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The present disclosure involves systems, software, and
computer implemented methods for predicting wildfires on
the basis of biophysical indicators and spatiotemporal prop-
erties. A method includes receiving a request for a wildfire
prediction for at least one geographical area. At least one
biophysical indicator is identified. Each biophysical indica-
tor provides biophysical data for the at least one geographi-
cal area. The at least one biophysical indicator is provided to
a long short term memory (LSTM) network. The LSTM
network includes a convolutional neural network (CNN) for
each of multiple LSTM units. Each LSTM unit and each
CNN are associated with a historical time period in a time
series. The LSTM is used to generate at least one prediction
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Receive a request for a wildfire prediction for at least one geographical area .. 1102
Identify at least one biophysical indicator, each biophysical indicator providing 1104

biophysicat data for the at least one geographical area

¥
Provide the at least one biophysical indicator to a convolutional neural network
{(CNN}, the CNN trained using ground truth data that includes historical ~... 571106
information about wildfires for at least one ground fruth geographical area

i

Use the CNN to generate at least one prediction 1108
for wildfire risk for the at least one geographical area
¥
Provide the at least one prediction responsive {o the request .. i 1110

FIG. 11 1100
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Receive a request for a wildfire prediction for at least one geographical area |- {1202

¥

Identify at least one biophysical indicator, each biophysical indicator providing | 1204
biophysical data for the at least one geographical area

4
Provide the at least one biophysical indicator o a long short term memory

(LSTM) network, the LSTM network including a convolutional neurat network | - 1206
(CNN) for each of multiple LSTM units, each LSTM unit and each CNN
associated with a historical time period in a time series

A 4

Use the LSTM to generate at least one prediction for wildfire risk 1208
for the at least one geographical area for an upcoming time period

Provide the at least one prediction responsive to the request .4 71210

FIG. 12 1200
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PREDICTING WILDFIRES ON THE BASIS
OF BIOPHYSICAL INDICATORS AND
SPATIOTEMPORAL PROPERTIES USING A
LONG SHORT TERM MEMORY NETWORK

BACKGROUND

[0001] An artificial neural network is a computational
model based on a collection of artificial neurons which can
be referred to as neural units. The artificial neural network
can perform in a manner that is similar to the observed
behavior of a biological brain’s axons. Each neural unit can
be connected to other neural units. In a recurrent neural
network, connections between neural units form a directed
cycle. In a feed-forward neural network, connections
between neural units do not form a cycle.

[0002] A convolutional neural network (CNN) is a type of
feed-forward neural network in which a connectivity pattern
between neurons is based on the organization of the animal
visual cortex. A CNN can be arranged into convolutional
layers alternating with subsampling layers. A LSTM (Long
Short-Term Memory) network is a type of recurrent neural
network that includes LSTM units instead of, or in addition
to, other network units. A LSTM unit is a recurrent network
unit that is capable of remembering values for either long or
short durations of time.

SUMMARY

[0003] The present disclosure involves systems, software,
and computer implemented methods for predicting wildfires
on the basis of biophysical indicators and spatiotemporal
properties. A method includes receiving a request for a
wildfire prediction for at least one geographical area. At least
one biophysical indicator is identified. Each biophysical
indicator provides biophysical data for the at least one
geographical area. The at least one biophysical indicator is
provided to a long short term memory (LSTM) network. The
LSTM network includes a convolutional neural network
(CNN) for each of multiple LSTM units. Each LSTM unit
and each CNN are associated with a historical time period in
a time series. The LSTM is used to generate at least one
prediction for wildfire risk for the at least one geographical
area for an upcoming time period. The at least one prediction
is provided responsive to the request.

[0004] While generally described as computer-imple-
mented software embodied on tangible media that processes
and transforms the respective data, some or all of the aspects
may be computer-implemented methods or further included
in respective systems or other devices for performing this
described functionality. The details of these and other
aspects and embodiments of the present disclosure are set
forth in the accompanying drawings and the description
below. Other features, objects, and advantages of the dis-
closure will be apparent from the description and drawings,
and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

[0005] FIG. 1 is a block diagram of an example environ-
ment for predicting wildfires on the basis of biophysical
indicators and spatiotemporal properties.

[0006] FIG. 2 illustrates layers of an architecture of a
CNN.

[0007] FIGS. 3 and 4 illustrate example LSTM networks.
[0008] FIG. 5A illustrates an example LSTM unit.
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[0009] FIG. 5B illustrates example curves for performance
evaluation.

[0010] FIGS. 6 to 10 illustrate example user interfaces.
[0011] FIG. 11 is a flowchart of an example method for

predicting wildfires on the basis of biophysical indicators
and spatiotemporal properties using a CNN.

[0012] FIG. 12 is a flowchart of an example method for
predicting wildfires on the basis of biophysical indicators
and spatiotemporal properties using a LSTM network.

DETAILED DESCRIPTION

[0013] Wildfires can create substantial loss of property,
life, income, and other damages. Considering these costs, an
approach for assessing the wildfire risk for specific areas can
be used to predict and plan for wildfire disasters. The ability
to predict the risk of wildfires can be beneficial for helping
safety services ensure public safety and for helping emer-
gency services mitigate and reduce the impact of wildfires.
Insurance companies can use wildfire predictions to improve
estimates of insurance values and risks for specific areas.

[0014] Neural networks, including CNNs (Convolutional
Neural Networks) and LSTM (Long Short-Term Memory)
networks, can be utilized for prediction. A CNN can incor-
porate spatially local properties of wildfires. A LSTM net-
work can include the architecture of a CNN and can account
for the temporal properties of wildfires and vegetation states.
Various biophysical indicators for geographical areas can be
generated from satellite data, such as indicators for an
amount of green and alive elements of the canopy, a thick-
ness of a vegetation cover, an amount of visible and near-
infrared light reflected by vegetation, or a dry biomass
increase of the vegetation for a given geographical area.

[0015] A CNN and/or a LSTM neural network can be used
to predict a wildfire risk for one or more geographical areas
based on the generated biophysical indicators. The LSTM
network can include multiple LSTM units that are associated
with a time sequence. Each LSTM unit can use a CNN, with
an output of a preceding CNN in the time sequence being
used as an input for the next CNN. The CNNs can be trained
using ground truth data that includes historical information
about wildfires. A CNN and/or a LSTM network can output
a set of wildfire predictions for the one or more geographical
areas.

[0016] FIG. 1 is a block diagram illustrating an example
system 100 for predicting wildfires on the basis of biophysi-
cal indicators and spatiotemporal properties. Specifically,
the illustrated system 100 includes or is communicably
coupled with a server 102, a client device 104, one or more
external biophysical data providers including an external
biophysical data provider 105, and a network 106. Although
shown separately, in some implementations, functionality of
two or more systems or servers may be provided by a single
system or server. In some implementations, the functionality
of one illustrated system or server may be provided by
multiple systems or servers.

[0017] A user can use an analytics application 108 on the
client device 104 to request generation of wildfire predic-
tions for one or more geographical areas for an upcoming
time period. The request can be sent to a prediction system
110 running on the server 102. The prediction system 110
can generate predictions 112, and provide the predictions
112 to the client device 104, for presentation in the analytics
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application 108. The predictions can be presented using one
or more map interfaces generated by a Ul (User Interface)
engine 113, for example.

[0018] The prediction system 110 includes a CNN engine
114 and a LSTM engine 116. One or both of the CNN engine
114 and the LSTM engine 116 can be used to generate
predictions 112. The LSTM engine 116 can use several CNN
instances managed by the CNN engine 114, as described
below.

[0019] A given CNN instance can be trained using ground
truth data 118. The ground truth data 118 can include a Fire
Occurrence Index (FOI). The FOI can be computed using
two burned area maps BA,, and BA,, (where t1 and t2 are
corresponding dates of measurement with t1<t2). If a pixel
in a burned area map is not associated with a burned area in
time step t=t1 but is associated with a burned area in a later
time step t=t2 then a determination can be made that a fire
occurred between tl and t2 in the area. Thus, a true-value
(FOI,=1) can be assigned to the pixel, whereas a false-value
can be assigned otherwise (FOI,,=0). Formally, the FOI can
be defined using formula (1):

1 if (BAy =0) A(BA, =1) 0
FoL, :{

0 else

[0020] Training can be performed using a stochastic opti-
mization method. Samples can be balanced, for training
purposes, so as to avoid the CNN engine 114 or the LSTM
engine 116 trying to achieve low error rates by focusing on
a majority class of non-wildfire areas. A ratio of wildfires to
non-wildfires can be unbalanced for fitting and prediction
purposes, since wildfires generally represent exceptional
events. For instance, for an example data set, for each five
samples which are labeled as wildfires more than 1300
samples may be labeled otherwise (for a ratio of wildfires to
non-wildfires of 0.0037). An unbalanced ratio can be
handled by applying under sampling (e.g., removing
samples), such that the samples are balanced with respect to
their classes.

[0021] The CNN, during training and during prediction,
can take as input biophysical data 120, which may be
received from the biophysical data provider 105 as biophysi-
cal data 122. The biophysical data 120 can include one or
more of a vegetation index, a dry matter index, a leaf area
index, and a fraction of absorbed photosynthetically active
radiation index, as described in more detail below. The
biophysical data provider 105 can provide a series of bio-
physical indicators on the status and evolution of land
surface at global scale at mid and low spatial resolution. The
biophysical data provider 105 can derive the biophysical
data 122 by applying algorithms on satellite images, such as
those produced by a space agency. The biophysical data 120
can be associated with geographical data 121 to map the
biophysical data 120 to particular geographic locations.

[0022] A CNN can be configured by the setting of CNN
parameters 124, such as a patch size, activation function
selection, output neuron count selection for each layer, pool
shape and pool strides for max pooling, and dropout prob-
ability thresholds. CNN parameters are described in more
detail below. A single CNN can be used to generate predic-
tions 112. A single CNN can include an input layer, a set of
hidden layers (which can include convolution layers and
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fully connected layers), and an output layer. CNNs are
described in more detail below with respect to FIG. 2.
[0023] As another example, multiple CNNs can be used in
a LSTM network by the LSTM engine 116 to generate
predictions 112. A LSTM network can be configured by the
setting of LSTM parameters 126, such as a number of LSTM
units, a time period length (e.g., fifteen days), a dropout keep
probability, activation function selection, input vector length
passed between CNN units, and other parameters. LSTM
parameters and operation are described in more detail below
with respect to FIGS. 3 and 4.

[0024] Performance of the predictions 112 can be quanti-
fied using qualitative factors 128, which can include a
Receiver Operating Characteristic (ROC) and an “Area
under the Curve” (AUC) score. As described in more detail
below, the predictions can be evaluated with respect to the
qualitative factors 128 by comparing prediction maps with
the ground truth data 118. Categorical cross-entropy can be
used as an objective function for evaluating the performance
of the CNN engine 114 and the LSTM engine 116.

[0025] As used in the present disclosure, the term “com-
puter” is intended to encompass any suitable processing
device. For example, although FIG. 1 illustrates a single
server 102 and a single client device 104, the system 100 can
be implemented using a single, stand-alone computing
device, two or more servers 102, or two or more client
devices 104. Indeed, the server 102, the external biophysical
data provider 105, and the client device 104 may be any
computer or processing device such as, for example, a blade
server, general-purpose personal computer (PC), Mac®,
workstation, UNIX-based workstation, or any other suitable
device. In other words, the present disclosure contemplates
computers other than general purpose computers, as well as
computers without conventional operating systems. Further,
the server 102 and the client device 104 may be adapted to
execute any operating system, including Linux, UNIX,
Windows, Mac OS®, Java™, Android™, iOS or any other
suitable operating system. According to one implementa-
tion, the server 102 may also include or be communicably
coupled with an e-mail server, a Web server, a caching
server, a streaming data server, and/or other suitable server.
[0026] Interfaces 140, 142, and 144 can be used by the
client device 104, the server 102, and the external biophysi-
cal data provider 105, respectively, for communicating with
other systems in a distributed environment—including
within the system 100—connected to the network 106.
Generally, the interfaces 140, 142, and 144 each comprise
logic encoded in software and/or hardware in a suitable
combination and operable to communicate with the network
106. More specifically, the interfaces 140, 142, and 144 may
each comprise software supporting one or more communi-
cation protocols associated with communications such that
the network 106 or interface’s hardware is operable to
communicate physical signals within and outside of the
illustrated system 100.

[0027] The server 102 includes one or more processors
146. Each processor 146 may be a central processing unit
(CPU), a blade, an application specific integrated circuit
(ASIC), a field-programmable gate array (FPGA), or another
suitable component. Generally, each processor 146 executes
instructions and manipulates data to perform the operations
of'the server 102. For example, each processor 146 executes
the functionality required to receive and respond to requests
from the client device 104, for example.
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[0028] Regardless of the particular implementation, “soft-
ware” may include computer-readable instructions, firm-
ware, wired and/or programmed hardware, or any combi-
nation thereof on a tangible medium (transitory or non-
transitory, as appropriate) operable when executed to
perform at least the processes and operations described
herein. Indeed, each software component may be fully or
partially written or described in any appropriate computer
language including C, C++, Java™, JavaScript®, Visual
Basic, assembler, Peri®, any suitable version of 4GL, as
well as others. While portions of the software illustrated in
FIG. 1 are shown as individual modules that implement the
various features and functionality through various objects,
methods, or other processes, the software may instead
include a number of sub-modules, third-party services, com-
ponents, libraries, and such, as appropriate. Conversely, the
features and functionality of various components can be
combined into single components as appropriate.

[0029] The server 102 includes the memory 148. In some
implementations, the server 102 includes multiple memo-
ries. The memory 148 may include any type of memory or
database module and may take the form of volatile and/or
non-volatile memory including, without limitation, mag-
netic media, optical media, random access memory (RAM),
read-only memory (ROM), removable media, or any other
suitable local or remote memory component. The memory
148 may store various objects or data, including caches,
classes, frameworks, applications, backup data, business
objects, jobs, web pages, web page templates, database
tables, database queries, repositories storing business and/or
dynamic information, and any other appropriate information
including any parameters, variables, algorithms, instruc-
tions, rules, constraints, or references thereto associated with
the purposes of the server 102.

[0030] The client device 104 may generally be any com-
puting device operable to connect to or communicate with
the platform server 102 via the network 106 using a wireline
or wireless connection. In general, the client device 104
comprises an electronic computer device operable to
receive, transmit, process, and store any appropriate data
associated with the system 100 of FIG. 1. The client device
104 can include one or more client applications, including
the analytics application 108. A client application is any type
of application that allows the client device 104 to request
and view content on the client device 104. In some imple-
mentations, a client application can use parameters, meta-
data, and other information received at launch to access a
particular set of data from the server 102. In some instances,
a client application may be an agent or client-side version of
the one or more enterprise applications running on an
enterprise server (not shown).

[0031] The client device 104 further includes one or more
processors 150. Each processor 150 included in the client
device 104 may be a central processing unit (CPU), an
application specific integrated circuit (ASIC), a field-pro-
grammable gate array (FPGA), or another suitable compo-
nent. Generally, each processor 150 included in the client
device 104 executes instructions and manipulates data to
perform the operations of the client device 104. Specifically,
each processor 150 included in the client device 104
executes the functionality required to send requests to the
server 102 and to receive and process responses from the
platform server 102.
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[0032] The client device 104 is generally intended to
encompass any client computing device such as a laptop/
notebook computer, wireless data port, smart phone, per-
sonal data assistant (PDA), tablet computing device, one or
more processors within these devices, or any other suitable
processing device. For example, the client device 104 may
comprise a computer that includes an input device, such as
a keypad, touch screen, or other device that can accept user
information, and an output device that conveys information
associated with the operation of the server 102, or the client
device 104 itself, including digital data, visual information,
or a GUI 154.

[0033] The GUI 154 of the client device 104 interfaces
with at least a portion of the system 100 for any suitable
purpose, including generating a visual representation of the
analytics application 122. In particular, the GUI 154 may be
used to view a FCM, various Web pages, or other user
interfaces. Generally, the GUI 154 provides the user with an
efficient and user-friendly presentation of business data
provided by or communicated within the system. The GUI
154 may comprise a plurality of customizable frames or
views having interactive fields, pull-down lists, and buttons
operated by the user. The GUI 154 contemplates any suitable
graphical user interface, such as a combination of a generic
web browser, intelligent engine, and command line interface
(CLI) that processes information and efficiently presents the
results to the user visually.

[0034] Memory 156 included in the client device 104 may
include any memory or database module and may take the
form of volatile or non-volatile memory including, without
limitation, magnetic media, optical media, random access
memory (RAM), read-only memory (ROM), removable
media, or any other suitable local or remote memory com-
ponent. The memory 156 may store various objects or data,
including user selections, caches, classes, frameworks,
applications, backup data, business objects, jobs, web pages,
web page templates, database tables, repositories storing
business and/or dynamic information, and any other appro-
priate information including any parameters, variables, algo-
rithms, instructions, rules, constraints, or references thereto
associated with the purposes of the client device 104.
[0035] There may be any number of client devices 104
associated with, or external to, the system 100. For example,
while the illustrated system 100 includes one client device
104, alternative implementations of the system 100 may
include multiple client devices 104 communicably coupled
to the server 102 and/or the network 106, or any other
number suitable to the purposes of the system 100. Addi-
tionally, there may also be one or more additional client
devices 104 external to the illustrated portion of system 100
that are capable of interacting with the system 100 via the
network 106. Further, the term “client”, “client device” and
“user” may be used interchangeably as appropriate without
departing from the scope of this disclosure. Moreover, while
the client device 104 is described in terms of being used by
a single user, this disclosure contemplates that many users
may use one computer, or that one user may use multiple
computers.

[0036] FIG. 2 illustrates layers of an architecture 200 of a
CNN. The architecture 200 includes several layers. For each
layer, initial weights can be randomly selected from a
normal distribution. An input layer 202 can provide input to
the CNN. The input layer 202 can provide data of a size of
NxPxPxF, where N is a number of samples, P is a patch
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height and width, and F is a number of features. The input
layer 202 can require a partial preservation of the local
structures of an image. Therefore, concatenated world maps
can be split into equally sized parts, which can be defined as
patches and represent the samples. For example, an image of
size 256x256 can be split into 10 patches (samples), with the
size of each patch equal to 16x16.

[0037] Regarding features, data for four features 203 for a
given geographical area can be provided by the input layer
202 to a first hidden layer 204. The four features 203 can
each be biophysical indicators, for example, and can be
received from an external service. Raw data of each world
map for a given date can be loaded into one or more arrays.
The raw data for a geographic area can be divided into
granules (e.g., tiles) and arrays can be stitched together to
form stitched maps. A mask that includes references to
invalid pixels (e.g., clouds, water surfaces) can be generated.
The stitched maps can be transformed to patches for the
CNN.

[0038] Biophysical indicators can be associated with val-
ues that indicate the vegetation for particular areas. A
reduction in biophysical activity (e.g., vegetation) in an area
can be associated, for example, with either a lack of
resources such as water or an excess of solar activity, and
either can increase the chance of wildfire in the area.
Biophysical indicators can include Normalized Difference
Vegetation Index (NDVI), Dry Matter Productivity (DMP),
Leaf Area Index (LAI), and Fraction of Absorbed Photo-
synthetically Active Radiation (FAPAR).

[0039] The NDVI is a graphical indicator for quantifying
the vegetation in an area. The NDVI can be based on the
amount of visible and near-infrared light reflected by veg-
etation. Visible light (VIS) is absorbed mostly by healthy
vegetation, but reflected by unhealthy vegetation, whereas
for near-infrared (NIR) light, this relationship is generally
inverted (NIR light is generally reflected by healthy vegeta-
tion but absorbed by unhealthy vegetation). The properties
of VIS light and NIR light can be used when calculating the
NDVI using formula (2) below:

(NIR - VIS) )
NDVI= —— -
(NIR + VIS)
[0040] The DMP indicator can measure the overall growth

rate or dry biomass increase of vegetation in an area, and can
be expressed as kilograms of dry matter per hectare per day
(kgDM/ha/day). The calculation of DMP can include bio-
physical variables such as canopy water content, surface
temperature and leaf phenology. Since DMP estimates the
increase of dry biomass, high DMP values can indicate
vegetation areas, for example. As another example, low
DMP values can be indicative of plants losing high quanti-
ties of dry biomass due to a drought.

[0041] The LAI quantifies the thickness of the vegetation
cover in an area. The LAI can be derived from satellite
images and can correspond to a total green area of all the
canopy layers in an area, including the under-story, which
may represent a very significant contribution to the LAI,
especially for forests. The LAI can be defined as half the
developed area of photosynthetically active elements of the
vegetation per unit horizontal ground area.

[0042] The FAPAR indicator can refer to amounts of green
and alive elements of the canopy and can depend on canopy
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structure, vegetation element optical properties, and angular
configuration. Although related to the canopy like LAL a
FAPAR value can quantify a fraction of the solar radiation
absorbed by live leaves for photosynthesis activity.

[0043] Other indicators can be used, such as raw image
data (with images of a same width, height and time interval,
for example), FCOVER (Fraction of Vegetation Cover), VCI
(Vegetation Condition Index), or other indicators. FCOVER
measures a fraction of ground covered by green vegetation,
quantifies a spatial extent of vegetation, is independent from
the illumination direction and is sensitive to a vegetation
amount. The VCI compares a current NDVI to a range of
values observed in a same period in previous years. The VCI
can be expressed as a percentage and provides an indication
where an observed value is situated between extreme values
(minimum and maximum) in previous years. Lower and
higher VCI values indicate bad and good vegetation state
conditions, respectively.

[0044] Each of the features 203 can share some or all of
several characteristics. Each data set can be for a particular
number of days (e.g., 10 days), a particular spatial resolution
(e.g., one square kilometer), use a particular value range
(e.g., 0-255 as an unsigned 8 bit integer), use a particular
data format (e.g., Hierarchical Data Format 5 (HDFS), use a
particular type of geographic projection (e.g., regular lati-
tude-longitude), use a particular geodatical datum (e.g.,
WGS84 (World Geodetic System 84), and use a particular
pixel size and accuracy (e.g., 1/336° and minimum 10 digits
accuracy). Each data set may include invalid values, which
can be caused, for example, by clouds, snow, sea, or other
factors.

[0045] Each data set in a feature 203 can be identified
using an identifier that includes a horizontal and vertical
component. For instance, an example identifier is:
g2 BIOPAR_NDVI_2016080 10000_H21V4_PROBAV_
V2.1, where NDVI is a product type generated with
PROBAV satellite data with an algorithmic approach of
version 2.1 on the date 1 Aug. 2016 with a position or
location identifier of H21V4 relative to the whole map of
data associated with the product. For example, H21V4 can
mean position 21 out of 35 in the horizontal direction and 4
out of 15 in the vertical direction. A feature 203 may include,
for example, 35x15=525 granules. However, some granules
can represent a water surface, so less granules, e.g., 330,
may be included in an actual data set. Each such granule can
include a quicklook image, metadata, and actual data, which
can be stored as an HDF5 file and used for model fitting and
prediction.

[0046] A parser can be used to generate an overview about
the input data and to evaluate subsequent predictions later on
by comparing actual wildfires to predicted wildfires. The
parser can extract data for a specific time range and initialize
selected products and their granules for a specific date. The
values of the granules values can be stored in an HDFS file
as an array of a particular size (e.g., size 1121x1121), and
can be concatenated according to location identifier, which
can result in a map. As mentioned previously, products can
include invalid pixels (e.g., sea surface or clouds). The
invalid values can be stored in a HDFS file together with
valid values and can represent the last values of an interval
scale (e.g., values of 254 and 255). To avoid reducing the
generalization of classifiers (e.g., categorical variables in
interval scales), a mask can be used to skip the invalid values
while training and predicting.



US 2018/0336452 Al

[0047] Referring again to FIG. 2, and as illustrated by an
operation 205, the first hidden layer 204 is a rectified
convolutional layer that uses data from the input layer 202
to generate output neurons (e.g., thirty two output neurons)
for use by a second hidden layer 206. As illustrated by an
operation 207, the second hidden layer 206 is a rectified
convolutional layer that uses data from the first hidden layer
204 to generate output neurons (e.g., a larger number of
output neurons than generated by the first hidden layer 204,
such as sixty four) for use by a third hidden layer 208. As
illustrated by an operation 209, the third hidden layer 208 is
a rectified convolutional layer that uses data from the third
hidden layer 208 to generate output neurons (e.g., a larger
number of output neurons than generated by the second
hidden layer 206, such as one hundred twenty eight), for use
by a fourth hidden layer 210. Each of the hidden layers 204,
206, and 208 can use a [.2-regularizer, with the outputs of
each layer processed by local response normalization and by
max-pooling using, for example, a pool shape of 2x2 and a
pool stride of 1x1.

[0048] In general, for the convolutional layers, a number
of maps, kernel sizes and skipping factors can characterize
a given convolutional layer. On each convolutional layer, a
kernel of size (K, K,) can be shifted over a valid region of
an input image (e.g., the kernel can be completely inside of
the input image for each convolutional layer). Strides S_and
S, which can control how the kernel convolves around the
input image, can define an amount of pixels skipped by the
kernel in x- and y-directions between subsequent convolu-
tions. A shifting process can result in an output map for a
layer with a size equal to the previous layer, if padding
(adding additional values to the border of the image) is
utilized.

[0049] The fourth hidden layer 210 is a fully connected
layer that uses an activation function (e.g., a tan h function)
and data from the third hidden layer 208 to generate output
neurons 211 (e.g., a larger number of output neurons than
generated by the third hidden layer 208, such as five hundred
twelve) for use by a fifth hidden layer 212. The fifth hidden
layer 212 is a fully connected layer that uses an activation
function (e.g., a tan h function) and data from the fourth
hidden layer 210 to generate output neurons 213 (e.g., a
larger number of output neurons than generated by the fourth
hidden layer 210, such as one thousand twenty four) for use
by an output layer 214. For the fourth hidden layer 210 and
the fifth hidden layer 212, neurons can be kept if a computed
probability is more than a threshold (e.g., 0.5).

[0050] The output layer 214 is a fully connected layer that
uses an activation function (e.g., a softmax function) and
data from the fifth hidden layer 212 to generate two output
neurons including a first output neuron 216 and a second
output neuron 218 (e.g., one output neuron per class label).
The first output neuron 216 represents a calculated likeli-
hood of a wildfire for the geographical area for an upcoming
time period (e.g., a next fifteen days). The second output
neuron 218 represents a calculated likelihood of there not
being a wildfire for the geographical area in the upcoming
time period. Values for the first output neuron 216 and the
second output neuron 218 can add up to one hundred
percent.

[0051] When determining the first output neuron 216 and
the second output neuron 218, to summarize the information
about each patch, one of two approaches can be used. In a
first approach, a patch can be labeled positive if the patch
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includes more than one pixel indicating a positive value and
otherwise labeled negative. In a second approach, all posi-
tive occurrences in a patch can be counted and the patch can
be labeled positive if the sum of the positive occurrences in
the patch is above a predetermined threshold. The first
approach can result in maps that include an unacceptable
amount of more fire risk areas than the actual ground truth.
Therefore the second approach may be preferable. For the
second approach, the threshold can be optimized (e.g., to a
ratio of eight pixels) so that the summarized ground truth
includes substantially the same amount of wildfire endan-
gered pixels as the original ground truth. With a threshold of
eight, if a patch includes more than eight pixels indicating
wildfire areas, then the whole patch can be labeled as
wildfire endangered.

[0052] In further detail of the hidden layers, the resulting
outputs of a topmost convolutional layer (e.g., the third
hidden layer 208) can be combined by a fully connected
layer (e.g., the fourth hidden layer 210) into a one-dimen-
sional feature vector (e.g., the output neurons 211). In some
implementations, to process information of a convolutional
layer, kernel sizes of convolutional filters and max-pooling
rectangles are used with a specific size and stride, such that
the output maps of a last convolutional layer are down-
sampled to one pixel per map.

[0053] Max-pooling can be used as an efficient, non-linear
method of down-sampling. Max-pooling can include parti-
tioning an input image along each direction by a factor of K
and K,, into a set of non-overlapping rectangles of size (K,,
K)). The output of a max-pooling layer can be calculated by
taking a maximum activation of each rectangle. Max-pool-
ing can eliminate non-maximal values, and such elimination
can: 1) reduce computation for upper layers; and 2) provide
position invariance over larger local regions, which can lead
to faster convergence, selection of superior invariant fea-
tures, and improved generalization.

[0054] Basic definitions of a neuron’s output f as a
function of its input x can be represented either by f(x)=
(1+e™)™" or f(x)=tan h(x). These functions are saturating
non-linear activation functions which can be slower than a
ReLU (Rectified Linear Unit) function f(x)=max(0, x). The
ReL.U function may be neither saturating nor linear. A ReLU
function can be used for faster training as compared to the
saturating non-linear activation functions.

[0055] A ReLl.U function may not require input normal-
ization to prevent saturation. Higher generalization can be
achieved using a ReLLU function by applying local response
normalization, which is a procedure that is inspired by real
neurons that stimulates the competition for big activities
amongst neuron outputs computed using different kernels.
The local response normalization can be applied after the
ReL.U nonlinearity in certain layers. Applying local response
normalization can result in a lower test error rate.

[0056] A dropout method can be used to reduce the
complexity of a neural network while training. In a dropout
method, the output of each neuron can be retained with a
probability p and set to 0 otherwise. Neurons which are
dropped out do not participate in the feed-forwarding and
back-propagation. Using dropout, neurons may not be able
to rely on the presence of particular neurons, which can
result in neurons learning more robust features that are
useful in conjunction with many different random subsets of
the other neurons, which can improve training.
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[0057] FIG. 3 illustrates a LSTM network 300. The LSTM
network 300 includes a LSTM layer 302 that includes a
series of LSTM units including LSTM units 304, 306, and
308. As described in more detail below, each LSTM unit
304, 306, and 308 is respectively associated with a CNN
310, 312, or 314. Each LSTM unit 304, 306, or 308 uses a
respective CNN 310, 312, or 314 to generate output data for
use by a successive unit in the LSTM 300. A fully connected
layer 316 can, using input from the last LSTM unit 308,
generate predictions 318 that indicate a wildfire risk for a
given geographical area.

[0058] In general, recurrent neural networks (RNN) such
as the LSTM network 300 can be used to process sequential
inputs such as time series. The architecture of RNNs is based
on the neuron structures primarily found in the neocortex in
the brain. RNNs can process every element of an input
sequence successively and memorize crucial information in
each step. The memorized information can be available in a
next processing step. Each element can be processed using
the same weights. RNNs can map an input sequence x,&R”
to a sequence of hidden states h,ER” and an output sequence
7, as shown in formulas (3) and (4) below

B =g(WoaX A Wish, 1 +by) (3)
L =g(Wy4b,) @

where W_,, W,,,, W,_ are weights, b,, b, are biases, g is an
activation function of the RNN layer, T is the length of the
sequence and N is the number of hidden units. The compu-
tation of the hidden state h, can require a previous hidden
state h, ;. Accordingly, the RNN can iterate recursively over
the input sequence x,. The hidden state passed to the first
RNN cell can be chosen as h,=0.

[0059] The use of a memory unit which can be called cell
state Ct can overcome training difficulties caused by van-
ishing or exploding gradients. The memory unit can enable
the network to learn when to forget previous information and
when to update a cell state with the current hidden state. A
LSTM cell can accept a previous cell state C,_;, the hidden
state of the previous cell h, ;, and the input of the according
time step X, as input. The resulting output can be the updated
cell state C, and the hidden state h,. A decision about which
information to keep or throw away can be made in gate
layers. Each gate layer can use a sigmoid function o (or
some other type of function), which can be referred to as an
inner activation function of the LSTM layer. The output of
the inner activation function can range between 0 and 1 (for
each hidden unit) and can determine the extent to which
information is memorized (e.g., when the o function output
is substantially equal to 1) or forgotten (e.g., when the o
function output is substantially equal to 0). A LSTM cell can
include three gates that each take the hidden state of the
previous cell h, ; and x, as input, including a forget gate
layer, an input gate layer, and an output gate layer. The forget
gate layer can be used to determine to which extent each
value of the cell state is kept, using formula (5):

F=o( Wylh, %] +bg) &)
[0060] The input gate layer can be used to determine to

which extent the cell state is updated with the cell input of
h, , and x,, using formula (6):

i=o(Wylh, 1,x]+by) (6)
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[0061] The output gate layer can be used to determine to
which extent output hidden state h, is kept, using formula

(7):
070(Wy[h 1, x]+b,) @)
[0062] Using the three gate layers, an output of a LSTM

cell can be computed using formulas (8), (9), and (10)
below:

Cme(Won, vl bo) ®)
Caprl i€ ©)
ko g(L) (10)

where g is the activation function for the LSTM layer.

[0063] FIG. 4 illustrates a LSTM network 400. Similar to
the LSTM network 300, the LSTM network 400 includes the
LSTM layer 302 that includes a series of LSTM units
including LSTM units 304, 306, and 308, with each LSTM
unit 304, 306, and 308 respectively associated with the CNN
310, 312, or 314.

[0064] As described above with respect to FIG. 2, inputs
to a respective CNN can include biophysical indicators. For
example, FAPAR indicators 402, NDVI indicators 404,
DMP indicators 406, and LAl indicators 408 can be inputted
to the CNN 310 associated with the LSTM unit 302. The
CNN 310 accepts input data from a time period of forty five
days ago 410. Other CNNs can accept input data from more
recent time periods. For example, the CNN 312 can accept
data from thirty days ago 412, another (not shown) CNN can
accept data from fifteen days ago, and the CNN 314 can
accept current data 414. Although time windows of fifteen
days are illustrated, other time window lengths can be used,
including varying length time windows. Each of the CNNs
can use common weights. A last two-neuron layer of a
respective CNN can be omitted such that a previous CNN in
the chain feeds an input vector with a length of 1024 into a
successive corresponding LSTM cell. For example, the
CNN 310 can generate a vector of length 1024 which can be
accepted as input by the LSTM unit 306 for use by the CNN
312.

[0065] Several steps can be performed for LSTM layer
setup. For example, for the training of the LSTM layer 302,
a dropout keep probability can be determined. For example,
a dropout keep probability of 0.7 can be used. An activation
function, such as a hyperbolic tangent, can be selected. A
number of hidden units can be selected, such as 512 hidden
units. A number of time steps can be selected, such as four.

[0066] During prediction, the output of the CNNs can be
passed to the LSTM layer 302. A hidden state of alast LSTM
unit 308 can be passed to the fully connected layer 316 with
two neurons for each pixel that represents a geographic area,
with the two neurons representing probability of a wildfire
and probability of not a wildfire (e.g., classes wildfire and
non-wildfire), for a given geographic area, for an upcoming
time period (e.g., the next fifteen days). A softmax activation
function can be used for classification. Predictions 318 can
be presented in a map 416, with different colors or other
indications indicating different wildfire risks for different
geographic areas presented on the map 416.

[0067] FIG. 5A illustrates an example LSTM unit 500. As
illustrated by a flow 502, various operations can be per-
formed by the LSTM unit to transform a set of inputs into
a set of outputs. For example, various functions 504 (e.g.,
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sigmoid, tan h) and various pixel operations 506 (e.g.,
addition, multiplication) can be used.

[0068] FIG. 5B illustrates example curves 550 and 552
that can be used for performance evaluation. The curves 550
and 552 are receiver operating characteristic (ROC) curves.
A ROC can be used for conclusions about distributions of
wildfire endangered areas given a few distinct areas where
a fire actually breaks out. The ROC curve can be based on
two parameters: a true positive rate TPR and a false positive
rate FPR, which can be formally defined as shown below:

TPR= —2 (L
T T+ Fy

FPR = Fy 12
TFp+T,

where T, is true positives (e.g., number of samples correctly
classified as positives (e.g., wildfire areas correctly classified
as wildfire areas)), T, is true negatives (e.g., number of
samples correctly classified as negatives (e.g., non-wildfire
areas correctly classified as non-wildfire areas)), F, is false
positives (e.g., number of negative samples incorrectly clas-
sified as positives (e.g., non-wildfire areas incorrectly clas-
sified as wildfire areas)), and F,, is false negatives (e.g.,
number of positive samples incorrectly classified as nega-
tives (wildfire areas incorrectly classified as non-wildfire
areas)).

[0069] F,and T, can be typically within the same order of
magnitude, so classifying too many areas as fire-endangered
can be penalized while pertaining manageable values (in
contrast to the precision). By adjusting a threshold on the
prediction score, the TPR and/or the FPR can be improved.
The ROC curves 550 and 552 can be constructed by plotting
the FPR as a function of the TPR. A high-performing
classifier maintains a high value of TPR even for a low value
of FPR. Therefore an area under the curve (AUC) score can
be utilized as a metric for measuring the performance of a
classifier. For the example curves 550 and 552, the area
under the curve 550 is 0.85 and the area under the curve 552
is 0.91, which can indicate that a LSTM network performed
better than a CNN, for prediction.

[0070] FIG. 6 illustrates an example user interface 600.
The user interface 600 presents a color coded map 602 with
various colors indicating various levels of wildfire risk for a
given area. For example, as illustrated by a legend 604,
wildfire risk levels can include very low, low, medium, high,
and very high levels of risk. For instance, arcas 606, 608,
610, 612, and 614 have risk levels of very low, low, medium,
high, and very high, respectively, as indicated by respective
colors used for the respective areas.

[0071] FIG. 7 illustrates an example user interface 700.
The user interface 700 includes a map 702. The user
interface 700 may be displayed, for example, in response to
a zoom-in operation received by the user interface 600
described above with respect to FIG. 6. The user interface
700 includes colored selectable items, such as an item 704.
The color of a selectable item indicates a wildfire risk for a
geographic area around the location the item represents,
according to a legend 706. As described below, a user can
select a selectable item to view more detailed information
about a wildfire prediction.
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[0072] FIG. 8 illustrates an example user interface 800. An
interface 802 can be displayed over the user interface 800 in
response to selection of a selectable item 804. The interface
802 displays a prediction score 806 that indicates a wildfire
probability for an upcoming time period for a geographic
area represented by the selectable item 804. A date 808
indicates when the prediction score 806 was calculated. The
prediction score 806 can be based on values for NDVI 810,
LAI 812, FAPAR 814, and DMP 816 indicators. The inter-
face 802 displays values for the NDVI 810, LAI 812,
FAPAR 814, and DMP 816 indicators for first 818, second
820, third 822, and fourth 824 time periods, with each
successive time period being a previous time period further
into the past than the date 808. The prediction score 806 can
be a score determined using a LSTM that uses the first 818,
second 820, third 822, and fourth 824 time periods as a time
sequence, for example. A user can select a chart tab 826 to
view information about the prediction score 806 in a chart
form.

[0073] FIG. 9 illustrates an example user interface 900.
The user interface 900 includes an interface 902 that dis-
plays line charts for data related to a wildfire prediction for
an area represented by a selected item 904. The interface 902
includes lines 906, 908, 910, and 912 that show data for
NDVI 914, FAPAR 916, DMP 918, and L AT 920 indicators
for each of first 922, second 924, third 926, and fourth 928
time points, respectively. The first 922, second 924, third
926, and fourth 928 time points can be included in a time
series in a LSTM network used to calculate the wildfire
prediction.

[0074] FIG. 10 illustrates an example user interface 1000.
Similar to the user interface 600, the user interface 1000
presents a map 1002. The map 1002 is a world map that is
color coded using colors, according to a legend 1004, that
indicate different levels of wildfire risk for different areas,
including an area 1006 having very high risk and an area
1008 having very low risk. Wildfire risk calculation methods
can be trained using ground truth data. Wildfire risk predic-
tions can also be compared to ground truth data, for perfor-
mance evaluation. The user interface 1000 indicates areas
that have ground truth data, such as an area 1010.

[0075] FIG. 11 is a flowchart of an example method 1100
for predicting wildfires on the basis of biophysical indicators
and spatiotemporal properties using a CNN. It will be
understood that method 1100 and related methods may be
performed, for example, by any suitable system, environ-
ment, software, and hardware, or a combination of systems,
environments, software, and hardware, as appropriate. For
example, one or more of a client, a server, or other com-
puting device can be used to execute method 1100 and
related methods and obtain any data from the memory of the
client, the server, or the other computing device. In some
implementations, the method 1100 and related methods are
executed by one or more components of the system 100
described above with respect to FIG. 1. For example, the
method 1100 and related methods can be executed by the
CNN engine 214 of FIG. 1.

[0076] At 1102, a request for a wildfire prediction for at
least one geographical area is received. The request can be
received, for example, from a user interface. As another
example, the request can be received from a system or
program.

[0077] At 1104, at least one biophysical indicator is iden-
tified, each biophysical indicator providing biophysical data
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for the at least one geographical area. The at least one
biophysical indicator can include at least one of a vegetation
index, a dry matter index, a leaf area index, and a fraction
of absorbed photosynthetically active radiation index.
[0078] At 1106, the at least one biophysical indicator is
provided to a CNN. The CNN can be trained using ground
truth data that includes historical information about wildfires
for at least one ground truth geographical area. One or more
of the geographical areas for which a prediction is requested
can be different from ground truth areas. The CNN can
include an input layer, at least one rectified convolutional
layer, at least one fully connected layer, and an output layer.
[0079] At 1108, the CNN to generate at least one predic-
tion for wildfire risk for the at least one geographical area.
The generated prediction can include, for each geographic
area, a first output neuron and a second output neuron, the
first output neuron and the second output neuron indicating
a probability of a wildfire and a probability of no wildfire for
the geographic area for an upcoming time period, respec-
tively.

[0080] At 1110, the at least one prediction is provided
responsive to the request. Prediction information can be
presented on a map that displays the at least one geographic
area. The prediction can be evaluated by comparing ground
truth data for the at least one geographic area to the
generated prediction.

[0081] FIG. 12 is a flowchart of an example method 1200
for predicting wildfires on the basis of biophysical indicators
and spatiotemporal properties using a LSTM network. It will
be understood that method 1200 and related methods may be
performed, for example, by any suitable system, environ-
ment, software, and hardware, or a combination of systems,
environments, software, and hardware, as appropriate. For
example, one or more of a client, a server, or other com-
puting device can be used to execute method 1200 and
related methods and obtain any data from the memory of the
client, the server, or the other computing device. In some
implementations, the method 1200 and related methods are
executed by one or more components of the system 100
described above with respect to FIG. 1. For example, the
method 1200 and related methods can be executed by the
CNN engine 214 of FIG. 1.

[0082] At 1202, a request for a wildfire prediction for at
least one geographical area is received. The request can be
received, for example, from a user interface. As another
example, the request can be received from a system or
program.

[0083] At 1204, at least one biophysical indicator is iden-
tified, each biophysical indicator providing biophysical data
for the at least one geographical area. The at least one
biophysical indicator can include at least one of a vegetation
index, a dry matter index, a leaf area index, and a fraction
of absorbed photosynthetically active radiation index.
[0084] At 1206, the at least one biophysical indicator is
provided to a LSTM network, the LSTM network including
a CNN for each of multiple LSTM units, each LSTM unit
and each CNN associated with a historical time period in a
time series.

[0085] At 1208, the LSTM is used to generate at least one
prediction for wildfire risk for the at least one geographical
area for an upcoming time period. The outputs of each CNN
except a last CNN associated with a last historical time
period can be respectively provided to a CNN associated
with a more recent time period in the time series. The
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provided outputs of each CNN can be outputs generated by
a hidden layer of a respective CNN. The outputs of the last
CNN can be provided to a fully connected layer of the
LSTM. The fully connected layer can be used to generate the
at least one prediction. The at least one prediction can
include, for each geographic area, a first output neuron and
a second output neuron, the first output neuron and the
second output neuron indicating a probability of a wildfire
and a probability of no wildfire for the geographic area for
an upcoming time period, respectively.

[0086] At 1210, the at least one prediction is provided
responsive to the request. Prediction information can be
presented on a map that displays the at least one geographic
area. The prediction can be evaluated by comparing ground
truth data for the at least one geographic area to the
generated prediction.

[0087] The preceding figures and accompanying descrip-
tion illustrate example processes and computer-implement-
able techniques. But system 100 (or its software or other
components) contemplates using, implementing, or execut-
ing any suitable technique for performing these and other
tasks. It will be understood that these processes are for
illustration purposes only and that the described or similar
techniques may be performed at any appropriate time,
including concurrently, individually, or in combination. In
addition, many of the operations in these processes may take
place simultaneously, concurrently, and/or in different orders
than as shown. Moreover, system 100 may use processes
with additional operations, fewer operations, and/or differ-
ent operations, so long as the methods remain appropriate.
[0088] In other words, although this disclosure has been
described in terms of certain embodiments and generally
associated methods, alterations and permutations of these
embodiments and methods will be apparent to those skilled
in the art. Accordingly, the above description of example
embodiments does not define or constrain this disclosure.
Other changes, substitutions, and alterations are also pos-
sible without departing from the spirit and scope of this
disclosure.

What is claimed is:

1. A computer-implemented method, the method compris-
ing:

receiving a request for a wildfire prediction for at least one
geographical area;

identifying at least one biophysical indicator, each bio-
physical indicator providing biophysical data for the at
least one geographical area;

providing the at least one biophysical indicator to a long
short term memory (LSTM) network, the LSTM net-
work including a convolutional neural network (CNN)
for each of multiple LSTM units, each LSTM unit and
each CNN associated with a historical time period in a
time series;

using the LSTM to generate at least one prediction for
wildfire risk for the at least one geographical area for an
upcoming time period; and

providing the at least one prediction responsive to the
request.

2. The method of claim 1, wherein the outputs of each
CNN except a last CNN associated with a last historical time
period are respectively provided to a CNN associated with
a more recent time period in the time series.
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3. The method of claim 2, wherein the provided outputs
of each CNN are outputs generated by a hidden layer of a
respective CNN.

4. The method of claim 2, wherein the outputs of the last
CNN are provided to a fully connected layer of the LSTM.

5. The method of claim 3, wherein the fully connected
layer is used to generate the at least one prediction.

6. The method of claim 4, wherein the at least one
prediction comprises a first output neuron and a second
output neuron, the first output neuron and the second output
neuron indicating a probability of a wildfire and a probabil-
ity of no wildfire for the geographic area for an upcoming
time period, respectively.

7. The method of claim 1, wherein providing the at least
one prediction comprises presenting prediction information
on a map that displays the at least one geographic area.

8. The method of claim 1, further comprising evaluating
the prediction using ground truth data for the at least one
geographical area.

9. A system, comprising:

at least one processor; and

a memory communicatively coupled to the at least one

processor, the memory storing instructions which,

when executed by the at least one processor, cause the

at least one processor to perform operations compris-

ing:

receiving a request for a wildfire prediction for at least
one geographical area;

identifying at least one biophysical indicator, each
biophysical indicator providing biophysical data for
the at least one geographical area;

providing the at least one biophysical indicator to a
long short term memory (LSTM) network, the
LSTM network including a convolutional neural
network (CNN) for each of multiple LSTM units,
each LSTM unit and each CNN associated with a
historical time period in a time series;

using the LSTM to generate at least one prediction for
wildfire risk for the at least one geographical area for
an upcoming time period; and

providing the at least one prediction responsive to the

request.

10. The system of claim 9, wherein the outputs of each
CNN except a last CNN associated with a last historical time
period are respectively provided to a CNN associated with
a more recent time period in the time series.

11. The system of claim 10, wherein the provided outputs
of each CNN are outputs generated by a hidden layer of a
respective CNN.
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12. The system of claim 10, wherein the outputs of the last
CNN are provided to a fully connected layer of the LSTM.

13. The system of claim 12, wherein the fully connected
layer is used to generate the at least one prediction.

14. The system of claim 13, wherein the at least one
prediction comprises a first output neuron and a second
output neuron, the first output neuron and the second output
neuron indicating a probability of a wildfire and a probabil-
ity of no wildfire for the geographic area for an upcoming
time period, respectively.

15. One or more computer-readable media storing instruc-
tions which, when executed by at least one processor, cause
the at least one processor to perform operations comprising:

receiving a request for a wildfire prediction for at least one

geographical area;

identifying at least one biophysical indicator, each bio-

physical indicator providing biophysical data for the at
least one geographical area;

providing the at least one biophysical indicator to a long

short term memory (LSTM) network, the LSTM net-
work including a convolutional neural network (CNN)
for each of multiple LSTM units, each LSTM unit and
each CNN associated with a historical time period in a
time series;

using the LSTM to generate at least one prediction for

wildfire risk for the at least one geographical area for an
upcoming time period; and

providing the at least one prediction responsive to the

request.

16. The computer-readable media of claim 15, wherein
the outputs of each CNN except a last CNN associated with
a last historical time period are respectively provided to a
CNN associated with a more recent time period in the time
series.

17. The computer-readable media of claim 16, wherein
the provided outputs of each CNN are outputs generated by
a hidden layer of a respective CNN.

18. The computer-readable media of claim 16, wherein
the outputs of the last CNN are provided to a fully connected
layer of the LSTM.

19. The computer-readable media of claim 18, wherein
the fully connected layer is used to generate the at least one
prediction.

20. The computer-readable media of claim 19, wherein
the at least one prediction comprises a first output neuron
and a second output neuron, the first output neuron and the
second output neuron indicating a probability of a wildfire
and a probability of no wildfire for the geographic area for
an upcoming time period, respectively.
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