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(57) ABSTRACT

Systems, apparatuses and methods may provide for technol-
ogy that obtains categorization information and correspond-
ing uncertainty information from a perception subsystem,
wherein the categorization information and the correspond-
ing uncertainty information are to be associated with an
object in an environment. The technology may also deter-
mine whether the corresponding uncertainty information
satisfies one or more relevance criteria, and automatically
control the perception subsystem to increase an accuracy in
one or more subsequent categorizations of the object if the
corresponding uncertainty information satisfies the one or
more relevance criteria. In one example, determining

(22) Filed: Jun. 26, 2020 whether the corresponding uncertainty information satisfies
the relevance criteria includes taking a plurality of samples
from the categorization information and the corresponding

Publication Classification uncertainty information, generating a plurality of actuation
plans based on the plurality of samples, and determining a
(51) Inmt. CL safety deviation across the plurality of actuation plans,
GO5B 23/02 (2006.01) wherein the relevance criteria are satisfied if the safety
GO5B 13/02 (2006.01) deviation exceeds a threshold.
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TECHNOLOGY TO HANDLE AMBIGUITY IN
AUTOMATED CONTROL SYSTEMS

TECHNICAL FIELD

[0001] Embodiments generally relate to automated control
systems. More particularly, embodiments relate to technol-
ogy that handles ambiguity in automated control systems.

BACKGROUND

[0002] Automated control systems may be used in a
variety of environments such as, for example, autonomous
vehicle environments. In automated control systems, there
are typically three main phases that are run repeatedly in a
loop so that the system may understand what is occurring in
the environment (e.g., perception), make plans to achieve a
specified goal within the environment (e.g., planning), and
then execute those plans (e.g., actuation). In the perception
phase, some characteristics of the real-world environment
are perceived through a variety of sensors, where the raw
sensor data is aggregated and used to identify and categorize
actors and objects within the environment. Particularly when
deployed in uncontrolled or unpredictable environments,
perception systems are imperfect and the best guess at the
categorization of certain objects may be incorrect on occa-
sion. Conventional planning systems may either ignore the
uncertainty of categorizations (e.g., leading to safety con-
cerns) or attempt to substitute safe object types for suspected
false categorizations (e.g., resulting in reduced productivity,
increased processing overhead and/or increased power con-
sumption).

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] The various advantages of the embodiments will
become apparent to one skilled in the art by reading the
following specification and appended claims, and by refer-
encing the following drawings, in which:

[0004] FIG. 1 is a set of charts of an example of uncer-
tainty computations for different categorical distributions
according to an embodiment;

[0005] FIG. 2 is a block diagram of an example of an
automated control system according to an embodiment;
[0006] FIG. 3 is a flowchart of an example of a method of
operating a performance-enhanced automated control sys-
tem according to an embodiment;

[0007] FIG. 4 is a flowchart of an example of a method of
determining whether uncertainty information satisfies one or
more relevance criteria;

[0008] FIG. 5 is a block diagram of an example of a
mapping of an automated control system to an automated
driving use case according to an embodiment;

[0009] FIG. 6 is a block diagram of an example of
performance switching in an operational design domain
(ODD) according to an embodiment;

[0010] FIG. 7 is a block diagram of an example of a
performance-enhanced computing system according to an
embodiment;

[0011] FIG. 8 is an illustration of an example of a semi-
conductor apparatus according to an embodiment;

[0012] FIG. 9 is a block diagram of an example of a
processor according to an embodiment; and

[0013] FIG. 10 is a block diagram of an example of a
multi-processor based computing system according to an
embodiment.
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DESCRIPTION OF EMBODIMENTS

[0014] In general, embodiments provide for an augmented
perception system that gives more information about the
various possible categorizations of environmental objects
and the certainty associated with each (e.g., Feature #1).
Embodiments also provide for an augmented perception
system that outputs an overall uncertainty level (e.g., Fea-
ture #2). Additionally, embodiments include technology that
reacts to these uncertainty levels by taking any number of
actions to potentially increase the accuracy and/or reduce the
uncertainty (e.g., Feature #3). Moreover, embodiments pro-
vide for a planning mechanism to intelligently sample from
the possible categorizations in the environmental model,
apply planning on each, and select the safest plan (e.g.,
Feature #4). Embodiments also provide for uncertainty
monitoring technology to differentiate meaningful ambigu-
ity from irrelevant ambiguity (e.g., Feature #5). Addition-
ally, embodiments generally include uncertainty feedback
technology by which the perception subsystem is instructed
to dampen uncertainty measurements for certain objects
(e.g., Feature #6).

[0015] More particularly, embodiments augment percep-
tion subsystems (e.g., sensors and/or cameras with associ-
ated software having object detection and recognition/cat-
egorization capabilities) to not only return the most likely
categorization of each environmental object but a categori-
cal probability distribution (e.g., multiple categories each
with an associated probability). In one example, a perception
subsystem “f that processes input data “x”, outputs a set of
“i” categorical distributions C, over the universe of known
objects 0EQ2.

Lx)={Cilst. ZeqCio)=1

[0016] For example, in deep learning-based perception
systems, Bayesian Neural Networks may be used to obtain
such categorical distributions. The distribution of the prob-
ability values for each object detected by the perception
system contains information about the associated uncer-
tainty (e.g., ambiguity). An example of an uncertainty quan-
tification is shown in FIG. 1, where the following discrep-
ancy metric is used to quantify the classification uncertainty:

u{CH=1/1QIZ,caCilo)?

[0017] In the illustrated example, a first uncertainty chart
20 is shown in which a categorical distribution has a
minimum uncertainty (e.g., an automated perception sub-
system has maximum confidence that a detected object is a
bike). By contrast, a second uncertainty chart 22 might
correspond to a categorical distribution that has a maximum
uncertainty (e.g., the automated perception subsystem deter-
mines that all categories are equally likely). A third uncer-
tainty chart 24 demonstrates a categorical distribution hav-
ing an intermediate uncertainty. As will be discussed in
greater detail, the ability to obtain multiple candidate cat-
egorizations and corresponding uncertainties may enhance
performance and/or reduce power consumption. Addition-
ally, the overall uncertainty value may be advantageous in
terms of performance and/or power consumption.

[0018] In one example, the perception subsystem outputs
(e.g., Feature #2) an overall uncertainty metric for the entire
returned environmental model. Such overall uncertainty is
computed based on the individual uncertainty values u,(c,).
The approach to combining individual uncertainties, how-
ever, into an aggregated overall uncertainty value typically
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depends on the application. For example, a conservative
approach may consider the maximum uncertainty value as
the overall uncertainty. In another example, more sophisti-
cated attention mechanisms might be used to weigh the
importance of uncertain object classifications. Objects that
do not play a role in the task might be not relevant for the
performance and uncertainty in the classification of those
objects would not impact the system behavior.

[0019] An alternate embodiment of Feature #2 would be to
introduce a separate component from the perception sub-
system that takes the augmented environmental model and
calculates the uncertainty metric from the model using
Approximate Bayesian Inference. In this case, a generative
model component G(C,)—X, and a likelihood function L(x,
%)—{0,1} may be used. In such a case, the generative model
component acts as an inverse perception model that may
generate synthetic data points in the sensor input space by
using the outputs of the augmented perception model (e.g.,
predicted scene objects categorical distributions C,). Sensor
data may be generated from the categorical representation
using simulators, regression models or generative neural
networks (e.g., generative adversarial network/ GAN, energy
based model/EBM, etc.).

[0020] Forexample, a realistic game engine might be used
to simulate cameras, assuming that the models of the objects
are available. In one embodiment, the likelihood model is
used to compare to what extent the generated sensor data x
resembles the perceived sensor data x. For such an imple-
mentation, a probability density function (e.g., Multivariate
Normal, Gamma) or any other kernel (e.g. Epanechnikov,
tricube, normal) may be used by setting the first moment
(e.g., location) and obtaining the second moment (e.g.,
scale) from the uncertainty of each C. These components
enable the application of importance sampling or Monte
Carlo Markov Chain sampling algorithms that will generate
samples from the posterior distribution p(Clx). The variance
of the obtained sample set conveys information about the
joint predictive posterior uncertainty, which is a direct input
to Feature #3, the component that handles the effect of
uncertainty to the system.

[0021] Effects of Uncertainty Level

[0022] In an embodiment, the uncertainty value functions
analogously to cortisol levels in the human brain. For
example, with mild increases in cortisol, senses may be
heightened. A corollary in the technology described herein
may be for higher uncertainty levels to increase the fre-
quency of the robotic control cycle (e.g., Feature #3). While
some systems (e.g., autonomous driving) that are not energy
or power constrained may operate at maximum frequency
continually, other systems on the “edge” that are energy or
power constrained may benefit from such an approach. If
there is uncertainty, more classifications are performed to
potentially increase the accuracy and return the system back
to a point where there is confidence that negative outcomes
may be avoided. Additionally, some sensors in the device
may not be used continually or may not be used to their full
capacity by default, again potentially due to power or energy
constraints.

[0023] In one example, increased uncertainty levels trig-
ger the relevant sensors to turn on and/or function at an
increased resolution (e.g., Feature #3) in an attempt to
reduce the observed environmental uncertainty. Some sen-
sors may also be able to focus increased resolution at only
certain parts of the environment. Those parts identified as
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uncertain might receive additional sensor focus. One poten-
tial way to achieve additional sensor focus is to use multiple
perception passes with different sensor resolution levels
defining regions of interest at each level. To compensate for
the increased power demand, the system may turn off or
slow down the control cycle for less critical systems (e.g.,
analogous to the effects of cortisol on metabolism and
immune responses).

[0024] Planning Given Uncertainty

[0025] Several possible embodiments of planning in the
presence of augmented environmental models and uncer-
tainty levels are possible. First, the planning phase could use
the aggregate uncertainty level and the individual uncer-
tainty levels in the environmental model directly. If, for
example, planning is implemented using a neural network,
then training data might include both aggregate and indi-
vidual uncertainty levels with the associated actuation plan
corresponding to safer actions as the uncertainty levels rise.
[0026] Another embodiment of planning in the presence of
uncertainty would be for planning to take place via sampling
(e.g., Feature #4). Such an approach has the benefit that the
core planning subsystem may be agnostic to uncertainties
and that the handling of uncertainties may be isolated to a
wrapper around that core planning. For example, the envi-
ronmental model returned by the perception stage might
include some uncertainty for various objects. If N objects
have some associated uncertainty then the total number of
possible interpretations of the environmental model would
be ITY, O, where O, is the number of possible categorizations
of object i. Meta-planning would then sample from this
space (e.g., potentially according to time, computational
resources or power constraints), creating definitive environ-
mental models that can be passed through the core planner.
Meta-planning then examines the plan created for each
sampled environmental model. If the plans are all effectively
identical, then the ambiguity in the perception may be said
to be irrelevant (e.g., Feature #5). If the plans differ, how-
ever, then the ambiguity in the perception is meaningful. In
this case, the potential plans may be fed through a new
component that identifies the safest plan, which is the plan
that would be acted upon. In some implementations, differ-
ences are measured based on the resulting planning vectors
(e.g., trajectories) by calculating distance within the sampled
space using Fuclidean distance or Mahalanobis distance in
multidimensional space. In other implementations, this met-
ric may be a scalar resulting from the distance between two
absolute values.

[0027] Uncertainty Monitor

[0028] FIG. 2 demonstrates that an automated control
system 30 may include an uncertainty monitor 32 (e.g.,
including logic instructions, configurable logic, fixed-func-
tionality hardware logic, etc., or any combination thereof) in
addition to a perception subsystem 34 (e.g., stage), a plan-
ning subsystem 36, and an actuation subsystem 38. The
illustrated uncertainty monitor 32 is able to correlate the
uncertainty in the environmental models output by the
perception subsystem 34 with what the planning subsystem
36 has discovered about the meaningfulness or irrelevance
of those uncertain parts of the environmental models based
on the above mentioned distance. Thus, the uncertainty
monitor 32 may determine that all of the current ambiguities
are not relevant for the execution of the current plan. In such
a case, the uncertainty monitor 32 may send feedback (e.g.,
uncertainty response) to the perception subsystem 34 to
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dampen or suppress the uncertainty measures for a given set
of objects. As a result, the overall uncertainty level may
decrease, which in turn would undo the increased frequency
or sensor improvements as described in the Effects of
Uncertainty Level section above. Moreover, for power-
constrained devices, such a solution enables the device to
return to a lower power consumption mode. The subsequent
higher confidence levels to the planning subsystem 36 could
decrease the number of samples required of the potential
environmental space, further reducing energy consumption.
[0029] Additionally, uncertainties that are irrelevant for
certain goals may be meaningful as goals change, and vice
versa. Thus, the planning subsystem 36 may notify the
uncertainty monitor 32 as goals change so that the uncer-
tainty monitor 32 may discontinue suppressing the percep-
tion subsystem 34 from exposing the true uncertainty in the
environmental model output of the perception subsystem 34.
[0030] FIG. 3 shows a method 40 of operating a perfor-
mance-enhanced automated control system. The method 40
may generally be implemented in an uncertainty monitor
such as, for example, the uncertainty monitor 32 (FIG. 2),
already discussed. More particularly, the method 40 may be
implemented in one or more modules as a set of logic
instructions stored in a machine- or computer-readable stor-
age medium such as random access memory (RAM), read
only memory (ROM), programmable ROM (PROM), firm-
ware, flash memory, etc., in configurable logic such as, for
example, programmable logic arrays (PLAs), field program-
mable gate arrays (FPGAs), complex programmable logic
devices (CPLDs), in fixed-functionality logic hardware
using circuit technology such as, for example, application
specific integrated circuit (ASIC), complementary metal
oxide semiconductor (CMOS) or transistor-transistor logic
(TTL) technology, or any combination thereof.

[0031] For example, computer program code to carry out
operations shown in the method 40 may be written in any
combination of one or more programming languages,
including an object oriented programming language such as
JAVA, SMALLTALK, C++ or the like and conventional
procedural programming languages, such as the “C” pro-
gramming language or similar programming languages.
Additionally, logic instructions might include assembler
instructions, instruction set architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, state-setting data, configuration data for inte-
grated circuitry, state information that personalizes elec-
tronic circuitry and/or other structural components that are
native to hardware (e.g., host processor, central processing
unit/CPU, microcontroller, etc.).

[0032] Illustrated processing block 42 provides for obtain-
ing categorization information and corresponding uncer-
tainty information from a perception subsystem, wherein the
categorization information and the corresponding uncer-
tainty information are associated with an object in an
environment (e.g., co-mingled recycling environment,
industrial robot environment, autonomous vehicle environ-
ment, etc.). For example, the categorization information
might include a first candidate category (e.g., truck in an
autonomous vehicle environment) of the object, a second
candidate category (e.g., car in an autonomous vehicle
environment) of the object, and so forth. Additionally, the
corresponding uncertainty information may include a first
uncertainty value (e.g., 0.2) corresponding to the first can-
didate category, a second uncertainty value (e.g., 0.18)
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corresponding the second candidate category, etc., as well as
an overall uncertainty value (e.g., maximum value, weighted
sum). While two candidate categories and corresponding
uncertainties are described to facilitate discussion, any num-
ber of candidate categories and corresponding uncertainties
may be used depending on the circumstances.

[0033] Block 44 determines whether the corresponding
uncertainty information satisfies one or more relevance (e.g.,
meaningfulness) criteria. If it is determined at block 46 that
the relevance criteria are satisfied (e.g., the uncertainty is
meaningful), illustrated block 48 automatically controls the
perception subsystem to increase an accuracy in one or more
subsequent categorizations of the object. In an embodiment,
block 48 includes increasing the frequency of the control
loop in the automated control system, increasing the reso-
Iution of a sensor in the perception subsystem, etc., or any
combination thereof, wherein the sensor is associated with
the subsequent categorization(s). Increasing the accuracy as
shown may reduce uncertainty, enhance performance and/or
improve safety.

[0034] If it is determined at block 46 that the relevance
criteria are not satisfied (e.g., the uncertainty is not mean-
ingful), block 50 may automatically control the perception
subsystem to suppress (e.g., disregard, dampen) an uncer-
tainty in the one or more subsequent categorizations of the
object. In one example, block 50 includes decreasing the
frequency of the control loop in the automated control
system, decreasing the resolution of a sensor in the percep-
tion subsystem, etc., or any combination thereof, wherein
the sensor is associated with the subsequent categorization
(s). Suppressing the uncertainty as shown may reduce power
consumption. As already noted, the suppression of uncer-
tainty in block 50 and/or the reduction of uncertainty in
block 48 may be discontinued in response to a change in the
goals and/or objectives of the automated control system.
[0035] FIG. 4 shows a method 60 of determining whether
corresponding uncertainty information satisfies one or more
relevance criteria. The method 60 may generally be incor-
porated into block 44 and/or block 46 (FIG. 3), already
discussed. More particularly, the method 60 may be imple-
mented in one or more modules as a set of logic instructions
stored in a machine- or computer-readable storage medium
such as RAM, ROM, PROM, firmware, flash memory, etc.,
in configurable logic such as, for example, PL.As, FPGAs,
CPLDs, in fixed-functionality logic hardware using circuit
technology such as, for example, ASIC, CMOS or TTL
technology, or any combination thereof.

[0036] Illustrated processing block 62 provides for taking
a plurality of samples from the categorization information
and the corresponding uncertainty information, where a
plurality of actuation plans may be generated at block 64
based on the plurality of samples. For example, block 62
might select a first candidate category and a first uncertainty
value/level (e.g., truck having a 0.2 uncertainty level) from
the output of the perception subsystem and block 64 may
generate a first actuation plan (e.g., first lane change deci-
sion) based on the first candidate category and correspond-
ing uncertainty value. Similarly, block 62 may select a
second candidate category and a second uncertainty value/
level (e.g., car having a 0.18 uncertainty level) from the
output of the perception subsystem, with block 64 generat-
ing a second actuation plan (e.g., second lane change deci-
sion) based on the second candidate category and corre-
sponding uncertainty value. As already noted, while two
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candidate categories and corresponding uncertainty values/
levels are described to facilitate discussion, any number of
candidate categories and corresponding uncertainty values/
levels may be used depending on the circumstances.
[0037] Block 66 may determine a safety deviation across
the plurality of actuation plans, wherein the one or more
relevance criteria are satisfied if the safety deviation exceeds
a threshold. Thus, if the first lane change decision is sig-
nificantly safer than the second lane change decision (or vice
versa), then the perception subsystem may be instructed to
reduce uncertainty in subsequent categorizations of the
object. By contrast, if the first lane change decision and the
second lane change decision are relatively similar in terms
of safety, the perception subsystem might be instructed to
suppress an uncertainty in the subsequent categorizations of
the object. The illustrated method 60 therefore further
enhances performance, improves safety and/or reduces
power consumption by sampling from the categorization and
uncertainty information.

[0038] Example Use Case—Sorting Co-Mingled Recy-
cling Objects
[0039] In this use case, a recycling facility processes

co-mingled recycling materials and is responsible for sorting
the materials into the various kinds of recyclable categories
(e.g., ferrous metals, aluminum, plastics, paper, cardboard,
newsprint, glass, as well as non-recyclable materials mis-
takenly placed into a recycling bin). In an embodiment,
much of the human sorting is offloaded to robots. In one
example, co-mingled recycling is transferred onto a con-
veyor belt that runs past a series of robotic arms and cameras
(e.g., either on the robotic arms, statically mounted, or both)
that are responsible for visually sensing the conveyor belt
and determining the kind of material that each object on the
conveyor belt is made of, grabbing each object, and moving
the objects to separate areas/bins where all the objects are of
the same type. All of the devices may operate as one
automated control system rather than independently. The
physical environment may be somewhat unpredictable in
terms of the kinds of objects that will appear but may be very
unpredictable in terms of the arrangement of objects on the
conveyor belt. Two goals may be simultaneously managed:
1) the most objects sorted as possible in the least amount of
time and 2) the number of mis-categorizations is minimized.
[0040] In this scenario, the collection of cameras is the
perception subsystem, which is sensing and classifying
objects as to one of the materials noted above. The percep-
tion subsystem outputs the possible classifications of each
object along with an uncertainty metric for each (e.g.,
Feature #1) along with an overall uncertainty metric (e.g.,
Feature #2). If uncertainty is high then the system could
slow down the conveyor, allowing the static cameras more
viewpoints on the uncertain objects (e.g., Feature #3). Simi-
larly, the planning subsystem, with the goal of increasing
accuracy (e.g., reducing uncertainty), may instruct any
robotic arms with an attached camera to move to get a
different viewing angle on an object or the planning sub-
system may instruct one of the robotic arms to uncover or
reposition objects on the conveyor so that the perception
system would have a more ideal viewpoint in order to
classify the object with greater certainty (e.g., Feature #4).
[0041] The uncertainty monitor may make the determina-
tion that a classification between different kinds of plastics
or different kinds of paper represents a somewhat irrelevant
ambiguity (e.g., Feature #5) and therefore instruct the per-
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ception subsystem to not place a high priority on increasing
the certainty of the classifications of those objects. If it
becomes clear that the classification of an uncertain object
cannot be improved by additional time or actions, then the
uncertainty monitor may instruct the perception subsystem
to classify the object as unknown (e.g., very likely unrecy-
clable) with high certainty so that it does not affect the
overall uncertainty measure (e.g., Feature #6).

[0042]
house

[0043] Another example may involve an industrial ware-
house where control loops in robots are virtualized and run
at an edge/cloud server. Robots could range from automated
guided vehicles (AGVs) to robotic arms manipulating
objects. In an embodiment, robots are connected to the
infrastructure through a Wi-Fi interface. Unlike in Ethernet
networks, the capacity of the communication channel in a
Wi-Fi interface may not be deterministic (e.g., the capacity
is stochastic). To guarantee the wireless packet delivery rate
of robot sensing and actuation data flows to run the control
loops, a statistical model of the channel behavior may be
used. In this case, the quantities that are sensed are values/
signals such as channel capacity and availability. This uncer-
tainty may be sensed and calculated by collecting informa-
tion from the Wi-Fi devices within the system (e.g., Features
#1 and #2). Any individual uncertainties or the aggregative
uncertainty may then be used to tune the control loops (e.g.,
decrease the control cycle frequency, Feature #3) to ensure
the correct operation of robots in the warehouse. In addition,
if the channel capacity decreases because of the presence of
interference, Wi-Fi client radios, which typically operate in
power savings mode (e.g., radio wakes up only when
scheduled for transmissions), may be used to both send and
receive data and while not being used for communications,
monitor the channel to detect and localize interference
sources in the environment (e.g., Features #3 and #4).

[0044]

[0045] In another embodiment, the uncertainty monitor is
applied to an automated driving use case. In this case, the
uncertainty monitor (e.g., Feature #4) provides input to an
operational design domain monitoring system that expands
across the perception subsystem (e.g., Feature #1) and
planning subsystem (e.g., Feature #4) and whose function is
to determine if the automated driving system is able to
correctly perform the dynamic driving task (e.g., Feature
#5). An example mapping of the automated control system
30 to an automated driving architecture 70 is shown in FIG.
5.

[0046] In this case, a particular challenge is how to deter-
mine which perception uncertainties have an impact on the
driving task (e.g., Feature #5). Multiple components in the
perception subsystem may be affected by the uncertainties
described above. Only some of these uncertainties, however,
will have an impact on the planning output, the trajectory
and subsequent mapping to steering/break commands.

[0047] As shown in FIG. 6, the uncertainty estimation
monitor provides an estimation of the potential exit of the
current operational design domain (ODD), which might
trigger a change 72 in the dynamic driving task (DDT) for
a minimal risk condition (e.g., emergency break maneuver
or a failure mitigation strategy). The compliance to the ODD
state facilitates the switch of logical components for fail
operational mode (e.g., Feature #6).

Example Use Case—Robots in an Industrial Ware-

Example Use Case—Autonomous Vehicle
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[0048] As described with respect to the augmented per-
ception subsystem, the impact of uncertainty estimations in
the automated driving system may be monitored and
coupled with the ODD monitor system that receives the
output of the planning subsystem. Depending on the speci-
fication of the ODD, multiple uncertainty thresholds may be
taken into account for DDT correction mechanisms (e.g.,
Feature #6). While the most critical threshold will trigger the
fallback system, other responses within the ODD may also
be triggered by the ODD monitoring and corresponding
safety submodules overseeing the planning. These responses
may include a reduction of speed or modifications to tra-
jectory as a result of more conservative safety envelope
calculations derived from uncertainty estimations on per-
ception. In the automated driving ODD monitor described
herein, Remaining Error Rate (RER) and Remaining Accu-
racy Rate (RAR) are used as thresholds for an out of ODD
determination. These thresholds may be defined as:

[0049] In other terms, RER may be considered the ratio of
the number of certain but incorrect samples (Certain False/
CF) to all samples and RAR may be considered the ratio of
the number of certain and correct samples (Certain True/CT)
to all samples.

[0050] Turning now to FIG. 7, a performance-enhanced
computing system 80 (e.g., automated control system) is
shown. The system 80 may generally be part of an electronic
device/platform having computing functionality (e.g., per-
sonal digital assistant/PDA, notebook computer, tablet com-
puter, convertible tablet, server), communications function-
ality (e.g., smart phone), imaging functionality (e.g., camera,
camcorder), media playing functionality (e.g., smart televi-
sion/TV), wearable functionality (e.g., watch, eyewear,
headwear, footwear, jewelry), vehicular functionality (e.g.,
car, truck, motorcycle), robotic functionality (e.g., autono-
mous robot), Internet of Things (IoT) functionality, etc., or
any combination thereof. In the illustrated example, the
system 80 includes a host processor 82 (e.g., central pro-
cessing unit/CPU) having an integrated memory controller
(IMC) 84 that is coupled to a system memory 86.

[0051] The illustrated system 80 also includes an input
output (TO) module 88 implemented together with the host
processor 82, an Al accelerator 91 and a graphics processor
90 (e.g., graphics processing unit/GPU) on a semiconductor
die 92 as a system on chip (SoC). In an embodiment, the
semiconductor die 92 also includes a vision processing unit
(VPU, not shown). The illustrated TO module 88 commu-
nicates with, for example, a display 94 (e.g., touch screen,
liquid crystal display/LCD, light emitting diode/LED dis-
play), a network controller 96 (e.g., wired and/or wireless),
and mass storage 98 (e.g., hard disk drive/HDD, optical disk,
solid state drive/SSD, flash memory). The illustrated com-
puting system 80 also includes a perception subsystem 100
(e.g., including one or more sensors and/or cameras) and an
actuation subsystem 102.

[0052] In an embodiment, the host processor 82, the
graphics processor 90, the Al accelerator 91, the VPU and/or
the TO module 88 execute instructions 104 retrieved from
the system memory 86 and/or the mass storage 98 to perform
one or more aspects of the method 40 (FIG. 3) and/or the
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method 60 (FIG. 4), already discussed. Thus, execution of
the illustrated instructions 104 may cause the die 92 to
obtain categorization information and corresponding uncer-
tainty information from the perception subsystem 100,
wherein the categorization information and the correspond-
ing uncertainty information are to be associated with an
object in an environment. In an embodiment, the environ-
ment is one or more of a co-mingled recycling environment,
an industrial robot environment or oan autonomous vehicle
environment. Execution of the instructions 104 may also
cause the die 92 to determine whether the corresponding
uncertainty information satisfies one or more relevance
criteria and automatically control the perception subsystem
100 to increase an accuracy in one or more subsequent
categorizations of the object if the corresponding uncertainty
information satisfies the one or more relevance criteria. The
system 80 is therefore considered to be performance-en-
hanced at least to the extent that relevance criteria are used
to improve accuracy in the subsequent categorization(s).

[0053] FIG. 8 shows a semiconductor package apparatus
110. The illustrated apparatus 110 includes one or more
substrates 112 (e.g., silicon, sapphire, gallium arsenide) and
logic 114 (e.g., transistor array and other integrated circuit/
IC components) coupled to the substrate(s) 112. The logic
114 may be implemented at least partly in configurable logic
or fixed-functionality logic hardware. Thus, the logic 114
might include a host processor, a graphics processor, an Al
accelerator, a VPU, an 10 module, etc., or any combination
thereof. In one example, the logic 114 implements one or
more aspects of the method 40 (FIG. 3) and/or the method
60 (FIG. 4), already discussed. Thus, the logic 114 may
obtain categorization information and corresponding uncer-
tainty information from a perception subsystem, wherein the
categorization information and the corresponding uncer-
tainty information are to be associated with an object in an
environment. The logic 114 may also determine whether the
corresponding uncertainty information satisfies one or more
relevance criteria and automatically control the perception
subsystem to increase an accuracy in one or more subse-
quent categorizations of the object if the corresponding
uncertainty information satisfies the one or more relevance
criteria. The apparatus 110 is therefore considered to be
performance-enhanced at least to the extent that relevance
criteria are used to increase accuracy in the subsequent
categorization(s).

[0054] In one example, the logic 114 includes transistor
channel regions that are positioned (e.g., embedded) within
the substrate(s) 112. Thus, the interface between the logic
114 and the substrate(s) 112 may not be an abrupt junction.
The logic 114 may also be considered to include an epitaxial
layer that is grown on an initial wafer of the substrate(s) 112.

[0055] FIG. 9 illustrates a processor core 200 according to
one embodiment. The processor core 200 may be the core
for any type of processor, such as a micro-processor, an
embedded processor, a digital signal processor (DSP), a
network processor, or other device to execute code.
Although only one processor core 200 is illustrated in FIG.
9, a processing element may alternatively include more than
one of the processor core 200 illustrated in FIG. 9. The
processor core 200 may be a single-threaded core or, for at
least one embodiment, the processor core 200 may be
multithreaded in that it may include more than one hardware
thread context (or “logical processor™) per core.
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[0056] FIG.9 also illustrates a memory 270 coupled to the
processor core 200. The memory 270 may be any of a wide
variety of memories (including various layers of memory
hierarchy) as are known or otherwise available to those of
skill in the art. The memory 270 may include one or more
code 213 instruction(s) to be executed by the processor core
200, wherein the code 213 may implement one or more
aspects of the method 40 (FIG. 3) and/or the method 60
(FIG. 4), already discussed. The processor core 200 follows
a program sequence of instructions indicated by the code
213. Each instruction may enter a front end portion 210 and
be processed by one or more decoders 220. The decoder 220
may generate as its output a micro operation such as a fixed
width micro operation in a predefined format, or may
generate other instructions, microinstructions, or control
signals which reflect the original code instruction. The
illustrated front end portion 210 also includes register
renaming logic 225 and scheduling logic 230, which gen-
erally allocate resources and queue the operation corre-
sponding to the convert instruction for execution.

[0057] The processor core 200 is shown including execu-
tion logic 250 having a set of execution units 255-1 through
255-N. Some embodiments may include a number of execu-
tion units dedicated to specific functions or sets of functions.
Other embodiments may include only one execution unit or
one execution unit that can perform a particular function.
The illustrated execution logic 250 performs the operations
specified by code instructions.

[0058] After completion of execution of the operations
specified by the code instructions, back end logic 260 retires
the instructions of the code 213. In one embodiment, the
processor core 200 allows out of order execution but
requires in order retirement of instructions. Retirement logic
265 may take a variety of forms as known to those of skill
in the art (e.g., re-order buffers or the like). In this manner,
the processor core 200 is transformed during execution of
the code 213, at least in terms of the output generated by the
decoder, the hardware registers and tables utilized by the
register renaming logic 225, and any registers (not shown)
modified by the execution logic 250.

[0059] Although not illustrated in FIG. 9, a processing
element may include other elements on chip with the pro-
cessor core 200. For example, a processing element may
include memory control logic along with the processor core
200. The processing element may include I/O control logic
and/or may include I/O control logic integrated with
memory control logic. The processing element may also
include one or more caches.

[0060] Referring now to FIG. 10, shown is a block dia-
gram of a computing system 1000 embodiment in accor-
dance with an embodiment. Shown in FIG. 10 is a multi-
processor system 1000 that includes a first processing
element 1070 and a second processing element 1080. While
two processing elements 1070 and 1080 are shown, it is to
be understood that an embodiment of the system 1000 may
also include only one such processing element.

[0061] The system 1000 is illustrated as a point-to-point
interconnect system, wherein the first processing element
1070 and the second processing element 1080 are coupled
via a point-to-point interconnect 1050. It should be under-
stood that any or all of the interconnects illustrated in FIG.
10 may be implemented as a multi-drop bus rather than
point-to-point interconnect.
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[0062] As shown in FIG. 10, each of processing elements
1070 and 1080 may be multicore processors, including first
and second processor cores (i.e., processor cores 1074a and
10745 and processor cores 1084a and 10845). Such cores
1074a, 10745, 10844, 10845 may be configured to execute
instruction code in a manner similar to that discussed above
in connection with FIG. 9.

[0063] Each processing element 1070, 1080 may include
at least one shared cache 1896a, 18965. The shared cache
18964, 18965 may store data (e.g., instructions) that are
utilized by one or more components of the processor, such
as the cores 1074a, 10745 and 1084a, 10845, respectively.
For example, the shared cache 1896a, 18965 may locally
cache data stored in a memory 1032, 1034 for faster access
by components of the processor. In one or more embodi-
ments, the shared cache 18964, 18965 may include one or
more mid-level caches, such as level 2 (L2), level 3 (L3),
level 4 (L4), or other levels of cache, a last level cache
(LLC), and/or combinations thereof.

[0064] While shown with only two processing elements
1070, 1080, it is to be understood that the scope of the
embodiments are not so limited. In other embodiments, one
or more additional processing elements may be present in a
given processor. Alternatively, one or more of processing
elements 1070, 1080 may be an element other than a
processor, such as an accelerator or a field programmable
gate array. For example, additional processing element(s)
may include additional processors(s) that are the same as a
first processor 1070, additional processor(s) that are hetero-
geneous or asymmetric to processor a first processor 1070,
accelerators (such as, e.g., graphics accelerators or digital
signal processing (DSP) units), field programmable gate
arrays, or any other processing element. There can be a
variety of differences between the processing elements
1070, 1080 in terms of a spectrum of metrics of merit
including architectural, micro architectural, thermal, power
consumption characteristics, and the like. These differences
may effectively manifest themselves as asymmetry and
heterogeneity amongst the processing elements 1070, 1080.
For at least one embodiment, the various processing ele-
ments 1070, 1080 may reside in the same die package.
[0065] The first processing element 1070 may further
include memory controller logic (MC) 1072 and point-to-
point (P-P) interfaces 1076 and 1078. Similarly, the second
processing element 1080 may include a MC 1082 and P-P
interfaces 1086 and 1088. As shown in FIG. 10, MC’s 1072
and 1082 couple the processors to respective memories,
namely a memory 1032 and a memory 1034, which may be
portions of main memory locally attached to the respective
processors. While the MC 1072 and 1082 is illustrated as
integrated into the processing elements 1070, 1080, for
alternative embodiments the MC logic may be discrete logic
outside the processing elements 1070, 1080 rather than
integrated therein.

[0066] The first processing element 1070 and the second
processing element 1080 may be coupled to an I/O subsys-
tem 1090 via P-P interconnects 1076 1086, respectively. As
shown in FIG. 10, the I/O subsystem 1090 includes P-P
interfaces 1094 and 1098. Furthermore, I/O subsystem 1090
includes an interface 1092 to couple /O subsystem 1090
with a high performance graphics engine 1038. In one
embodiment, bus 1049 may be used to couple the graphics
engine 1038 to the I/O subsystem 1090. Alternately, a
point-to-point interconnect may couple these components.
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[0067] In turn, I/O subsystem 1090 may be coupled to a
first bus 1016 via an interface 1096. In one embodiment, the
first bus 1016 may be a Peripheral Component Interconnect
(PCI) bus, or a bus such as a PCI Express bus or another
third generation I/O interconnect bus, although the scope of
the embodiments are not so limited.

[0068] As shown in FIG. 10, various I/O devices 1014
(e.g., biometric scanners, speakers, cameras, sensors) may
be coupled to the first bus 1016, along with a bus bridge
1018 which may couple the first bus 1016 to a second bus
1020. In one embodiment, the second bus 1020 may be a low
pin count (LPC) bus. Various devices may be coupled to the
second bus 1020 including, for example, a keyboard/mouse
1012, communication device(s) 1026, and a data storage unit
1019 such as a disk drive or other mass storage device which
may include code 1030, in one embodiment. The illustrated
code 1030 may implement one or more aspects of the
method 40 (FIG. 3) and/or the method 60 (FIG. 4), already
discussed. Further, an audio I/O 1024 may be coupled to
second bus 1020 and a battery 1010 may supply power to the
computing system 1000.

[0069] Note that other embodiments are contemplated. For
example, instead of the point-to-point architecture of FIG.
10, a system may implement a multi-drop bus or another
such communication topology. Also, the elements of FIG. 10
may alternatively be partitioned using more or fewer inte-
grated chips than shown in FIG. 10.

ADDITIONAL NOTES AND EXAMPLES

[0070] Example 1 includes a performance-enhanced auto-
mated control system comprising a first subsystem, a second
subsystem, a processor coupled to the first subsystem and
the second subsystem, and a memory coupled to the pro-
cessor, the memory including a set of executable program
instructions, which when executed by the processor, cause
the processor to obtain categorization information and cor-
responding uncertainty information from the second subsys-
tem, wherein the categorization information and the corre-
sponding uncertainty information are to be associated with
an object in an environment, determine whether the corre-
sponding uncertainty information satisfies one or more rel-
evance criteria, and automatically control the second sub-
system to increase an accuracy in one or more subsequent
categorizations of the object if the corresponding uncertainty
information satisfies the one or more relevance criteria.
[0071] Example 2 includes the system of Example 1,
wherein to automatically control the second subsystem to
increase the accuracy in the one or more subsequent cat-
egorizations, the instructions, when executed, cause the
automated control system to one or more of increase a
frequency of a control loop in the automated control system
or increase a resolution of a sensor in the second subsystem,
and wherein the sensor is to be associated with the one or
more subsequent categorizations.

[0072] Example 3 includes the system of Example 1,
wherein the instructions, when executed, further cause the
automated control system to automatically control the sec-
ond subsystem to suppress an uncertainty in the one or more
subsequent categorizations if the corresponding uncertainty
information does not satisty the one or more relevance
criteria.

[0073] Example 4 includes the system of Example 3,
wherein to automatically control the second subsystem to
suppress the uncertainty in the one or more subsequent
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categorizations, the instructions, when executed, cause the
automated control system to one or more of decrease a
frequency of a control loop in the automated control system
or decrease a resolution of a sensor in the second subsystem,
and wherein the sensor is to be associated with the one or
more subsequent categorizations.

[0074] Example 5 includes the system of Example 1,
wherein to determine whether the corresponding uncertainty
information satisfies the one or more relevance criteria, the
instructions, when executed, cause the automated control
system to take a plurality of samples from the categorization
information and the corresponding uncertainty information,
generate a plurality of actuation plans for the actuation
subsystem based on the plurality of samples, and determine
a safety deviation across the plurality of actuation plans,
wherein the one or more relevance criteria are satisfied if the
safety deviation exceeds a threshold.

[0075] Example 6 includes the system of any one of
Examples 1 to 5, wherein the categorization information is
to include a first candidate category of the object and a
second candidate category of the object, wherein the corre-
sponding uncertainty information is to include a first uncer-
tainty value corresponding to the first candidate category, a
second uncertainty value corresponding to the second can-
didate category, and an overall uncertainty value, wherein
the first subsystem is an actuation subsystem, wherein the
second subsystem is a perception subsystem, and wherein
the environment is to be one or more of a co-mingled
recycling environment, an industrial robot environment or
an autonomous vehicle environment.

[0076] Example 7 includes a semiconductor apparatus
comprising one or more substrates, and logic coupled to the
one or more substrates, wherein the logic is implemented at
least partly in one or more of configurable logic or fixed-
functionality hardware logic, the logic coupled to the one or
more substrates to obtain categorization information and
corresponding uncertainty information from a subsystem,
wherein the categorization information and the correspond-
ing uncertainty information are to be associated with an
object in an environment, determine whether the corre-
sponding uncertainty information satisfies one or more rel-
evance criteria, and automatically control the subsystem to
increase an accuracy in one or more subsequent categoriza-
tions of the object if the corresponding uncertainty infor-
mation satisfies the one or more relevance criteria.

[0077] Example 8 includes the apparatus of Example 7,
wherein to automatically control the subsystem to increase
the accuracy in the one or more subsequent categorizations,
the logic coupled to the one or more substrates is to one or
more of increase a frequency of a control loop in an
automated control system or increase a resolution of a sensor
in the subsystem, and wherein the sensor is to be associated
with the one or more subsequent categorizations.

[0078] Example 9 includes the apparatus of Example 7,
wherein the logic coupled to the one or more substrates is to
automatically control the subsystem to suppress an uncer-
tainty in the one or more subsequent categorizations if the
corresponding uncertainty information does not satisfy the
one or more relevance criteria.

[0079] Example 10 includes the apparatus of Example 9,
wherein to automatically control the subsystem to suppress
the uncertainty in the one or more subsequent categoriza-
tions, the logic coupled to the one or more substrates is to
one or more of decrease a frequency of a control loop in an



US 2020/0326696 Al

automated control system or decrease a resolution of a
sensor in the subsystem, and wherein the sensor is to be
associated with the one or more subsequent categorizations.
[0080] Example 11 includes the apparatus of Example 7,
wherein to determine whether the corresponding uncertainty
information satisfies the one or more relevance criteria, the
logic coupled to the one or more substrates is to take a
plurality of samples from the categorization information and
the corresponding uncertainty information, generate a plu-
rality of actuation plans based on the plurality of samples,
and determine a safety deviation across the plurality of
actuation plans, wherein the one or more relevance criteria
are satisfied if the safety deviation exceeds a threshold.
[0081] Example 12 includes the apparatus of any one of
Examples 7 to 11, wherein the categorization information is
to include a first candidate category of the object and a
second candidate category of the object, wherein the corre-
sponding uncertainty information is to include a first uncer-
tainty value corresponding to the first candidate category, a
second uncertainty value corresponding to the second can-
didate category, and an overall uncertainty value, wherein
the subsystem is to be a perception subsystem, and wherein
the environment is to be one or more of a co-mingled
recycling environment, an industrial robot environment or
an autonomous vehicle environment.

[0082] Example 13 includes at least one computer read-
able storage medium comprising a set of executable program
instructions, which when executed by an automated control
system, cause the automated control system to obtain cat-
egorization information and corresponding uncertainty
information from a subsystem, wherein the categorization
information and the corresponding uncertainty information
are to be associated with an object in an environment,
determine whether the corresponding uncertainty informa-
tion satisfies one or more relevance criteria, and automati-
cally control the subsystem to increase an accuracy in one or
more subsequent categorizations of the object if the corre-
sponding uncertainty information satisfies the one or more
relevance criteria.

[0083] Example 14 includes the at least one computer
readable storage medium of Example 13, wherein to auto-
matically control the subsystem to increase the accuracy in
the one or more subsequent categorizations, the instructions,
when executed, cause the automated control system to one
or more of increase a frequency of a control loop in the
automated control system or increase a resolution of a sensor
in the subsystem, and wherein the sensor is to be associated
with the one or more subsequent categorizations.

[0084] Example 15 includes the at least one computer
readable storage medium of Example 13, wherein the
instructions, when executed, further cause the automated
control system to automatically control the subsystem to
suppress an uncertainty in the one or more subsequent
categorizations if the corresponding uncertainty information
does not satisty the one or more relevance criteria.

[0085] Example 16 includes the at least one computer
readable storage medium of Example 15, wherein to auto-
matically control the subsystem to suppress the uncertainty
in the one or more subsequent categorizations, the instruc-
tions, when executed, cause the automated control system to
one or more of decrease a frequency of a control loop in the
automated control system or decrease a resolution of a
sensor in the subsystem, and wherein the sensor is to be
associated with the one or more subsequent categorizations.
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[0086] Example 17 includes the at least one computer
readable storage medium of Example 13, wherein to deter-
mine whether the corresponding uncertainty information
satisfies the one or more relevance criteria, the instructions,
when executed, cause the automated control system to take
a plurality of samples from the categorization information
and the corresponding uncertainty information, generate a
plurality of actuation plans based on the plurality of samples,
and determine a safety deviation across the plurality of
actuation plans, wherein the one or more relevance criteria
are satisfied if the safety deviation exceeds a threshold.
[0087] Example 18 includes the at least one computer
readable storage medium of any one of Examples 13 to 17,
wherein the categorization information is to include a first
candidate category of the object and a second candidate
category of the object, wherein the corresponding uncer-
tainty information is to include a first uncertainty value
corresponding to the first candidate category, a second
uncertainty value corresponding to the second candidate
category, and an overall uncertainty value, wherein the
subsystem is to be a perception subsystem, and wherein the
environment is to be one or more of a co-mingled recycling
environment, an industrial robot environment or an autono-
mous vehicle environment.

[0088] Example 19 includes a method of operating a
performance-enhanced computing system, the method com-
prising obtaining categorization information and corre-
sponding uncertainty information from a subsystem,
wherein the categorization information and the correspond-
ing uncertainty information are associated with an object in
an environment, determining whether the corresponding
uncertainty information satisfies one or more relevance
criteria, and automatically controlling the subsystem to
increase an accuracy in one or more subsequent categoriza-
tions of the object if the corresponding uncertainty infor-
mation satisfies the one or more relevance criteria.

[0089] Example 20 includes the method of Example 19,
wherein automatically controlling the subsystem to increase
the accuracy in the one or more subsequent categorizations
includes one or more of increasing a frequency of a control
loop in an automated control system or increasing a reso-
Iution of a sensor in the subsystem, and wherein the sensor
is associated with the one or more subsequent categoriza-
tions.

[0090] Example 21 includes the method of Example 19,
further including automatically controlling the subsystem to
suppress an uncertainty in the one or more subsequent
categorizations if the corresponding uncertainty information
does not satisty the one or more relevance criteria.

[0091] Example 22 includes the method of Example 21,
wherein automatically controlling the subsystem to suppress
the uncertainty in the one or more subsequent categoriza-
tions includes one or more of decreasing a frequency of a
control loop in an automated control system or decreasing a
resolution of a sensor in the subsystem, and wherein the
sensor is associated with the one or more subsequent cat-
egorizations.

[0092] Example 23 includes the method of Example 19,
wherein determining whether the corresponding uncertainty
information satisfies the one or more relevance criteria
includes taking a plurality of samples from the categoriza-
tion information and the corresponding uncertainty infor-
mation, generating a plurality of actuation plans based on the
plurality of samples, and determining a safety deviation
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across the plurality of actuation plans, wherein the one or
more relevance criteria are satisfied if the safety deviation
exceeds a threshold.

[0093] Example 24 includes the method of any one of
Examples 19 to 23, wherein the categorization information
includes a first candidate category of the object and a second
candidate category of the object, wherein the corresponding
uncertainty information includes a first uncertainty value
corresponding to the first candidate category, a second
uncertainty value corresponding to the second candidate
category, and an overall uncertainty value, wherein the
subsystem is to be a perception subsystem, and wherein the
environment is one or more of a co-mingled recycling
environment, an industrial robot environment or an autono-
mous vehicle environment.

[0094] Example 25 includes means for performing the
method of any one of Examples 19 to 24.

[0095] Thus, technology described herein increases the
likelihood that a planning subsystem is able to meet the
specified goals of the system. The technology also enables
systems to operate in lower power-modes or use less energy
overall, because the system may use the uncertainty signal
to more finely regulate power to sensors by only operating
at maximum capacity when ambiguity is high.

[0096] Embodiments are applicable for use with all types
of semiconductor integrated circuit (“IC”) chips. Examples
of these IC chips include but are not limited to processors,
controllers, chipset components, programmable logic arrays
(PLAs), memory chips, network chips, systems on chip
(SoCs), SSD/NAND controller ASICs, and the like. In
addition, in some of the drawings, signal conductor lines are
represented with lines. Some may be different, to indicate
more constituent signal paths, have a number label, to
indicate a number of constituent signal paths, and/or have
arrows at one or more ends, to indicate primary information
flow direction. This, however, should not be construed in a
limiting manner. Rather, such added detail may be used in
connection with one or more exemplary embodiments to
facilitate easier understanding of a circuit. Any represented
signal lines, whether or not having additional information,
may actually comprise one or more signals that may travel
in multiple directions and may be implemented with any
suitable type of signal scheme, e.g., digital or analog lines
implemented with differential pairs, optical fiber lines, and/
or single-ended lines.

[0097] Example sizes/models/values/ranges may have
been given, although embodiments are not limited to the
same. As manufacturing techniques (e.g., photolithography)
mature over time, it is expected that devices of smaller size
could be manufactured. In addition, well known power/
ground connections to IC chips and other components may
or may not be shown within the figures, for simplicity of
illustration and discussion, and so as not to obscure certain
aspects of the embodiments. Further, arrangements may be
shown in block diagram form in order to avoid obscuring
embodiments, and also in view of the fact that specifics with
respect to implementation of such block diagram arrange-
ments are highly dependent upon the computing system
within which the embodiment is to be implemented, i.e.,
such specifics should be well within purview of one skilled
in the art. Where specific details (e.g., circuits) are set forth
in order to describe example embodiments, it should be
apparent to one skilled in the art that embodiments can be
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practiced without, or with variation of, these specific details.
The description is thus to be regarded as illustrative instead
of limiting.

[0098] The term “coupled” may be used herein to refer to
any type of relationship, direct or indirect, between the
components in question, and may apply to electrical,
mechanical, fluid, optical, electromagnetic, electromechani-
cal or other connections. In addition, the terms “first”,
“second”, etc. may be used herein only to facilitate discus-
sion, and carry no particular temporal or chronological
significance unless otherwise indicated.

[0099] As used in this application and in the claims, a list
of items joined by the term “one or more of” may mean any
combination of the listed terms. For example, the phrases
“one or more of A, B or C” may mean A; B; C; A and B; A
and C; B and C; or A, B and C.

[0100] Those skilled in the art will appreciate from the
foregoing description that the broad techniques of the
embodiments can be implemented in a variety of forms.
Therefore, while the embodiments have been described in
connection with particular examples thereof, the true scope
of the embodiments should not be so limited since other
modifications will become apparent to the skilled practitio-
ner upon a study of the drawings, specification, and follow-
ing claims.

We claim:

1. An automated control system comprising:

a first subsystem;

a second subsystem;

a processor coupled to the first subsystem and the second

subsystem; and

a memory coupled to the processor, the memory including

a set of executable program instructions, which when

executed by the processor, cause the processor to:

obtain categorization information and corresponding
uncertainty information from the second subsystem,
wherein the categorization information and the cor-
responding uncertainty information are to be asso-
ciated with an object in an environment,

determine whether the corresponding uncertainty infor-
mation satisfies one or more relevance criteria, and

automatically control the second subsystem to increase
an accuracy in one or more subsequent categoriza-
tions of the object if the corresponding uncertainty
information satisfies the one or more relevance cri-
teria.

2. The system of claim 1, wherein to automatically control
the second subsystem to increase the accuracy in the one or
more subsequent categorizations, the instructions, when
executed, cause the automated control system to one or more
of increase a frequency of a control loop in the automated
control system or increase a resolution of a sensor in the
second subsystem, and wherein the sensor is to be associated
with the one or more subsequent categorizations.

3. The system of claim 1, wherein the instructions, when
executed, further cause the automated control system to
automatically control the second subsystem to suppress an
uncertainty in the one or more subsequent categorizations if
the corresponding uncertainty information does not satisfy
the one or more relevance criteria.

4. The system of claim 3, wherein to automatically control
the second subsystem to suppress the uncertainty in the one
or more subsequent categorizations, the instructions, when
executed, cause the automated control system to one or more
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of decrease a frequency of a control loop in the automated
control system or decrease a resolution of a sensor in the
second subsystem, and wherein the sensor is to be associated
with the one or more subsequent categorizations.

5. The system of claim 1, wherein to determine whether
the corresponding uncertainty information satisfies the one
or more relevance criteria, the instructions, when executed,
cause the automated control system to:

take a plurality of samples from the categorization infor-

mation and the corresponding uncertainty information,
generate a plurality of actuation plans for the actuation
subsystem based on the plurality of samples, and
determine a safety deviation across the plurality of actua-
tion plans, wherein the one or more relevance criteria
are satisfied if the safety deviation exceeds a threshold.
6. The system of claim 1, wherein the categorization
information is to include a first candidate category of the
object and a second candidate category of the object,
wherein the corresponding uncertainty information is to
include a first uncertainty value corresponding to the first
candidate category, a second uncertainty value correspond-
ing to the second candidate category, and an overall uncer-
tainty value, wherein the first subsystem is an actuation
subsystem, wherein the second subsystem is a perception
subsystem, and wherein the environment is to be one or
more of a co-mingled recycling environment, an industrial
robot environment or an autonomous vehicle environment.
7. A semiconductor apparatus comprising:
one or more substrates; and
logic coupled to the one or more substrates, wherein the
logic is implemented at least partly in one or more of
configurable logic or fixed-functionality hardware
logic, the logic coupled to the one or more substrates to:

obtain categorization information and corresponding
uncertainty information from a subsystem, wherein the
categorization information and the corresponding
uncertainty information are to be associated with an
object in an environment;
determine whether the corresponding uncertainty infor-
mation satisfies one or more relevance criteria; and

automatically control the subsystem to increase an accu-
racy in one or more subsequent categorizations of the
object if the corresponding uncertainty information
satisfies the one or more relevance criteria.

8. The apparatus of claim 7, wherein to automatically
control the subsystem to increase the accuracy in the one or
more subsequent categorizations, the logic coupled to the
one or more substrates is to one or more of increase a
frequency of a control loop in an automated control system
or increase a resolution of a sensor in the subsystem, and
wherein the sensor is to be associated with the one or more
subsequent categorizations.

9. The apparatus of claim 7, wherein the logic coupled to
the one or more substrates is to automatically control the
subsystem to suppress an uncertainty in the one or more
subsequent categorizations if the corresponding uncertainty
information does not satisty the one or more relevance
criteria.

10. The apparatus of claim 9, wherein to automatically
control the subsystem to suppress the uncertainty in the one
or more subsequent categorizations, the logic coupled to the
one or more substrates is to one or more of decrease a
frequency of a control loop in an automated control system
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or decrease a resolution of a sensor in the subsystem, and
wherein the sensor is to be associated with the one or more
subsequent categorizations.

11. The apparatus of claim 7, wherein to determine
whether the corresponding uncertainty information satisfies
the one or more relevance criteria, the logic coupled to the
one or more substrates is to:

take a plurality of samples from the categorization infor-
mation and the corresponding uncertainty information;

generate a plurality of actuation plans based on the
plurality of samples; and

determine a safety deviation across the plurality of actua-
tion plans, wherein the one or more relevance criteria
are satisfied if the safety deviation exceeds a threshold.

12. The apparatus of claim 7, wherein the categorization
information is to include a first candidate category of the
object and a second candidate category of the object,
wherein the corresponding uncertainty information is to
include a first uncertainty value corresponding to the first
candidate category, a second uncertainty value correspond-
ing to the second candidate category, and an overall uncer-
tainty value, wherein the subsystem is to be a perception
subsystem, and wherein the environment is to be one or
more of a co-mingled recycling environment, an industrial
robot environment or an autonomous vehicle environment.

13. At least one computer readable storage medium com-
prising a set of executable program instructions, which when
executed by an automated control system, cause the auto-
mated control system to:

obtain categorization information and corresponding
uncertainty information from a subsystem, wherein the
categorization information and the corresponding
uncertainty information are to be associated with an
object in an environment;

determine whether the corresponding uncertainty infor-
mation satisfies one or more relevance criteria; and

automatically control the subsystem to increase an accu-
racy in one or more subsequent categorizations of the
object if the corresponding uncertainty information
satisfies the one or more relevance criteria.

14. The at least one computer readable storage medium of
claim 13, wherein to automatically control the subsystem to
increase the accuracy in the one or more subsequent cat-
egorizations, the instructions, when executed, cause the
automated control system to one or more of increase a
frequency of a control loop in the automated control system
or increase a resolution of a sensor in the subsystem, and
wherein the sensor is to be associated with the one or more
subsequent categorizations.

15. The at least one computer readable storage medium of
claim 13, wherein the instructions, when executed, further
cause the automated control system to automatically control
the subsystem to suppress an uncertainty in the one or more
subsequent categorizations if the corresponding uncertainty
information does not satisty the one or more relevance
criteria.

16. The at least one computer readable storage medium of
claim 15, wherein to automatically control the subsystem to
suppress the uncertainty in the one or more subsequent
categorizations, the instructions, when executed, cause the
automated control system to one or more of decrease a
frequency of a control loop in the automated control system
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or decrease a resolution of a sensor in the subsystem, and
wherein the sensor is to be associated with the one or more
subsequent categorizations.

17. The at least one computer readable storage medium of
claim 13, wherein to determine whether the corresponding
uncertainty information satisfies the one or more relevance
criteria, the instructions, when executed, cause the auto-
mated control system to:

take a plurality of samples from the categorization infor-

mation and the corresponding uncertainty information;
generate a plurality of actuation plans based on the
plurality of samples; and

determine a safety deviation across the plurality of actua-

tion plans, wherein the one or more relevance criteria
are satisfied if the safety deviation exceeds a threshold.
18. The at least one computer readable storage medium of
claim 13, wherein the categorization information is to
include a first candidate category of the object and a second
candidate category of the object, wherein the corresponding
uncertainty information is to include a first uncertainty value
corresponding to the first candidate category, a second
uncertainty value corresponding to the second candidate
category, and an overall uncertainty value, wherein the
subsystem is to be a perception subsystem, and wherein the
environment is to be one or more of a co-mingled recycling
environment, an industrial robot environment or an autono-
mous vehicle environment.
19. A method comprising:
obtaining categorization information and corresponding
uncertainty information from a subsystem, wherein the
categorization information and the corresponding
uncertainty information are associated with an object in
an environment;
determining whether the corresponding uncertainty infor-
mation satisfies one or more relevance criteria; and

automatically controlling the subsystem to increase an
accuracy in one or more subsequent categorizations of
the object if the corresponding uncertainty information
satisfies the one or more relevance criteria.

20. The method of claim 19, wherein automatically con-
trolling the subsystem to increase the accuracy in the one or
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more subsequent categorizations includes one or more of
increasing a frequency of a control loop in an automated
control system or increasing a resolution of a sensor in the
subsystem, and wherein the sensor is associated with the one
or more subsequent categorizations.

21. The method of claim 19, further including automati-
cally controlling the subsystem to suppress an uncertainty in
the one or more subsequent categorizations if the corre-
sponding uncertainty information does not satisfy the one or
more relevance criteria.

22. The method of claim 21, wherein automatically con-
trolling the subsystem to suppress the uncertainty in the one
or more subsequent categorizations includes one or more of
decreasing a frequency of a control loop in an automated
control system or decreasing a resolution of a sensor in the
subsystem, and wherein the sensor is associated with the one
or more subsequent categorizations.

23. The method of claim 19, wherein determining whether
the corresponding uncertainty information satisfies the one
or more relevance criteria includes:

taking a plurality of samples from the categorization

information and the corresponding uncertainty infor-
mation;

generating a plurality of actuation plans based on the

plurality of samples; and

determining a safety deviation across the plurality of

actuation plans, wherein the one or more relevance
criteria are satisfied if the safety deviation exceeds a
threshold.

24. The method of claim 19, wherein the categorization
information includes a first candidate category of the object
and a second candidate category of the object, wherein the
corresponding uncertainty information includes a first uncer-
tainty value corresponding to the first candidate category, a
second uncertainty value corresponding to the second can-
didate category, and an overall uncertainty value, wherein
the subsystem is a perception subsystem, and wherein the
environment is one or more of a co-mingled recycling
environment, an industrial robot environment or an autono-
mous vehicle environment.

#* #* #* #* #*



