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Example implementations include a method of requesting an
instruction block associated with one or more instructions
and located at one or more addresses of a system memory,
obtaining the instruction block from the system memory,
generating a hash of the instruction block, obtaining an
expected hash associated with the instruction block, com-
paring the expected hash with the generated hash, in accor-
dance with a determination that the expected hash matches
the generated hash, generating a first validation response
associated with the instruction block. Example implemen-
tations also include a method of obtaining a secure instruc-
tion image including an expected hash associated with an
instruction block, the instruction block associated with one
or more instructions and located at one or more addresses of
a system memory, storing the secure instruction image at a
configuration register, and enabling the hardware controller
to perform one or more hashing operations associated with
the instruction block during runtime of a system processor.
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METHOD AND SYSTEM FOR
CONTINUOUSLY VERIFYING INTEGRITY
OF SECURE INSTRUCTIONS DURING
RUNTIME

CROSS-REFERENCE TO RELATED PATENT
APPLICATIONS

This application claims priority to U.S. Provisional Patent
Application Ser. No. 62/955,949, entitled “HARDWARE-
BASED CONTINUOUS RUNTIME INTEGRITY
CHECKS OF SECURE BOOT CODE IN 10T DEVICES”
filed Dec. 31, 2019, the contents of such application being
hereby incorporated by reference in its entirety and for all
purposes as if completely and fully set forth herein.

TECHNICAL FIELD

The present implementations relate generally to encryp-
tion systems, and more particularly to continuously verify-
ing integrity of secure instructions during runtime.

BACKGROUND

Embedded computing processors and systems are increas-
ingly subject to broader application scenarios involving
greater risk of unauthorized modification. As one example,
embedded systems deployed in devices and systems under
customer or third party control are exposed to more points
of attack and thus additional security vulnerabilities. Secure
code, instructions, data, or the like stored on such systems is
more open to compromise, modification, and altered opera-
tion, and must be continually verified to ensure integrity
thereof. However, conventional systems may not effectively
verify integrity of secure code, instructions, data, or the like
with sufficient frequency to detect unauthorized modifica-
tion after deployment in high-risk or insecure operating
environments. Thus, a technological solution for continu-
ously veritying integrity of secure instructions during run-
time is desired.

SUMMARY

Example implementations include a method including
requesting an instruction block associated with one or more
instructions and located at one or more addresses of a system
memory, obtaining the instruction block from the system
memory, generating a hash of the instruction block, obtain-
ing an expected hash associated with the instruction block,
comparing the expected hash with the generated hash, in
accordance with a determination that the expected hash
matches the generated hash, generating a first validation
response associated with the instruction block.

Example implementations also include a method includ-
ing obtaining a secure instruction image including an
expected hash associated with an instruction block, the
instruction block associated with one or more instructions
and located at one or more addresses of a system memory,
storing the secure instruction image at a configuration reg-
ister, and enabling the hardware controller to perform one or
more hashing operations associated with the instruction
block during runtime of a system processor.

Example implementations also include a system with a
hardware controller including an enable input node and an
interrupt input node, and configured to request an instruction
block associated with one or more instructions and located
at one or more addresses of a system memory, obtain an
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expected hash associated with the instruction block, and, in
accordance with a determination that the expected hash
matches a generated hash, generating a first validation
response associated with the instruction block, a bus master
engine operatively coupled to the hardware controller, and
configured to obtain the instruction block from the system
memory, and buffer the obtained instruction block to a buffer
memory, a hash engine operatively coupled to the buffer
memory, and configured to generate the generated hash of
the instruction block, and a comparator operatively coupled
to the hardware controller and the hash engine, and config-
ured to compare the expected hash with the generated hash.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other aspects and features of the present
implementations will become apparent to those ordinarily
skilled in the art upon review of the following description of
specific implementations in conjunction with the accompa-
nying figures, wherein:

FIG. 1 illustrates an example system, in accordance with
present implementations.

FIG. 2 illustrates an example secure processor further to
the example system of FIG. 1.

FIG. 3 illustrates an example secure register further to the
example system of FIG. 1.

FIG. 4 illustrates an example method of enabling check-
ing integrity of a secure computing device, in accordance
with present implementations.

FIG. 5 illustrates an example method of checking integ-
rity of a secure computing device further to the method of
FIG. 4, in accordance with present implementations.

FIG. 6 illustrates an example method of checking integ-
rity of a secure computing device further to the method of
FIG. 5, in accordance with present implementations.

DETAILED DESCRIPTION

The present implementations will now be described in
detail with reference to the drawings, which are provided as
illustrative examples of the implementations so as to enable
those skilled in the art to practice the implementations and
alternatives apparent to those skilled in the art. Notably, the
figures and examples below are not meant to limit the scope
of the present implementations to a single implementation,
but other implementations are possible by way of inter-
change of some or all of the described or illustrated ele-
ments. Moreover, where certain elements of the present
implementations can be partially or fully implemented using
known components, only those portions of such known
components that are necessary for an understanding of the
present implementations will be described, and detailed
descriptions of other portions of such known components
will be omitted so as not to obscure the present implemen-
tations. Implementations described as being implemented in
software should not be limited thereto, but can include
implementations implemented in hardware, or combinations
of software and hardware, and vice-versa, as will be appar-
ent to those skilled in the art, unless otherwise specified
herein. In the present specification, an implementation
showing a singular component should not be considered
limiting; rather, the present disclosure is intended to encom-
pass other implementations including a plurality of the same
component, and vice-versa, unless explicitly stated other-
wise herein. Moreover, applicants do not intend for any term
in the specification or claims to be ascribed an uncommon or
special meaning unless explicitly set forth as such. Further,
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the present implementations encompass present and future
known equivalents to the known components referred to
herein by way of illustration.

Present implementations include example devices and
systems to continuously, constantly, repeatedly, or similarly
monitor secure code, instructions, data, and the like stored
on embedded systems for modification, and to alert the
system upon detection of modification. Thus, in some imple-
mentations, the present implementations are operable to
modify, halt, block, or the like, operation of the example
system in response to a modification of secure portions of a
system memory. It is to be understood that present imple-
mentations are not limited to embedded systems.

FIG. 1 illustrates an example system, in accordance with
present implementations. As illustrated by way of example
in FIG. 1, an exemplary system 100 includes at least one of
an integrity system 110 and a local system 120 operatively
coupled by a system bus 112. In some implementations, the
integrity system 110 includes a secure processor 106 and a
secure register 108 operatively coupled by a secure com-
munication bus 114. In some implementations, the local
system 120 includes a system processor 102 and a system
memory 104. In some implementations, the integrity system
110 and the local system 120 each respectively include an
electronic circuit board, printed circuit board, conductive
substrate, or the like. In some implementations, the integrity
system 110 and the local system 120 are disposed, formed
located, assembled, fabricated, bonded, or the like, to a
common device, substrate, component, or the like.

The system processor 102 is operable to execute one or
more instructions associated with the local system 120. In
some implementations, the system processor 102 is an
electronic processor, an integrated circuit, or the like includ-
ing one or more of digital logic, analog logic, digital sensors,
analog sensors, communication buses, volatile memory,
nonvolatile memory, and the like. In some implementations,
the system processor 102 includes but is not limited to, at
least one microcontroller unit (MCU), microprocessor unit
(MPU), central processing unit (CPU), graphics processing
unit (GPU), physics processing unit (PPU), embedded con-
troller (EC), or the like. In some implementations, the
system processor 102 includes a memory operable to store
or storing one or more instructions for operating components
of the system processor 102 and operating components
operably coupled to the system processor 102. In some
implementations, the one or more instructions include at
least one of firmware, software, hardware, operating sys-
tems, embedded operating systems, and the like. It is to be
understood that at least one of the system processor 102 and
the local system 120 generally can include at least one
communication bus controller to effect communication
between the system processor 102 and other elements of the
local system 120.

The system memory 104 is operable to store data asso-
ciated with the local system 120. In some implementations,
the system memory 104 includes ones or more hardware
memory devices for storing binary data, digital data, or the
like. In some implementations, the system memory 104
includes one or more electrical components, electronic com-
ponents, programmable electronic components, reprogram-
mable electronic components, integrated circuits, semicon-
ductor devices, flip flops, arithmetic units, or the like. In
some implementations, the system memory 104 includes at
least one of a non-volatile memory device, a solid-state
memory device, a flash memory device, and a NAND
memory device. In some implementations, the system
memory 104 includes one or more addressable memory

10

15

20

25

30

35

40

45

50

55

60

65

4

regions disposed on one or more physical memory arrays. In
some implementations, a physical memory array includes a
NAND gate array disposed on a particular semiconductor
device, integrated circuit device, printed circuit board
device, and the like.

The secure processor 106 is operable to execute one or
more instructions associated with the integrity system 110.
In some implementations, the secure processor 106 validates
content, configuration, security, or the like, of at least a
portion of the system memory 104 of the local system 120.
In some implementations, the secure processor 106 validates
content, configuration, security, or the like, of at least a
portion of a contiguous physical or logical address block of
the system memory 104 of the local system 120. In some
implementations, the secure processor 106 is operable to
perform one or more processing operations associated with
restricting or preventing modification to the system memory
104. In some implementations, the secure processor 106 is
operatively coupled to the system bus 112. In some imple-
mentations, the secure processor 106 includes one or more
devices in accordance with the system processor 102.

The secure register 108 is operable to store data associ-
ated with the integrity system 110. In some implementations,
the integrity system 110 limits or prevents access to at least
a portion of the secure register 108 from the local system
110. In some implementations, the secure register 108
includes ones or more hardware memory devices for storing
binary data, digital data, or the like. In some implementa-
tions, the secure register 108 includes one or more electrical
components, electronic components, programmable elec-
tronic components, reprogrammable electronic components,
integrated circuits, semiconductor devices, flip flops, arith-
metic units, or the like. In some implementations, the secure
register 108 includes at least one of a non-volatile memory
device, a solid-state memory device, a flash memory device,
and a NAND memory device. In some implementations, the
secure register 108 includes one or more addressable
memory regions disposed on one or more physical memory
arrays. In some implementations, a physical memory array
includes a NAND gate array disposed on a particular semi-
conductor device, integrated circuit device, printed circuit
board device, and the like.

The system bus 112 is operable to communicate one or
more instructions, signals, conditions, states, or the like
between one or more of the system processor 102, the
system processor 102, the system memory 104, and the
integrity system 110. In some implementations, the system
bus 112 includes one or more digital, analog, or like com-
munication channels, lines, traces, or the like. The secure
communication bus 114 is operable to communicate one or
more instructions, signals, conditions, states, or the like
between one or more of the secure processor 106, the secure
register 108, and the local system 120. In some implemen-
tations, the system bus 114 includes one or more digital,
analog, or like communication channels, lines, traces, or the
like.

FIG. 2 illustrates an example secure processor further to
the example system of FIG. 1, in accordance with present
implementations. As illustrated by way of example in FIG.
2, an example secure processor 200 includes a hardware
controller 210, a bus master engine 220, a buffer memory
230, a hash engine 240, a comparator 250, and a status
register 260. In some implementations, the example secure
processor 200 corresponds to the secure processor 106.

The hardware controller 210 is operable to control one or
more operations to validate integrity of the system memory
104. In some implementations, the hardware controller 210
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is operable to repeatedly initiate, control, manage, or the
like, a validation operation associated with the system
memory 104. In some implementations, the hardware con-
troller 210 is operable to continuously repeat one or more
validation operations continuously during operation of at
least one of the system processor 102, the system memory
104, the secure processor 106, and the secure register 108.
In some implementations, the hardware controller 210 is
operable concurrently with, simultaneously with, in parallel
with, independently of, or the like, at least one of the system
processor 102 and the system memory 104. In some imple-
mentations, the hardware controller operates in response to
or under control of a system clock associated with, inte-
grated with or the like, the system processor 102. In some
implementations, the hardware controller operates in
response to or under control of a secure clock independent
of, disconnected from, or the like, the system processor 102
or any clock associated therewith. In some implementations,
the hardware controller 210 includes one or more logical or
electronic devices including but not limited to integrated
circuits, logic gates, flip flops, gate arrays, programmable
gate arrays, and the like. It is to be understood that any
electrical, electronic, or like devices, or components asso-
ciated with the hardware controller 210 can also be associ-
ated with, integrated with, integrable with, replaced by,
supplemented by, complemented by, or the like, the secure
processor 106 or any component thereof. In some imple-
mentations, the hardware controller includes system bus
node 212, enable input node 214, and interrupt output node
216.

The system bus node 212 is operable to communicate one
or more instructions, commands, and the like to and from at
least one of the system processor 102 and the system
memory 104 by the system bus 112. In some implementa-
tions, the system bus node 212 operatively couples the
example secure processor 200 to the system bus 112. The
enable input node 214 is operable to receive an enable input
signal and to switch the hardware controller 210 between a
checking mode and a configuration mode. In some imple-
mentations, the checking mode causes the hardware con-
troller 210 to operate in a state, configuration, or the like, to
validate, repeatedly validate, or the like, one or more por-
tions of the system memory 104. In some implementations,
the configuration mode is or includes one or more actions or
the like in accordance with FIG. 4. In some implementa-
tions, the checking mode is or includes one or more actions
or the like in accordance with FIGS. 5 and 6.

The interrupt output node 216 is operable to transmit an
interrupt signal from the hardware controller 210. In some
implementations, the interrupt output node 216 I operatively
coupled to the system processor 102. In some implementa-
tions, the system processor 102 performs one or more
operations associated with a safe mode or the like in
response to receiving an interrupt signal from the interrupt
output node 216. As one example, the safe mode can cause
the system processor 102 to halt operation. As another
example, the safe mode can cause the system processor 102
to operate with a subset of available functions. As another
example, the safe mode can cause the system processor 102
to operatively disconnect from the system memory or block
one or more addresses thereof. In this example, the interrupt
output node 216 can cause the system processor 102 to
operate assume that the system memory 104 contains cor-
rupted, unvalidated, compromised, or like instructions, and
block use of at least a portion of the system memory 104 in
response.
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The bus master engine 220 is operable to retrieve, gen-
erate, or the like, one or more memory addresses from the
system memory 104. In some implementations, the bus
master engine 220 is operable to retrieve one or more
memory blocks based on a starting address and an address
range, size, or the like. In some implementations, the bus
master engine 220 contains one or more registers, accumu-
lators, flip-flops, multiplexers, or the like to receive one or
more bits, address lines, or the like from the system memory.
In some implementations, the bus master engine 220 can
retrieve instructions stored at an address at a bus transfer rate
faster than operation of at least one of the hash engine 240
and the comparator 250. In some implementations, the bus
master engine 220 includes one or more logical or electronic
devices including but not limited to integrated circuits, logic
gates, flip flops, gate arrays, programmable gate arrays, and
the like. It is to be understood that any electrical, electronic,
or like devices, or components associated with the bus
master engine 220 can also be associated with, integrated
with, integrable with, replaced by, supplemented by,
complemented by, or the like, the secure processor 106 or
any component thereof.

The buffer memory 230 is operable to store one or more
instructions received from the bus master engine 220 and to
transmit one or more instructions to the hash engine 240. In
some implementations, the buffer memory 230 is or includes
one or more first-in, first-out (“FIFO”) queues including one
or more inputs operably coupled to the bus master engine
220 and one or more outputs operably coupled to the hash
engine 240. Alternatively, in some implementations, the
buffer memory 230 is or includes one or more parallel
registers, memory arrays, or the like, including one or more
inputs operably coupled to the bus master engine 220 and
one or more outputs operably coupled to the hash engine
240. In some implementations, the buffer memory 230 is
operable to receive input from the bus master engine 230 at
the bus transfer rate. In some implementations, the buffer
memory 230 is operable to generate output to the hash
engine 240 at a hash transfer rate lower than the bus transfer
rate. It is to be understood that the buffer memory 230 can
be optionally included in the example secure processor 200
where the bus transfer rate and the hash transfer rate satisfy
a transfer criterion. In some implementations, the transfer
criterion includes a state in which the bus transfer rate is
higher than the hash transfer rate. In some implementations,
the buffer memory 230 includes one or more logical or
electronic devices including but not limited to integrated
circuits, logic gates, flip flops, gate arrays, programmable
gate arrays, and the like. It is to be understood that any
electrical, electronic, or like devices, or components asso-
ciated with the buffer memory 230 can also be associated
with, integrated with, integrable with, replaced by, supple-
mented by, complemented by, or the like, the secure pro-
cessor 106 or any component thereof.

The hash engine 240 is operable of generate at least one
hash based on at least one instruction, record, or the like. In
some implementations, the hash engine 240 receives one or
more instructions from one or more of the bus master engine
220 and the buffer memory 230. In some implementations,
the hash engine is or includes 240 at least one cryptographic,
mathematical, arithmetic, or like processor, logical device,
or the like, to generate a unique hash value derived from
received instructions. In some implementations, the hash
engine 240 is operable to generate the unique hash based on
a plurality of instructions associated with a particular
address range, address block, address size, or the like. Thus,
in some implementations, the hash engine 240 can generate
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a hash based on an entire block of instructions received from
the bus master engine 220 or the buffer memory 230. In
some implementations, the hash engine 240 includes a
cryptographic hash function immutably embedded therein.
In some implementations, the cryptographic hash function is
individualized to at least one of the hardware controller 210,
the secure processor 106, the secure register 108, the system
processor 102, and the system memory 104. In some imple-
mentations, the hash engine 240 includes one or more
logical or electronic devices including but not limited to
integrated circuits, logic gates, flip flops, gate arrays, pro-
grammable gate arrays, and the like. It is to be understood
that any electrical, electronic, or like devices, or components
associated with the hash engine 240 can also be associated
with, integrated with, integrable with, replaced by, supple-
mented by, complemented by, or the like, the secure pro-
cessor 106 or any component thereof.

The comparator 250 is operable to compare a hash
generated by the hash engine 240 with a hash obtained from
the secure register. In some implementations, the comparator
250 includes one or more logic gates receiving one or more
corresponding bits from the hash generated by the hash
engine 240 with the hash obtained from the secure register.
In some implementations, the comparator 250 is directly
operatively coupled to the secure register 108 by the secure
communication bus 114 to retrieve a hash from the secure
register 108 in response to an instruction, command, or the
like, from the hardware controller 210. Alternatively, in
some implementations, the comparator 250 is operatively
coupled to the secure register 108 by the secure communi-
cation bus 114 to retrieve a hash from the hardware con-
troller 210 in response to an instruction, command, or the
like, from the hardware controller 210 to the secure register
108. In some implementations, the comparator 250 is oper-
able to output a first binary response in response to receiving
identical, matching, corresponding, equal, equivalent, or the
like hashes, and to output a second binary response other-
wise. As one example, the first binary response can be a “1”
or “TRUE” response corresponding to a high voltage level,
and a second binary response can be a “0” or “FALSE”
response corresponding to a low voltage level. In some
implementations, the comparator 250 includes one or more
logical or electronic devices including but not limited to
integrated circuits, logic gates, flip flops, gate arrays, pro-
grammable gate arrays, and the like. It is to be understood
that any electrical, electronic, or like devices, or components
associated with the comparator 250 can also be associated
with, integrated with, integrable with, replaced by, supple-
mented by, complemented by, or the like, the secure pro-
cessor 106 or any component thereof.

The status register 260 is operable to store a result
associated with an output of the comparator 250. In some
implementations, the status register 260 is or includes an
accumulator, a register, a gate array, a flip-flop, or the like
having a bit length equal to or greater than a word length
capacity of at least one of the hash engine 240 and the
comparator 250. As one example, the status register may
have a bit length of 32 bits, and the hash engine 240 and the
comparator 250 may each have a word length capacity of 16
bits. In some implementations, the status register 260
includes one or more logical or electronic devices including
but not limited to integrated circuits, logic gates, flip flops,
gate arrays, programmable gate arrays, and the like. It is to
be understood that any electrical, electronic, or like devices,
or components associated with the status register 260 can
also be associated with, integrated with, integrable with,
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replaced by, supplemented by, complemented by, or the like,
the secure processor 106 or any component thereof.

FIG. 3 illustrates an example secure register further to the
example system of FIG. 1, in accordance with present
implementations. As illustrated by way of example in FIG.
3, an example secure register 300 includes at least one of a
first configuration register 310, a second configuration reg-
ister 320, and a third configuration register 330. In some
implementations, the example secure register 300 corre-
sponds to the secure register 108. It is to be understood that
the example secure register 300 can include an arbitrary
number of configuration registers, and is not limited to the
three example configuration registers 310, 320 and 330 as
illustrated in FIG. 3. As one example, the example secure
register 300 can include one, two or more than three
configuration registers in addition to illustrated implemen-
tations. It is to be further understood that each of the
configuration registers 310, 320 and 330 can include an
arbitrary number of addresses, blocks, and block hashes. As
one example, the example secure register 300 can include
the first configuration register 310, and the first configura-
tion register 310 can include addresses 312, 314 and 316,
block sizes 314, 324 and 334, and block hashes 316, 326 and
336. Thus, in some implementations, the example secure
register 300 can include an arbitrary number of configura-
tion registers, in accordance with present implementations.
Further each example secure register 300 can support one or
more than one address, block size, and block hash.

The first configuration register 310 is operable to store at
least one first secure instruction image. In some implemen-
tations, the first configuration register 310 includes a first
address 312, a first block size 314, and a first block hash 316.
In some implementations, the secure instruction image
includes the first address 312, the first block size 314, and
the first block hash 316. In some implementations, the
secure instruction image identifies, defines, or the like, one
contiguous group of addresses associated with, including, or
the like, secure instructions of the system memory 104. In
some implementations, the first configuration register 310
contains one or more addresses in one secure instruction
image associated with one continuous memory address
range. In some implementations, the first configuration
register 310 contains one or more addresses in one or more
secure instruction images associated with one noncontigu-
ous memory address range including multiple noncontigu-
ous secure instruction images. The first address 312 identi-
fies a lowest, starting, or like address associated with the
system memory 104. The first block size 314 identifies an
address range, number of addresses, highest address, ending
address, or the like associated with the system memory. The
first block hash 316 includes a hash based at least partially
on at least one address identified by the first address 312 and
the first block size 314. As one example, the first block hash
316 can be derived from a cryptographic operation based on
all addresses within range of the first address 312 and the
first block size 314. In some implementations, the first block
hash is set, written or the like during a configuration mode.
In some implementations, the first block hash 316 is immu-
table once written.

The second configuration register 320 is operable to store
at least one second secure instruction image distinct from the
first secure instruction image stored at the first configuration
register 310. In some implementations, the second configu-
ration register 320 includes a second address 322, a second
block size 324, and a second block hash 326. In some
implementations, the second secure instruction image
includes the second address 322, a second block size 324,
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and a second block hash 326. In some implementations, the
second configuration register 320 has structure correspond-
ing to structure of the first configuration register 310. In
some implementations, the second configuration register
320 has at least one function corresponding to the first
configuration register 310. In some implementations, the
second address 322, the second block size 324, and the
second block hash 326 correspond in at least one of structure
and function to the first address 312, the first block size 314,
and the first block hash 316.

The third configuration register 330 is operable to store at
least one third secure instruction image distinct from the first
secure instruction image stored at the first configuration
register 310 and the second secure instruction image stored
at the second configuration register 320. In some implemen-
tations, the third configuration register 330 includes a third
address 332, a third block size 334, and a third block hash
336. In some implementations, the third secure instruction
image includes the third address 332, the third block size
334, and the third block hash 336. In some implementations,
the third configuration register 330 has structure correspond-
ing to structure of the first configuration register 310. In
some implementations, the third configuration register 330
has at least one function corresponding to the first configu-
ration register 310. In some implementations, the third
address 332, the third block size 334, and the third block
hash 336 correspond in at least one of structure and function
to the first address 312, the first block size 314, and the first
block hash 316.

FIG. 4 illustrates an example method of enabling check-
ing integrity of a secure computing device, in accordance
with present implementations. In some implementations, at
least one of the example system 100 and the example device
200 performs method 400 in accordance with present imple-
mentations. In some implementations, the method 400
beings at step 410.

At step 410, an example system enters a configuration
mode. In some implementations, at least one of the system
processor 102 and the secure processor 106 enters the
configuration mode. In some implementations, the configu-
ration mode includes a state or like of the secure processor
106 permitting modification of the secure register 108. In
some implementations, the configuration mode corresponds
to a flash, compile, load, or the like to or on the secure
register 108 from an external device operatively coupled
thereto. Thus, in some implementations, the configuration
mode allows an external device to modify contents of the
secure register 108 before the secure register 108 blocks any
further changes thereto in accordance with an immutable
configuration. In some implementations, step 410 includes
step 412. At step 412, the example system enables an
immutable bootloader to modify a configuration register. In
some implementations, the immutable bootloader is oper-
able to obtain modification instructions, addresses, address
block sizes, and hashes from at least one of the secure
processor 106, the system processor 102, and an external
device. In some implementations, the system processor 102
includes the immutable bootloader. The method 400 then
continues to step 420.

At step 420, the example system obtains a secure instruc-
tion image. In some implementations, at least one of the
system processor 102, the secure processor 106, and the
secure register 108 obtains the secure instruction image. In
some implementations, the secure instruction image identi-
fies a contiguous ranges of addresses associated with the
system memory 104. In some implementations, step 420
includes at least one of steps 422, 424 and 426. At step 422,
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the example system obtains a secure region address. At step
424, the example system obtains a secure region address
size. At step 426, the example system obtains an expected
hash of instruction block. The method 400 then continues to
step 430.

At step 430, the example system stores at least one secure
instruction image at a configuration register. In some imple-
mentations, at least one of the system processor 102, the
secure processor 106, and the secure register 108 stores at
least one secure instruction image at a configuration register.
In some implementations, the example system receives the
secure instruction image from an external device in response
to an operation to store one or more secure instructions at the
system memory 104. Thus, in some implementations, the
example system modifies at least one configuration register
associated with the system memory 104 in connection with
an operation to update secure instructions at the system
memory 106. Further, in some implementations, the
example system modifies at least one configuration register
associated with the system memory 104 in connection with
an operation to update designation of one or more instruc-
tions associated with the system memory 106 as secure
instructions at the system memory 106. The method 400
then continues to step 432.

At step 432, the example system determines whether to
obtain additional secure instructions. In some implementa-
tions, at least one of the system processor 102 and the secure
processor 106 determines whether to obtain additional
secure instructions. In some implementations, the example
system obtains an image index from an external system
indicating whether to obtain additional secure instructions.
In some implementations, the image index includes a count
of available images, and the example system iterates a
counter until a number of secure images corresponding to
the count of available images is satisfied. In accordance with
a determination to obtain additional secure instructions, the
method 400 continues to step 420. Alternatively, in accor-
dance with a determination not to obtain additional secure
instructions, the method 400 continues to step 440.

At step 440, the example system exits configuration
mode. In some implementations, at least one of the system
processor 102 and the secure processor 106 exits the con-
figuration mode by modifying the state of one or more
hardware devices, latches, logical units, or the like, thereof.
In some implementations, the example system exits the
configuration mode in accordance with a set, reset, place-
ment, removal, or the like of one or more jumpers of the
example system settable between a configuration mode and
checking mode. In some implementations, step 440 includes
at least one of steps 442 and 444. At step 442, the example
system exits a boot process. In some implementations, the
example system enters a checking mode including continu-
ous monitoring of the system memory 104 for any modifi-
cations to the secure instructions stored thereon as desig-
nated during the configuration mode. At step 444, the
example system enables hardware controller monitoring. In
some implementations, at least one of the system processor
102 and the secure processor 106 enables the hardware
controller 210 by the enable input node 214. In some
implementations, the method 400 then continues to step 450.

FIG. 5 illustrates an example method of checking integ-
rity of a secure computing device further to the method of
FIG. 4, in accordance with present implementations. In
some implementations, at least one of the example system
100 and the example device 200 performs method 500 in
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accordance with present implementations. In some imple-
mentations, method 500 begins at step 450. The method 500
then continues to step 510.

At step 510, the example system obtains an identifier
associated with a secure instruction image. In some imple-
mentations, the identifier is or includes an address associated
with a secure instruction image or a configuration register. In
some implementations, the identifier is or includes a com-
pound address identifying a particular configuration register
and a particular secure instruction image. In some imple-
mentations, the compound address includes a static portion
identifying the configuration register, where the secure reg-
ister 108 includes one configuration register. In some imple-
mentations, the compound address includes a static portion
identifying the secure instruction image, where the secure
register, a particular configuration register, or each configu-
ration register of a plurality of configuration registers
includes one secure instruction image. The method 500 then
continues to step 512. At step 512, the example system
obtains at least one secure region address associated with the
identifier. In some implementations, at least one of the
secure processor 106 and the hardware controller 210
obtains at least one secure region address associated with the
identifier from the secure register 108. The method 500 then
continues to step 514. At step 514, the example system
obtains at least one secure region address size associated
with the identifier. In some implementations, at least one of
the secure processor 106 and the hardware controller 210
obtains at least one secure region address size associated
with the identifier from the secure register 108. The method
500 then continues to step 520.

At step 520, the example system requests at least one
instruction block associated with the obtained secure address
and secure address size for the identifier. In some imple-
mentations, at least one of the secure processor 106 and the
hardware controller 210 requests at least one instruction
block from the secure register 108. The method 500 then
continues to step 530.

At step 530, the example system obtains at least one
instruction block at the bus master engine from the system
memory. In some implementations, at least one of the secure
processor 106, the hardware controller 210, and the bus
master engine 220 obtains at least one instruction block at
the bus master engine from the system memory 104. In some
implementations, the example system obtains the instruction
block asynchronously from operation of the system proces-
sor 102. Thus, in some implementations, the example system
is operable to obtain the instruction block in parallel with
and independently of the operation of the system processor
102. The method 500 then continues to step 540.

At step 540, the example system buffers the instruction
block at a buffer memory. In some implementations, the
buffer memory 230 buffers the instruction block. In some
implementations, the example system buffers the instruction
block asynchronously from operation of the system proces-
sor 102. Thus, in some implementations, the example system
is operable to buffer the instruction block in parallel with and
independently of the operation of the system processor 102.
The method 500 then continues to step 550. At step 550, the
example system generates at least one runtime hash associ-
ated with the instruction block at a hash engine. In some
implementations, the hash engine 240 generates the runtime
hash. In some implementations, the example system gener-
ates the runtime hash asynchronously from operation of the
system processor 102. Thus, in some implementations, the
example system is operable to generate the runtime hash in
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parallel with and independently of the operation of the
system processor 102. The method 500 then continues to
step 560.

At step 560, the example system obtains an expected hash
associated with the identifier. In some implementations, the
comparator 250 obtains the expected hash from the hash
engine 240. The method 500 then continues to step 570. At
step 570, the example system compares the expected hash to
the runtime hash. In some implementations, the comparator
250 compares the expected hash to the runtime hash. In
some implementations, the example system compares the
expected hash to the runtime hash by comparing at least one
bit of the runtime hash with a corresponding bit of the
expected hash. In some implementations, the expected hash
corresponds to one of the block hashes 316, 326 and 336. In
some implementations, the example system obtains the
expected hash asynchronously from operation of the system
processor 102. Thus, in some implementations, the example
system is operable to obtain the expected hash in parallel
with and independently of the operation of the system
processor 102. In some implementations, the method 500
then continues to step 580.

FIG. 6 illustrates an example method of checking integ-
rity of a secure computing device further to the method of
FIG. 5, in accordance with present implementations. In
some implementations, at least one of the example system
100 and the example device 200 performs method 600 in
accordance with present implementations. In some imple-
mentations, method 600 begins at step 580. The method 600
then continues to step 610.

At step 610, the example system determines whether an
expected hash matches a runtime hash. In some implemen-
tations, the comparator 250 determines whether the expected
hash matches the runtime hash. In accordance with a deter-
mination that the expected hash matches a runtime hash, the
method 600 continues to step 630. In some implementations,
the comparator 250 determines the match by determining
that every bit of the runtime hash matches every correspond-
ing bit of the expected hash. In some implementations, the
comparator communicates a first binary result indicating the
match to the hardware controller 210. Alternatively, in
accordance with a determination that expected hash does not
match a runtime hash, the method 600 continues to step 620.
In some implementations, the comparator 250 determines
that no match occurs by determining that at least one bit of
the runtime hash does not match at least one corresponding
bit of the expected hash. In some implementations, the
comparator communicates a first binary result indicating the
match to the hardware controller 210. It is to be understood
that the expected hash and the runtime hash are not limited
to binary values. As one example, the expected hash and the
runtime hash can be but are not limited to binary values,
hexadecimal values, alphanumeric values, octal values, non-
Latin characters, and the like. In some implementations, the
example system determines whether the expected hash
matches the runtime hash asynchronously from operation of
the system processor 102. Thus, in some implementations,
the example system is operable to determine whether the
expected hash matches the runtime hash in parallel with and
independently of the operation of the system processor 102.

At step 620, the example system sends at least one failure
interrupt to a system processor. In some implementations,
the hardware controller 210 sends the failure interrupt by the
interrupt output node 216. In some implementations, the
example system sends the failure interrupt asynchronously
from operation of the system processor 102. Thus, in some
implementations, the example system is operable to send the
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failure interrupt in parallel with and independently of the
operation of the system processor 102. The method 600 then
continues to step 450.

At step 630, the example system sends at least one success
interrupt to the system processor. In some implementations,
the hardware controller 210 sends the success interrupt by
the interrupt output node 216. In some implementations, the
example system sends the success interrupt asynchronously
from operation of the system processor 102. Thus, in some
implementations, the example system is operable to send the
success interrupt in parallel with and independently of the
operation of the system processor 102. The method 600 then
continues to step 640.

At step 640, the example system updates a status register.
In some implementations, at least one of the secure proces-
sor 106, the hardware controller 210, and the comparator
250 updates the status register 260. In some implementa-
tions, the hardware controller 210 updates the status register
260 in response to a determination by the comparator with
respect to an expected hash and a runtime hash. In some
implementations, the example system updates the status
register asynchronously from operation of the system pro-
cessor 102. Thus, in some implementations, the example
system is operable to update the status register in parallel
with and independently of the operation of the system
processor 102. In some implementations, step 640 includes
at least one of steps 642 and 644. At step 642, the example
system loads a status register with a match result. In some
implementations, the match result is a binary value or the
like indicating whether the comparator 250 has determined
whether a match between an expected hash and a runtime
hash has occurred.

At step 644, the example system loads a status register
with content associated with the instruction block. In some
implementations, the content can include secure instruc-
tions, data, or the like associated with the system memory
104 and one of the configuration registers 310, 320 and 330.
As one example, the content can include a secure key, value,
record, or the like within an address range associated with a
secure instruction image. Thus, in some implementations,
the example system can load secure information into the
status register in response to validation of the associated
secure information by matching of hashes. Accordingly, in
some implementations, the example system can perform
operations including the content placed in the status register
260 while restricting access to the content to at least one of
the secure processor 106, the hardware controller 210, and
the status register 260. In some implementations, the method
600 then continues to step 450. Alternatively, in some
implementations, the method 600 ends at step 450.

The herein described subject matter sometimes illustrates
different components contained within, or connected with,
different other components. It is to be understood that such
depicted architectures are illustrative, and that in fact many
other architectures can be implemented which achieve the
same functionality. In a conceptual sense, any arrangement
of components to achieve the same functionality is effec-
tively “associated” such that the desired functionality is
achieved. Hence, any two components herein combined to
achieve a particular functionality can be seen as “associated
with” each other such that the desired functionality is
achieved, irrespective of architectures or intermedial com-
ponents. Likewise, any two components so associated can
also be viewed as being “operably connected,” or “operably
coupled,” to each other to achieve the desired functionality,
and any two components capable of being so associated can
also be viewed as being “operably couplable,” to each other
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to achieve the desired functionality. Specific examples of
operably couplable include but are not limited to physically
mateable and/or physically interacting components and/or
wirelessly interactable and/or wirelessly interacting compo-
nents and/or logically interacting and/or logically inter-
actable components.

With respect to the use of plural and/or singular terms
herein, those having skill in the art can translate from the
plural to the singular and/or from the singular to the plural
as is appropriate to the context and/or application. The
various singular/plural permutations may be expressly set
forth herein for sake of clarity.

It will be understood by those within the art that, in
general, terms used herein, and especially in the appended
claims (e.g., bodies of the appended claims) are generally
intended as “open” terms (e.g., the term “including” should
be interpreted as “including but not limited to,” the term
“having” should be interpreted as “having at least,” the term
“includes” should be interpreted as “includes but is not
limited to,” etc.).

Although the figures and description may illustrate a
specific order of method steps, the order of such steps may
differ from what is depicted and described, unless specified
differently above. Also, two or more steps may be performed
concurrently or with partial concurrence, unless specified
differently above. Such variation may depend, for example,
on the software and hardware systems chosen and on
designer choice. All such variations are within the scope of
the disclosure. Likewise, software implementations of the
described methods could be accomplished with standard
programming techniques with rule-based logic and other
logic to accomplish the various connection steps, processing
steps, comparison steps, and decision steps.

It will be further understood by those within the art that
if a specific number of an introduced claim recitation is
intended, such an intent will be explicitly recited in the
claim, and in the absence of such recitation, no such intent
is present. For example, as an aid to understanding, the
following appended claims may contain usage of the intro-
ductory phrases “at least one” and “one or more” to intro-
duce claim recitations. However, the use of such phrases
should not be construed to imply that the introduction of a
claim recitation by the indefinite articles “a” or “an” limits
any particular claim containing such introduced claim reci-
tation to inventions containing only one such recitation,
even when the same claim includes the introductory phrases
“one or more” or “at least one” and indefinite articles such
as “a” or “an” (e.g., “a” and/or “an” should typically be
interpreted to mean “at least one” or “one or more”); the
same holds true for the use of definite articles used to
introduce claim recitations. In addition, even if a specific
number of an introduced claim recitation is explicitly
recited, those skilled in the art will recognize that such
recitation should typically be interpreted to mean at least the
recited number (e.g., the bare recitation of “two recitations,”
without other modifiers, typically means at least two reci-
tations, or two or more recitations).

Furthermore, in those instances where a convention
analogous to “at least one of A, B, and C, etc.” is used, in
general such a construction is intended in the sense one
having skill in the art would understand the convention (e.g.,
“a system having at least one of A, B, and C” would include
but not be limited to systems that have A alone, B alone, C
alone, A and B together, A and C together, B and C together,
and/or A, B, and C together, etc.). In those instances where
a convention analogous to “at least one of A, B, or C, etc.”
is used, in general, such a construction is intended in the
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sense one having skill in the art would understand the
convention (e.g., “a system having at least one of A, B, or
C” would include but not be limited to systems that have A
alone, B alone, C alone, A and B together, A and C together,
B and C together, and/or A, B, and C together, etc.). It will
be further understood by those within the art that virtually
any disjunctive word and/or phrase presenting two or more
alternative terms, whether in the description, claims, or
drawings, should be understood to contemplate the possi-
bilities of including one of the terms, either of the terms, or
both terms. For example, the phrase “A or B” will be
understood to include the possibilities of “A” or “B” or “A
and B.”

Further, unless otherwise noted, the use of the words
“approximate,” “about,” “around,” “substantially,” etc.,
mean plus or minus ten percent.

The foregoing description of illustrative implementations
has been presented for purposes of illustration and of
description. It is not intended to be exhaustive or limiting
with respect to the precise form disclosed, and modifications
and variations are possible in light of the above teachings or
may be acquired from practice of the disclosed implemen-
tations. It is intended that the scope of the invention be
defined by the claims appended hereto and their equivalents.

2

What is claimed is:
1. A method of checking integrity of a secure computing
device, the method comprising:
requesting, by a system processor, an instruction block
associated with one or more instructions and located at
one or more addresses of a system memory;

obtaining, by a secure processor asynchronously from the
system processor, the instruction block from the system
memory;
generating, by the secure processor in response to the
requesting the instruction block is located at addresses
of a secure memory, a hash of the instruction block;

obtaining, by the secure processor, an expected hash
associated with the instruction block;

comparing, by the secure processor, the expected hash

with the generated hash;

in response to a determination that the expected hash

matches the generated hash, generating, by the secure
processor, a first validation response associated with
the instruction block; and

enabling a hardware controller to perform the requesting

the instruction block, the obtaining the instruction
block, the generating the hash of the instruction block,
the obtaining the expected hash, and the comparing the
expected hash with the generated hash during runtime
of the system processor,

wherein the first validation response comprises loading a

status register with at least one of the instructions
associated with the instruction block, and

wherein the system processor and the secure processor

each enter and exit a configuration mode prior to the
requesting the instruction block, and wherein the con-
figuration mode allows a secure register to be modified
by an external device.

2. The method of claim 1, wherein the first validation
response comprises loading the status register with an indi-
cation that the expected hash matches the generated hash.

3. The method of claim 1, wherein the first validation
response comprises sending a first interrupt signal to the
system processor.
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4. The method of claim 1, further comprising:

in response to a determination that the expected hash does
not match the generated hash, generating a second
validation response associated with the instruction
block.

5. The method of claim 4, wherein the second validation
response comprises sending a second interrupt signal to the
system processor.

6. The method of claim 1, further comprising:

repeating the requesting the instruction block, the obtain-

ing the instruction block, the generating the hash of the
instruction block, the obtaining the expected hash, and
the comparing the expected hash with the generated
hash.

7. The method of claim 1, further comprising:

obtaining a secure instruction image including the

expected hash associated with the instruction block;
and

storing the secure instruction image at a configuration

register.

8. The method of claim 7, further comprising:

enabling a hardware controller to perform the requesting

the instruction block, the obtaining the instruction
block, the generating the hash of the instruction block,
the obtaining the expected hash, and the comparing the
expected hash with the generated hash, subsequent to
the storing the secure instruction image.

9. The method of claim 1, further comprising:

obtaining a plurality of secure instruction images, each of

the plurality of secure instruction images including a
respective expected hash associated with a respective
instruction block of a plurality of instruction blocks;
and

storing each of the secure instruction images at a con-

figuration register,

wherein the instruction block is one of the plurality of

instruction blocks.

10. The method of claim 9, further comprising:

repeating, for each of the plurality of instruction blocks,

the requesting the instruction block, the obtaining the
instruction block, the generating the hash of the instruc-
tion block, the obtaining the expected hash, and the
comparing the expected hash with the generated hash.

11. The method of claim 1, further comprising:

buffering the instruction block at a buffer memory.

12. The method of claim 1, wherein the generating the
hash of the instruction block comprises generating the hash
of the instruction block during runtime of the system pro-
Ccessor.

13. A method of enabling checking integrity of a secure
computing device, the method comprising:

obtaining, by a secure processor asynchronously from a

system processor, a secure instruction image including
an expected hash associated with an instruction block,
the instruction block associated with a validation
response and one or more instructions and located at
one or more addresses of a system memory;

storing, by the secure processor, the secure instruction

image at a configuration register; and

enabling a hardware controller of the secure processor to

perform one or more hashing operations associated
with the instruction block in response to a request by
the system processor to obtain the instruction block
located at addresses of a secure memory during runtime
of a system processor; and

enabling the hardware controller to perform the request-

ing the instruction block, the obtaining the instruction
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block, the obtaining the secure instruction image, and
the storing the secure instruction image during runtime
of the system processor,

wherein the first validation response comprises loading a
status register with at least one of the instructions
associated with the instruction block, and

wherein the system processor and the secure processor
each enter and exit a configuration mode prior to the
requesting the instruction block, and wherein the con-
figuration mode allows a secure register to be modified
by an external device.

14. The method of claim 13, further comprising:

enabling a bootloader to modify the configuration register.

15. The method of claim 14, wherein the enabling the

bootloader occurs at a configuration time separate from the
runtime of the system processor.

16. A system for checking integrity of a secure computing

device, the system comprising:

a hardware controller of a secure processor including an
enable input node and an interrupt input node, and
configured to request an instruction block associated
with one or more instructions and located at one or
more addresses of a system memory, obtain, asynchro-
nously from a system processor, an expected hash
associated with the instruction block, and, in accor-
dance with a determination that the expected hash
matches a generated hash, generating a first validation
response associated with the instruction block, the
hardware controller enabled to request the instruction
block, obtain the expected hash, the generating the hash
of the instruction block, the obtaining the expected
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hash, and compare the expected hash with the gener-
ated hash during runtime of the system processor,

wherein the first validation response comprises loading a
status register with at least one of the instructions
associated with the instruction block, and

a bus master engine operatively coupled to the hardware
controller, and configured to obtain the instruction
block from the system memory, and buffer the obtained
instruction block to a buffer memory;

a hash engine operatively coupled to the buffer memory,
and configured to generate, in response to the request
for the instruction block located at addresses of a secure
memory, the generated hash of the instruction block;

a comparator operatively coupled to the hardware con-
troller and the hash engine, and configured to compare
the expected hash with the generated hash;

wherein the system processor and the secure processor
each enter and exit a configuration mode prior to the
requesting the instruction block, and wherein the con-
figuration mode allows a secure register to be modified
by an external device.

17. The system of claim 16, further comprising:

a configuration register operatively coupled to the hard-
ware controller, and configured to store the address and
the expected hash.

18. The system of claim 16, wherein the hardware con-
troller is further configured to perform one or more hashing
operations associated with the instruction block during run-
time of the system processor.
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