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57 ABSTRACT

An approach is provided for point-based map matchers
using machine learning. The approach involves retrieving
points collected within proximity to a map feature repre-
sented by a link of a geographic database. The probe points
are collected from sensors of devices traveling near the map
feature. The approach also involves determining a probe
feature set for each probe point comprising probe attribute
values, and determining a link feature set for the link
comprising link attribute values. The apparatus further
involves classifying, using a machine learning classifier,
each probe point to determine a matching probability based
on the probe feature set and the link feature to indicate a
probability that each probe point is classified as map-
matched to the link. The machine learning classifier is
trained using ground truth data comprising reference probe
points with known map-matches to respective reference
links, and comprising known probe attribute values and
known link attribute values.
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FIG. 3B
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METHOD AND APPARATUS FOR
PROVIDING A MACHINE LEARNING
APPROACH FOR A POINT-BASED MAP
MATCHER

RELATED APPLICATION

[0001] This application is a continuation of U.S. patent
application Ser. No. 15/597,999, filed May 17, 2017, entitled
“METHOD AND APPARATUS FOR PROVIDING A
MACHINE LEARNING APPROACH FOR A POINT-
BASED MAP MATCHER,” which is incorporated herein by
reference in its entirety.

BACKGROUND

[0002] Because of continuous changes to the geometry
and configuration of road and other transportation networks,
mapping-related service providers (e.g., map data providers,
navigation service providers, etc.) face significant technical
challenges to creating and maintaining up-to-date map data.
One area of development has been related to generating,
updating, and/or analyzing map data through use of raw
location data such as probe points collected by devices
and/or vehicles equipped with sensors to report location,
heading, speed, time, etc. as they travel. As part of this
process, map-matchers (e.g., point-based map-matchers) are
used to process the probe points to identify the correct road
or path on which a probe device or vehicle is traveling, and
to determine the device’s location on that road or path.
However, current map-matchers can often encounter issues
of accuracy, scalability, and/or efficiency, particularly when
processing high volumes of probe points and/or when pro-
cessing probe points in real-time, particularly when these
current map-matchers rely on empirical heuristics or generic
assumptions that may or may not apply to the probe points
being evaluated.

SOME EXAMPLE EMBODIMENTS

[0003] Therefore, there is a need for a machine learning
approach for point-based map matchers that, for instance,
can be used for map data analysis, map data creation, map
data update, and/or localization of device/vehicle.

[0004] According to one embodiment, a computer-imple-
mented method for map-matching probe data using a
machine learning classifier comprises retrieving one or more
probe points collected within a proximity to a map feature
represented by a link of a geographic database. The one or
more probe points are collected from one or more sensors of
a plurality of devices traveling within the proximity to the
map feature. The method also comprises determining a
probe feature set for each of the one or more probe points.
The probe feature set comprises respective values for one or
more probe attributes of said each probe point. The method
further comprises determining a link feature set for the link.
The link feature set comprises respective values for one or
more link attributes of the link. The method further com-
prises classifying, using the machine learning classifier, said
each probe point to determine a matching probability based
on the probe feature set and the link feature. The matching
probability indicates a probability that said each probe point
is classified as map-matched to the link. The machine
learning classifier is trained using ground truth data com-
prising reference probe points with known map-matches to
respective reference links, and comprising known values of
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the one or more probe attributes for the reference probe
points and known values of the one or more link attributes
for the reference links.

[0005] According to another embodiment, an apparatus
for map-matching probe data using a machine learning
classifier comprises at least one processor, and at least one
memory including computer program code for one or more
computer programs, the at least one memory and the com-
puter program code configured to, with the at least one
processor, cause, at least in part, the apparatus to retrieve one
or more probe points collected within a proximity to a map
feature represented by a link of a geographic database. The
one or more probe points are collected from one or more
sensors of a plurality of devices traveling within the prox-
imity to the map feature. The apparatus is also caused to
determine a probe feature set for each of the one or more
probe points. The probe feature set comprises respective
values for one or more probe attributes of said each probe
point. The apparatus is further caused to determine a link
feature set for the link. The link feature set comprises
respective values for one or more link attributes of the link.
The apparatus is further caused to classify, using the
machine learning classifier, said each probe point to deter-
mine a matching probability based on the probe feature set
and the link feature. The matching probability indicates a
probability that said each probe point is classified as map-
matched to the link. The machine learning classifier is
trained using ground truth data comprising reference probe
points with known map-matches to respective reference
links, and comprising known values of the one or more
probe attributes for the reference probe points and known
values of the one or more link attributes for the reference
links.

[0006] According to another embodiment, a computer-
readable storage medium for map-matching probe data using
a machine learning classifier carries one or more sequences
of one or more instructions which, when executed by one or
more processors, cause, at least in part, an apparatus to
retrieve one or more probe points collected within a prox-
imity to a map feature represented by a link of a geographic
database. The one or more probe points are collected from
one or more sensors of a plurality of devices traveling within
the proximity to the map feature. The apparatus is also
caused to determine a probe feature set for each of the one
or more probe points. The probe feature set comprises
respective values for one or more probe attributes of said
each probe point. The apparatus is further caused to deter-
mine a link feature set for the link. The link feature set
comprises respective values for one or more link attributes
of'the link. The apparatus is further caused to classify, using
the machine learning classifier, said each probe point to
determine a matching probability based on the probe feature
set and the link feature. The matching probability indicates
a probability that said each probe point is classified as
map-matched to the link. The machine learning classifier is
trained using ground truth data comprising reference probe
points with known map-matches to respective reference
links, and comprising known values of the one or more
probe attributes for the reference probe points and known
values of the one or more link attributes for the reference
links.

[0007] According to another embodiment, an apparatus
for map-matching probe data using a machine learning
classifier comprises means for retrieving one or more probe
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points collected within a proximity to a map feature repre-
sented by a link of a geographic database. The one or more
probe points are collected from one or more sensors of a
plurality of devices traveling within the proximity to the
map feature. The apparatus also comprises means for deter-
mining a probe feature set for each of the one or more probe
points. The probe feature set comprises respective values for
one or more probe attributes of said each probe point. The
apparatus further comprises means for determining a link
feature set for the link. The link feature set comprises
respective values for one or more link attributes of the link.
The apparatus further comprises means for classitying,
using the machine learning classifier, said each probe point
to determine a matching probability based on the probe
feature set and the link feature. The matching probability
indicates a probability that said each probe point is classified
as map-matched to the link. The machine learning classifier
is trained using ground truth data comprising reference
probe points with known map-matches to respective refer-
ence links, and comprising known values of the one or more
probe attributes for the reference probe points and known

values of the one or more link attributes for the reference
links.

[0008] In addition, for various example embodiments of
the invention, the following is applicable: a method com-
prising facilitating a processing of and/or processing (1) data
and/or (2) information and/or (3) at least one signal, the (1)
data and/or (2) information and/or (3) at least one signal
based, at least in part, on (or derived at least in part from)
any one or any combination of methods (or processes)
disclosed in this application as relevant to any embodiment
of the invention.

[0009] For various example embodiments of the inven-
tion, the following is also applicable: a method comprising
facilitating access to at least one interface configured to
allow access to at least one service, the at least one service
configured to perform any one or any combination of
network or service provider methods (or processes) dis-
closed in this application.

[0010] For various example embodiments of the inven-
tion, the following is also applicable: a method comprising
facilitating creating and/or facilitating modifying (1) at least
one device user interface element and/or (2) at least one
device user interface functionality, the (1) at least one device
user interface element and/or (2) at least one device user
interface functionality based, at least in part, on data and/or
information resulting from one or any combination of meth-
ods or processes disclosed in this application as relevant to
any embodiment of the invention, and/or at least one signal
resulting from one or any combination of methods (or
processes) disclosed in this application as relevant to any
embodiment of the invention.

[0011] For various example embodiments of the invention,
the following is also applicable: a method comprising cre-
ating and/or modifying (1) at least one device user interface
element and/or (2) at least one device user interface func-
tionality, the (1) at least one device user interface element
and/or (2) at least one device user interface functionality
based at least in part on data and/or information resulting
from one or any combination of methods (or processes)
disclosed in this application as relevant to any embodiment
of'the invention, and/or at least one signal resulting from one

Nov. 22,2018

or any combination of methods (or processes) disclosed in
this application as relevant to any embodiment of the
invention.

[0012] In various example embodiments, the methods (or
processes) can be accomplished on the service provider side
or on the mobile device side or in any shared way between
service provider and mobile device with actions being
performed on both sides.

[0013] For various example embodiments, the following is
applicable: An apparatus comprising means for performing
the method of the claims.

[0014] Still other aspects, features, and advantages of the
invention are readily apparent from the following detailed
description, simply by illustrating a number of particular
embodiments and implementations, including the best mode
contemplated for carrying out the invention. The invention
is also capable of other and different embodiments, and its
several details can be modified in various obvious respects,
all without departing from the spirit and scope of the
invention. Accordingly, the drawings and description are to
be regarded as illustrative in nature, and not as restrictive.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] The embodiments of the invention are illustrated
by way of example, and not by way of limitation, in the
figures of the accompanying drawings:

[0016] FIG. 1 is a diagram of a system capable of provid-
ing a machine learning approach to point-based map match-
ing, according to one embodiment;

[0017] FIG. 2 is a diagram illustrating an example process
for gathering ground truth sensor data for providing a
machine learning approach to point-based map matching,
according to one embodiment;

[0018] FIGS. 3A to 3D are diagrams illustrating an
example of map-matching probe points using a trained
machine learning classifier, according to one embodiment;
[0019] FIG. 4 is a diagram of a geographic database,
according to one embodiment;

[0020] FIG. 5 is a diagram of the components of a map
matching platform, according to one embodiment;

[0021] FIG. 6 is a flowchart of a process for feature
collection for providing a machine learning approach to
point-based map-matching, according to one embodiment;
[0022] FIG. 7 is a flowchart of a process for classifying
probe points based on collected features using machine
learning, according to one embodiment;

[0023] FIG. 8 is a flowchart of a general process for
providing a machine learning approach to point-based map-
matching, according to one embodiment;

[0024] FIG. 9 is a diagram illustrating an example user
interface displaying results of a machine learning approach
to point-based map-matching, according to one embodi-
ment;

[0025] FIG. 10 is a diagram illustrating an example navi-
gation user interface generated using a machine learning
approach to point-based map-matching, according to one
embodiment;

[0026] FIG. 11 is a diagram of hardware that can be used
to implement an embodiment;

[0027] FIG. 12 is a diagram of a chip set that can be used
to implement an embodiment; and

[0028] FIG. 13 is a diagram of a mobile terminal (e.g.,
handset) that can be used to implement an embodiment.



US 2018/0335307 Al

DESCRIPTION OF SOME EMBODIMENTS

[0029] Examples of a method, apparatus, and computer
program for providing a machine learning approach to
point-based map matching are disclosed. In the following
description, for the purposes of explanation, numerous spe-
cific details are set forth in order to provide a thorough
understanding of the embodiments of the invention. It is
apparent, however, to one skilled in the art that the embodi-
ments of the invention may be practiced without these
specific details or with an equivalent arrangement. In other
instances, well-known structures and devices are shown in
block diagram form in order to avoid unnecessarily obscur-
ing the embodiments of the invention.

[0030] FIG. 1 is a diagram of a system capable of provid-
ing a machine learning approach to point-based map match-
ing, according to one embodiment. In recent years, location
sensor data (e.g., Global Positioning Satellite (GPS) data or
other satellite-based location data) are used as a widely
available and fresh resource in the map making industry to
identify map attributes such as new geometries and changes
to existing features (e.g., changes in direction of travel,
speed limit, etc. of a road or link). As discussed above, as
part of the processing of this raw location data (e.g., com-
prising probe points of GPS or other location data), map
matchers are used to identify the correct road, path, link, etc.
on which a device that collected the location data is travel-
ling, and to determine the device location on that road
segment, path, link, etc. For example, map-matchers are
used for many large scale location based applications and
traffic management services, such as vehicle navigation,
traffic and incident reporting, etc.

[0031] Although map matchers have been used widely, the
map matching problem is still a challenge for the map
making industry for at least the following reasons: (1) map
matching unsorted GPS or probe points in bulk from dif-
ferent devices can expensive; (2) generally most map match-
ers assume the map data against which probe points are
matched are correct; and this assumption may not be valid
in the context of detecting map changes; (3) existing point-
based map matchers use empirical data to set parameters in
assumed probability distributions that might be incorrect or
that do not model the data accurately; and (4) current map
matchers generally do not output an easy-to-interpret match-
ing probability or confidence score, which can be difficult to
define.

[0032] Generally, there are two types of map matchers: (1)
point-based map matchers, and (2) trajectory-based map
matchers. For example, a point-based map matchers (also
known as a real-time map matcher) takes an individual GPS
or probe point to match to the road segment or link based on,
for instance, a maximum likelihood. On the other hand, a
trajectory-based map matcher (also known as post-process
map matcher) can produce more accurate results by taking
more information in the form of a sequence of GPS or probe
points (e.g., instead of a single probe point) and using more
complicated approach to map match the trajectory to a road
segment. However, trajectory-based map matchers typically
cannot operate in real time because they require a sequence
of probe points to be captured over a period of time to create
a trajectory for matching. Compared with a trajectory-based
map matcher, a point-based map matcher is fast, easy to
implement and does not need a large amount of memory.
Therefore, point-based map matchers are more advanta-
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geous than trajectory-based map matchers for bulk data
processing and/or real time applications.

[0033] In the area of point-based map matcher, compli-
cated equations traditionally were developed to combine
various error sources associated with positioning data and
digital roads map and discussed them in terms of the
matching probability. Because the focus of these traditional
point-based map matchers is on measurement error, most of
them ignore the fact that other probe attributes or features
(e.g., speed), and/or link attributes (e.g., road density, com-
plexity, etc.) can affect the accuracy map matching. Another
drawback is that the equations and/or their parameters used
for map matching, and the classification threshold used is
usually set based on empirical study with respect to a
specific region. Although the logic is easy to implement, on
the global scale, the model for this traditional approach
needs to be recalibrated when applying on a different region.

[0034] To address this problem, a system 100 of FIG. 1
introduces the capability to apply machine learning to the
point-based map matching problem based on attributes or
features of each probe point, and attributes or features of the
links to which the probe points are map matched to generate
a matching probability or score. More specifically, in one
embodiment, the system 100 provides a framework to obtain
ground truth data to train and evaluate supervised learning
algorithms that a point-based map matcher (e.g., a map
matching platform 101) can use to more accurately approach
the point-based map matching problem. In one embodiment,
the map matching platform 101 incorporates a supervised
learning model (e.g., a logistic regression model, Random-
Forest model, and/or any equivalent model) to provide
matching probabilities that are learned from the ground truth
data.

[0035] In yet another embodiment, the map matching
platform 101 can be implemented into a map production
pipeline to identify new geometries or changes to existing
geometries (e.g., geometries represented and stored in a
geographic database 103). For example, such new geom-
etries or changes can be identified by thresholding the
matching probabilities that the supervised learning model
predicts into buckets of matched and unmatched probe
points. The unmatched probe points can then be processed in
the pipeline to determine new or changed geometries.

[0036] Inanother embodiment, the machine learning map-
matcher of the map matching platform 101 can be used for
locating vehicles 105a-1057 (also collectively referred to as
vehicles 105; e.g., autonomous vehicles, highly autonomous
vehicles, etc.) as they travel in a transportation or road
network. For example, the vehicles 105 can interact with the
map matching platform 101 to use machine learning map-
matchers according to the various embodiments described
herein to locate themselves precisely on the road (e.g.,
within a particular lane). In this embodiment, the map
matching platform 101 would use as feature vector attributes
from the car with respect to the road network to perform
point-based matching. By way of example, the feature
include, but are not limited to distance to stop signs, traffic
lights, other cars, and/or any other map feature. Based on the
feature vector attributes, the map matching platform 101 can
output the probability of the location of the car being in one
or more lanes of the road on which the car is driving. The car
then be map-matched to the lane with the highest probability
as determined by the machine learning map-matcher.
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[0037] In one embodiment, the system 100 includes
ground truth data collection framework that includes a probe
device or vehicle (e.g., one or more vehicles 105a-1057, also
collectively referred to as vehicles 105, and/or location-
capable user equipment (UE) 107) that can travel within a
road or transportation network 109. In one embodiment, the
vehicles 105 and/or UE 107 is equipped with one or more
sensors for collecting probe point data (e.g., position, head-
ing, speed, time, etc.) as it travels in the transportation
network 109. In addition, the vehicles 105 and/or UE 107
can is capable of noting or recording true data (e.g., true
position, true heading, true speed, etc.) at the same time as
the probe point data is collected. In some embodiments, the
probe device or vehicle can also mark off-road locations
(e.g., parking lots, office buildings, recreation paths, points
of interest, event venues, etc.).

[0038] In other words, each ground truth collection device
or vehicle (e.g., the vehicles 105 and/or UE 107) includes a
typical location sensor (e.g., a GPS sensor) that is used to
normally generate probe point data, and another means to
match the probe point data gathered using the typical
location sensor to a corresponding “true” value or data,
which is considered by the system 100 to represent the probe
device’s actual location on a road segment or link. In one
embodiment, the ground truth collection device or vehicle
can be equipped with both high precision location sensors
(e.g., inertial measurement units (IMUs), high-precision
GPS sensors, etc.) that can achieve higher accuracy than the
typical location sensor (e.g., consumer grade GPS or other
location sensor in a portable device), and typical locations
sensors. In this way, the high precision sensors can be used
to reference the link or road segment on which the ground
truth collection vehicle is traveling on to generate a refer-
ence location data set, and the typical or test location sensor
can be used to generate a set of probe point data that is
time-matched against the reference location set. In one
embodiment, this data set represents the ground truth data
for training a machine learning classifier of a point-based
map matcher (e.g., the map matching platform 101). In one
embodiment, different typical or test sensors (e.g., different
types of location sensors, different vendors of the location
sensors, etc.) can be used to generate different sets of ground
truth data. In this way, features or attributes of the collecting
location sensor can be used an additional attributes of the
probe point for machine learning.

[0039] An example of ground truth data collected accord-
ing the various embodiments described herein is discussed
with respect to FIG. 2. FIG. 2 is a diagram illustrating an
example process for gathering ground truth sensor data for
providing a machine learning approach to point-based map
matching, according to one embodiment. In this example, a
ground truth collection vehicle 105 carries a mobile device
equipped with a test location sensor (e.g., a GPS sensor), as
well a high precision IMU/GPS to generate high precision
location data. As shown, a map 201 of FIG. 2 depicts each
data point of the high precision location data set as a white
dot (e.g., high precision data point 203) and each of the
lower precision test probe points generated by the test
location sensor as a black dot (e.g., probe point 205). The
line 207 connecting the high precision data point 203 and the
probe point 205 indicates that the two data points are
correlated in time (e.g., collected at the same or substantially
the same time by each respective sensor). In this example,
the high precision data points (e.g., white dots) track closely
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with the known contours of the roadway. In contrast, the test
probe points varies depending on the accuracy of the test
location sensor in light of the surroundings. The difference
between the two data illustrates the problem of point-based
map matching. In one embodiment, the route selected to
generate the ground truth can be selected to traverse map
features (e.g., intersections with nearby high buildings,
highway interchanges, etc.) that are expected to have varied
effects on probe point accuracy or variance of a sensed
location to an actual location from a link or road segment.
[0040] In one embodiment, after obtaining the ground
truth data set (e.g., using the process described above or
some other equivalent process), the system 100 continues
with the ground truth generation process by extracting
features from the test probe point dataset, the high precision
data points, and information on the road segments or links
traveled. By way of example, probe points that specify
location from GPS or other satellite-based sensors usually
are reported with at least a timestamp, latitude, longitude,
and heading. In some embodiments, the probe points can
have additional information such as vendor, sensor type,
altitude, precision, dilution of precision (DOP), etc. In one
embodiment, the system 100 can use any reported attribute
or parameter associated with the test probe points. Accord-
ingly, the example of probe features or attributes discussed
above are provided by way of illustration and not limitation.
[0041] Inone embodiment, with respect to the information
about the road segment, path, or link, the system 100 can
determine any attribute including, but not limited, to a
geometry, function class, speed limit, direction of travel, as
well as Boolean values indicating whether the link or road
segment is part of a double-digit road (e.g., divided road-
way), ramp, intersection internal, navigability, etc. In one
embodiment, the system 100 can query the link attributes
from the geographic database 103 or other similar data
source.

[0042] In one embodiment, the system 100 groups pos-
sible features or attributes of the probe points and/or links or
interest into three categories: (1) both link and probe attri-
butes (e.g., combined attributes resulting from features of
both the probe points and links); (2) probe attributes; and (3)
link attributes. By way of example, the combined attributes
for the link and probe attributes include, but are not limited:
(1) a distance attribute—e.g., perpendicular distance
between GPS point and link segment; (2) a heading discrep-
ancy attribute—e.g., the angle difference between a sensed
probe point heading and a bearing of the link segment to
which the probe point is to be matched; and (3) a speed
ratio—probe speed/median speed of the link.

[0043] In one embodiment, the probe attributes include,
but are not limited to: speed, heading, position (e.g., latitude,
longitude, and/or altitude), sensor type (e.g., GPS sensor,
cellular triangulation, WiFi-based positioning, etc.), sensor
vendor (e.g., sensor manufacturer), and/or the like.

[0044] Inone embodiment, as discussed in part above, the
link attributes include, but are not limited to: function class
(e.g., range from 1-5), ramp (e.g., Boolean—Y/N), multi-
digit (e.g., Boolean—Y/N), intersection internal (e.g., Bool-
ean—Y/N), urban/suburban, region (e.g., North America,
Europe, etc.), navigable (e.g., Boolean—Y/N), etc.

[0045] In addition, in one embodiment, the system 100 can
calculate link attributes that are derived from neighboring
links or road segments that fall with a circular radius (CR)
from a reference point on the link (e.g., a vertex of a polyline
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(PL) representing a contour of the road segment or path
represented by the link). By way of example, given a link j,
the reference point of the link can be designated as Link
(vertex,PL) j or denoted in abbreviated format as Link j.
With respect to this nomenclature, in one embodiment, the
following additional attributes can be calculated:

[0046] (1) link density=sum (all link segments length
within CR)/(pi*CR"2);

[0047] (2) link closeness: min (Hausdorft distance(j,k))
where j=candidate link, and k=all the other links that are (a)
within the CR, and (b) not directly connected to link j;
[0048] (3) link closeness to non-navigable links: min
(Hausdorft distance(j,kn) where j=candidate link, and k=all
the non-navigable links within the CR (e.g., determined
from a spatial index of the non-navigable links);

[0049] (4) link bearing discrepancy: standard deviation(all
link segments bearing within CR compared to a heading of
the probe point);

[0050] (5) link neighborhood attribute: average(absolute_
difference(link_attributes(j,1))) wherein j=candidate link,
and 1=all the other links that are (a) within the CR, and (b)
directly connect to link j, and wherein link_attributes could
be any ordinal attributes (e.g., speed category, function class,
etc.); and

[0051] (6) nearby cartographic topology: is there any carto
close to link j (e.g., Boolean—Y/N) where closeness is
defined with respect to a parameter R, and cartographic
topology refers to non-road or non-link map features (e.g.,
parking lot, building, etc.), and, for instance, can be queried
from a map layer of the geographic database 103 or other
similar mapping database. In an embodiment of localizing
autonomous or other vehicles, nearby cartographic topology
can also include distance to localized objects in a High
Definition Map (HD Map) that record the locations of the
localized objects with a high degree of accuracy and preci-
sion. For instance, the closeness to nearby topology can
include a distance from the position of the car to a stop sign,
pole-like objects (e.g., telephone poles), or other similar
objects represented in the HD Map. As another example, if
the car (e.g., autonomous car) is using LIDAR, closeness to
nearby topology can include sampled distance to other
observed co-located cars (e.g., as determined from an inten-
sity of the LIDAR points).

[0052] In one embodiment, the system 100 can select all
or a subset of the probe and link attributes available to the
system 100 (e.g., including but not limited to the attributes/
features discussed above) when implementing the machine
learning classifier of, for instance, the map matching plat-
form 107. For example, the system 100 can balance the
number and/or selection of which attributes to include in an
implementation based on a desired level of performance
(e.g., number of probe points to process per time period),
accuracy, or the like. For example, depending on available
computational resources (e.g., processing resources,
memory resources, bandwidth, etc.) and a performance
target (e.g., capability to process millions of probe points per
second), the system 100 can include fewer or more attri-
butes.

[0053] In one embodiment, after feature selection and
generation from ground truth data, the system 100 can
initiate training of a machine language classifier to make
point-based map-matching predictions. By way of example,
the system 100 (e.g., the map matching platform 101) can
use any machine classifier that includes, at least, a model
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(e.g., a set of equations, rules, decision trees, etc.) that
include a set of parameters to manipulate an input feature set
to make a prediction (e.g., the matching probability that a
probe point is map matched to a given link). During training,
the map matching platform 101 uses a learner module that
feeds features sets from probe points in the ground truth data
into the model to compute a predicted matching probability
to a given link or road segment using an initial set of model
parameters. The learner module then compares the predicted
matching probability and identified link to the ground truth
map-matching resulting for each probe point used for train-
ing. The learner module then computes an accuracy of the
predictions for the initial set of model parameters. If the
accuracy or level of performance does not meet a threshold
or configured level, the learner module incrementally adjusts
the model parameters and until the model generates predic-
tions at a desired or configured level of accuracy with
respect to the ground truth training data. In other words, a
“trained” machine language classifier is a classifier with
model parameters adjusted to make accurate predictions
with respect to the training data set or ground truth data.

[0054] In one embodiment, the map matcher classifier of
the map matching platform 101 reports the matching score
(or matching probability) instead of the class label (e.g.,
matched or unmatched). This probability gives, for instance,
some kind of confidence on the prediction. However, in one
embodiment, because the map matching platform 101 can
use any type of machine learning classifier or model (e.g.,
logistic regression, RandomForest, neural network, etc.) and
because not all classifiers provide well-calibrated probabili-
ties, the map matching platform 107 may perform a separate
calibration step to calibrate the probabilities. This calibra-
tion step can be a post-processing depending on the classifier
chosen. For example, logistic regression returns well cali-
brated predictions by default as it directly optimizes log-
loss. However, RandomForest classifiers tend to average
predictions which have difficulty making predictions near O
and 1. In one embodiment, calibration methods such as
Brier’s score or equivalent process can be applied to obtain
well calibrated probability prediction as confidence scores.

[0055] In one embodiment, the system 100 can then use
the trained map matching platform 101 to classify probe
points for map matching using a machine learning approach
according to the embodiments described herein. FIGS. 3A to
3D are diagrams illustrating an example of map-matching
probe points using a trained machine learning classifier,
according to one embodiment. FIG. 3A illustrates map 301
of a geographic area depicting a road network 303 shown in
outline shape with mapped geometries (e.g., mapped links
305) of the road network 303 indicated with a polyline (e.g.,
indicated as dark lines) superimposed on the mapped portion
of the road network 303. Mapped links 305, for instance,
refer to segments of the road network 303 that have corre-
sponding link or road segment records stored in a map
database (e.g., the geographic database 103). Conversely, as
shown, an unmapped road segment 307 is displayed only in
outline with no superimposed polyline to indicate that there
is no corresponding link record for this this road segment
307.

[0056] In one embodiment according to the example of
FIG. 3A, the map matching platform 101 performs point-
based map matching for a given area of a map using a
stepwise approach using vertices of links or road segments
as reference points. For example, the map matching platform
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101 selects a vertex 309 of a mapped link 305 to begin its
classification. The map matching platform 101 extends a
circular radius (CR) 311 from the vertex 309 to define a
circular area 313 by sweeping the CR 311 around the vertex
309. In one embodiment, e.g., when operating in a bulk-
processing mode, the map matching platform 101 then
retrieves all collected probe points that fall within the
geographic area defined by the circular area 313. Each probe
point meeting this spatial criterion is shown as a white
circular dot in FIG. 3A.

[0057] After retrieving the probe points, the map matching
platform 101 then extracts a feature set for each candidate
pair of probe point and link within the circular area 313. In
one embodiment, the feature set comprises extracted feature
values for the selected set of probe/link attributes that were
used to train the classifier of the map matching platform 101
(e.g., one or more of the features/attributes described above).
The map matching platform 101 the processes the feature set
for each candidate probe point/link pair using the trained
classifier to determine a matching probability. See the pro-
cesses of FIGS. 6-8 below for additional details of the
feature extraction and classification according to the various
embodiments described herein.

[0058] As shown in FIGS. 3B and 3C, the map matching
platform 101 can then apply a thresholding criterion (e.g.,
matching probability>threshold probability) to categorize
the probe points into either matched or unmatched buckets.
FIG. 3B illustrates the probe points of FIG. 3A that are
classified as being map matched to a known or mapped link
of the road network 303. Accordingly, as shown, the probe
points of FIG. 3B are clustered or near many of the mapped
links (e.g., mapped link 305) of the road network 303.
Because each possible candidate probe point/link combina-
tion is analyzed in one embodiment, it is possible for a single
probe point to have matching probabilities for multiple
links. In this case, the map matching platform 101 can match
the probe point to the link with the highest matching
probability.

[0059] FIG. 3C illustrates the probe points of FIG. 3A that
are classified as being unmatched to any known link or
geometry of the road network 303 (e.g., unknown or
unmatched with respect to the information stored in the
geographic database 103). In this example, the unmatched
probe points are predominantly near the unmapped road
segment 307 because they most likely are originate from
travel along this previously unmapped segment 307.
[0060] In one embodiment, the unmatched probe points
may be indicative of new or changes in the geometry of the
road network 303. Accordingly, the map matching platform
101 can pass this set of unmatched probe points to another
component of a map data generation pipeline to determine
whether they indicate a new road segment that should be
mapped in the geographic database 103 as a new link record.
By way of example, the probe points can be processing
using any known method for determining a new link includ-
ing, but not limited, to clustering, trajectory analysis, imag-
ery analysis of the area, dispatch of a mapping vehicles or
crews, etc. FIG. 3D shows a result of this process of
extracting new road geometries from unmatched probe
points. As shown in FIG. 3D, the map 301 has been updated
to include a new link record 321 corresponding to the
unmapped road segment 307. The new link record 321 is
indicated by a dark polyline as used to indicate the other
mapped segments of the road network 303.
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[0061] Returning to FIG. 1, as shown, the system 100
comprises one or more vehicles 105a-1057 (also collectively
referred to as vehicles 105) and/or one or more user equip-
ment (UE) devices 107 that act as probes traveling over a
road network (e.g., the transportation network 109).
Although the vehicles 105 are depicted as automobiles, it is
contemplated that the vehicles 105 can be any type of
transportation vehicle, manned or unmanned (e.g., planes,
aerial drone vehicles, motor cycles, boats, bicycles, etc.),
and the UE 107 can be associated with any of the types of
vehicles or a person or thing (e.g., a pedestrian) traveling
within the transportation network 109. In one embodiment,
each vehicle 105 and/or UE 107 is assigned a unique probe
identifier (probe ID) for use in reporting or transmitting
probe data collected by the vehicles 105 and UE 107. The
vehicles 105 and UE 107, for instance, are part of a
probe-based system for collecting probe data for measuring
traffic conditions in a road network. In one embodiment,
each vehicle 105 and/or UE 107 is configured to report probe
data as probe points, which are individual data records
collected at a point in time that records telemetry data for
that point in time. The probe points can be reported from the
vehicles 105 and/or UEs 107 in real-time, in batches,
continuously, or at any other frequency requested by the
system 100 over, for instance, the communication network
111 for processing by the map matching platform 101.

[0062] In one embodiment, a probe point can include
attributes such as: probe ID, longitude, latitude, speed,
and/or time. The list of attributes is provided by way of
illustration and not limitation. Accordingly, it is contem-
plated that any combination of these attributes or other
attributes may be recorded as a probe point (e.g., such as
those previously discussed above). For example, attributes
such as altitude (e.g., for flight capable vehicles or for
tracking non-flight vehicles in the altitude domain), tilt,
steering angle, wiper activation, etc. can be included and
reported for a probe point. In one embodiment, if the probe
point data includes altitude information, the transportation
network, links, etc. can also be paths through an airspace
(e.g., to track aerial drones, planes, other aerial vehicles,
etc.), or paths that follow the contours or heights of a road
network (e.g., heights of different ramps, bridges, or other
overlapping road features).

[0063] In one embodiment, the vehicles 105 and/or UE
107 may include sensors for reporting measuring and/or
reporting attributes. The attributes can also be any attribute
normally collected by an on-board diagnostic (OBD) system
of'the vehicle, and available through an interface to the OBD
system (e.g., OBD II interface or other similar interface).

[0064] In one embodiment, the system 100 can build
trajectories using probe provider information and/or probe
identifier (probe ID) information associated with the probe
data. For example, the system 100 builds the trajectories by
matching the probe points in the probe data according to
probe identifier and sequencing the probe points according
to time. In this way, the trajectory can identify the movement
path of the respective probe or device within the bounded
geographic area over a time range covered by the probe data.
Because the trajectories are made of individual probe points,
each point in the trajectory also has the properties or
attributes recorded for each probe point. Accordingly, in one
embodiment, the machine learning approach to point-based
map matching can be used to further determine which probe
points to include in particular sequence or trajectory. For
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example, at any given point along the trajectory, a heading,
speed, position, etc. of the probe point can be determined for
a candidate probe point. Then the existing trajectory to
which a probe point might be added can be assumed by the
system 100 to be equivalent to a link against which the probe
point can be matched. Accordingly, attributes to the trajec-
tory can then extracted to create a candidate probe point and
link/trajectory pair for classification by the map matching
platform 101.

[0065] Inone embodiment, system 100 can be extended to
path-based map-matchers in addition to the point-based map
matchers discussed with respect to the embodiments
described herein. For example, the map matching platform
101 can identify a set of candidate road segments that are
possible matches for each probe point. In one embodiment,
each of these candidate road segments is represented as a
hidden state in a Markov chain and has an emission prob-
ability, which is the likelihood of observing the probe point
(e.g., GPS point) conditional on the candidate segment being
the true match. The map matching platform 101 can calcu-
late the transition probability for every pair of adjacent
hidden states in the chain such that the probability of the
latter is dependent only on the former, hence obeying the
Markov assumption. The map matching platform 101 then
finds the maximum likelihood over the Markov chain that
has the highest joint emission and transmission probabilities.
The trained machine learning classifier of the map matching
platform 101 can be used to obtain the emission probability.
[0066] In one embodiment, the map matching platform
107 performs the processes for point-based map matching of
the collected probe points using a machine learning
approach as discussed with respect to the various embodi-
ments described herein. By way of example, the mapping
platform 107 can be a standalone server or a component of
another device with connectivity to the communication
network 111. For example, the component can be part of an
edge computing network where remote computing devices
(not shown) are installed along or within proximity of the
transportation network 109 to provide point-based map
matching of probe data collected locally or within a local
area served by the remote or edge computing device.
[0067] In one embodiment, the mapping platform 101 has
connectivity or access to a geographic database 103 that
includes mapping data about a road network (additional
description of the geographic database 103 is provided
below with respect to FIG. 4). In one embodiment, the probe
data, map matching results, and/or related information can
also be stored in the geographic database 103 by the map-
ping platform 101. In addition or alternatively, the probe
data can be stored by another component of the system 100
in the geographic database 103 for subsequent retrieval and
processing by the map matching platform 101.

[0068] In one embodiment, the vehicles 105 and/or UE
107 may execute an application 113 to present or use the
results of point-based map matching generated by the map
matching platform 101 according to the embodiments
described herein. For example, if the application 113 is a
navigation application then the point-based map matching
results can be used to determine positioning information,
routing information, provide updated estimated times of
arrival (ETAs), and the like.

[0069] By way of example, the UE 1073 is any type of
embedded system, mobile terminal, fixed terminal, or por-
table terminal including a built-in navigation system, a
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personal navigation device, mobile handset, station, unit,
device, multimedia computer, multimedia tablet, Internet
node, communicator, desktop computer, laptop computer,
notebook computer, netbook computer, tablet computer,
personal communication system (PCS) device, personal
digital assistants (PDAs), audio/video player, digital camera/
camcorder, positioning device, fitness device, television
receiver, radio broadcast receiver, electronic book device,
game device, or any combination thereof, including the
accessories and peripherals of these devices, or any combi-
nation thereof. It is also contemplated that the UE 107 can
support any type of interface to the user (such as “wearable”
circuitry, etc.). In one embodiment, the UE 107 may be
associated with a vehicle 105 (e.g., cars), a component part
of the vehicle 105, a mobile device (e.g., phone), and/or a
combination of thereof. Similarly, the vehicle 105 may
include computing components that can perform all or a
portion of the functions of the UE 107.

[0070] By way of example, the application 113 may be any
type of application that is executable at the vehicle 105
and/or the UE 107, such as mapping applications, location-
based service applications, navigation applications, content
provisioning services, camera/imaging application, media
player applications, social networking applications, calendar
applications, and the like. In one embodiment, the applica-
tion 113 may act as a client for the map matching platform
101 and perform one or more functions of the map matching
platform 101 alone or in combination with the platform 101.

[0071] Inoneembodiment, the vehicles 105 and/or the UE
107 are configured with various sensors for generating probe
data. By way of example, the sensors may include a global
positioning sensor for gathering location data (e.g., GPS),
Light Detection And Ranging (LIDAR) for gathering dis-
tance data and/or generating depth maps, infrared sensors for
thermal imagery, a network detection sensor for detecting
wireless signals or receivers for different short-range com-
munications (e.g., Bluetooth, Wi-Fi, Li-Fi, near field com-
munication (NFC) etc.), temporal information sensors, a
camera/imaging sensor for gathering image data (e.g., the
camera sensors may automatically capture obstruction for
analysis and documentation purposes), an audio recorder for
gathering audio data, velocity sensors mounted on steering
wheels of the vehicles, switch sensors for determining
whether one or more vehicle switches are engaged, and the
like.

[0072] In another embodiment, the sensors of the vehicles
105 and/or UE 107 may include light sensors, orientation
sensors augmented with height sensors and acceleration
sensor (e.g., an accelerometer can measure acceleration and
can be used to determine orientation of the vehicle), tilt
sensors to detect the degree of incline or decline of the
vehicle along a path of travel, moisture sensors, pressure
sensors, etc. In a further example embodiment, sensors
about the perimeter of the vehicle may detect the relative
distance of the vehicle from lane or roadways, the presence
of other vehicles, pedestrians, traffic lights, potholes and any
other objects, or a combination thereof In one scenario, the
sensors may detect weather data, traffic information, or a
combination thereof. In one example embodiment, the
vehicles 105 and/or UE 107 may include GPS receivers to
obtain geographic coordinates from satellites 115 for deter-
mining current location and time associated with the vehicle
105 and/or UE 107 for generating probe data. Further, the
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location can be determined by a triangulation system such as
A-GPS, Cell of Origin, or other location extrapolation
technologies.

[0073] The communication network 111 of system 100
includes one or more networks such as a data network, a
wireless network, a telephony network, or any combination
thereof. It is contemplated that the data network may be any
local area network (LAN), metropolitan area network
(MAN), wide area network (WAN), a public data network
(e.g., the Internet), short range wireless network, or any
other suitable packet-switched network, such as a commer-
cially owned, proprietary packet-switched network, e.g., a
proprietary cable or fiber-optic network, and the like, or any
combination thereof. In addition, the wireless network may
be, for example, a cellular network and may employ various
technologies including enhanced data rates for global evo-
Iution (EDGE), general packet radio service (GPRS), global
system for mobile communications (GSM), Internet proto-
col multimedia subsystem (IMS), universal mobile telecom-
munications system (UMTS), etc., as well as any other
suitable wireless medium, e.g., worldwide interoperability
for microwave access (WiMAX), Long Term Evolution
(LTE) networks, code division multiple access (CDMA),
wideband code division multiple access (WCDMA), wire-
less fidelity (Wi-Fi), wireless LAN (WLAN), Bluetooth®,
Internet Protocol (IP) data casting, satellite, mobile ad-hoc
network (MANET), and the like, or any combination thereof
[0074] In one embodiment, the map matching platform
101 may be a platform with multiple interconnected com-
ponents. The map matching platform 101 may include
multiple servers, intelligent networking devices, computing
devices, components and corresponding software for pro-
viding trajectory bundles for map data analysis. In addition,
it is noted that the mapping platform 107 may be a separate
entity of the system 100, a part of one or more services
117a-117m (collectively referred to as services 117) of the
services platform 117, or included within the UE 107 (e.g.,
as part of the applications 113).

[0075] The services platform 119 may include any type of
service 117. By way of example, the services 117 may
include mapping services, navigation services, travel plan-
ning services, notification services, social networking ser-
vices, content (e.g., audio, video, images, etc.) provisioning
services, application services, storage services, contextual
information determination services, location based services,
information based services(e.g., weather, news, etc.), etc. In
one embodiment, the services platform 119 may interact
with the map matching platform 101, the vehicle 105, the
UE 107, and/or one or more content providers 121a-121%
(also collectively referred to as content providers 121) to
provide the services 117.

[0076] Inone embodiment, the content providers 121 may
provide content or data to the vehicles 105 and/or UEs 107,
the map matching platform 101, and/or the services 117. The
content provided may be any type of content, such as
mapping content, textual content, audio content, video con-
tent, image content, etc. In one embodiment, the content
providers 121 may provide content that may aid in the
point-based map matching using a machine learning
approach according to the various embodiments described
herein. In one embodiment, the content providers 121 may
also store content associated with the vehicles 105, the UE
107, the map matching platform 101, and/or the services
117. In another embodiment, the content providers 121 may
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manage access to a central repository of data, and offer a
consistent, standard interface to data, such as a repository of
probe data, probe features/attributes, link features/attributes,
etc. Any known or still developing methods, techniques or
processes for retrieving and/or accessing feature values for
probe points and/or road links from one or more sources may
be employed by the map matching platform 101.

[0077] By way of example, the vehicles 105, the UEs 107,
the map matching platform 101, the services platform 119,
and/or the content providers 121 communicate with each
other and other components of the system 100 using well
known, new or still developing protocols. In this context, a
protocol includes a set of rules defining how the network
nodes within the communication network 111 interact with
each other based on information sent over the communica-
tion links. The protocols are effective at different layers of
operation within each node, from generating and receiving
physical signals of various types, to selecting a link for
transferring those signals, to the format of information
indicated by those signals, to identifying which software
application executing on a computer system sends or
receives the information. The conceptually different layers
of protocols for exchanging information over a network are
described in the Open Systems Interconnection (OSI) Ref-
erence Model.

[0078] Communications between the network nodes are
typically effected by exchanging discrete packets of data.
Each packet typically comprises (1) header information
associated with a particular protocol, and (2) payload infor-
mation that follows the header information and contains
information that may be processed independently of that
particular protocol. In some protocols, the packet includes
(3) trailer information following the payload and indicating
the end of the payload information. The header includes
information such as the source of the packet, its destination,
the length of the payload, and other properties used by the
protocol. Often, the data in the payload for the particular
protocol includes a header and payload for a different
protocol associated with a different, higher layer of the OSI
Reference Model. The header for a particular protocol
typically indicates a type for the next protocol contained in
its payload. The higher layer protocol is said to be encap-
sulated in the lower layer protocol. The headers included in
a packet traversing multiple heterogeneous networks, such
as the Internet, typically include a physical (layer 1) header,
a data-link (layer 2) header, an internetwork (layer 3) header
and a transport (layer 4) header, and various application
(layer 5, layer 6 and layer 7) headers as defined by the OSI
Reference Model.

[0079] FIG. 4 is a diagram of the geographic database 103
of system 100, according to exemplary embodiments. In the
exemplary embodiments, POIs and map generated POIs data
can be stored, associated with, and/or linked to the geo-
graphic database 103 or data thereof In one embodiment, the
geographic database 103 includes geographic data 401 used
for (or configured to be compiled to be used for) mapping
and/or navigation-related services, such as for personalized
route determination, according to exemplary embodiments.
For example, the geographic database 103 includes node
data records 403, road segment or link data records 405, POI
data records 407, probe data records 409, and other data
records 411, for example. More, fewer or different data
records can be provided. In one embodiment, the other data
records 411 include cartographic (“carto”) data records,
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routing data, and maneuver data. One or more portions,
components, areas, layers, features, text, and/or symbols of
the POI or event data can be stored in, linked to, and/or
associated with one or more of these data records. For
example, one or more portions of the POL, event data, or
recorded route information can be matched with respective
map or geographic records via position or GPS data asso-
ciations (such as using the point-based map matching
embodiments describes herein), for example.

[0080] Inone embodiment, geographic features (e.g., two-
dimensional or three-dimensional features) are represented
using polygons (e.g., two-dimensional features) or polygon
extrusions (e.g., three-dimensional features). For example,
the edges of the polygons correspond to the boundaries or
edges of the respective geographic feature. In the case of a
building, a two-dimensional polygon can be used to repre-
sent a footprint of the building, and a three-dimensional
polygon extrusion can be used to represent the three-dimen-
sional surfaces of the building. It is contemplated that
although various embodiments are discussed with respect to
two-dimensional polygons, it is contemplated that the
embodiments are also applicable to three dimensional poly-
gon extrusions, models, routes, etc. Accordingly, the terms
polygons and polygon extrusions/models as used herein can
be used interchangeably.

[0081] In one embodiment, the following terminology
applies to the representation of geographic features in the
geographic database 103.

[0082] “Node”—A point that terminates a link.

[0083] “Line segment”™ —A straight line connecting two
points.

[0084] “Link” (or “edge”)—A contiguous, non-branching

string of one or more line segments terminating in a node at
each end.

[0085] “Shape point”—A point along a link between two
nodes (e.g., used to alter a shape of the link without defining
new nodes).

[0086] “Oriented link”—A link that has a starting node

(referred to as the “reference node”) and an ending node
(referred to as the “non reference node”).

[0087] “Simple polygon”—An interior area of an outer
boundary formed by a string of oriented links that begins and
ends in one node. In one embodiment, a simple polygon does
not cross itself.

[0088] “Polygon”—An area bounded by an outer bound-
ary and none or at least one interior boundary (e.g., a hole
or island). In one embodiment, a polygon is constructed
from one outer simple polygon and none or at least one inner
simple polygon. A polygon is simple if it just consists of one
simple polygon, or complex if it has at least one inner simple
polygon.

[0089] In one embodiment, the geographic database 103
follows certain conventions. For example, links do not cross
themselves and do not cross each other except at a node or
vertex. Also, there are no duplicated shape points, nodes, or
links. Two links that connect each other have a common
node or vertex. In the geographic database 103, overlapping
geographic features are represented by overlapping poly-
gons. When polygons overlap, the boundary of one polygon
crosses the boundary of the other polygon. In the geographic
database 103, the location at which the boundary of one
polygon intersects they boundary of another polygon is
represented by a node. In one embodiment, a node may be
used to represent other locations along the boundary of a
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polygon than a location at which the boundary of the
polygon intersects the boundary of another polygon. In one
embodiment, a shape point is not used to represent a point
at which the boundary of a polygon intersects the boundary
of another polygon.

[0090] In exemplary embodiments, the road segment data
records 405 are links or segments representing roads, streets,
or paths, as can be used in the calculated route or recorded
route information for determination of one or more person-
alized routes, according to exemplary embodiments. The
node data records 403 are end points or vertices correspond-
ing to the respective links or segments of the road segment
data records 405. The road link data records 405 and the
node data records 403 represent a road network, such as used
by vehicles, cars, and/or other entities. Alternatively, the
geographic database 103 can contain path segment and node
data records or other data that represent pedestrian paths or
areas in addition to or instead of the vehicle road record data,
for example. In one embodiment, the road or path segments
can include an altitude component to extend to paths or road
into three-dimensional space (e.g., to cover changes in
altitude and contours of different map features, and/or to
cover paths traversing a three-dimensional airspace).

[0091] The road/link segments and nodes can be associ-
ated with attributes, such as geographic coordinates, street
names, address ranges, speed limits, turn restrictions at
intersections, and other navigation related attributes, as well
as POIs, such as gasoline stations, hotels, restaurants, muse-
ums, stadiums, offices, automobile dealerships, auto repair
shops, buildings, stores, parks, etc. The geographic database
103 can include data about the POls and their respective
locations in the POI data records 407. The geographic
database 103 can also include data about places, such as
cities, towns, or other communities, and other geographic
features, such as bodies of water, mountain ranges, etc. Such
place or feature data can be part of the POI data records 407
or can be associated with POIs or POI data records 407 (such
as a data point used for displaying or representing a position
of a city). In addition, the geographic database 103 can
include data from radio advertisements associated with the
POI data records 407 and their respective locations in the
radio generated POI records 409.

[0092] In one embodiment, the geographic database 103
includes probe data records 409 which store probe point
data, probe feature/attribute values, feature set data, map
matching classifications, and/or related information. For
example, the probe data records 409 can store collected
probe point data for map matching, and/or the ground truth
probe point data collected to train a machine learning
classifier of the map matching platform 101. In yet another
embodiment, the probe data records 409 can store processed
probe point data into data buckets for matched probe points
and for unmatched probe points.

[0093] The geographic database 103 can be maintained by
the content provider 121 in association with the services
platform 119 (e.g., a map developer). The map developer can
collect geographic data to generate and enhance the geo-
graphic database 103. There can be different ways used by
the map developer to collect data. These ways can include
obtaining data from other sources, such as municipalities or
respective geographic authorities. In addition, the map
developer can employ field personnel to travel by vehicle
along roads throughout the geographic region to observe
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features and/or record information about them, for example.
Also, remote sensing, such as aerial or satellite photography,
can be used.

[0094] The geographic database 103 can be a master
geographic database stored in a format that facilitates updat-
ing, maintenance, and development. For example, the master
geographic database 103 or data in the master geographic
database 103 can be in an Oracle spatial format or other
spatial format, such as for development or production pur-
poses. The Oracle spatial format or development/production
database can be compiled into a delivery format, such as a
geographic data files (GDF) format. The data in the produc-
tion and/or delivery formats can be compiled or further
compiled to form geographic database products or data-
bases, which can be used in end user navigation devices or
systems.

[0095] For example, geographic data is compiled (such as
into a platform specification format (PSF) format) to orga-
nize and/or configure the data for performing navigation-
related functions and/or services, such as route calculation,
route guidance, map display, speed calculation, distance and
travel time functions, and other functions, by a navigation
device, such as by a vehicle 105 or UE 107, for example.
The navigation-related functions can correspond to vehicle
navigation, pedestrian navigation, or other types of naviga-
tion. The compilation to produce the end user databases can
be performed by a party or entity separate from the map
developer. For example, a customer of the map developer,
such as a navigation device developer or other end user
device developer, can perform compilation on a received
geographic database in a delivery format to produce one or
more compiled navigation databases.

[0096] As mentioned above, the geographic database 103
can be a master geographic database, but in alternate
embodiments, the geographic database 103 can represent a
compiled navigation database that can be used in or with end
user devices (e.g., vehicle 105, UE 107, etc.) to provide
navigation-related functions. For example, the geographic
database 103 can be used with the end user device to provide
an end user with navigation features. In such a case, the
geographic database 103 can be downloaded or stored on the
end user device (e.g., vehicle 105, UE 107, etc.), such as in
application 113, or the end user device can access the
geographic database 103 through a wireless or wired con-
nection (such as via a server and/or the communication
network 111), for example.

[0097] In one embodiment, the end user device can be an
in-vehicle navigation system, a personal navigation device
(PND), a portable navigation device, a cellular telephone, a
mobile phone, a personal digital assistant (PDA), a watch, a
camera, a computer, and/or other device that can perform
navigation-related functions, such as digital routing and map
display. In one embodiment, the navigation device (e.g., UE
107) can be a cellular telephone. An end user can use the
device navigation functions such as guidance and map
display, for example, and for determination of route infor-
mation to at least one identified point of interest, according
to exemplary embodiments.

[0098] FIG. 5 is a diagram of the components of a map
matching platform 101, according to one embodiment. By
way of example, the map matching platform 101 includes
one or more components for point-based map matching
using a machine learning approach according to the various
embodiments described herein. It is contemplated that the
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functions of these components may be combined or per-
formed by other components of equivalent functionality. In
this embodiment, the map matching platform 101 includes a
probe collection module 501, a feature extraction module
503, a machine learning classifier 505, and a mapping
module 507. The above presented modules and components
of the map matching platform 101 can be implemented in
hardware, firmware, software, or a combination thereof.
Though depicted as a separate entity in FIG. 1, it is con-
templated that the map matching platform 101 may be
implemented as a module of any of the components of the
system 100 (e.g., a component of the vehicle 105 and/or the
UE 107). In another embodiment, one or more of the
modules 501-507 may be implemented as a cloud based
service, local service, native application, or combination
thereof. The functions of these modules are discussed with
respect to FIGS. 6-8 below.

[0099] In one embodiment, the map matching platform
101 can map match on a point-by-point basis (e.g., in
real-time as each probe point is collected), or a bulk pro-
cessing mode (e.g., processing a large number of probe
points in a batch process). When performing bulk matching
of probe points, the map matching platform 101 can perform
point-based map matching in a stepwise manner that tra-
verses a given area of a map (e.g., a map tile) on a
link-by-link basis. To support either mode of operation,
several data structures and functions can be defined. For
example, a feature data structure can be defined to hold a
feature set for each probe point.

[0100] In addition, in one embodiment, the map matching
platform 101 can define various functions. For example,
because the bulk matching approach traverses a geometry of
the link to define matching candidate probe points within a
circular radius (CR) of a reference point on the link (e.g., a
vertex or node of the link), the map matching platform 101
can define a function Link(vertex, PL) computing features
for each probe point p, where PL is a polyline representing
a road segment and identified by a link identifier, and where
vertex is a center of a circle with radius CR. A second
function next(vertex,PL) returns the next vertex on the PL or
link.

[0101] To begin bulk classification, the probe collection
module 501 creates a spatial index for all probe points in a
given area of the map (e.g., an area corresponding to a map
tile) that is currently being processed. By way of example,
the spatial index data structure can be based on any structure
including, but not limited to: Kd-trees, R-trees, and
Quadtrees. Each of the types of structures may have advan-
tages and disadvantages with respect to point-based map
matching, and the map matching platform 101 can balance
these advantages/disadvantages to select an appropriate data
structure. For example, with respect to Kd-trees, the advan-
tages are that implementation can be simple, and indexing
time can be extremely fast; while disadvantages are that this
results in an unbalanced tree, unless sorting of input is
precomputed, which can slow query times on non-uniform
data. With respect to R-trees, the advantages are that this
results in a balanced tree, which in turn can provide fast
query times; while the disadvantages are that depending on
the heuristic picked for insertion, indexing time may be
slower, and implementation of R-trees can be complex. With
respect to Quadtrees, the advantages are that indexing and
implementation can be relatively simple; while the disad-
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vantages are that this results in an unbalanced tree which can
slow query times on unbalanced data.

[0102] In one embodiment, after creating the feature data
structure and the spatial index, the probe collection module
501 can also create a data structure representing a hash map
of each candidate probe point and link pair to match, e.g., by
creating a hash map Candidates_hash-key (probeid,linkid)
value(Feature set), wherein probeid identifies the candidate
probe point and linkid identifies the candidate link against
which a matching probability is to be calculated. In one
embodiment, the map matching platform 101 can keep the
hash map in an operating memory (e.g., RAM memory) to
provide quick access and response times when accessing the
hash map. In one embodiment, the map matching platform
101 can balance having a larger set of candidate probe points
(e.g., by increasing the CR) against the number of spatial
searches to perform. For example, have a larger CR and
therefore a larger number candidates in the spatial index at
one time will decrease the number of spatial searches that
are to be performed to processed the an equivalent geo-
graphic area, and vice versa. The map matching platform can
then proceed to the process of FIG. 6.

[0103] FIG. 6 is a flowchart of a process for feature
collection for providing a machine learning approach to
point-based map-matching, according to one embodiment.
In various embodiments, the map matching platform 101
and/or any of the modules 501-507 of the map matching
platform 101 as shown in FIG. 5 may perform one or more
portions of the process 600 and may be implemented in, for
instance, a chip set including a processor and a memory as
shown in FIG. 12. As such, the map matching platform 101
and/or the modules 501-507 can provide means for accom-
plishing various parts of the process 600, as well as means
for accomplishing embodiments of other processes
described herein in conjunction with other components of
the system 100. Although the process 600 is illustrated and
described as a sequence of steps, its contemplated that
various embodiments of the process 600 may be performed
in any order or combination and need not include all of the
illustrated steps.

[0104] In step 601, the probe collection module 501 cre-
ates the spatial index of probe points as indicated above. In
one embodiment, the spatial index can include a collection
of previously collected probe points (e.g., when processing
in bulk mode), or can include one or more probe points
collected in real-time (e.g., when processing in real-time
mode).

[0105] In step 603, the probe collection module 501
obtains a starting vertex and link of a set of links in a
geographic area against which the probe points are to be map
matched. The geographic area can include, for instance, the
links within an area corresponding to a map tile when a
tile-based representation of map data is used by the geo-
graphic database 103. In one embodiment, the starting
vertex and link can be obtained using the function Link
(vertex,PL) described above.

[0106] In step 605, the probe collection module 501
retrieves probe points with proximity (e.g., a CR) of the
starting vertex and link. For example, the probe collection
module 501 queries the spatial index of probe points (e.g.,
Probe_index) for probe points falling within the CR from the
starting vertex and link. The resulting set of probe points can
be stored in a data structure (e.g., a data structure labeled
neighbors, such that neighbors=Probe_index(CR,PL)).
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[0107] Instep 607, for each probe point p in neighbors, the
feature extraction module 503 computes a feature set f using
a candidate pair of probe point p and Link(vertex, PL). In
one embodiment, the feature set can include extracted fea-
tures values of any combination of probe attributes, link
attributes, and/or combined probe/link attributes discussed
above for each probe/link pair. The resulting feature set is
then stored in the feature set data structure and referenced in
the candidates hash map (e.g., candidates_hash).

[0108] At step 609, the feature extraction module 503
continues to the next vertex of the current link, and the next
link in the geographic areas to be processed until all vertices
and links are processed to extract the feature sets for all
corresponding probe/link pairs. In one embodiment, the
geographic area to be processed is a map M, that can be
traversed by the feature extraction module 503 for process-
ing. In one embodiment, traversal strategies can include, but
are not limited to, breadth first (e.g., processing the starting
vertices of all links first, and then returning to each link for
remaining vertices), or depth first (e.g., processing all ver-
tices of each link before moving to the next link).

[0109] Example pseudocode that summarizes the feature
collection process 600 of FIG. 6 is provided in Table 1
below.

TABLE 1

//FEATURE COLLECTION step

//Walk through the map M (Breadth First
or Depth First strategy are options)

for each link in Map

Obtain starting vertex and PL
while vertex in PL

Query Probe_index with CR
neighbors = Probe_index(CR, PL)
for each p in neighbors

Compute feature set f using p
and Link(vertex,PL)
Add to candidates_hash

vertex = next(vertex, PL)

next(PL)

[0110] FIG. 7 is a flowchart of a process for classifying
probe points based on collected features using machine
learning, according to one embodiment. In various embodi-
ments, the map matching platform 101 and/or any of the
modules 501-507 of the map matching platform 101 as
shown in FIG. 5 may perform one or more portions of the
process 700 and may be implemented in, for instance, a chip
set including a processor and a memory as shown in FIG. 12.
As such, the map matching platform 101 and/or the modules
501-507 can provide means for accomplishing various parts
of the process 700, as well as means for accomplishing
embodiments of other processes described herein in con-
junction with other components of the system 100. Although
the process 700 is illustrated and described as a sequence of
steps, its contemplated that various embodiments of the
process 700 may be performed in any order or combination
and need not include all of the illustrated steps.

[0111] In one embodiment, the map matching platform
101 performs the classification process 700 after the feature
collection process 600 of FIG. 6.
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[0112] In step 701, for each candidate pair of probe
point/link in the candidates hash map generated during the
process 600 above (e.g., Candidates_hashmap), the machine
learning classifier 505 retrieves a corresponding feature set
for the candidate pair. Using, for instance, the retrieved
feature for a candidate probe point (e.g., a probe point 1) and
link (e.g., link j), the machine language classifier 505
calculates a likelihood that the candidate probe point is
matched to the candidate link (e.g., Lij(f)) (step 703). In this
example, the classifier 505 uses a machine learning model
(e.g., logistic regression, RandomForest, etc.) that has been
trained using a set of probe/link features as discussed with
respect to the various embodiments described above with the
feature set of the candidate probe point/link pair, to calculate
the likelihood or probability of matching between the probe
point and the link of the candidate pair.

[0113] In step 705, the machine learning classifier 505 can
then classify whether the candidate probe point/link pair are
matched or unmatched based on the calculated likelihood or
probability of matching. In one embodiment, the classifica-
tion can be performed using a function, e.g., c=Class(p,
Lij(f), where c is the classification for a probe point p, given
a calculated likelihood of matching Lij(f)). The classifica-
tion function can apply a matching threshold or other criteria
to determine the classification (step 707), so that candidate
probe/link pairs with calculated matching probabilities
greater than this threshold can be classified as matched (e.g.,
the candidate probe point is map matched to the candidate
link of the pair) (step 709. Otherwise, if the matching
threshold is not met, then the candidate probe point/link pair
is classified as unmatched (step 711).

[0114] In one embodiment, the results of the classification
of matched or unmatched can be added or stored in a data
structure (e.g., candidates_classified). This classification
data structure can then be used, for instance, to determine
separate matched and unmatched buckets of probe points. In
one embodiment, the unmatched bucket can then be used in
other map data development pipelines, for instance, to
determine new or changed geometries, filter noise in the
probe data, etc.

[0115] Example pseudocode that summarizes the classifi-
cation process 700 of FIG. 7 is provided in Table 2 below.

TABLE 2

//ICLASSIFICATION step
for each candidate in candidates_hash

Calculate likelihood  Lij(f)
Classify candidate as matched/
unmatched ¢ = Class(p, Lij(f))
Add to candidates_classified

Add to candidates_classified points
outside of CR as “unmatched” with
high confidence

Consolidate results into matched/
unmatched buckets

[0116] FIG. 8 is a flowchart of a general process for
providing a machine learning approach to point-based map-
matching, according to one embodiment. In various embodi-
ments, the map matching platform 101 and/or any of the
modules 501-507 of the map matching platform 101 as
shown in FIG. 5 may perform one or more portions of the
process 800 and may be implemented in, for instance, a chip
set including a processor and a memory as shown in FIG. 12.
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As such, the map matching platform 101 and/or the modules
501-507 can provide means for accomplishing various parts
of the process 800, as well as means for accomplishing
embodiments of other processes described herein in con-
junction with other components of the system 100. Although
the process 800 is illustrated and described as a sequence of
steps, its contemplated that various embodiments of the
process 800 may be performed in any order or combination
and need not include all of the illustrated steps.

[0117] The process 800 provides a general approach to
machine learning classification of probe points for point-
based matching discussed in the various embodiments
described above.

[0118] In step 801, the probe collection module 501
retrieves one or more probe points collected within a prox-
imity to a map feature represented by a link of a geographic
database. In one embodiment, the one or more probe points
are collected from one or more sensors of a plurality of
devices (e.g., vehicles 105, UE 107, and/or any other probe
device/vehicle) traveling within the proximity to the map
feature. In one embodiment, the proximity to the map
feature is determined by an area delimited by a radius
extending from a vertex of the link. The link, for instance,
can be a link of a geographic database 103 that corresponds
to a road/path segment.

[0119] In addition or alternatively, in one embodiment, the
link record can instead be a record indicating a geographic
feature (e.g., a polygon representing a geographic boundary
of a point of interest such as a building, event venue, etc.).
In this way, the machine learning approach to point-based
map matching can be used, for instance, to map probe points
to specific geographic features. For example, when mapped
to a feature such as an event venue, a large number of probe
points matched to that venue at a certain period of time may
be indicative of an occurrence of an event. Accordingly, the
embodiments described herein can be used to determine
events or other incidents that can be indicated by map-
matched probe points at a given area.

[0120] In step 803, the feature extraction module 503
determines a probe feature set for each of the one or more
probe points. In one embodiment, the probe feature set
comprises respective values for one or more probe attributes
of'said each probe point. The probe attributes or features are
can be any characteristic of a probe point, a device collecting
the probe point data, and/or other contextual information
about the probe point data, such as the probe features
discussed in the various embodiments described above. For
example, in one embodiment, the feature extraction module
503 extracts the probe feature set from location sensor data
of said each probe point (e.g., location, heading, timestamp,
sensor type, sensor vendor, altitude, etc.).

[0121] In step 805, the feature extraction module 503 also
determines a link feature set for the link. In one embodiment,
the link feature set comprises respective values for one or
more link attributes of the link such as those discussed with
respect to the embodiments described above (e.g., function
class, ramp, multi-digit, intersection internal, urban/subur-
ban, region, navigability, etc.). In one embodiment, the
feature extraction module 503 extracts the link feature set
from the geographic database. In other words, the link
feature set can be determined by querying the geographic
database 103 or other equivalent database for stored link
attribute values.
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[0122] In one embodiment, as previously describe, there
are certain attributes or features that can calculated from a
given probe point and link pair. This pair, for instance,
represents a candidate probe point and the candidate link
against which it is being evaluated as for map matching. For
example, the feature extraction module 503 calculates one or
more combined link and probe attributes, for instance, from
the probe and link features of each candidate pair. In one
embodiment, the one or more combined link and probe
attribute include a perpendicular distance between said each
probe point and the candidate link, an angle difference
between a heading of said each probe point and a bearing of
the link, a ratio of a speed of said each probe point and a
median speed of the link, or a combination thereof.

[0123] In step 807, the machine learning classifier 505
classifies said each probe point to determine a matching
probability based on the probe feature set, the link feature,
and/or the combined probe/link features. In one embodi-
ment, the matching probability indicates a probability that
said each probe point is classified as map-matched to the
candidate link. As previously described, the matching learn-
ing classifier 505 uses a trained machine learning model to
calculate the matching probability. For example, the
machine learning classifier 505 is trained using ground truth
data comprising reference probe points with known map-
matches to respective reference links, and comprising
known values of the one or more probe attributes for the
reference probe points and known values of the one or more
link attributes for the reference links.

[0124] In one embodiment, the specific model (e.g., logis-
tic regression, RandomForest, etc.) used by the machine
learning classifier 505 can vary to include any type of model
known in the art. However, as previously discussed, differ-
ent models can result in different calibrations of the resulting
matching probabilities. For example, some models (e.g.,
logistic regression) are well-calibrated across the entire
range of probabilities from O to 1, when others may be
biased near O or 1 (e.g., RandomForest). In one embodiment,
in one embodiment, the machine learning classifier 505 can
calibrate the matching probability generated by the model
based a classifier or model type of the machine learning
classifier. This calibration can be performed, for instance,
during post-processing following training of the machine
learning classifier 505.

[0125] In one embodiment, the mapping module 507
optionally divides the one or more probe points into a
map-matched set and an unmatched set by applying a
threshold value on the matching probability for said each
probe point. The mapping module 507 then processes the
unmatched set of the one or more probe points to identify a
new or changed geometry of a transportation network rep-
resented in the geographic database. In addition or alterna-
tively, the unmatched set can also be processed to determine
any other map attribute of the geographic database. For
example, when speed ratio is incorporated as a feature of the
machine learning classifier 505, the unmatched set can be a
set of candidate probe points where the map speed limit is
not correct. In this way, the mapping module 507 can find
speed limit changes on the map based on areas or locations
corresponding to the unmatched set. It is also contemplated
that the unmatched set can be used for any other function of
the map development pipeline including, but not limited to,
filtering noise, determining outliers, evaluating probe data
provider quality, etc.
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[0126] In one embodiment, the matched set can be used to
locate a vehicle 105 that generated the probe points in the
set. For example, the probe point can be collected from a
vehicle 105 (e.g., an autonomous vehicle) as it travels in a
road network. The map matching results of the probe points
collected from the vehicle 105 can then represent an esti-
mation of the location of the vehicle 105. In one embodi-
ment, the machine learning classifier 505 can be trained on
features or attributes related to sensor data from the vehicle
105 such as, but not limited to, distance from objects whose
locations have been precisely mapped (e.g., in an HD Map).
By way of example, the objects include traffic signs, traffic
lights, other cars, etc. Depending on which features are used,
the location estimate can provide localization of the vehicle
105 to specific lanes of the roadway, or to within the levels
of accuracy (e.g., centimeter level accuracy) typically
required for autonomous operation of vehicles.

[0127] FIG. 9 is a diagram illustrating an example user
interface displaying results of a machine learning approach
to point-based map-matching, according to one embodi-
ment. As shown, FIG. 9 depicts a user interface (UI) 901 that
displays results of a point-based map matching for a set of
probe points. The UI 901 includes, for instance, a column
903 identifying each probe point, a column 905 illustrating
the matching probabilities for any potentially matched links,
and a column 907 classifying each probe point as either
matched or unmatched. In this example, the column 905
displays only those links whose matching probabilities are
greater than zero or a configured minimum (e.g., greater than
0.05). Because in one embodiment each probe point is
matched all links within a defined geographic area (e.g., a
circular radius, a map tile, etc.), matching probabilities are
calculated for each possible pair or probe points and links.
The UI 901 displays the matching probabilities for each
probe point/link with the highest matching probability first.
For example, Probe Point 1 is displayed with matching
probabilities of 0.85 for Link 1 and 0.34 for Link 2. In one
embodiment, the system 100 map matches the candidate
probe point to the link with the highest matching probability
greater than a matching threshold value (e.g., 0.50). There-
fore, in the case of Probe Point 1, the map matched Link 1
because its matching probability to Probe Point 1 is greater
than the threshold, while Link 2’s matching probability is
not above the threshold. Column 907 then indicates whether
any resulting matching probability for a given probe point is
above the matching threshold value.

[0128] FIG. 10 is a diagram illustrating an example navi-
gation user interface generated using a machine learning
approach to point-based map-matching, according to one
embodiment. FIG. 10 depicts an example use case of apply-
ing machine learning point-based map matching to an end-
user navigation experience. The UI 1001 depicts a typical
navigation user interface generated, for instance, by an
in-vehicle or other navigation system as a vehicle travels
within a road network. The navigation system samples the
vehicle’s location at various frequencies and reports each
sample as a probe point. The map matching platform 101 can
then use its machine learning approach to point-based map
matching to match the sampled probe point in real-time to a
given road segment or link in order to indicate in the UT 1001
which road segment the vehicle is traveling on. In this
example, the map matching platform 101 map matches the
sample probe point to the link corresponding to road seg-
ment 1003 with 0.85 matching probability. Accordingly, the
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UT 1001 is updated to display an icon 1005 on a represen-
tation of the road segment 1003 to indicate that the vehicle
traveling on the road segment 1003. In addition, the UI 1003
can display a notification indicating the predicted matching
probability or confidence associated with the navigation
system’s depiction of the vehicle on the roadway. In this
way, the user can be informed of the degree of confidence
the navigation system has of vehicles current location,
which can be helpful, particular near intersections or other
complicated portions of the roadway.

[0129] The processes described herein for providing a
machine learning approach to point-based map matchers
may be advantageously implemented via software, hardware
(e.g., general processor, Digital Signal Processing (DSP)
chip, an Application Specific Integrated Circuit (ASIC),
Field Programmable Gate Arrays (FPGAs), etc.), firmware
or a combination thereof. Such exemplary hardware for
performing the described functions is detailed below.
[0130] FIG. 11 illustrates a computer system 1100 upon
which an embodiment of the invention may be implemented.
Computer system 1100 is programmed (e.g., via computer
program code or instructions) to provide a machine learning
approach to point-based map matchers as described herein
and includes a communication mechanism such as a bus
1110 for passing information between other internal and
external components of the computer system 1100. Infor-
mation (also called data) is represented as a physical expres-
sion of a measurable phenomenon, typically electric volt-
ages, but including, in other embodiments, such phenomena
as magnetic, electromagnetic, pressure, chemical, biologi-
cal, molecular, atomic, sub-atomic and quantum interac-
tions. For example, north and south magnetic fields, or a
zero and non-zero electric voltage, represent two states (0, 1)
of a binary digit (bit). Other phenomena can represent digits
of a higher base. A superposition of multiple simultaneous
quantum states before measurement represents a quantum
bit (qubit). A sequence of one or more digits constitutes
digital data that is used to represent a number or code for a
character. In some embodiments, information called analog
data is represented by a near continuum of measurable
values within a particular range.

[0131] A bus 1110 includes one or more parallel conduc-
tors of information so that information is transferred quickly
among devices coupled to the bus 1110. One or more
processors 1102 for processing information are coupled with
the bus 1110.

[0132] A processor 1102 performs a set of operations on
information as specified by computer program code related
to providing a machine learning approach to point-based
map matchers. The computer program code is a set of
instructions or statements providing instructions for the
operation of the processor and/or the computer system to
perform specified functions. The code, for example, may be
written in a computer programming language that is com-
piled into a native instruction set of the processor. The code
may also be written directly using the native instruction set
(e.g., machine language). The set of operations include
bringing information in from the bus 1110 and placing
information on the bus 1110. The set of operations also
typically include comparing two or more units of informa-
tion, shifting positions of units of information, and combin-
ing two or more units of information, such as by addition or
multiplication or logical operations like OR, exclusive OR
(XOR), and AND. Each operation of the set of operations
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that can be performed by the processor is represented to the
processor by information called instructions, such as an
operation code of one or more digits. A sequence of opera-
tions to be executed by the processor 1102, such as a
sequence of operation codes, constitute processor instruc-
tions, also called computer system instructions or, simply,
computer instructions. Processors may be implemented as
mechanical, electrical, magnetic, optical, chemical or quan-
tum components, among others, alone or in combination.

[0133] Computer system 1100 also includes a memory
1104 coupled to bus 1110. The memory 1104, such as a
random access memory (RAM) or other dynamic storage
device, stores information including processor instructions
for providing a machine learning approach to point-based
map matchers. Dynamic memory allows information stored
therein to be changed by the computer system 1100. RAM
allows a unit of information stored at a location called a
memory address to be stored and retrieved independently of
information at neighboring addresses. The memory 1104 is
also used by the processor 1102 to store temporary values
during execution of processor instructions. The computer
system 1100 also includes a read only memory (ROM) 1106
or other static storage device coupled to the bus 1110 for
storing static information, including instructions, that is not
changed by the computer system 1100. Some memory is
composed of volatile storage that loses the information
stored thereon when power is lost. Also coupled to bus 1110
is a non-volatile (persistent) storage device 1108, such as a
magnetic disk, optical disk or flash card, for storing infor-
mation, including instructions, that persists even when the
computer system 1100 is turned off or otherwise loses
power.

[0134] Information, including instructions for providing a
machine learning approach to point-based map matchers, is
provided to the bus 1110 for use by the processor from an
external input device 1112, such as a keyboard containing
alphanumeric keys operated by a human user, or a sensor. A
sensor detects conditions in its vicinity and transforms those
detections into physical expression compatible with the
measurable phenomenon used to represent information in
computer system 1100. Other external devices coupled to
bus 1110, used primarily for interacting with humans,
include a display device 1114, such as a cathode ray tube
(CRT) or a liquid crystal display (LCD), or plasma screen or
printer for presenting text or images, and a pointing device
1116, such as a mouse or a trackball or cursor direction keys,
or motion sensor, for controlling a position of a small cursor
image presented on the display 1114 and issuing commands
associated with graphical elements presented on the display
1114. In some embodiments, for example, in embodiments
in which the computer system 1100 performs all functions
automatically without human input, one or more of external
input device 1112, display device 1114 and pointing device
1116 is omitted.

[0135] In the illustrated embodiment, special purpose
hardware, such as an application specific integrated circuit
(ASIC) 1120, is coupled to bus 1110. The special purpose
hardware is configured to perform operations not performed
by processor 1102 quickly enough for special purposes.
Examples of application specific ICs include graphics accel-
erator cards for generating images for display 1114, cryp-
tographic boards for encrypting and decrypting messages
sent over a network, speech recognition, and interfaces to
special external devices, such as robotic arms and medical
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scanning equipment that repeatedly perform some complex
sequence of operations that are more efficiently imple-
mented in hardware.

[0136] Computer system 1100 also includes one or more
instances of a communications interface 1170 coupled to bus
1110. Communication interface 1170 provides a one-way or
two-way communication coupling to a variety of external
devices that operate with their own processors, such as
printers, scanners and external disks. In general the coupling
is with a network link 1178 that is connected to a local
network 1180 to which a variety of external devices with
their own processors are connected. For example, commu-
nication interface 1170 may be a parallel port or a serial port
or a universal serial bus (USB) port on a personal computer.
In some embodiments, communications interface 1170 is an
integrated services digital network (ISDN) card or a digital
subscriber line (DSL) card or a telephone modem that
provides an information communication connection to a
corresponding type of telephone line. In some embodiments,
a communication interface 1170 is a cable modem that
converts signals on bus 1110 into signals for a communica-
tion connection over a coaxial cable or into optical signals
for a communication connection over a fiber optic cable. As
another example, communications interface 1170 may be a
local area network (LAN) card to provide a data communi-
cation connection to a compatible LAN, such as Ethernet.
Wireless links may also be implemented. For wireless links,
the communications interface 1170 sends or receives or both
sends and receives electrical, acoustic or electromagnetic
signals, including infrared and optical signals, that carry
information streams, such as digital data. For example, in
wireless handheld devices, such as mobile telephones like
cell phones, the communications interface 1170 includes a
radio band electromagnetic transmitter and receiver called a
radio transceiver. In certain embodiments, the communica-
tions interface 1170 enables connection to the communica-
tion network 111e¢ for providing a machine learning
approach to point-based map matchers.

[0137] The term computer-readable medium is used herein
to refer to any medium that participates in providing infor-
mation to processor 1102, including instructions for execu-
tion. Such a medium may take many forms, including, but
not limited to, non-volatile media, volatile media and trans-
mission media. Non-volatile media include, for example,
optical or magnetic disks, such as storage device 1108.
Volatile media include, for example, dynamic memory 1104.
Transmission media include, for example, coaxial cables,
copper wire, fiber optic cables, and carrier waves that travel
through space without wires or cables, such as acoustic
waves and electromagnetic waves, including radio, optical
and infrared waves. Signals include man-made transient
variations in amplitude, frequency, phase, polarization or
other physical properties transmitted through the transmis-
sion media. Common forms of computer-readable media
include, for example, a floppy disk, a flexible disk, hard disk,
magnetic tape, any other magnetic medium, a CD-ROM,
CDRW, DVD, any other optical medium, punch cards, paper
tape, optical mark sheets, any other physical medium with
patterns of holes or other optically recognizable indicia, a
RAM, a PROM, an EPROM, a FLASH-EPROM, any other
memory chip or cartridge, a carrier wave, or any other
medium from which a computer can read.

[0138] FIG. 12 illustrates a chip set 1200 upon which an
embodiment of the invention may be implemented. Chip set
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1200 is programmed to provide a machine learning approach
to point-based map matchers as described herein and
includes, for instance, the processor and memory compo-
nents described with respect to FIG. 11 incorporated in one
or more physical packages (e.g., chips). By way of example,
a physical package includes an arrangement of one or more
materials, components, and/or wires on a structural assem-
bly (e.g., a baseboard) to provide one or more characteristics
such as physical strength, conservation of size, and/or limi-
tation of electrical interaction. It is contemplated that in
certain embodiments the chip set can be implemented in a
single chip.

[0139] In one embodiment, the chip set 1200 includes a
communication mechanism such as a bus 1201 for passing
information among the components of the chip set 1200. A
processor 1203 has connectivity to the bus 1201 to execute
instructions and process information stored in, for example,
a memory 1205. The processor 1203 may include one or
more processing cores with each core configured to perform
independently. A multi-core processor enables multiprocess-
ing within a single physical package. Examples of a multi-
core processor include two, four, eight, or greater numbers
of processing cores. Alternatively or in addition, the pro-
cessor 1203 may include one or more microprocessors
configured in tandem via the bus 1201 to enable independent
execution of instructions, pipelining, and multithreading.
The processor 1203 may also be accompanied with one or
more specialized components to perform certain processing
functions and tasks such as one or more digital signal
processors (DSP) 1207, or one or more application-specific
integrated circuits (ASIC) 1209. A DSP 1207 typically is
configured to process real-world signals (e.g., sound) in real
time independently of the processor 1203. Similarly, an
ASIC 1209 can be configured to performed specialized
functions not easily performed by a general purposed pro-
cessor. Other specialized components to aid in performing
the inventive functions described herein include one or more
field programmable gate arrays (FPGA) (not shown), one or
more controllers (not shown), or one or more other special-
purpose computer chips.

[0140] The processor 1203 and accompanying compo-
nents have connectivity to the memory 1205 via the bus
1201. The memory 1205 includes both dynamic memory
(e.g., RAM, magnetic disk, writable optical disk, etc.) and
static memory (e.g., ROM, CD-ROM, etc.) for storing
executable instructions that when executed perform the
inventive steps described herein to provide a machine learn-
ing approach to point-based map matchers. The memory
1205 also stores the data associated with or generated by the
execution of the inventive steps.

[0141] FIG. 13 is a diagram of exemplary components of
a mobile station (e.g., handset) capable of operating in the
system of FIG. 1, according to one embodiment. Generally,
a radio receiver is often defined in terms of front-end and
back-end characteristics. The front-end of the receiver
encompasses all of the Radio Frequency (RF) circuitry
whereas the back-end encompasses all of the base-band
processing circuitry. Pertinent internal components of the
telephone include a Main Control Unit (MCU) 1303, a
Digital Signal Processor (DSP) 1305, and a receiver/trans-
mitter unit including a microphone gain control unit and a
speaker gain control unit. A main display unit 1307 provides
a display to the user in support of various applications and
mobile station functions that offer automatic contact match-
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ing. An audio function circuitry 1309 includes a microphone
1311 and microphone amplifier that amplifies the speech
signal output from the microphone 1311. The amplified
speech signal output from the microphone 1311 is fed to a
coder/decoder (CODEC) 1313.

[0142] A radio section 1315 amplifies power and converts
frequency in order to communicate with a base station,
which is included in a mobile communication system, via
antenna 1317. The power amplifier (PA) 1319 and the
transmitter/modulation circuitry are operationally respon-
sive to the MCU 1303, with an output from the PA 1319
coupled to the duplexer 1321 or circulator or antenna switch,
as known in the art. The PA 1319 also couples to a battery
interface and power control unit 1320.

[0143] Inuse, a user of mobile station 1301 speaks into the
microphone 1311 and his or her voice along with any
detected background noise is converted into an analog
voltage. The analog voltage is then converted into a digital
signal through the Analog to Digital Converter (ADC) 1323.
The control unit 1303 routes the digital signal into the DSP
1305 for processing therein, such as speech encoding, chan-
nel encoding, encrypting, and interleaving. In one embodi-
ment, the processed voice signals are encoded, by units not
separately shown, using a cellular transmission protocol
such as global evolution (EDGE), general packet radio
service (GPRS), global system for mobile communications
(GSM), Internet protocol multimedia subsystem (IMS), uni-
versal mobile telecommunications system (UMTS), etc., as
well as any other suitable wireless medium, e.g., microwave
access (WiMAX), Long Term Evolution (LTE) networks,
code division multiple access (CDMA), wireless fidelity
(WiF1i), satellite, and the like.

[0144] The encoded signals are then routed to an equalizer
1325 for compensation of any frequency-dependent impair-
ments that occur during transmission though the air such as
phase and amplitude distortion. After equalizing the bit
stream, the modulator 1327 combines the signal with a RF
signal generated in the RF interface 1329. The modulator
1327 generates a sine wave by way of frequency or phase
modulation. In order to prepare the signal for transmission,
an up-converter 1331 combines the sine wave output from
the modulator 1327 with another sine wave generated by a
synthesizer 1333 to achieve the desired frequency of trans-
mission. The signal is then sent through a PA 1319 to
increase the signal to an appropriate power level. In practical
systems, the PA 1319 acts as a variable gain amplifier whose
gain is controlled by the DSP 1305 from information
received from a network base station. The signal is then
filtered within the duplexer 1321 and optionally sent to an
antenna coupler 1335 to match impedances to provide
maximum power transfer. Finally, the signal is transmitted
via antenna 1317 to a local base station. An automatic gain
control (AGC) can be supplied to control the gain of the final
stages of the receiver. The signals may be forwarded from
there to a remote telephone which may be another cellular
telephone, other mobile phone or a land-line connected to a
Public Switched Telephone Network (PSTN), or other tele-
phony networks.

[0145] Voice signals transmitted to the mobile station
1301 are received via antenna 1317 and immediately ampli-
fied by a low noise amplifier (LNA) 1337. A down-converter
1339 lowers the carrier frequency while the demodulator
1341 strips away the RF leaving only a digital bit stream.
The signal then goes through the equalizer 1325 and is

Nov. 22,2018

processed by the DSP 1305. A Digital to Analog Converter
(DAC) 1343 converts the signal and the resulting output is
transmitted to the user through the speaker 1345, all under
control of a Main Control Unit (MCU) 1303—which can be
implemented as a Central Processing Unit (CPU) (not
shown).

[0146] The MCU 1303 receives various signals including
input signals from the keyboard 1347. The keyboard 1347
and/or the MCU 1303 in combination with other user input
components (e.g., the microphone 1311) comprise a user
interface circuitry for managing user input. The MCU 1303
runs a user interface software to facilitate user control of at
least some functions of the mobile station 1301 to provide a
machine learning approach to point-based map matchers.
The MCU 1303 also delivers a display command and a
switch command to the display 1307 and to the speech
output switching controller, respectively. Further, the MCU
1303 exchanges information with the DSP 1305 and can
access an optionally incorporated SIM card 1349 and a
memory 1351. In addition, the MCU 1303 executes various
control functions required of the station. The DSP 1305 may,
depending upon the implementation, perform any of a
variety of conventional digital processing functions on the
voice signals. Additionally, DSP 1305 determines the back-
ground noise level of the local environment from the signals
detected by microphone 1311 and sets the gain of micro-
phone 1311 to a level selected to compensate for the natural
tendency of the user of the mobile station 1301.

[0147] The CODEC 1313 includes the ADC 1323 and
DAC 1343. The memory 1351 stores various data including
call incoming tone data and is capable of storing other data
including music data received via, e.g., the global Internet.
The software module could reside in RAM memory, flash
memory, registers, or any other form of writable computer-
readable storage medium known in the art including non-
transitory computer-readable storage medium. For example,
the memory device 1351 may be, but not limited to, a single
memory, CD, DVD, ROM, RAM, EEPROM, optical stor-
age, or any other non-volatile or non-transitory storage
medium capable of storing digital data.

[0148] An optionally incorporated SIM card 1349 carries,
for instance, important information, such as the cellular
phone number, the carrier supplying service, subscription
details, and security information. The SIM card 1349 serves
primarily to identify the mobile station 1301 on a radio
network. The card 1349 also contains a memory for storing
a personal telephone number registry, text messages, and
user specific mobile station settings.

[0149] While the invention has been described in connec-
tion with a number of embodiments and implementations,
the invention is not so limited but covers various obvious
modifications and equivalent arrangements, which fall
within the purview of the appended claims. Although fea-
tures of the invention are expressed in certain combinations
among the claims, it is contemplated that these features can
be arranged in any combination and order.

What is claimed is:

1. A computer-implemented method for map-matching
probe data using a machine learning classifier, comprising:

retrieving one or more probe points collected within a
proximity to a map feature represented by a link of a
geographic database, wherein the one or more probe
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points are collected from one or more sensors of a
plurality of devices traveling within the proximity to
the map feature;

determining a probe feature set for each of the one or
more probe points, wherein the probe feature set com-
prises respective values for one or more probe attri-
butes of said each probe point;

determining a link feature set for the link, wherein the link
feature set comprises respective values for one or more
link attributes of the link;

classifying, using the machine learning classifier, said
each probe point to determine a matching probability
based on the probe feature set and the link feature,

wherein the matching probability indicates a probability
that said each probe point is classified as map-matched
to the link; and

wherein the machine learning classifier is trained using
ground truth data comprising reference probe points
with known map-matches to respective reference links,
and comprising known values of the one or more probe
attributes for the reference probe points and known
values of the one or more link attributes for the refer-
ence links.

2. The method of claim 1, further comprising:

dividing the one or more probe points into a map-matched
set and an unmatched set by applying a threshold value
on the matching probability for said each probe point.

3. The method of claim 1, further comprising:

processing the unmatched set of the one or more probe
points to identify a new geometry, a map attribute, or a
combination thereof of a transportation network repre-
sented in the geographic database.

4. The method of claim 1, further comprising:

calibrating the matching probability based a classifier type
of the machine learning classifier.

5. The method of claim 1, further comprising:

extracting the probe feature set from location sensor data
of said each probe point.

6. The method of claim 1, further comprising:

extracting the link feature set from the geographic data-
base.

7. The method of claim 1, further comprising:

calculating one or more combined link and probe attri-
butes,

wherein the classifying of said each probe point, a training
of the machine learning classifier, or a combination
thereof is further based on the one or more combined
link and probe attributes; and

wherein the one or more combined link and probe attri-
bute include a perpendicular distance between said
each probe point and the link, an angle difference
between a heading of said each probe point and a
bearing of the link, a ratio of a speed of said each probe
point and a median speed of the link, or a combination
thereof

8. The method of claim 1, wherein the proximity to the

map feature is determined by an area delimited by a radius
extending from a vertex of the link.

9. The method of claim 1, further comprising:

creating a hash map that associates each pair of said each
probe point and the link respectively with a correspond-
ing one of the probe feature set and the link feature set;
and
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maintaining the hash map in a memory of the machine
learning classifier during the classifying of the one or
more probe points.

10. An apparatus for map-matching probe data using a

machine learning classifier, comprising:

at least one processor; and
at least one memory including computer program code for
one or more programs,
the at least one memory and the computer program code
configured to, with the at least one processor, cause the
apparatus to perform at least the following,
retrieve one or more probe points collected within a
proximity to a map feature represented by a link of
a geographic database, wherein the one or more
probe points are collected from one or more sensors
of a plurality of devices traveling within the prox-
imity to the map feature;
determine a probe feature set for each of the one or
more probe points, wherein the probe feature set
comprises respective values for one or more probe
attributes of said each probe point;
determine a link feature set for the link, wherein the
link feature set comprises respective values for one
or more link attributes of the link;
classify, using the machine learning classifier, said each
probe point to determine a matching probability
based on the probe feature set and the link feature,
wherein the matching probability indicates a probabil-
ity that said each probe point is classified as map-
matched to the link; and
wherein the machine learning classifier is trained using
ground truth data comprising reference probe points
with known map-matches to respective reference
links, and comprising known values of the one or
more probe attributes for the reference probe points
and known values of the one or more link attributes
for the reference links.

11. The apparatus of claim 10, wherein the apparatus is

further caused to:

divide the one or more probe points into a map-matched
set and an unmatched set by applying a threshold value
on the matching probability for said each probe point.

12. The apparatus of claim 10, wherein the apparatus is

further caused to:

process the unmatched set of the one or more probe points
to identify a new geometry, a map attribute, or a
combination thereof of a transportation network repre-
sented in the geographic database.

13. The apparatus of claim 10, wherein the apparatus is

further caused to:

calculate one or more combined link and probe attributes,

wherein the classifying of said each probe point, a training
of the machine learning classifier, or a combination
thereof is further based on the one or more combined
link and probe attributes; and

wherein the one or more combined link and probe attri-
bute include a perpendicular distance between said
each probe point and the link, an angle difference
between a heading of said each probe point and a
bearing of the link, a ratio of a speed of said each probe
point and a median speed of the link, or a combination
thereof
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14. The apparatus of claim 10, wherein the proximity to
the map feature is determined by an area delimited by a
radius extending from a vertex of the link.

15. The apparatus of claim 10, wherein the apparatus is
further caused to:

create a hash map that associates each pair of said each

probe point and the link respectively with a correspond-
ing one of the probe feature set and the link feature set;
and

maintain the hash map in a memory of the machine

learning classifier during the classifying of the one or
more probe points.

16. A non-transitory computer-readable storage medium
for map-matching probe data using a machine learning
classifier, carrying one or more sequences of one or more
instructions which, when executed by one or more proces-
sors, cause an apparatus to at least perform the following
steps:

retrieving one or more probe points collected within a

proximity to a map feature represented by a link of a
geographic database, wherein the one or more probe
points are collected from one or more sensors of a
plurality of devices traveling within the proximity to
the map feature;

determining a probe feature set for each of the one or

more probe points, wherein the probe feature set com-
prises respective values for one or more probe attri-
butes of said each probe point;

determining a link feature set for the link, wherein the link

feature set comprises respective values for one or more
link attributes of the link;
classifying, using the machine learning classifier, said
each probe point to determine a matching probability
based on the probe feature set and the link feature,

wherein the matching probability indicates a probability
that said each probe point is classified as map-matched
to the link; and

wherein the machine learning classifier is trained using

ground truth data comprising reference probe points
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with known map-matches to respective reference links,
and comprising known values of the one or more probe
attributes for the reference probe points and known
values of the one or more link attributes for the refer-
ence links.

17. The non-transitory computer-readable storage
medium of claim 16, wherein the apparatus is further caused
to perform:

dividing the one or more probe points into a map-matched

set and an unmatched set by applying a threshold value
on the matching probability for said each probe point.

18. The non-transitory computer-readable storage
medium of claim 16, wherein the apparatus is further caused
to perform:

processing the unmatched set of the one or more probe

points to identify a new geometry, a map attribute, or a
combination thereof of a transportation network repre-
sented in the geographic database.

19. The non-transitory computer-readable storage
medium of claim 16, wherein the apparatus is further caused
to perform:

calculating one or more combined link and probe attri-

butes,

wherein the classifying of said each probe point, a training

of the machine learning classifier, or a combination
thereof is further based on the one or more combined
link and probe attributes; and

wherein the one or more combined link and probe attri-

bute include a perpendicular distance between said
each probe point and the link, an angle difference
between a heading of said each probe point and a
bearing of the link, a ratio of a speed of said each probe
point and a median speed of the link, or a combination
thereof

20. The non-transitory computer-readable storage
medium of claim 16, wherein the proximity to the map
feature is determined by an area delimited by a radius
extending from a vertex of the link.
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