US 20170344307A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2017/0344307 A1

SHAHIDI et al.

43) Pub. Date: Nov. 30, 2017

(54)

(71)

(72)

@
(22)

(63)

(60)

BLOCK CLEANUP: PAGE RECLAMATION
PROCESS TO REDUCE GARBAGE
COLLECTION OVERHEAD IN
DUAL-PROGRAMMABLE NAND FLASH
DEVICES

Applicant: Samsung Electronics Co., Ltd.,
Suwon-si (KR)

Inventors: Narges SHAHIDI, Austin, TX (US);

Manu AWASTHI, San Jose, CA (US);

Tameesh SURIL, San Jose, CA (US);

Vijay BALAKRISHNAN, Mountain

View, CA (US)

Appl. No.: 15/405,227

Filed: Jan. 12, 2017

Related U.S. Application Data

Continuation-in-part of application No. 15/217,964,
filed on Jul. 22, 2016.

Provisional application No. 62/341,584, filed on May
25, 2016, provisional application No. 62/409,319,
filed on Oct. 17, 2016.

‘ 112 HOST APPLICATIONS

Publication Classification

(51) Int. CL
GOGF 3/06 (2006.01)
(52) US.CL
CPC ... GOGF 3/0652 (2013.01); GOGF 3/0611
(2013.01); GOGF 3/0679 (2013.01)
(57) ABSTRACT

According to one general aspect, an apparatus may include
a memory, an erasure-based, non-volatile memory, and a
processor. The memory may be configured to store a map-
ping table, wherein the mapping table indicates a rewriteable
state of a plurality of memory addresses. The erasure-based,
non-volatile memory may be configured to store informa-
tion, at respective memory addresses, in an encoded format.
The encoded format may include more bits than the unen-
coded version of the information and the encoded format
may allow the information be over-written, at least once,
without an intervening erase operation. The processor may
be configured to perform garbage collection based, at least
in part upon, the rewriteable state associated with the
respective memory addresses.

100

118 UNENCODED DATA

150 NVMD PROCESSOR

152 NVMD BUFFER

: 102 104

% 114 WRITE CMD e
HoST INTERFACE GIRCUIT 120 138
132 RW STATE !

MAPPING TABLE

134
WATERMARK TABLE

136
GARBAGE COLLECTION/PAGE USE COUNTERS

OBJECT TRANSLATION MEMORY 130

144
PAGE | j

142 Pace || 142
| 142 Pace || 142 PAGE |
158 ENCODED DATA \/\‘~ 142 PAGE H 142 PAGE ‘

Y
B
(]

NON-VOLATILE MEMORY CELLS

US 2017/0344307 Al

Nov. 30,2017 Sheet 1 of 8

Patent Application Publication

|

O
O
—

Vviv(] Q3IQ0ONANN G1 T

ST13D AHOWIN TULVIOA-NON OF 1
& W ANON OF} 7 3ovd 75T 7 7 39vd ZFT v1v(] 0300ONT 85T
| 3ovd ZFT || 30vd ZHT
\ﬁ‘i Jovd THT 7 7 39vd ZFL
44
OET AHOWIW NOILYISNVY] 1o3rdQ
SHILNNOD TSN IADVA/NOILDTTIOD IDVIEVD ¥344ng QWAN ZST
9et
IV MUYWHILYAA
vel H0Ss30084 QINAN 06T
S 37gY] ONIddYIA w
; D IIVIS MY T L ”
“ T 021 LInDdID F0v4u3LN] 1SOH
— o awd LA FLT
Yol (4 ML

SNOILYOINddY LSOH 21T

-
O
Tn

Patent Application Publication Nov. 30,2017 Sheet 2 of 8 US 2017/0344307 A1

FIG. 2

LPA PPA RW Status
292 294 296
201 0x1234 5678 OxABCD Free
>
202 0x1357 2468 0x1476 Valid-|
203 < 0x2468 1357 O0x483F Valid-Il
204 < 0x3579 ACDE OxFEED Invalid
205 0x7834 FEED 0x0345 Valid-|
:>_
206 < OxDEAD BEEF Ox7D3A Valid-Il

Patent Application Publication Nov. 30,2017 Sheet 3 of 8 US 2017/0344307 A1

o] h
[} o
S 3
o L |
e
bl (g
< ™~
-
o
(e}
,\\\ <
[ap)
-
— o
e)
- I
<«
A o
O
t o
A
:) ™ i -
] 8 -
Q- -
~ ~
o
\
L = =
= Aot
<
N
]
bl
~ -
-~
o
-
~ gt
< b o
e I3 m
N
-~ Q
= -
-~
o) I
—
b P
e ™
o
—
- /’
N R -
v
- o o
< [an? o

[} e)

Patent Application Publication Nov. 30,2017 Sheet 4 of 8 US 2017/0344307 A1

o | O
o (] <O
S S
@) S
P L L
-
h ennl U, U,
o N o~
-
- <~
) o
S S
-
A
- ™
- -
|-
Lol
— o o
- -
© o o
-
o — i
A o o
Baee,
—
m o o
S S
- -
c') ™ L L
] 8 -«
O~ =
h .
o o
\ I
L o - .
T o o
~ L]
o
o P
A - -
=~ ~
o o
~ -
RN
o
_ _ o
o o~
- = o
— -~ ~
~ ~=
oS L] L]
-
A P —
~ ™ ™
- ~
~ =
Ll -
,,,,, . S
<= o o)l <t
o o ! P

Patent Application Publication Nov. 30,2017 Sheet 5 of 8 US 2017/0344307 A1

FIG. 4

PPA Flip-able Bits
494 496
401 - OXABCD 0
402~ 0x1476 7
403 < Ox483F 12
404 - OXFEED 5
405 - 0x0345 :
406 -~ 0X7D3A 0

US 2017/0344307 Al

Nov. 30,2017 Sheet 6 of 8

Patent Application Publication

(2X :vd) I-pieA

{(1X :vd) I-pH_A

(#X wd) 1I-PI_A

(eX 'wd7) 1I-PIEA

[-9814

€65
(g awil) voolg

(ZX 'Wd) I-pleA

(LX :vdT) I-pl_A

6%
(z swil) v joolg

G 9Ol

166
(1 swiy) v yoolg

0
W0

=

|

<o)
(e
L0

)|
O
ip)

|

=t
O
w0

|

I)
o)
Lol

N
(e}
e

—
L

US 2017/0344307 Al

¢)
[
(=]
r~
~N—
7]
[-?)
K-
«x |-o814
r~
y—
>
< (VX v I-PlleA
>
o)
3 0-0814
z.
||-o90844

(SX :Wd) I-pleA

(eX :vdD lI-pieA

€69
(¢ awi}) v ¥o0lg

Patent Application Publication

(OX :wdT) I-pleA

(X vd7) I-pleA

(LX 'vd7) lI-PieA

[-3914

[-8814

0-8844

[|-e2J4

0-eai4

[-a8i

(2X YdT) I-PIBA

(OX :vd) lI-pileA

(LX vd) I-pHeA

269
(z swi}) v ¥ooig

9 "OId

169
(1 swn]) v ¥ooIg

|

(o2}
O
W0

e
O
T

~
0

Patent Application Publication Nov. 30,2017 Sheet 8 of 8 US 2017/0344307 A1

FIG. 7
S

705
/ 710
Non-Volatile PROCESSOR
e ——
Memory 730 AND/OR LOGIC
| 715
CLB
Volatile Memory
<P
720
Network
e
Interface 740
User Interface
. < ——
Unit 750
Other Hardware
A ey)
Devices 760
Software 770 jalecsomiie-

US 2017/0344307 Al

BLOCK CLEANUP: PAGE RECLAMATION
PROCESS TO REDUCE GARBAGE
COLLECTION OVERHEAD IN
DUAL-PROGRAMMABLE NAND FLASH
DEVICES

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application is a continuation-in-part of, and
claims priority under 35 U.S.C. §120 to, Application Ser.
No. 15/217,964, filed on Jul. 22, 2016, which claims the
priority benefit, under 35 U.S.C. §119, of U.S. Provisional
Application Ser. No. 62/341,584, entitled “MULTI-BIT
DATA REPRESENTATION FRAMEWORK TO ENABLE
DUAL PROGRAM OPERATION ON SOLID-STATE
FLASH DEVICES” filed on May 25, 2016. The subject
matter of these earlier filed applications are hereby incor-
porated by reference.

[0002] This application claims priority under 35 U.S.C.
§119 to Provisional Patent Application Ser. No. 62/409,319,
entitled “BLOCK CLEANUP: PAGE RECLAMATION
PROCESS TO REDUCE GARBAGE COLLECTION
OVERHEAD IN DUAL-PROGRAMMABLE NAND
FLASH DEVICES” filed on Oct. 17, 2016.

[0003] The subject matter of this earlier filed application is
hereby incorporated by reference.

TECHNICAL FIELD

[0004] This description relates to data storage, and more
specifically to the reduction of tail latency in erasure-based
storage devices.

BACKGROUND

[0005] Predictable performance is often an important
design goal in several cloud and datacenter services, includ-
ing search engines, data analytics, machine learning, and
social media. Each of these services tend to be extremely
latency sensitive and generally operate under strict service
level agreements (SLAs). Specifically, coarse grain metrics
like average response time are often not representative of
overall performance and worst case latencies are frequently
much more of a concern. Variability of response times
causes high tail latency in components of a service, leading
to violation of SLAs and more importantly leading to longer
response time for users. Tail latency is the latency experi-
enced by some but very few operations. The longest latency
defines, for each service, the end of its tail.

[0006] Flash or solid state memories then to have quicker
response times than traditional memory devices. However,
because flash memories are generally derived from electri-
cally erasable programmable read-only memory (EEPROM)
technology, their memory cells generally have to be erased
before they can be written or re-written to (i.e. flash is not
generally an update-in-place technology). This causes
irregularities in flash performance as externally initiated
operation (e.g., reads, writes) may occur when an internally
initiated operation (e.g., an erase operation, move operation,
garbage collection, etc.) is occurring. This may cause the
externally initiated operation to stall as the maintenance-
based operation is being performed. Often these mainte-
nance operations (specifically the erase operation) tend to be
very slow (comparatively), exacerbating any wait or delay.

Nov. 30, 2017

[0007] Currently, replication is frequently employed to
deal with tail latency inconsistencies. The same memory
access may be issued to multiple storage devices, wherein
each storage device is often a mirror of each other. Fre-
quently, whatever device returns the first result (e.g.,
because it is on a different internal maintenance schedule) is
the device whose result is used. The results from the other
devices are discarded, as no longer important. This generally
involves more servers and bandwidth, and is generally
wasteful and expensive. Further, the software (e.g., operat-
ing system, drivers, etc.) must be complex enough to handle
the parallel nature of the replicated scheme. It may be
desirable to alter the technology to allow for more consistent
and predictable performance.

SUMMARY

[0008] According to one general aspect, an apparatus may
include a host interface, a memory, a processor, and an
erasure-based, non-volatile memory. The host interface may
receive a write command, wherein the write command
includes unencoded data. The memory may store a mapping
table, wherein the mapping table indicates a rewriteable state
of a plurality of memory addresses. The processor may
select a memory address to store information included by the
unencoded data based, at least in part, upon the rewriteable
state of the memory address. The erasure-based, non-volatile
memory may store, at the memory address, the unencoded
data’s information as encoded data, wherein the encoded
data includes more bits than the unencoded data and wherein
the encoded data can be over-written with a second unen-
coded data without an intervening erase operation.

[0009] According to another general aspect, a system may
include a processor and erasure-based, non-volatile memory
device. The processor may be configured to transmit a first
write command and at least a second write command to an
erasure-based, non-volatile memory device, wherein the first
and second write commands each include unique unencoded
data. The erasure-based, non-volatile memory device may
be configured to perform, to a single target physical memory
address, the first and at least the second write commands
without an intervening erase operation. The erasure-based,
non-volatile memory device may include an internal pro-
cessor to convert each of the unencoded data to respective at
least first encoded data and second encoded data, and
update, as part of performing each write command, a rewrit-
able state associated with the target physical memory
address. The erasure-based, non-volatile memory device
may include non-volatile memory to store, in response to the
first write command and at the target physical memory
address, the first encoded data; refrain from performing a
erase operation to the target physical memory address; and
store, in response to the second write command and at the
target physical memory address, the second encoded data.
[0010] According to another general aspect, an apparatus
may include an internal processor, and an erasure-based
memory. The internal processor may be configured to:
receive a first write command that includes a first unencoded
data, determine a target memory address to store the infor-
mation included in the first unencoded data, convert the first
unencoded data to a first encoded data, store the first
encoded data in an erasure-based memory at the target
memory address, receive a second write command that
includes a second unencoded data, convert the second unen-
coded data to a second encoded data, without performing an

US 2017/0344307 Al

erase operation on the target memory address, store the
second encoded data in the erasure-based memory at the
target memory address. The erasure-based memory may be
configured to store data by flipping bits in a unidirectional
fashion, and erase stored data by resetting all of the bits at
a memory address to a predetermined state from which the
bits may be flipped in the unidirectional fashion.

[0011] According to one general aspect, an apparatus may
include a memory, an erasure-based, non-volatile memory,
and a processor. The memory may be configured to store a
mapping table, wherein the mapping table indicates a
rewriteable state of a plurality of memory addresses. The
erasure-based, non-volatile memory may be configured to
store information, at respective memory addresses, in an
encoded format. The encoded format may include more bits
than the unencoded version of the information and the
encoded format may allow the information be over-written,
at least once, without an intervening erase operation. The
processor may be configured to perform garbage collection
based, at least in part upon, the rewriteable state associated
with the respective memory addresses.

[0012] According to another general aspect, a system may
include a processor, and an erasure-based, non-volatile
memory device. The processor may be configured to trans-
mit memory commands to an erasure-based, non-volatile
memory device. The erasure-based, non-volatile memory
device may be configured to perform, to a single target
physical memory address, a first and at least a second write
commands without an intervening erase operation. The
erasure-based, non-volatile memory device may include a
non-volatile memory configured to: store the information, at
respective memory addresses, in an encoded format,
wherein the encoded format includes more bits than the an
unencoded version of the information and wherein the
encoded format allows the information be over-written, at
least once, without an intervening erase operation, and
update, as part of performing each write command, a rewrit-
able state associated with a respective physical memory
address. The erasure-based, non-volatile memory device
may include an internal processor configured to: perform
garbage collection based, at least in part upon, the rewrite-
able state associated with the respective memory addresses.
[0013] According to another general aspect, 17. a method
may include storing information, at respective memory
addresses within erasure-based, non-volatile memory, in an
encoded format, wherein the encoded format includes more
bits than the an unencoded version of the information and
wherein the encoded format allows the information be
over-written, at least once, without an intervening erase
operation. The method may include selecting a victim block
of memory addresses to perform at least partial garbage
collection upon. The method may include determining if,
within the victim block, at least one memory address is
associated with a rewriteable state that does not require an
intervening erase operation. The method may include if so,
copying the information stored at the victim block’s at least
one memory address to a second memory address outside of
the victim block.

[0014] The details of one or more implementations are set
forth in the accompanying drawings and the description
below. Other features will be apparent from the description
and drawings, and from the claims.

[0015] A system and/or method for data storage, and more
specifically to the reduction of tail latency in erasure-based

Nov. 30, 2017

storage devices, substantially as shown in and/or described
in connection with at least one of the figures, as set forth
more completely in the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0016] FIG. 1 is a block diagram of an example embodi-
ment of a system in accordance with the disclosed subject
matter.

[0017] FIG. 2 is a block diagram of an example embodi-
ment of a data structure in accordance with the disclosed
subject matter.

[0018] FIG. 3a is a diagram of an example embodiment of
an encoding scheme in accordance with the disclosed sub-
ject matter.

[0019] FIG. 35 is a diagram of an example embodiment of
an encoding scheme in accordance with the disclosed sub-
ject matter.

[0020] FIG. 4 is a block diagram of an example embodi-
ment of a data structure in accordance with the disclosed
subject matter.

[0021] FIG. 5 is a block diagram of an example embodi-
ment of a data structure in accordance with the disclosed
subject matter.

[0022] FIG. 6 is a block diagram of an example embodi-
ment of a data structure in accordance with the disclosed
subject matter.

[0023] FIG. 7 is a schematic block diagram of an infor-
mation processing system that may include devices formed
according to principles of the disclosed subject matter.
[0024] Like reference symbols in the various drawings
indicate like elements.

DETAILED DESCRIPTION

[0025] Various example embodiments will be described
more fully hereinafter with reference to the accompanying
drawings, in which some example embodiments are shown.
The present disclosed subject matter may, however, be
embodied in many different forms and should not be con-
strued as limited to the example embodiments set forth
herein. Rather, these example embodiments are provided so
that this disclosure will be thorough and complete, and will
fully convey the scope of the present disclosed subject
matter to those skilled in the art. In the drawings, the sizes
and relative sizes of layers and regions may be exaggerated
for clarity.

[0026] It will be understood that when an element or layer
is referred to as being “on,” “connected to” or “coupled to”
another element or layer, it may be directly on, connected or
coupled to the other element or layer or intervening elements
or layers may be present. In contrast, when an element is
referred to as being “directly on”, “directly connected to” or
“directly coupled to” another element or layer, there are no
intervening elements or layers present. Like numerals refer
to like elements throughout. As used herein, the term “and/
or” includes any and all combinations of one or more of the
associated listed items.

[0027] It will be understood that, although the terms first,
second, third, and so on may be used herein to describe
various elements, components, regions, layers and/or sec-
tions, these elements, components, regions, layers and/or
sections should not be limited by these terms. These terms
are only used to distinguish one element, component, region,
layer, or section from another region, layer, or section. Thus,

US 2017/0344307 Al

a first element, component, region, layer, or section dis-
cussed below could be termed a second element, component,
region, layer, or section without departing from the teach-
ings of the present disclosed subject matter.

[0028] Spatially relative terms, such as “beneath”,
“below”, “lower”, “above”, “upper” and the like, may be
used herein for ease of description to describe one element
or feature’s relationship to another element(s) or feature(s)
as illustrated in the figures. It will be understood that the
spatially relative terms are intended to encompass different
orientations of the device in use or operation in addition to
the orientation depicted in the figures. For example, if the
device in the figures is turned over, elements described as
“below” or “beneath” other elements or features would then
be oriented “above” the other elements or features. Thus, the
exemplary term “below” may encompass both an orientation
of above and below. The device may be otherwise oriented
(rotated 90 degrees or at other orientations) and the spatially
relative descriptors used herein interpreted accordingly.

[0029] The terminology used herein is for the purpose of
describing particular example embodiments only and is not
intended to be limiting of the present disclosed subject
matter. As used herein, the singular forms “a”, “an” and
“the” are intended to include the plural forms as well, unless
the context clearly indicates otherwise. It will be further
understood that the terms “comprises” and/or “comprising,”
when used in this specification, specify the presence of
stated features, integers, steps, operations, elements, and/or
components, but do not preclude the presence or addition of
one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.

[0030] Example embodiments are described herein with
reference to cross-sectional illustrations that are schematic
illustrations of idealized example embodiments (and inter-
mediate structures). As such, variations from the shapes of
the illustrations as a result, for example, of manufacturing
techniques and/or tolerances, are to be expected. Thus,
example embodiments should not be construed as limited to
the particular shapes of regions illustrated herein but are to
include deviations in shapes that result, for example, from
manufacturing. For example, an implanted region illustrated
as a rectangle will, typically, have rounded or curved fea-
tures and/or a gradient of implant concentration at its edges
rather than a binary change from implanted to non-im-
planted region. Likewise, a buried region formed by implan-
tation may result in some implantation in the region between
the buried region and the surface through which the implan-
tation takes place. Thus, the regions illustrated in the figures
are schematic in nature and their shapes are not intended to
illustrate the actual shape of a region of a device and are not
intended to limit the scope of the present disclosed subject
matter.

[0031] Unless otherwise defined, all terms (including tech-
nical and scientific terms) used herein have the same mean-
ing as commonly understood by one of ordinary skill in the
art to which this disclosed subject matter belongs. It will be
further understood that terms, such as those defined in
commonly used dictionaries, should be interpreted as having
a meaning that is consistent with their meaning in the
context of the relevant art and will not be interpreted in an
idealized or overly formal sense unless expressly so defined
herein.

Nov. 30, 2017

[0032] Hereinafter, example embodiments will be
explained in detail with reference to the accompanying
drawings.

[0033] FIG. 1 is a block diagram of an example embodi-
ment of a system 100 in accordance with the disclosed
subject matter. In various embodiments, the system 100 may
include a computing device, such as, for example, a laptop,
desktop, workstation, personal digital assistant, smartphone,
tablet, and other appropriate computers, and so on or a
virtual machine or virtual computing device thereof.
[0034] In one embodiment, the system 100 may include a
processor 102 configured to execute instructions, and more
specifically in this case issue memory access commands
(e.g., read, write, etc.). In the illustrated embodiment, the
processor 102 may execute one or more host applications
112 or software programs. In such an embodiment, the host
applications 112 may access the data described herein.
Specifically, in the illustrated embodiment, the host appli-
cation 112 or processor 102 may transmit a write command
114 to the non-volatile memory device (NVMD) 106.
[0035] In the illustrated embodiment, the system 100 may
include a non-volatile memory device (NVMD) 106, such
as, for example, a flash drive, a solid state drive (SSD), etc.
Although, it is understood that the above are merely a few
illustrative examples to which the disclosed subject matter is
not limited.

[0036] Inthe illustrated embodiment, the NVMD 106 may
include a storage device that requires memory cells 140,
pages 142, and/or blocks 144 to be erased or reset to a
known value before being re-written. In some instances
(e.g., magnetic memories, hard drive disks (HDDs), etc.)
data may be written and then re-written over and over again
without the need for an intervening maintenance operation.
When data is changed on such a disk the series of operations
generally occur in the following sequence: an initial writing
of data to a memory address, and then a second writing of
new data to the same memory address. In these instances
stored bits may generally be flipped in both directions or in
a bi-directional fashion (e.g., from high to low, and low to
high). If the second write operation flips bits in either
direction, the storage technology supports this and no spe-
cial steps need occur.

[0037] However, in the illustrated embodiment, the stor-
age device 106 may be based upon a technology in which
write operations (or in the parlance of the technology
“programs”) involve flipping bits in only one direction or a
unidirectional fashion (e.g., from high to low). The disad-
vantage of such a technology is that any future write
operations may not “reset” a bit to the un-flipped state (e.g.,
a low to high write may not be possible). In such an
embodiment, the traditional procedure is to have an inter-
mediate operation known as “erase” that resets the stored
bits to an initial state (e.g., flips all the bits of the memory
address to the high state), before a second or subsequent
writing of new data (e.g., flipping the data from high to low)
can occur. In such an embodiment, the normal series of
operations are: a first write to the memory address, an erase
(or reset) to the memory address that places the memory
address back in the initial state, and then a second write to
the memory address may occur. In this context, the term
“erasure-based” refers to a memory or storage device that
employs a technology that requires this intervening erase
operation. In various embodiments, examples of “erasure-
based” storage technologies may include flash, NAND, or

US 2017/0344307 Al

SSD devices; although, it is understood that the above are
merely a few illustrative examples to which the disclosed
subject matter is not limited.

[0038] In the illustrated embodiment, the NVMD 106 may
ultimately store data in a non-volatile manner in non-volatile
memory cells 140. These memory cells 140 may each store
a bit of data or multiple bits, depending upon the threshold
schemes used. These memory cells 140 may be arranged in
pages 142, which may in turn be grouped into blocks 144.
In the illustrated embodiment, writes may occur at the
page-level, while erase operations may occur at the block-
level. It is understood that the above is merely one illustra-
tive example to which the disclosed subject matter is not
limited.

[0039] In the illustrated embodiment, the processor 102
may issue a write command 114 to the NVMD 106. In such
an embodiment, the write command 114 may include a
memory address (not shown) and data 118 to be written to
the NVMD 106. In various embodiments, the data 118 may
be stored, at least temporarily in a volatile memory 104. In
the illustrated embodiment, the volatile memory 104 may be
included by the system 100, and may include dynamic
random access memory (DRAM) or system memory. In
another embodiment, the memory 104 may include static
RAM (SRAM) and may be included as a cache of the
processor 102. It is understood that the above are merely a
few illustrative examples to which the disclosed subject
matter is not limited.

[0040] In the illustrated embodiment, the data 118 may be
stored in the typical binary fashion employed by computers
or in a format that is generally thought of as unencoded
(from the point of view of the NVMD 106). In such an
embodiment, each bit of information may be represented by
one bit of unencoded data 118. In various embodiments, the
unencoded data 118 may be a numerical value represented in
mathematical binary form. In another embodiment, the
unencoded data 118 may be represented in binary-coded
decimal (BCD) format, binary code (e.g., 4-8 bits of ASCII
or Unicode text), Gray code, or another format employed by
the processor 102 to transfer data. As described below, the
unencoded data 118 may differ from the encoded data 158 in
that the NVMD 106 may add an extra level of encoding to
the unencoded data 118 (e.g., that shown in FIGS. 34 and
3b).

[0041] In the illustrated embodiment, the write command
114 may be received by the host interface circuit 120 of the
NVMD 106. In such an embodiment, the host interface
circuit 120 may be a circuit configured to communicate
between the NVMD 106 and the processor 102 via a
communications protocol (e.g., serial advanced technology
attachment (SATA), etc.).

[0042] The NVMD 106 may include a NVMD or internal
processor 150 to perform operations related to the NVMD
106. The NVMD 106 may also include a NVMD buffer 152
to temporality store data used by the NVMD processor 150.
In some embodiments, the NVMD buffer 152 may include
a volatile memory.

[0043] In the illustrated embodiment, the write command
114 may be processed by the NVMD processor 150. The
write command 114 may include a virtual or logical memory
address that needs to be translated to a physical memory
address. To do this the NVMD processor 150 may make use
of a mapping table 132. The mapping table 132 may be
stored by an object or flash translation layer (FTL) or

Nov. 30, 2017

memory 130 that is included by the NVMD 106. In various
embodiments, the object translation memory 132 may
include a volatile memory. It is understood that the above is
merely one illustrative example to which the disclosed
subject matter is not limited.

[0044] In the illustrated embodiment, the mapping table
132 may include a field that indicates, for each memory
address in the mapping table 132, a rewritable (RW) state
138 that is associated with that address. As described above,
in the traditional erasure-based storage technology, every
write operation must be followed by an erase operation
before new data can be written (re-written) to the same
memory address. However, in the illustrated embodiment,
this erase step or operation may be avoided or at least
delayed, and subsequent re-writes to the same address may
be performed in certain circumstances. The rewritable state
138 may indicate whether or not the erase step must or is
likely to be performed before a new write to the memory
address can occur.

[0045] FIG. 2 is a block diagram of an example embodi-
ment of a mapping table or data structure 200 in accordance
with the disclosed subject matter. In various embodiments,
the data structure 200 may be included in a single table, as
shown. In another embodiment, the data structure 200 may
be included in multiple tables.

[0046] In the illustrated embodiment, the mapping table
200 may include three columns: logical page address (LPA)
292, physical page address (PPA) 294, and rewritable status
296. In the illustrated embodiment, each memory address is
represented by a page address. In such an embodiment, the
write command may have included a page-level memory
address. In another embodiment, the NVMD processor may
have already translated a lower level (e.g., byte-level)
memory address to a page-level memory address.

[0047] In the illustrated embodiment, six rows are shown
(rows 201, 202, 203, 204, 205, and 206). However, it is
understood that the mapping table 200 may include any
number of rows or entries. It is understood that the above is
merely one illustrative example to which the disclosed
subject matter is not limited. Likewise, it is understood that
the addresses shown are merely illustrative examples to
which the disclosed subject matter is not limited.

[0048] Insuch an embodiment, the NVMD processor may
use the mapping table 200 to convert the logical or virtual
address given in the write command to a physical address
where the data may actually be stored. However, before the
NVMD processor writes the data to the physical address, the
NVMD processor may check to see if the physical address
is capable of being written to.

[0049] In atraditional erasure-based scheme each physical
address was assigned one of the two general states: free/un-
written, or previously-written-to. In various embodiments,
the “previously-written-to” state was frequently divided in
to in-use or valid, or not-in-use or invalid. If an address was
marked as free, data could be written to it without concern.
If the address was marked as previously-written-to, the
NVMD processor had to make a decision. Either the NVMD
processor could write the data to another, free address (and
change the mapping table accordingly), or the NVMD
processor could cause the address to be erased (setting the
address as “free”), and then the new data could be written
into the now free address.

[0050] In the illustrated embodiment, the each physical
address may be associated with one of at least three (four

US 2017/0344307 Al

shown) rewritable states: free or un-written, rewritable or
Valid-1, and potentially-rewritable. In the illustrated embodi-
ment, the potentially-rewritable state may be sub-divided
into Valid-II and Invalid. In the illustrated embodiment, the
Valid-1 and Valid-II states indicate that the data stored in the
respective memory address is still being used by the host
processor or CPU. Whereas, the Invalid state indicates that
the data is no longer being used by the host processor or
CPU. In another embodiment, the rewriteable states may
include an Invalid-I state (that indicates the data is unused
but rewriteable) and an Invalid-II state (that indicates the
data is unused and is only potentially-rewriteable), similarly
to the Valid-I and Valid-II states. It is understood that the
above are merely a few illustrative examples to which the
disclosed subject matter is not limited.

[0051] Returning to FIG. 1, in this initial example the
mapping table 132 may return the physical address and a
rewritable state 138 that indicates that the address has not
been written to (e.g., un-written or free). In such an embodi-
ment, the NVMD processor 150 may proceed to write the
data, or more specifically the information included in the
unencoded data 118, to the physical address.

[0052] In the illustrated embodiment, the NVMD proces-
sor 150 may convert the unencoded data 118 to a non-
traditional encoding scheme (the encoded data 158), prior to
storing it (or the information the unencoded data 1118
includes) to the non-volatile memory cells 140 or page 142.
In the illustrated embodiment, the encoded data 158 may be
encoded in such a way that it takes up more space within the
memory cells 140, but it allows for greater re-writ ability
(without the intervening erase operation) than if it had been
stored in the unencoded data 118’s traditional format.
[0053] As described above, in erasure-based storage tech-
nologies bits may often only be or flipped in one direction
(e.g., from high to low) without an expensive operation to
reset the bits the other way (e.g., from low back to high). In
the illustrated embodiment, the encoded data 158 may be
encoded using a scheme in which the values or information
stored in the encoded data 158 may be changed multiple
times, while still adhering to the limitation imposed by
unidirectional changes in the cell 140s' voltage thresholds
(e.g., from high to low). In such an embodiment, number of
erase operations may be reduced (as two or more writes may
occur between erasures instead of only one). Therefore, the
overall response time and processing efficiencies of the
NVDM 106 may be increased. Even if the storage capabili-
ties may be decreased. It is understood that while unidirec-
tional cell voltage changes are discussed as an embodiment
in which the disclosed subject matter is useful, the disclosed
subject matter is not limited to technologies with that
limitation.

[0054] FIG. 3a is a diagram of an example embodiment of
an encoding scheme 300 in accordance with the disclosed
subject matter. In the illustrated embodiment, the encoding
scheme 300 may show various (e.g., four) numerical values
of information that may be stored in the NVMD. In the
illustrated embodiment, the encoding scheme 300 may also
show various (e.g., eight) possible ways the numerical
values may be encoded (i.e. symbols). It is understood that
the above is merely one illustrative example to which the
disclosed subject matter is not limited.

[0055] The encoding scheme 300 shows three states or
times in which a group of memory cells (e.g., three cells)
may be written to or altered by the NVMD processor. In the

Nov. 30, 2017

first state 301 the cells may be erased or reset to their highest
potential state. In the illustrated embodiment, that state is
‘111” or in decimal notation the numerical value 3. Tradi-
tionally, the plain binary encoding scheme would have
stored the numerical value 3 using 2-bits as ‘11°. However,
as described above, the disclosed subject matter may trade
storage space for re-writ ability and employ 3-bits to store
the numerical value 3.

[0056] The second state or time 302 shows all the possible
values that may be stored by the memory cells after an initial
write operation has been performed. As 2-bits of traditional
binary information is being stored, the memory cells may
store decimal values 3, 2, 1, or 0 (shown in the middle block
of each possible storage option). Traditionally, these would
have been stored as the unencoded 2-bit values 11, 10, 01,
or 00, respectively (shown in the right block of each possible
storage option). However, in the illustrated embodiment, the
encoded symbols employ 3-bits per value and the numerical
value or information written to the cells are stored as the
symbols 111, 110, 101, or 011, respectively (shown in the
left block of each possible storage option).

[0057] The third state or time 303 shows all the possible
numerical values and encoded symbols that may be stored
by the memory cells after a second write operation has been
performed. Immediately one will note that a second write
operation is possible without the need for an intervening
erase operation. Traditionally, once the second state 302
occurred an erase operation was required to reset the
memory cells back to the first state 301 (or its traditional
unencoded equivalent).

[0058] In the illustrated embodiment, each of the values
written in the second state 302 may be re-written to a new
value without flipping any bits in a way that is prohibitive
given the erasure-based storage technology (e.g., from low
to high). For example, if the value 3 (111) was stored during
the second state 302, the third state becomes a simple repeat
of the transition from the first state 301 to the second state
302. The memory cells may be re-written to 111, 110, 101,
or 011. If the value 2 (110) was stored during the second
state 302, during the third state 303 the values 110 (2), 100
(0), 010 (1), or 000 (3) may be written without an interven-
ing erase operation. If the value 1 (101) was stored during
the second state 302, during the third state 303 the values
101 (1), 100 (0), 001 (2), or 000 (3) may be written without
an intervening erase operation. If the value 0 (011) was
stored during the second state 302, during the third state 303
the values 011 (0), 010 (1), 001 (2), or 000 (3) may be
written without an intervening erase operation. It is under-
stood that the above are merely a few illustrative examples
to which the disclosed subject matter is not limited.
[0059] In the illustrated embodiment, the encoding
scheme 300 may employ 8 different potential encodings or
symbols to represent 4 numerical values. Decimal 3 may be
encoded as either 111 or 000. Decimal 2 may be encoded as
either 110 or 001. Decimal 1 may be encoded as either 101
or 010. Decimal 0 may be encoded as either 011 or 100.
[0060] Also, one will note that the encodings or symbols
in group 312 (i.e., 111, 110, 101, and 001) may be re-written
again without the need for an intervening erase operation (as
illustrated by the transition from state 302 to 303). Whereas
the encodings or symbols in group 314 (i.e., 100, 010, 001,
and 000) do not immediately display this flexibility.
[0061] FIG. 35 is a diagram of an example embodiment of
an encoding scheme 300 in accordance with the disclosed

US 2017/0344307 Al

subject matter. FIG. 36 continues the possible encoding
options or possibilities for one example embodiment to a
fourth state 304. In such an embodiment, a second re-write
operation (a third write operation) may be performed or may
be attempted.

[0062] If a second re-write operation is attempted and the
memory cells are encoded according to the group 312, the
same encoding transitions displaced between states 302 and
303 may be performed. The arrows displaying the encoding
transitions between states 303 and 304 are not shown as they
are the same as between 302 and 303 (as the initial encod-
ings are the same) and the arrows would obscure the point
of FIG. 35. As long as the memory cells are encoded with the
symbols in group 312, the memory cells may be written
from any initial decimal value to any other decimal value (as
encoded in groups 312 or 314). In such an embodiment,
when a memory address includes cells encoded according to
group 312 the memory address may be considered rewrit-
able.

[0063] Conversely, when the memory cells are encode
with one of the symbols in group 314 the ability to re-write
the cells becomes more limited. As illustrated by FIG. 35,
most of the encodings in group 314 may only be re-written
to one of two values. The 000 encoding may only be
re-written to one value, itself (000). The memory cells, in
state 303, where already set to symbols in which most of the
bits were flipped (i.e., from high to low) and therefore the
symbols cannot be changed to many of the other symbols
without an intervening erase operation (resetting the cells to
111). In such an embodiment, when a memory address
includes cells encoded according to group 314 the memory
address may be considered only potentially-rewritable.

[0064] In various embodiments, a memory address that
includes memory cells that are only in the first state 301 may
be associated with a rewritable state of Free. In such an
embodiment, a memory address that includes memory cells
that are encoded with the group 312 may be associated with
a rewritable state of rewritable, Valid-I or Invalid-I (accord-
ing to the embodiment and whether the memory address is
currently active or in use by the processor). In such an
embodiment, a memory address that includes memory cells
that are encoded with the group 314 may be associated with
a rewritable state of potentially-rewritable, Valid-11, Invalid,
or Invalid-II (according to the embodiment and whether the
memory address is currently active or in use by the proces-
sor). It is understood that the above are merely a few
illustrative examples to which the disclosed subject matter is
not limited.

[0065] Returning to FIG. 1, in the illustrated embodiment,
the NVMD 106 may receive a second write command 114.
This write command 114 may be to the same memory
address as the first write command 114. Traditionally, as
described above, the NVMD processor 150 would have
selected a new physical address to write to and/or would
have erased the contents of the old physical address. How-
ever, in the illustrated embodiment, the NVMD processor
150 may check the mapping table 132 to convert the logical
address to a physical address, and to determine the rewrit-
able state 138 of the physical address. In this instance, the
rewriteable state 138 will be one that indicates the memory
address is able to be re-written without an intervening erase
operation (e.g., Valid-1, etc.). The first write operation would

Nov. 30, 2017

have left the memory cells used to store the encoded data
158 in one of the rewritable encodings or symbols shown in
group 312 of FIG. 3a.

[0066] The NVMD processor 150 will encode the unen-
coded data 118 to the proper encoded data 158 (as shown in
FIG. 3a by the transition from the second state 302 to the
third state 303). The new encoded data 158 may be stored in
the memory cells 140. The NVMD processor 150 may
change the rewritable state 138 to reflect the new state of the
encoded data 158. In some embodiments, once any transi-
tion from the second state 302 to the third state 303 occurs,
the rewriteable state 138 may be changed to indicate that the
memory address is only potentially-rewriteable (e.g., Valid-
11, etc.), as the data may be encoded using the encodings of
groups 312 and/or 314. In another embodiment, the NVMD
processor 150 may more closely monitor what encodings
were used to create the encoded data 158 and mark the
rewritable state 138 as rewritable (e.g., Valid-I) if only the
group 312 encodings were used, or as potentially-rewritable
(e.g., Valid-II) if any of the group 314 encodings were used.
It is understood that the above are merely a few illustrative
examples to which the disclosed subject matter is not
limited.

[0067] In this example embodiment, the second write
command 114 will (for illustrative purposes) cause the
rewritable state to be potentially-rewriteable (e.g., Valid-II).
It is understood that the above is merely one illustrative
example to which the disclosed subject matter is not limited.
[0068] Eventually, a third write command 114 to the same
memory address may be issued. Traditionally, as described
above, the NVMD processor 150 would have selected a new
physical address to write to and/or would have erased the
contents of the old physical address. However, in the illus-
trated embodiment, the NVMD processor 150 may check
the mapping table 132 to convert the logical address to a
physical address, and to determine the rewritable state 138
of'the physical address. In this instance, the rewriteable state
138 will be one that indicates the memory address is only
potentially able to be re-written without an intervening erase
operation (e.g., Valid-II, etc.). The second write operation
may have left the encoded data 158 with one of the symbols
shown in group 314 of FIG. 3a.

[0069] In the illustrated embodiment, the NVMD proces-
sor 150 may determine what the appropriate encoding of the
unencoded data 118 is, and if that new encoded data 158 is
one that can be reached from the encoding symbols used by
the second write operation’s encoded data 158. As described
above, this may be seen in FIG. 35 in the transition from the
third state 303 to the fourth state 304. As the encodings of
group 314 may only transition to two or less numerical
values, it is possible that a subsequent write command (in
this case the third write command 114) may include numeri-
cal values that are unobtainable from the given symbols used
in the existing encoded data 158.

[0070] In some embodiments, the NVMD processor 150
may simply compare the new encoded data 158 to the old
encoded data 158 and determine if the transition is possible
(e.g., can all the needed bits be flipped?). Ifit is possible, the
new encoded data 158 may be written to the physical
memory address. If it is not possible, the new encoded data
158 may be written to a new physical memory address. The
mapping table 132 may be changed to point to the new
physical memory address, and the old physical memory
address may be marked as invalid and available for erasure.

US 2017/0344307 Al

[0071] However, in the illustrated embodiment, the
NVMD 106 may include a watermark table 134 (stored in
the memory 130). The watermark table 134 may include, for
each used physical memory address or for each potentially-
rewritable memory address, a watermark that indicates the
degree that the potentially-rewritable memory address is
actually rewritable. In some embodiments, this watermark
may include a number of flip-able bits or is stored at the
physical address.

[0072] The NVMD processor 150 may determine the
number of bits in the old encoded data 158 that must be
flipped to create the new encoded data 158 and compare that
to the address’s watermark in the watermark table 134. For
example, if the new encoded data 158 would require that 10
bits of the old encoded data 158 be flipped and the target
memory address only has 9 bits that may be flipped (without
an erase operation), the NVMD processor 150 may quickly
determine that the memory address is not actually rewrit-
able. Conversely, if the target memory address had 10 or
more flappable bits, the NVMD processor 150 may perform
a more detailed analysis, as described above. The processor
determines the number of 1s in the new data and compares
it with watermark in the watermark table. If the number of
1s in the new data is 10, and the watermark shows that the
number of 1s (number of flappable bits) in the old data is 9,
we can quickly say the old data cannot be replaced by the
new data. Conversely, . . .

[0073] FIG. 4 is a block diagram of an example embodi-
ment of a watermark table or data structure 400 in accor-
dance with the disclosed subject matter. In various embodi-
ments, the data structure 400 may be included in a separate
table, as shown. In another embodiment, the data structure
400 may be included as part of another table (e.g., the
mapping table).

[0074] In the illustrated embodiment, the watermark table
400 may include two columns: physical page address (PPA)
494, and number of flip-able bits 496. In the illustrated
embodiment, each memory address is represented by a page
address. In such an embodiment, the write command may
have included a page-level memory address. In another
embodiment, the NVMD processor may have already trans-
lated a lower level (e.g., byte-level) memory address to to
page-level memory address.

[0075] In the illustrated embodiment, six rows are shown
(rows 401, 402, 403, 404, 405, and 406) for each of the
memory addresses shown in the mapping table 200 of FIG.
2. However, it is understood that the watermark table 400
may include any number of rows or entries. In another
embodiment, only memory addresses that are associated
with the “potentially rewritable” (e.g., Valid-II or Invalid)
rewritable state may be included. Using the example shown
in FIG. 2, this embodiment would include the rows 403, 404,
and 406 as those addresses are associated with the rewritable
states Valid-II and Invalid. It is understood that the above is
merely one illustrative example to which the disclosed
subject matter is not limited.

[0076] Returning to FIG. 1, despite the illustrated embodi-
ment’s ability to perform multiple writes (to the same
address) without intervening erase operations, garbage col-
lection (GC) operations may still be desirable. In such an
embodiment, the NVMD processor 150 may perform gar-
bage collection in a manner that takes into account the
rewritable state 138 of the various memory addresses.

Nov. 30, 2017

[0077] In various embodiments, write operations may be
performed at the page-level, that is, pages 142 are written to
individually. But, erase operations and garbage collection
operations (which often involve erasures) may occur at the
block-level, that is, an entire block 144 may be erased at
once. It is understood that the above is merely one illustra-
tive example to which the disclosed subject matter is not
limited.

[0078] In the illustrated embodiment, the NVMD proces-
sor 150 may maintain a number of garbage collection or
page-use counters 136 (stored in the memory 130) to help
determine which blocks 144 should be erased and which
blocks 144 should be kept. In such an embodiment, the
NVMD processor 150 may count the number of Valid or
in-use pages 142 per block 144. In the illustrated embodi-
ment, the NVMD processor 150 may count each Valid-1 or
rewritable page twice, and each Valid-II or potentially-
rewritable page only once. The sum of these page counts
may be taken for each block 144. The block 144 with the
lowest counter 136 value or a counter 136 with a value
below a threshold value may then be targeted for garbage
collection. In such an embodiment, pages 142 that may
easily be rewritten may be less likely to be collected or
erased. For example, Valid-I pages may be less likely to be
erased than Valid-II or Invalid pages.

[0079] In one embodiment, the counting of potentially-
rewritable or rewritable pages 142 may not be limited to
Valid pages 142 but may also be extended to Invalid pages
142. In such an embodiment, Invalid pages 142 may be
given a lower count value. In yet another embodiment, a
different counting scheme may be employed (e.g., one based
upon the watermark values, etc.). It is understood that the
above are merely a few illustrative examples to which the
disclosed subject matter is not limited.

[0080] FIG. 5 is a block diagram of an example embodi-
ment of a portion of the non-volatile memory or data
structure 500 in accordance with the disclosed subject
matter. In various embodiments, the data structure 500
shows how garbage collection may operate.

[0081] As described above, in various embodiments, an
Invalid page may include stale data or information. As
described above, in some embodiments, the NVMD may
track whether or not the Invalid pages are capable of being
re-written without the need for erasure (e.g., Invalid-I,
Invalid-II, etc.).

[0082] Traditionally, garbage collection occurs when a
block or group of pages is selected for erasure. In such an
embodiment, this block may be referred to as a victim block.
If the victim block includes valid data, the NVMD’s pro-
cessor may move that data to pages or memory addresses
outside of the victim block, and then erase the victim block.
These newly moved pages, in the traditional systems, have
to be moved to erased or Free pages. This lowers the
efficiency of the garbage collection process.

[0083] In various embodiments, if the traditional form of
garbage collection was to be combined with the rewritable
encoding scheme described herein, the opportunity to reuse
or write Valid-I pages (or even some Valid-1I pages) may be
lost, as all pages in a victim block are traditionally erased
during garbage collection. In some embodiments, it may be
difficult to find victim blocks without Valid-I or rewriteable
pages. For example pages that include cold data (i.e., data
written infrequently) may often include only Valid-I or
Invalid-I data. Conversely, hot data (i.e., data accessed

US 2017/0344307 Al

frequently) may include both Valid I and Valid-II pages. In
the illustrated embodiment, a form of partial garbage col-
lection may be employed to make use of the ability for the
encoded data to be rewritten without requiring an interven-
ing erase operation.

[0084] In the illustrated embodiment, the data structure
500 includes three time periods 591, 592, and 593. The first
time period 591 may be a first state when the garbage
collection process has begun. The second time period 592
may be a second state when the garbage collection process
has completed. The third time period 593 may be a third
state when new information has been written to the NVMD.
[0085] In the illustrated embodiment, the data structure
500 may include a Block A that includes the memory pages
or addresses 501, 502, 503, 504, 505, and 506; although, it
is understood that the number of pages in a block is merely
an illustrative example to which the disclosed subject matter
is not limited. The data structure 500 may also include
memory pages or addresses 507 and 508 which are not
included or are outside of the Block A (e.g., in an unillus-
trated Block B or C, etc.).

[0086] In such an embodiment at time 591, the pages 501
and 505 may include data or information associated with the
rewriteable state Valid-1. Pages 502, 503, 504, 506, 507, and
508 may all include data or information associated with the
rewriteable state Invalid. In various embodiments, the
NVMD may or may not keep track of whether Invalid pages
may or may not be rewritten without erasure (e.g., Invalid-I,
Invalid-1II, etc.).

[0087] In such an embodiment, the NVMD (e.g., the
internal processor) may select Block A as the victim block.
In one embodiment, it may check or determine if any Valid-I
pages are included in the victim block. If not, the NVMD
may simply proceed with the step of erasing the whole
block. However, in the illustrated embodiment, Block A
does include the two Valid-I pages 501 and 505 (associated
with LPAs X1 and X2, respectively).

[0088] In such an embodiment, the NVMD may move the
information stored in pages 501 and 505 to pages outside the
victim block (Block A). In the illustrated embodiment, the
information in page 501 may be moved to page 507, and the
information in page 505 may be moved to page 508. In the
illustrated embodiment, the pages 507 and 508 may already
be erased or may be erased prior to being written to with the
moved information. In such an embodiment, the mapping
table may indicate that the rewritable states of pages 507 and
508 are both Valid-I. Also, their LPAs may be remapped or
re-associated with the new PPAs of pages 507 and 508.
[0089] In the illustrated embodiment, the pages 501 and
505 may be marked as Free. Traditionally, these pages
would be erased. However, as the encoding scheme
described herein (or a similar one) allows these pages to be
rewritten without an intervening erasure operation, that step
may be skipped. In the illustrated embodiment, the NVMD
may mark them as Free but may employ a variation of the
Free state (e.g., Free-I) that indicates that page has been
written to at least once without the need for an erase
operation. This Free-1 rewritable state may be similar to the
Valid-I or Invalid-I states. In some embodiments, the Free-1
state may be equivalent to the Invalid-I state. In another
embodiment, Free-I and Invalid-I may have different mean-
ings, but a similar rewritable ability. It is understood that the
above are merely a few illustrative examples to which the
disclosed subject matter is not limited.

Nov. 30, 2017

[0090] In the illustrated embodiment, the pages may sim-
ply be left as Invalid (e.g., pages 502, 503, 504, 506, etc.).
Time 592 shows the state of the memory pages after the
partial garbage collection process has completed. However,
in some embodiments, the other pages (e.g., pages 502, 503,
504, and 506) may be erased. The data structure of FIG. 6
illustrates a different embodiment. It is understood that the
above are merely a few illustrative examples to which the
disclosed subject matter is not limited.

[0091] In various embodiments, new data may be written
to the NVMD. As described above, the new data or infor-
mation may come into the NVMD in an unencoded format.
It is understood that the term “unencoded” may be relative
term compared to the encoding scheme illustrated in FIGS.
3a & 3b, and may indicate that the data is merely not
encoded according to the rewritable encoding scheme
described herein. In various embodiments, the information
may be encoded in a traditional scheme and then re-encoded
to the rewritable encoding scheme (e.g., that of FIGS. 3a &
35, as described above) before being stored in the NVMD.
[0092] In the illustrated embodiment, a first piece of new
information (associated with LPA X3) may be written into
page 501. The new information may be encoded according
to the rewritable format. However, as the page 501 was
previously written to and not erased, the rewritable state of
the new information may be Valid-II or merely potentially
rewritable (as opposed to fully rewritable). The same may
happen with page 505 and the LPA X4. Time 593 illustrates
the state of Block A after new information has been written
to it (note: pages 507 and 508 have been removed from the
illustration in order to simply the figure).

[0093] Invarious embodiments, the selection of the victim
block (e.g., Block A) may include a Selection phase or step
of the garbage collection. In another embodiment, the deter-
mination of the existence of rewritable pages may include a
Determination or Validation phase or step of the garbage
collection. In some embodiments, the removal of the rewrit-
able pages may include a Block Cleanup phase or step of the
garbage collection. In some embodiments, the erasure of any
non-rewritable pages may include an Erasure phase or step
of the garbage collection.

[0094] FIG. 6 is a block diagram of an example embodi-
ment of a portion of the NVMD or data structure 600 in
accordance with the disclosed subject matter. In various
embodiments, the data structure 600 shows how garbage
collection may operate.

[0095] In the illustrated embodiment, the data structure
600 includes three time periods 691, 692, and 693. The first
time period 691 may be a first state when the garbage
collection process has begun. The second time period 692
may be a second state when the garbage collection process
has completed. The third time period 693 may be a third
state when new information has been written to the NVMD.
[0096] In the illustrated embodiment, the data structure
600 may include a Block A that includes the memory pages
or addresses 501, 502, 503, 504, 505, and 506; although, it
is understood that the number of pages in a block is merely
an illustrative example to which the disclosed subject matter
is not limited. The data structure 600 may also include
memory pages or addresses 507, 508, and 509 which are not
included or are outside of the Block A (e.g., in an unillus-
trated Block B or C, etc.).

[0097] In such an embodiment at time 691, the pages 501
and 505 may include data or information associated with the

US 2017/0344307 Al

rewriteable state Valid-1. Page 503 may include data or
information associated with the rewriteable state Valid-II.
Pages 502, 504, 506, 507, and 508 may all include data or
information associated with the rewriteable state Invalid. In
the illustrated embodiment, the NVMD may keep track of
whether Invalid pages may or may not be rewritten without
erasure (e.g., Invalid-I, Invalid-II, etc.).

[0098] In such an embodiment, the NVMD (e.g., the
internal processor) may select Block A as the victim block.
In one embodiment, it may check or determine if any Valid-I
pages are included in the victim block. If not, the NVMD
may simply proceed with the step of moving any valid data
(e.g., Valid-Il data) and then erasing the whole block.
However, in the illustrated embodiment, Block A does
include the two Valid-1 pages 501 and 505 (associated with
LPAs X1 and X2, respectively).

[0099] In the illustrated embodiment, the NVMD may
move the information from page 501 to page 507. In this
instance page 507 may be associated with an Invalid-I
rewritable state. As such, the writing of the LPA X1 data in
page 507 may turn it to the Valid-II rewritable state.

[0100] Conversely, the information from page 505 may be
moved to page 508. In the illustrated embodiment, page 508
may be associated with the rewritable state Invalid-1I, mean-
ing that the data may be rewritable without an intervening
erasure operation but may be not. In the illustrated embodi-
ment, page 508 may be erased prior to the LPA X2 infor-
mation being written to it. In such an embodiment, the
rewritable state of page 508 may be Valid-1. Had the data
allowed for the data to be written without an intervening
erase, the erasure operation could have been skipped and the
rewritable state could have been set to Valid-II.

[0101] In another unillustrated embodiment, an Invalid-II
block (again not illustrated) may be re-written by the data of
a Valid-I page (e.g., Block 501 or 505). In such an embodi-
ment, if the Invalid-II block was able to be re-written with
the information from the Valid-I block, the state of the block
may be changed from Invalid-Il page to Valid-II. It is
understood that the above are merely a few illustrative
examples to which the disclosed subject matter is not
limited.

[0102] In the illustrated embodiment, the entire victim
block (Block A) may be cleared or freed during the garbage
collection procedure. (This is opposed to the embodiment of
FIG. 5 in which the victim block only experienced partial
garbage collection.) In such an embodiment, the information
stored in page 503 (Valid-II and LPA X0) may be moved
from the victim block. The information may be moved to
page 509 that has a state of Free-0.

[0103] In the illustrated embodiment, the NVMD may
include two or more Free states. A Free state may indicate
that data may be written to a particular page without the need
for an immediate erasure. The rewritable state Free-0 may
indicate that the page is in a pristine state, un-written, or
recently erased. The rewritable state Free-I may indicate that
the page has been written to at least once, but may be
rewritten to without the need for an intervening erase
operation (similar to Valid-I or Invalid-I). It is understood
that the above are merely a few illustrative examples to
which the disclosed subject matter is not limited.

[0104] In such an embodiment, the page 509 may be
associated with the rewritable state of Free-0 and may be

Nov. 30, 2017

written to immediately. Therefore, after the LPA X0 infor-
mation has been encoded into page 509, it may have a
rewritable state of Valid-I.

[0105] In some embodiments, the entire Block A may
physically be erased and all pages 502, etc.) may be reset to
the Free-0 state. In another embodiment, a quick freeing of
the Block A may occur without the intervening Erasure step.
In such an embodiment, the pages may be marked a Free (or
a variant thereof) but may not be erased. This may occur if
the garbage collection determines that a contiguous and free
block of memory is advantageous but the step of erasing the
information can be skipped. In such an embodiment, not all
pages may be set to the Free-0 state.

[0106] In the illustrated embodiment, the Invalid pages of
Block A (e.g., pages 502, 504, and 506) may be re-catego-
rized as Free. In some embodiments, pages that are associ-
ated with a rewritable state that allows for non-erasure (e.g.,
Invalid-I such as page 506) may be re-categorized as Free-I
and not erased. Whereas pages that are associated with
rewritable states that require or may require an intervening
erasure (e.g., Invalid-II such as pages 502 and 504) may be
erased and then marked as Free-0. Time 692 shows the state
of the memory pages after the garbage collection process.

[0107] Time 693 illustrates the state of the memory pages
after new information has been written to Block A (again
pages outside Block A are no longer shown). Pages associ-
ated with the Free-I state (e.g., pages 501 and 505) may store
information that is then marked or associated with the
rewritable state Valid-II. Conversely, pages associated with
the Free-0 state (e.g., page 502) may store information that
is then marked or associated with the rewritable state
Valid-I. It is understood that the above are merely a few
illustrative examples to which the disclosed subject matter is
not limited.

[0108] In various embodiments, the garbage collection
process, either full or partial may be employed with any
dual-program flash memory, and is not limited to the specific
encoding scheme described above. Wherein the term “dual-
program” refers to a erasure-based memory than can be
written to, at the same physical address, at least twice
without an intervening erase operation.

[0109] Likewise, the garbage collection process described
herein may make more efficient use of the NVMD space and
improve the garbage collection efficiency. Part of that
improved efficiency may include invoking the full garbage
collection less frequently, as a partial garbage collection may
often be sufficient. It is understood that the above are merely
a few illustrative examples to which the disclosed subject
matter is not limited.

[0110] FIG. 7 is a schematic block diagram of an infor-
mation processing system 700, which may include semicon-
ductor devices formed according to principles of the dis-
closed subject matter.

[0111] Referring to FIG. 7, an information processing
system 700 may include one or more of devices constructed
according to the principles of the disclosed subject matter. In
another embodiment, the information processing system 700
may employ or execute one or more techniques according to
the principles of the disclosed subject matter.

[0112] In various embodiments, the information process-
ing system 700 may include a computing device, such as, for
example, a laptop, desktop, workstation, server, blade
server, personal digital assistant, smartphone, tablet, and
other appropriate computers, etc. or a virtual machine or

US 2017/0344307 Al

virtual computing device thereof. In various embodiments,
the information processing system 700 may be used by a
user (not shown).

[0113] The information processing system 700 according
to the disclosed subject matter may further include a central
processing unit (CPU), logic, or processor 710. In some
embodiments, the processor 710 may include one or more
functional unit blocks (FUBs) or combinational logic blocks
(CLBs) 715. In such an embodiment, a combinational logic
block may include various Boolean logic operations (e.g.,
NAND, NOR, NOT, XOR, etc.), stabilizing logic devices
(e.g., flip-flops, latches, etc.), other logic devices, or a
combination thereof. These combinational logic operations
may be configured in simple or complex fashion to process
input signals to achieve a desired result. It is understood that
while a few illustrative examples of synchronous combina-
tional logic operations are described, the disclosed subject
matter is not so limited and may include asynchronous
operations, or a mixture thereof. In one embodiment, the
combinational logic operations may comprise a plurality of
complementary metal oxide semiconductors (CMOS) tran-
sistors. In various embodiments, these CMOS transistors
may be arranged into gates that perform the logical opera-
tions; although it is understood that other technologies may
be used and are within the scope of the disclosed subject
matter.

[0114] The information processing system 700 according
to the disclosed subject matter may further include a volatile
memory 720 (e.g., a Random Access Memory (RAM), etc.).
The information processing system 700 according to the
disclosed subject matter may further include a non-volatile
memory 730 (e.g., a hard drive, an optical memory, a NAND
or Flash memory, etc.). In some embodiments, either the
volatile memory 720, the non-volatile memory 730, or a
combination or portions thereof may be referred to as a
“storage medium”. In various embodiments, the volatile
memory 720 and/or the non-volatile memory 730 may be
configured to store data in a semi-permanent or substantially
permanent form.

[0115] In various embodiments, the information process-
ing system 700 may include one or more network interfaces
740 configured to allow the information processing system
700 to be part of and communicate via a communications
network. Examples of a Wi-Fi protocol may include, but are
not limited to, Institute of Electrical and Electronics Engi-
neers (IEEE) 802.11g, IEEE 802.11n, etc. Examples of a
cellular protocol may include, but are not limited to: IEEE
802.16m (a.k.a. Wireless-MAN (Metropolitan Area Net-
work) Advanced), Long Term Evolution (LTE) Advanced),
Enhanced Data rates for GSM (Global System for Mobile
Communications) Evolution (EDGE), Evolved High-Speed
Packet Access (HSPA+), etc. Examples of a wired protocol
may include, but are not limited to, IEEE 802.3 (ak.a.
Ethernet), Fibre Channel, Power Line communication (e.g.,
HomePlug, IEEE 1901, etc.), etc. It is understood that the
above are merely a few illustrative examples to which the
disclosed subject matter is not limited.

[0116] The information processing system 700 according
to the disclosed subject matter may further include a user
interface unit 750 (e.g., a display adapter, a haptic interface,
ahuman interface device, etc.). In various embodiments, this
user interface unit 750 may be configured to either receive
input from a user and/or provide output to a user. Other kinds
of devices can be used to provide for interaction with a user

Nov. 30, 2017

as well; for example, feedback provided to the user can be
any form of sensory feedback, e.g., visual feedback, auditory
feedback, or tactile feedback; and input from the user can be
received in any form, including acoustic, speech, or tactile
input.

[0117] In various embodiments, the information process-
ing system 700 may include one or more other devices or
hardware components 760 (e.g., a display or monitor, a
keyboard, a mouse, a camera, a fingerprint reader, a video
processor, etc.). It is understood that the above are merely a
few illustrative examples to which the disclosed subject
matter is not limited.

[0118] The information processing system 700 according
to the disclosed subject matter may further include one or
more system buses 705. In such an embodiment, the system
bus 705 may be configured to communicatively couple the
processor 710, the volatile memory 720, the non-volatile
memory 730, the network interface 740, the user interface
unit 750, and one or more hardware components 760. Data
processed by the processor 710 or data inputted from outside
of the non-volatile memory 730 may be stored in either the
non-volatile memory 730 or the volatile memory 720.

[0119] In various embodiments, the information process-
ing system 700 may include or execute one or more software
components 770. In some embodiments, the software com-
ponents 770 may include an operating system (OS) and/or
an application. In some embodiments, the OS may be
configured to provide one or more services to an application
and manage or act as an intermediary between the applica-
tion and the various hardware components (e.g., the proces-
sor 710, a network interface 740, etc.) of the information
processing system 700. In such an embodiment, the infor-
mation processing system 700 may include one or more
native applications, which may be installed locally (e.g.,
within the non-volatile memory 730, etc.) and configured to
be executed directly by the processor 710 and directly
interact with the OS. In such an embodiment, the native
applications may include pre-compiled machine executable
code. In some embodiments, the native applications may
include a script interpreter (e.g., C shell (csh), AppleScript,
AutoHotkey, etc.) or a virtual execution machine (VM) (e.g.,
the Java Virtual Machine, the Microsoft Common Language
Runtime, etc.) that are configured to translate source or
object code into executable code which is then executed by
the processor 710.

[0120] The semiconductor devices described above may
be encapsulated using various packaging techniques. For
example, semiconductor devices constructed according to
principles of the disclosed subject matter may be encapsu-
lated using any one of a package on package (POP) tech-
nique, a ball grid arrays (BGAs) technique, a chip scale
packages (CSPs) technique, a plastic leaded chip carrier
(PLCC) technique, a plastic dual in-line package (PDIP)
technique, a die in waffle pack technique, a die in wafer form
technique, a chip on board (COB) technique, a ceramic dual
in-line package (CERDIP) technique, a plastic metric quad
flat package (PMQFP) technique, a plastic quad flat package
(PQFP) technique, a small outline package (SOIC) tech-
nique, a shrink small outline package (SSOP) technique, a
thin small outline package (TSOP) technique, a thin quad
flat package (TQFP) technique, a system in package (SIP)
technique, a multi-chip package (MCP) technique, a wafer-
level fabricated package (WFP) technique, a wafer-level

US 2017/0344307 Al

processed stack package (WSP) technique, or other tech-
nique as will be known to those skilled in the art.

[0121] Method steps may be performed by one or more
programmable processors executing a computer program to
perform functions by operating on input data and generating
output. Method steps also may be performed by, and an
apparatus may be implemented as, special purpose logic
circuitry, e.g., an FPGA (field programmable gate array) or
an ASIC (application-specific integrated circuit).

[0122] In various embodiments, a computer readable
medium may include instructions that, when executed, cause
a device to perform at least a portion of the method steps. In
some embodiments, the computer readable medium may be
included in a magnetic medium, optical medium, other
medium, or a combination thereof (e.g., CD-ROM, hard
drive, a read-only memory, a flash drive, etc.). In such an
embodiment, the computer readable medium may be a
tangibly and non-transitorily embodied article of manufac-
ture.

[0123] While the principles of the disclosed subject matter
have been described with reference to example embodi-
ments, it will be apparent to those skilled in the art that
various changes and modifications may be made thereto
without departing from the spirit and scope of these dis-
closed concepts. Therefore, it should be understood that the
above embodiments are not limiting, but are illustrative
only. Thus, the scope of the disclosed concepts are to be
determined by the broadest permissible interpretation of the
following claims and their equivalents, and should not be
restricted or limited by the foregoing description. It is,
therefore, to be understood that the appended claims are
intended to cover all such modifications and changes as fall
within the scope of the embodiments.

What is claimed is:

1. An apparatus comprising:

a memory to store a mapping table, wherein the mapping
table indicates a rewriteable state of a plurality of
memory addresses;

an erasure-based, non-volatile memory configured to
store information, at respective memory addresses, in
an encoded format, wherein the encoded format
includes more bits than the an unencoded version of the
information and wherein the encoded format allows the
information be over-written, at least once, without an
intervening erase operation; and

a processor to perform garbage collection based, at least
in part upon, the rewriteable state associated with the
respective memory addresses.

2. The apparatus of claim 1, wherein the processor is

configured to:

select a victim block of memory addresses;

determine if, within the victim block, at least one memory
address is associated with a rewriteable state that does
not require an intervening erase operation; and

if so, copy the information stored at the at least one
memory address to a memory address outside of the
victim block.

3. The apparatus of claim 2, wherein the mapping table

within the memory is configured to:

after the information has been copied from the at least one
memory address, indicate that the at least one memory
address is free.

4. The apparatus of claim 3, wherein the processor is

configured to:

11

Nov. 30, 2017

receive a write command, wherein the write command
includes information in a format other than the encoded
format; and
store the information, in the encoded format, in at least
one of the at least one memory addresses.
5. The apparatus of claim 2, wherein the processor is
configured to:
copy the information stored at the at least one memory
address to a memory address that is associated with a
rewriteable state that does not require an intervening
erase operation.
6. The apparatus of claim 2, wherein the processor is
configured to:
select a target memory address based upon the target
memory addresses rewriteable state, wherein the pro-
cessor prefers a target memory address associated with
a rewriteable state that does not require an intervening
erase operation; and
copy the information stored at the at least one memory
address to the target memory address.
7. The apparatus of claim 2, wherein the processor is
configured to:
if no memory addresses, within the victim block, are
associated with a rewriteable state that does not require
an intervening erase operation, erasing the memory
addresses included within the victim block.
8. The apparatus of claim 1, wherein the processor is
configured to:
select a victim block of memory addresses;
determine if partial garbage collection may be perform on
at least a portion of the victim block;
if so, marking the portion of the victim block as free; and
if not, erasing the entire victim block.
9. A system comprising:
a processor configured to transmit memory commands to
an erasure-based, non-volatile memory device; and
the erasure-based, non-volatile memory device is config-
ured to perform, to a single target physical memory
address, a first and at least a second write commands
without an intervening erase operation,
wherein the erasure-based, non-volatile memory device
comprises:
a non-volatile memory configured to:
store the information, at respective memory addresses,
in an encoded format, wherein the encoded format
includes more bits than the an unencoded version of
the information and wherein the encoded format
allows the information be over-written, at least once,
without an intervening erase operation, and
update, as part of performing each write command, a
rewritable state associated with a respective physical
memory address; and
an internal processor configured to:
perform garbage collection based, at least in part upon,
the rewriteable state associated with the respective
memory addresses.
10. The system of claim 9, wherein the internal processor
is configured to:
select a victim block of memory addresses;
determine if, within the victim block, at least one memory
address is associated with a rewriteable state that does
not require an intervening erase operation; and

US 2017/0344307 Al

if so, copy the information stored at the at least one
memory address to a memory address outside of the
victim block.
11. The system of claim 10, wherein the non-volatile
memory is configured to:
after the information has been copied from the victim
block’s at least one memory address, indicate that the
at least one memory address is free.
12. The system of claim 11, wherein the erasure-based,
non-volatile memory device is configured to:
receive a write command, wherein the write command
includes information in a format other than the encoded
format; and
store the information, in the encoded format, in at least
one of the victim block’s at least one memory
addresses.
13. The system of claim 10, wherein the erasure-based,
non-volatile memory device is configured to:
copy the information stored at the at least one memory
address to a memory address that is associated with a
rewriteable state that does not require an intervening
erase operation.
14. The system of claim 10, wherein the erasure-based,
non-volatile memory device is configured to:
select a target memory address based upon the target
memory addresses rewriteable state, wherein the pro-
cessor prefers a target memory address associated with
a rewriteable state that does not require an intervening
erase operation; and
copy the information stored at the at least one memory
address to the target memory address.
15. The system of claim 10, wherein the erasure-based,
non-volatile memory device is configured to:
if no memory addresses, within the victim block, are
associated with a rewriteable state that does not require
an intervening erase operation, erasing the memory
addresses included within the victim block.
16. The system of claim 9, wherein the erasure-based,
non-volatile memory device is configured to:
select a victim block of memory addresses;
determine if partial garbage collection may be perform on
at least a portion of the victim block;

Nov. 30, 2017

if so, marking the portion of the victim block as free; and

if not, erasing the entire victim block.

17. A method comprising:

storing information, at respective memory addresses

within erasure-based, non-volatile memory, in an
encoded format, wherein the encoded format includes
more bits than the an unencoded version of the infor-
mation and wherein the encoded format allows the
information be over-written, at least once, without an
intervening erase operation;

selecting a victim block of memory addresses to perform

at least partial garbage collection upon;

determining if, within the victim block, at least one

memory address is associated with a rewriteable state
that does not require an intervening erase operation;
and

if so, copying the information stored at the victim block’s

at least one memory address to a second memory
address outside of the victim block.

18. The method of claim 17, wherein the encoded format
allows the information be over-written according to a binary
tree that dictates that the information may be over-written
from a first encoded value to one of either the first encoded
value or a predefined, based upon the first encoded value,
second encoded value; and

after the information has been copied from the at least one

memory address, indicating that the at least one
memory address is free.

19. The method of claim 17, further comprising:

receiving a write command, wherein the write command

includes information in a format other than the encoded
format; and

storing the information, in the encoded format, in at least

one of the victim block’s at least one memory
addresses.

20. The method of claim 17, wherein copying comprises
copying the information stored at the at least one memory
address to a memory address that is associated with a
rewriteable state that does not require an intervening erase
operation.

