wherein the cache line may be decrypted . As the
cross interrogates must not be kept or rejected , because of a
potential failure of the system , the security module serves as
a hardware extension to the cache memory . A state , for
example , DO NOT STORE , is added to the cache lines in the
caches , wherein the same cache line may be encrypted or
decrypted in the cache .
[0066] The XI may remove an unchanged NS - flagged
cache line , which would just be re - fetched . Then no special
action is required , or the XI may remove a modified cache
line , which must have been fetched exclusively . This might
result in different options .
[0067] If the security module (VHSM) stores have already
occurred since invocation of the security module , the XI
processing may be delayed until the cache line can be stored .
If the VHSM has been naturally completed , changes get
stored , and the XI response gets sent . If the VHSM operation
gets stopped at an interruptible point , changes get stored ,
and the XI response gets sent .
[0068] If no VHSM stores have occurred since invocation ,
then the VHSM operation might be aborted / nullified . All
modified vHSM data may then be discarded and the XI
response gets sent .
[0069] When sharing the security module between mul
tiple processes , the cross interrogate processes might take
the cache lines from each other process . The security module
operations may then abort . As a forward process is not
guaranteed , a semaphore mechanism is used to serialize
access to the area of the memory 18 , shared between
processes . Forward progress escalations get triggered in
such situations .
[0070] This mechanism is similar to performing a trans
actional memory operation wherein a semaphore mecha
nism may be used to serialize access to the area of the
memory 18 , shared between processes . In this context
forward progress escalations also get triggered .
[0071] When multithreading is allowed , and a security
module is active , another thread might load cache lines and
replace cache lines currently flagged NS . Such situations can
either be handled similarly to cross interrogates , or cache
lines with the NS - flag set , and / or might be protected from
being replaced by the other thread , thus being protected from
aging out .
[0072] FIG . 3 depicts a flow diagram for using a shared
security module (VHSM) by two programs A and B , restrict
ing access with a semaphore locking mechanism according
to an embodiment of the invention .
[0073] According to FIG . 3 , the security module may be
shared between multiple programs using a semaphore
mechanism to serialize access to the area of the memory
used by the security module . Before using the security
module , program A and B will try to lock the security
module for them in operations S300 and S302 . If either of
them got the semaphore , meaning to lock the security
module in operation S304 , and which is checked in opera
tions S306 and S314 , either of them uses the security module
in operations S308 and 316 . The program which did not get
the semaphore then goes back to trying to lock the security
module in operations S300 and S302 . After successfully
using the security module , it may be released by the program
that was using it in operations S310 and S318 . Thus , the
security module is free to being used by the other program
in operation S304 .

0074] An interrupt might give control to a different
program , which is not supposed to access a decrypted
memory area of the security module . Advantageously ,
access to the level one caches of the processor unit with the
appropriate address may provide this memory access . As
there is a need to act in time on interrupt requests , the
security module may ensure forward progress escalations
and therefore tracks the state internally . Thus , the software
may encrypt the security module before branching to the
interrupt code . During an interrupt request to the processor ,
execution of the security module is suspended , and the
security module is encrypted before passing control to the
interrupt handling program . After termination of the inter
rupt request , the security module is restarted . Thus , the
security module may be restarted after controlled abortion of
the security module .
[0075] During execution of a thread in a multithreading
process on the processor , multithreading may be disabled
during execution of the security module . If the processor is
running other thread caches , cache lines of the security
module might be lost due to aging out , or other threads might
access decrypted data of the security module .
[0076] There are two options to deal with keeping
decrypted cache lines hidden from other threads : (i) turn off
multi - threading and purge the cache before turning multi
threading on again ; or (ii) tag each cache line with a
non - secure flag , which can be used in the cache access hit
compare logic , to match only the thread allowed to be
accessed . Software may be used to set - up the non - secure
flags or execute the purge cache accordingly . This may be
achieved by tagging cache lines with non - secure flags for
blocking a cache line access to other threads , and / or pre
venting cache lines from being purged , or aged - out , by other
threads .
10077] Alternatively , cache sharing between threads may
be disabled during execution of the security module , and
cache lines may be purged before restarting multithreading .
[0078] FIG . 4 depicts a flowchart for using a security
module implemented on a computer system software
according to an embodiment of the invention . Thus , the
method for implementing the security module in the soft
ware may also be understood in detail .
[0079] If a program executing on a computer system in
operation S400 requires the operation of the security mod
ule , the program code and / or data of the security module , or
parts of it , is loaded into memory in operation S402 .
Accessing the interface with the crypto architecture by the
program , operation S404 , references an address of the
security module , as well as memory pointers to input / output
areas of the memory . This information is then passed to the
interface in operation S406 . The processor of the computer
system is switched to a secure mode by the software in
operation S408 . Next , in operation S410 , a write operation
of data from the processor cache to the memory , by a
program code of the security module , is disabled for data
tagged with a non - secure flag . The program code and / or data
of the security module is decrypted in the processor cache
with the secret key in operation 412 . Dynamic address
translation (DAT) is reconfigured in operation S414 to
prevent access to the memory outside of the areas used by
the security module , but access to input / output areas of the
security module , whose memory pointers were passed
before , is still allowed . The software triggers the execution
of the security module with the passed parameters in opera

US 2019 / 0034357 A1 Jan . 31 , 2019

tion S416 , followed by executing the program code of the
security module with data provided on the interface in
operation S418 . An instruction for leaving the security
module mode is then executed by the program code of the
security module in operation S420 . In operation S422 , the
data is encrypted by the software in the processor cache with
the public key . The write operation of data from the pro
cessor cache to the memory , for the program code of the
security module , is re - enabled by the software in operation
S424 . Encrypted data is written back to the memory and the
processor is switched back to a normal operating system
mode by the software in operation S426 . The program may
retrieve the result of the security module operation from the
input / output areas and continue its normal execution in
operation S428 .
[0080] Referring now to FIG . 5 , a schematic of an
example of a data processing system 210 is shown . Data
processing system 210 is only one example of a suitable data
processing system and is not intended to suggest any limi
tation as to the scope of use , or functionality , of embodi
ments of the invention described herein . Regardless , data
processing system 210 is capable of being implemented
and / or performing any of the functionality set forth herein
above .
[0081] The data processing system 210 , with at least one
processor unit 216 with at least one processor , may be used
for execution of a data processing program 240 including : (i)
computer readable program instructions for implementing a
security module in a computer system software ; (11) the
security module having a secret store for secret data and an
interface for operating systems to manage and retrieve the
content of the secret store and (iii) the security module
stored encrypted with a public key in memory of a computer
system 212 . In response to an access to the interface , the
software may perform the following : (a) switching the
processor 16 of the computer system 212 to a secure mode ;
(b) disabling a write operation of program code and data of
the security module from the processor cache 20 to the
memory ; (c) decrypting the program code and / or data of the
security module in the processor cache with a secret key ; (d)
configuring dynamic address translation to prevent access to
the memory outside of the areas used by the security
module ; (e) executing the program code of the security
module with data provided on the interface ; (f) encrypting
the data in the processor cache with the public key ; (g)
enabling the write operation of program code and data of the
security module from the processor cache to the memory ;
and (h) switching the processor 16 to a normal operating
system mode . The write operation to the memory may be
disabled for data tagged with a non - secure flag .
[0082] In data processing system 210 there is a computer
system / server 212 , which is operational with numerous
other general purpose or special purpose computing system
environments or configurations . Examples of well - known
computing systems , environments , and / or configurations
that may be suitable for use with computer system / server
212 include , but are not limited to : (i) personal computer
systems ; (ii) server computer systems ; (iii) thin clients ; (iv)
thick clients ; (v) handheld or laptop devices ; (vi) multipro
cessor systems ; (vii) microprocessor - based systems ; (viii)
set top boxes ; (ix) programmable consumer electronics ; (x)
network PCs ; (xi) minicomputer systems ; (xii) mainframe

computer systems ; and (xiii) distributed cloud computing
environments that include any of the above systems or
devices , and the like .
[0083] Computer system / server 212 may be described in
the general context of computer system executable instruc
tions , such as program modules , being executed by a com
puter system . Generally , program modules may include : (i)
routines ; (ii) programs : (iii) objects ; (iv) components ; (v)
logic ; (vi) data structures , and so on , that perform particular
tasks or implement particular abstract data types . Computer
system / server 212 may be practiced in distributed cloud
computing environments where tasks are performed by
remote processing devices that are linked through a com
munications network . In a distributed cloud computing
environment , program modules may be located in both local
and remote computer system storage media including
memory storage devices .
[0084] As shown in FIG . 5 , computer system / server 212 in
data processing system 210 is shown in the form of a
general - purpose computing device . The components of
computer system / server 212 may include , but are not limited
to : (i) one or more processors or processing units 216 ; (ii) a
system memory 228 ; and (iii) a bus 218 that couples various
system components including system memory 228 to pro
cessor 216 .
100851 Bus 218 represents one or more of any of several
types of bus structures , including : (i) a memory bus or
memory controller ; (ii) a peripheral bus ; (iii) an accelerated
graphics port ; and (iv) a processor or local bus using any of
a variety of bus architectures . By way of example , and not
limitation , such architectures include : (a) Industry Standard
Architecture (ISA) bus ; (b) Micro Channel Architecture
(MCA) bus ; (c) Enhanced ISA (EISA) bus ; (d) Video
Electronics Standards Association (VESA) local bus ; and (e)
Peripheral Component Interconnect (PCI) bus .
[0086] Computer system / server 212 typically includes a
variety of computer system readable media . Such media
may be any available media that is accessible by computer
system / server 212 , and it includes : (i) volatile media ; (ii)
non - volatile media ; (iii) removable media ; and (iv) non
removable media .
[0087] System memory 228 can include computer system
readable media in the form of volatile memory , such as
random access memory (RAM) 230 and / or cache memory
232 . Computer system / server 212 may further include other
removable / non - removable , volatile / non - volatile computer
system storage media . By way of example only , storage
system 234 can be provided for reading from and writing to
a non - removable , non - volatile magnetic media (not shown
and typically called a “ hard drive ”) . Although not shown , a
magnetic disk drive for reading from and writing to a
removable , non - volatile magnetic disk (for example , a
“ floppy disk ”) , and an optical disk drive for reading from or
writing to a removable , non - volatile optical disk such as a
CD - ROM , DVD - ROM or other optical media can be pro
vided . In such instances , each can be connected to bus 218
by one or more data media interfaces . As will be further
depicted and described below , memory 228 may include at
least one program product having a set (for example , at least
one) of program modules that are configured to carry out the
functions of embodiments of the invention .
[0088] Program / utility 240 , having a set (at least one) of
program modules 242 , may be stored : (i) in memory 228 , by
way of example , and not limitation ; (ii) as an Operating

US 2019 / 0034357 A1 Jan . 31 , 2019

System ; (iii) as one or more application programs ; (iv) as
other program modules ; and (v) as program data . Each of the
Operating System , one or more application programs , other
program modules , and program data or some combination
thereof , may include an implementation of a networking
environment . Program modules 242 generally carry out the
functions and / or methodologies of embodiments of the
invention as described herein .
[0089] Computer system / server 212 may also communi
cate with one or more external devices 214 such as : (i) a
keyboard ; (ii) a pointing device ; (iii) a display 224 ; (iv) one
or more devices that enable a user to interact with computer
system / server 212 ; and / or (v) any devices (for example , a
network card , modem , etc .) that enable computer system /
server 212 to communicate with one or more other comput
ing devices . Such communication can occur via Input /
Output (1 / 0) interfaces 222 . Still yet , computer system /
server 212 can communicate with one or more networks
such as : (a) a local area network (LAN) ; (b) a general wide
area network (WAN) ; and / or (c) a public network (for
example , the Internet) via network adapter 220 . As depicted ,
network adapter 220 communicates with the other compo
nents of computer system / server 212 via bus 218 . It should
be understood that although not shown , other hardware
and / or software components could be used in conjunction
with computer system / server 212 . Examples , include , but
are not limited to : (1) microcode ; (2) device drivers ; (3)
redundant processing units ; (4) external disk drive arrays ;
(5) RAID systems ; (6) tape drives ; and (7) data archival
storage systems .
[0090] The present invention may be : (i) a system ; (ii) a
method ; and / or (iii) a computer program product . The com
puter program product may include a computer readable
storage medium (or media) having computer readable pro
gram instructions thereon for causing a processor to carry
out aspects of the present invention .
0091] The computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an instruction execution device . The computer readable
storage medium may be , for example , but is not limited to ;
(i) an electronic storage device ; (ii) a magnetic storage
device ; (iii) an optical storage device ; (iv) an electromag
netic storage device ; (v) a semiconductor storage device ; or
(vi) any suitable combination of the foregoing . A non
exhaustive list of more specific examples of the computer
readable storage medium includes the following : (a) a
portable computer diskette ; (b) a hard disk ; (c) a random
access memory (RAM) ; (d) a read - only memory (ROM) ; (e)
an erasable programmable read - only memory (EPROM or
Flash memory) ; (f) a static random access memory (SRAM) ;
(g) a portable compact disc read - only memory (CD - ROM) ;
(h) a digital versatile disk (DVD) ; (i) a memory stick ; (j) a
floppy disk ; (k) a mechanically encoded device such as
punch - cards or raised structures in a groove having instruc
tions recorded thereon ; and (1) any suitable combination of
the foregoing . A computer readable storage medium , as used
herein , is not to be construed as being transitory signals per
se , such as : (1) radio waves or other freely propagating
electromagnetic waves ; (2) electromagnetic waves propa
gating through a waveguide or other transmission media (for
example , light pulses passing through a fiber - optic cable) ; or
(3) electrical signals transmitted through a wire .
[0092] Computer readable program instructions described
herein can be downloaded to respective computing process

ing devices from : (i) a computer readable storage medium ;
(ii) to an external computer ; (iii) an external storage device
via a network , for example , the Internet ; (iv) a local area
network ; (v) a wide area network ; and / or (vi) a wireless
network . The network may include : (a) copper transmission
cables ; (b) optical transmission fibers ; (c) wireless transmis
sion ; (d) routers ; (e) firewalls ; (f) switches ; (g) gateway
computers ; and / or (h) edge servers . A network adapter card
or network interface in each computing processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing / processing device .
[0093] Computer readable program instructions for carry
ing out operations of the present invention may be : (i)
assembler instructions ; (ii) instruction - set - architecture
(ISA) instructions ; (iii) machine instructions ; (iv) machine
dependent instructions ; (v) microcode ; (vi) firmware
instructions ; (vii) state - setting data ; or (viii) either source
code or object code written in any combination of one or
more programming languages , including an object oriented
programming language such as Smalltalk , C + + or the like ,
and conventional procedural programming languages , such
as the “ C ” programming language or similar programming
languages . The computer readable program instructions may
execute : (a) entirely on the user ' s computer ; (b) partly on the
user ' s computer ; (c) as a stand - alone software package ; (d)
partly on the user ' s computer and partly on a remote
computer ; or (e) entirely on the remote computer or server .
In the latter scenario , the remote computer may be connected
to the user ' s computer through any type of network , includ
ing : (1) a local area network (LAN) ; (2) a wide area network
(WAN) ; or (3) the connection may be made to an external
computer (for example , through the Internet using an Inter
net Service Provider) . In some embodiments : (I) electronic
circuitry including , for example , programmable logic cir
cuitry ; (II) field - programmable gate arrays (FPGA) or (III)
programmable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of the computer readable program instructions to personalize
the electronic circuitry , in order to perform aspects of the
present invention .
[0094] Aspects of the present invention are described
herein with reference to flowchart illustrations and / or block
diagrams of : (i) methods ; (ii) apparatus (systems) ; and (iii)
computer program products according to embodiments of
the invention . It will be understood that each block of the
flowchart illustrations and / or block diagrams , and combina
tions of blocks in the flowchart illustrations and / or block
diagrams , can be implemented by computer readable pro
gram instructions .

f 0095] These computer readable program instructions may
be provided to : (i) a processor of a general purpose com
puter ; (ii) a special purpose computer ; or (iii) other pro
grammable data processing apparatus to produce a machine ,
such that the instructions , which execute via the processor of
the computer or other programmable data processing appa
ratus , create means for implementing the functions / acts
specified in the flowchart and / or block diagram block or
blocks . These computer readable program instructions may
also be stored in a computer readable storage medium that
can direct : (a) a computer ; (b) a programmable data pro
cessing apparatus ; and / or (c) other devices to function in a
particular manner , such that the computer readable storage

US 2019 / 0034357 A1 Jan . 31 , 2019

medium having instructions stored therein includes an
article of manufacture including instructions which imple
ment aspects of the function / act specified in the flowchart
and / or block diagram block or blocks .
[0096] The computer readable program instructions may
also be loaded onto : (i) a computer ; (ii) other programmable
data processing apparatus ; or (iii) other device to cause a
series of operational operations to be performed on : (a) the
computer ; (b) other programmable apparatus or other device
to produce a computer implemented process , such that the
instructions which execute on the computer ; (c) other pro
grammable apparatus ; or (d) other device to implement the
functions / acts specified in the flowchart and / or block dia
gram block or blocks .
0097) The flowchart and block diagrams in the Figures
illustrate : (i) the architecture ; (ii) functionality ; and (iii)
operation of possible implementations of : (a) systems ; (b)
methods ; and (c) computer program products according to
various embodiments of the present invention . In this regard ,
each block in the flowchart or block diagrams may repre
sent : (1) a module ; (2) a segment ; or (3) portion of instruc
tions , which includes one or more executable instructions
for implementing the specified logical function (s) . In some
alternative implementations , the functions noted in the block
may occur out of the order noted in the figures . For example ,
two blocks shown in succession may , in fact , be executed
substantially concurrently , or the blocks may sometimes be
executed in the reverse order , depending upon the function
ality involved . It will also be noted that each block of the
block diagrams and / or flowchart illustration , and combina
tions of blocks in the block diagrams and / or flowchart
illustration , can be implemented by special purpose hard
ware - based systems that perform the specified functions or
acts or carry out combinations of special purpose hardware
and computer instructions .
[0098] The descriptions of the various embodiments of the
present invention have been presented for purposes of
illustration , but are not intended to be exhaustive or limited
to the embodiments disclosed . Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments . The terminology used herein was
chosen to best explain the principles of the embodiments , the
practical application or technical improvement over tech
nologies found in the marketplace , or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein .
What is claimed is :
1 . A computer implemented method for use with a secu

rity module including program instructions for providing a

secret store in a volatile memory for secret data and an
interface for interacting with an operating system , the
method comprising :

storing , in a processor cache of a processor , data consti
tuting the security module in an encrypted form that
can be decrypted by a secret key ;

switching the processor to a secure mode ;
responsive to the switching to the secure mode , disabling

a write operation , with the write operation being an
operation that writes the data constituting the security
module from the processor cache to a volatile memory ;

decrypting , in the processor cache , the data constituting
the security module with the secret key ;

configuring dynamic address translation to prevent access
to portions of the volatile memory outside of the secret
store ;

receiving data through the interface of the security mod
ule ;

encrypting , by the security module and in the processor
cache , the data received through the interface of the
security module using a public key ;

enabling the write operation ; and
switching the processor to a normal operating system
mode .

2 . The method of claim 1 further comprising :
disabling the write operation for data tagged with a
non - secure flag .

3 . The method of claim 1 wherein the processor cache
includes a set of first level cache (s) and a set of second level
cache (s) .

4 . The method of claim 1 wherein the interface of the
security module is in the form of an application program
ming interface using a crypto architecture .

5 . The method of claim 1 further comprising :
receiving , by the processor , an interrupt request ;
responsive to the interrupt request , suspending execution

of the security module ; and
subsequent to the encryption of the security module ,

passing control to an interrupt handling program .
6 . The method of claim 5 further comprising :
terminating the interrupt request ; and
responsive to the termination of the interrupt request ,

restarting the security module .
7 . The method of claim 1 further comprising :
sharing the security module between a plurality of pro

grams using a semaphore mechanism to serialize access
to the secret store of the volatile memory .

