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TRAINING OF DIFFERENTIABLE RENDERER AND NEURAL
NETWORK FOR QUERY OF 3D MODEL DATABASE

TECHNICAL FIELD

[0001] This application relates to machine learning applied to 3D virtual models supporting
design and digital twins. More particularly, this application relates to training a differentiable

renderer and neural network for improved querying of 3D models.

BACKGROUND

[0002] In industrial applications (e.g., design, manufacturing, digital twins), objects or system
entities are modeled as 3D virtual representations (e.g., CAD models) to analyze 3D aspects of the
objects (e.g., engineering analyses, simulation and testing, digital twins, product life management,
design of new objects/systems, manufacturing by automation, systems performance, etc.). Access
to such models requires queries to large database files stored in database repositories, the
complexity, number and size of which have exploded in recent years, stretching the limits of
efficient querying and processing capabilities for computer systems. To illustrate the magnitude
of effort required, a 3D model of a complex object is represented as a long list (e.g., thousands) of
3D points and vectors representing faces of the object in 3D space. Thus, it can be appreciated how
complicated a task it would be to compare a given 3D model to a known 3D model in a database
archive seeking a suitable match, not even considering the added complexity of dissimilar

viewpoints (rotation) of the pair of objects.

[0003] Hence, conventional approaches rely on visual analysis of 2D translations from 3D
models when making the comparison. The task of querying 3D models based on visual similarity

is still challenging, as it requires the ability to decompose 3D data into relevant 2D views and to

-1-



WO 2021/178000 PCT/US2020/048309

properly compare these views. Existing solutions tackle the problem by generating a fixed set of
views from a queried 3D model, then comparing features of these views with a database of features
extracted from images of known 3D models rendered from the same viewpoints. A convolutional
neural network (CNN) can be trained to extract meaningful and discriminative features from the
views. The feature vectors representing known images can then be stored along with their labels
(e.g., the class of the object they represent), so that the CNN can extract corresponding vectors of
new images from a queried object and compare them with the stored ones for retrieval. The
effectiveness of such methods depends on selections of pre-defined viewpoints and parameters
(e.g., lighting) for rendering the 2D views of the 3D CAD modeled object. In practice, viewpoints
for the rendered 2D views are usually chosen arbitrarily, e.g., by sampling equidistant positions in
the 3D space around the target object. This selection does not consider the specificities of target
objects (e.g., for an object that presents multiple symmetries, the system may be tricked into

selecting the wrong symmetry among the choices).

[0004] Some solutions apply 3D to 3D comparisons, without an intermediate 2D rendering for
comparison. Such an approach represents 3D models as meshes of vertices (i.e., their surface is
decomposed into a large number of triangles in the 3D space). However, such representations
cannot be easily compared since meshes of similar objects can have different resolutions, mesh

element shapes, and/or different numbers of mesh elements and vertices.

SUMMARY

[0005] Method and system are disclosed for a pipeline of differentiable networks trained to
learn an optimized database query for retrieval of 3D models used for object recognition. A
particular improvement relates to training the differentiable network for automatic extraction of

key features from a 3D model of a target object that can be used to query complex databases of
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virtual 3D models representing known objects and entities, with strong likelihood of matching to
a known 3D model indexed by visually-based features. Instead of relying on manually-defined
rendering parameters used to train the network to render the target object and extract features, the
pipeline is designed for a comprehensive trainable solution that automatically regresses the best
rendering parameters (e.g., viewpoints) to render 3D models to 2D renderings while also
optimizing network parameters for extraction of distinctive features from the rendered images.
Once pipeline 1s trained, the 3D model database of known objects can be indexed by the trained
pipeline according to the distinctive features, enabling the pipeline to perform future object
recognition operations on target objects with efficient query and retrieval of best matched 3D

models.

[0006] In an aspect, a system of differentiable networks is trainable to learn an optimized
database query for retrieval of 3D models used for object recognition. The system includes an end-
to-end differentiable pipeline comprising a first differentiable network and a second differentiable
network, the first differentiable network being configured as a differentiable renderer trained to
generate a first set of 2D images from a first 3D model of a first object and a second set of 2D
images from a second 3D model of a second object. The first set of 2D images are rendered
according to optimized rendering parameters for producing 2D images determined by gradient
descent of a first triple loss function with optimization (1) to maximize visual variation among N
images generated for the first 3D model and (i1) to maximize visual dissimilarity between N images
generated for the first model and N images generated for the second model. The second
differentiable network is configured as a convolutional neural network defined by a regression
function and trained to generate searchable features of the first set of 2D images, the features being

configured as feature vectors extracted from the first set of 2D images according to optimized
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neural network parameters determined by gradient descent of a second triple loss function with
optimization to achieve high correlation to an input image of the first set of 2D images and low

correlation to images of the second set of 2D images.

[0007] In an aspect, a method for training a pipeline of differentiable networks to learn an
optimized database query for retrieval of 3D models used for object recognition includes training
a first differentiable network configured as a differentiable renderer by generating a first set of 2D
images from a first 3D model of a first object and a second set of 2D images from a second 3D
model of a second object, the first set of 2D images being rendered according to optimized
rendering parameters for producing 2D images, the rendering parameters determined by gradient
descent of a first triple loss function with optimization (1) to maximize visual variation among N
images generated for the first 3D model and (i1) to maximize visual dissimilarity between N images
generated for the first model and N images generated for the second model. The method also
includes training a second differentiable network configured as a convolutional neural network
defined by a regression function is trained by generating searchable features of the first set of 2D
images, the features configured as feature vectors extracted from the first set of 2D images
according to optimized neural network parameters determined by gradient descent of a second
triple loss function with optimization to achieve high correlation to an input image of the first set

of 2D images and low correlation to images of the second set of 2D images.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] Non-limiting and non-exhaustive embodiments of the present embodiments are
described with reference to the following FIGURES, wherein like reference numerals refer to like

elements throughout the drawings unless otherwise specified.
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[0009] FIG. 1 shows an example of a system for object recognition using differentiable

rendering to enhance 3D model retrieval in accordance with embodiments of this disclosure.

[0010] FIG. 2 shows an example of a differentiable network pipeline training operation that
extracts differentiable feature vectors from 3D models in accordance with embodiments of this

disclosure.

[0011] FIG. 3 shows an example viewpoint sampling to reduce uncertainties when rendering

target objects according to embodiments of this disclosure.

[0012] FIG. 4 illustrates an example of a computing environment within which embodiments

of the disclosure may be implemented.

DETAILED DESCRIPTION

[0013] Access to 3D models stored in databases has become a more common task in many
industrial environments. The following examples present a few of such particular instances.
Designers and engineers of new objects and systems can use CAD software to draft and define a
new object, may need to access existing CAD models as templates for components/parts (e.g.,
designing a new motor reusing existing/standard valves, screws, etc.). Existing CAD models of
target objects can also be leveraged for virtual testing of a system design. In automated
manufacturing environments, 3D models are also used more and more during the manufacturing
of an object itself, such as for input to 3D printers or to provide robots with the information needed
for them to manipulate the manufactured objects and their parts (e.g., most algorithms to teach

robot how to grasp specific objects rely on the 3D models for their training).

[0014] When access to a 3D model database is required, there are instances when a 3D model

of a target object is available and can be used for a query to the database to find a best match. The
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following are a few examples of such queries. In an industrial setting where an engineer or operator
has a failed part or component that need replacement (e.g., spare part is required), but the part is
not identifiable, such part can be scanned by a 3D scanner to obtain a rough 3D model of the object
(e.g., using a smartphone scanning app). That model can then be used to query a database of labeled
3D models, in order to identify it. In other circumstances, a low-quality CAD model or 3D scan
(e.g., noisy scan) is available for a target object, and a better quality 3D model having a more
accurate and detailed version is available in a 3D model database, which can be queried to search
and match to the low quality model. Comparison of 3D models may also arise to identify duplicate
or counterfeit 3D models in a database. For example, 3D models representing the exact same object
may have completely different structure (e.g., different sampling of the surface 3D points); hence
a solution to compare models based on their appearance rather than exact point-based matching

would be useful.

[0015] Methods and systems are disclosed for significant improvement in the efficiency and
accuracy of query and retrieval of 3D models in archival databases using a novel feature
decomposition of 3D renderings through a differentiable renderer, and feature extraction by a
neural network to enable an indexed search of the database to find the best classification match.
The disclosed framework solves the technical problem of intermediate 2D renderings having
uncertainties with respect to proper viewpoints of objects with feature symmetries, which lead to
retrieval of poorly matched 3D models from the archives. Instead of a traditional two-step
approach composed of first rendering 2D views of a 3D model then processing these images into
discriminative feature vectors for recognition, an end-to-end differentiable pipeline is trained to
directly use a 3D model of an object to extract a set of discriminative feature vectors. From a 3D

model of an object, a differentiable renderer generates sets of images to represent the object from
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various key viewpoints and with various key rendering parameters. The renderer optimizes
rendering parameters and discriminative viewpoints to obtain image sets that best capture object
geometry. A convolutional neural network (CNN) is jointly trained by performing a regression to
determine a set of extracted feature vectors from the rendered images. These vectors are stored in
a database of indexed feature vectors. After the pipeline is trained, it is enabled to perform an
object recognition on a target object by extracting feature vectors of the target object and retrieving
a 3D model from the database which is visually similar to the target object according to aggregated

feature comparisons over the whole set of vectors.

[0016] FIG. 1 shows an example of a system for object recognition using differentiable
rendering to enhance 3D model retrieval in accordance with embodiments of this disclosure. In an
embodiment, computer vision system includes a computing device 110, and a data repository of
3D models 150 interconnected by a network 130. The data repository may be configured as a
database that stores, for each 3D model of an object, a virtual representation configured as a long
list (e.g., thousands) of points and vectors representing faces of the object in 3D space. Computing
device 110 includes a processor 115 and memory 111 (e.g., a non-transitory computer readable
media) on which is stored various computer applications, modules or executable programs. CNN
module 120 and differentiable renderer module 122 are trained together as a differentiable network
pipeline that extracts features from 3D models. Query module 124 operates on extracted features
from the trained pipeline and matches the features to a feature-based index linked to a data

repository of 3D models for prediction of classification of a target object.

[0017] 3D models for a target object to be identified may be selected by a user using GUI 116,
whereby the selection is input as a path or as an upload. The 3D model of the target object can

then be sent to a differentiable renderer 122 or cloud based differentiable renderer 142 as
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applicable. In an embodiment, the differentiable renderer is implemented locally as renderer 122.
In another embodiment, the implementation used cloud based renderer 142. In another
embodiment, renderer module 122 is implemented as a local client to interface with cloud based
renderer 142. In an embodiment, local CNN module 120 is a stand alone CNN module operating
locally on computing device 110. In another embodiment, the CNN is deployed as a cloud based
CNN 140. In another embodiment, CNN module 120 is a local client used to interface with the
cloud based CNN 140 for training and post training operations. Herein, the differentiable network
formed by a differentiable renderer and a CNN will be described as a local deployment of renderer
122 and CNN 120, however, the configuration and operation as described also applies to
alternative embodiments that involve renderer 142 and CNN 140. Training for the network formed
by differentiable renderer 122 and CNN 120 is according to disclosed embodiments that enable

more efficient and relevant retrieval of strongly matched 3D models for identifying a target object.

[0018] Network 130, such as a local area network (LAN), wide area network (WAN), or an
internet based network, connects computing device 110 to a data repository of 3D models 150 to
be indexed by the trained differentiable network for improved search and retrieval of 3D models

during object recognition operations.

[0019] In an aspect of disclosed embodiments, a triplet loss function can be derived to train a
differentiable pipeline formed by the differentiable renderer 122 and CNN 120. According to this
approach, CNN 120 is trained to extract relevant features from an image x and encode them into a
low-dimensional feature vector z € Z with Z < R% in an embedding space of low-dimensionality
d (e.g., mapping the images to a descriptor space where object instances are well separated). The

feature vectors z, representing known images x, can then be stored along with their labels y; (i.e,,
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the object class for the task of object retrieval), so that given a new image, the CNN 120 can be

used to extract its corresponding vector and compare it with the stored ones for recognition.

[0020] Therefore, to learn discriminative features, a triplet loss function is applied to the
training of the CNN 120, the CNN applying a regression function noted as Ty.:x — z, with O
representing trainable parameters of the CNN. A triplet is defined as (xy, x4, x_) with x;, an input
image, from the training dataset X, used as a binding anchor representing a specific class ¢, and
viewpoint (e.g., defined by a quaternion q;), x, a positive image similar to x;, in terms of label
(similar class ¢, = ¢, and/or pose q, = qp), and x_ a negative sample with dissimilar content
(different class c_ and pose q_). The triplet loss function, denoted here as £,,;, 1s designed to force
the network to extract features similar for x;, and x, and dissimilar for x;, and x_ according to the

following expression:

2
(xp)— -
HT@T xp)~Top(x )”2 ) Eq. (1)

2
|TorGen)-Torea) | +e

Ly (0r) = Z(xb,x+,x_)exs3 max (0, 1—

2 arccos . if ¢, =c¢
where € = { lgp - q+1 b +
n else,forn>mn

Here, € is the margin setting the minimum ratio for the distance between similar and dissimilar
pairs of samples. Once trained, the CNN regression function Tg,. is used to compute the feature
vectors of a subset of X;. These vectors are then used as keys to index model labels, and to form
a feature-descriptor database linked to the data repository of known 3D models 150. Recognition
of unknown objects is done by using the trained network to compute the feature-descriptor of each
rendered 3D model and then by applying a nearest-neighbor search algorithm to find its closest

feature-descriptor in the database as an indicator of a best prediction for classification.
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[0021] FIG. 2 shows an example of a differentiable network pipeline training operation that
extracts differentiable feature vectors from 3D models in accordance with embodiments of this
disclosure. Differentiable pipeline 200 includes a first network ( for the differentiable renderer
122 and a second network 7" being a neural network for CNN 120. In an embodiment, pipeline 200
is trained using pairs of dissimilar models, rendering images 230 of each model in the pair,
extracting feature vectors Z from the images according to a triple loss function that learns
parameters for the differentiable networks G and 7" Once trained, all archived 3D models of the
database 150 are run through the pipeline 200 to generate an index for the entire database where

each model is indexed according to feature vectors associated with each model.

[0022] In an embodiment, as shown by a training flowchart in FIG. 2, pipeline 200 receives
3D models 210 for rendering by differentiable renderer 122, returning a set of N rendered images
230 for each 3D model. For the simplistic example illustrated in FIG. 2, two images xa1, xa2 (N=
2) are rendered for a first model my,, the two images having different poses Pa1 and Paz. Likewise,
two 1mages xg1, xp2 of a second model my from a different class, are also rendered with two
different poses Pg1 and Pg2. According to embodiments of this disclosure, the setting of N can be
expanded to capture more poses (e.g., N=3 to 100). The functionality of differentiable renderer
122 can be represented as function Gy.: m — X, which takes a 3D model m as input, and returns
a set of rendered images 230 such as N images X, = {x1, x2, ..., x)}.} representing the object of
class c,, from various key viewpoints and with various key rendering parameters 8¢ (lighting
conditions, material properties, etc.). In an embodiment, differentiable renderer 122 includes a
differentiable network (i.e., fully composed of differentiable operations) which updates rendering
parameters ¢ by a gradient descent through backpropagation. An advantage of forming a pipeline

with differentiable renderer 122 and CNN 120 (differentiable end-to-end) is that both can be
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trained together as a single trainable solution for optimizing the parameters (or weights) of the
combined differentiable pipeline using gradient descent. CNN 120 can be represented by
regression function Ty :X,, — Z;, which takes the rendered images 230, such as a set of N
images X,,, and returns a set of features 250, such as N feature vectors Z,,, = {z},,z2, ...,z)}. An
advantage of the feature vector representation is that distinctive characteristics of the object are
captured (i.e., the extracted features have a high correlation to the input image and a low correlation
to images of dissimilar objects), which enables improved searching and matching for the system
at runtime. Another advantage of processing feature vectors is the compressed dimension of data
representing the object. For example, an object may have a matrix representation of size 300x400,
while the feature vector may be only 1x100. Note that the CNN 120 can either extract the feature
vector, image by image, or it can extract them all at once with the possibility to aggregate
information and pass information (e.g., batch normalization, attention mechanism, recurrent

architecture, etc.) among the different vectors.

[0023] The pipeline 200 is trained so that given a new 3D model m,, relevant features Z are
extracted and then compared with a feature database of known 3D models, to search for the most
similar ones. In this pipeline training, an objective for the rendering module 122 is to extract 2D
views of the 3D objects which are highly discriminative. For example, FIG. 3 illustrates the
importance of smart viewpoint sampling for view-based 3D object retrieval. Suppose two rendered
views are to represent a given 3D object. As shown in Sampling A, object 310 is rendered as image
313 from viewpoint 311, and image 322 from viewpoint 312. Here, the viewpoints are sampled
poorly (i.e., both viewpoints 311 and 312 are located at a common axis of object 310, and the
resulting images 313, 314 leave room for uncertainties (e.g., it would wrongly be assumed from

the two images 313, 314 that they represent a spherical object). Using smart sampling methods,
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such as sampling B, where viewpoints 311 and 322 are more diverse than 311 and 312, a more
explicit "shape description” in the form of image pair 313 and 324 is the result. With respect to
parameters impacting the appearance of the object in a set of images, the same reasoning can be
applied to other rendering parameters including, but not limited to, lighting conditions, material
properties, camera parameters, etc. The renderer 122 is therefore trained to optimize its set of
rendering parameters 8¢ (i.e., the N different viewpoints, N lighting conditions, etc.) in order to
obtain sets of images X which best capture the geometry and visual specificities of the objects
(e.g., selecting viewpoints which are not facing symmetrical axes common in the 3D dataset,
opting for various light conditions to cast different shadows and highlight different surface

properties, etc.).

[0024] Returning to FIG. 2, a differentiable end-to-end training is now described for a
generalized example in which N sample images are rendered. At each training iteration, two
dissimilar objects are randomly selected from a pool of known and modeled objects from
repository 150, and their respective 3D models m, and my related to an object A and object B,
respectively, are fed to the differentiable renderer 122. Given the current values of its rendering

parameters O, the renderer 122 generates two sets of N images X4 and X35, where:
Xy ={xi x5, ...,xY}and Xg = {x3,x3, ..., x}} (for their respective object).

These two sets of images are passed to the CNN 120, which respectively outputs feature vectors

Z4and Zp, where:
Z, = {2} 22, ...,2z}} and Zg similarly defined.
[0025] The loss function of CNN 120 output layer computes a loss value that is then back-

propagated through the pipeline to update the parameters 8 and 6; according to a gradient
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descent computation as follows. A triplet loss function for CNN 120 is derived by extending Eq.
(1) to formulate a triplet loss function L that is dependent on both the renderer 122 and the CNN
120, has two sets of input images, and is applied to the training of the CNN 120, where a minimum

loss 1s sought for the following function:

2
_ HTQT(xZ)_TQT(xE)”
Lr(0r) = Lithex,) Dfexa. xjeeh) Lixpexs) MAX (0’ A P ————y
2
Eq. (2)

where € = 2 arccos|q, + qg| with quaternion of a viewpoint, obtained from 6.

Applying Eq.(2) to the setup in FIG. 2, the anchor image 231 corresponds to x2 = x_A2 , similar
model image x5 corresponds to image x Al, and dissimilar image x5 corresponds to images
x_B1 orx B2 The objective for loss function L1 is to maximize the similarity between the feature
vectors of all the views of the same object (high correlation), while maximizing the dissimilarity
with all the feature vectors from the different object (low correlation). In an embodiment, the loss
can be made more symmetric by computing a second loss value while reversing the roles of models
m, and mg, performing a backpropagation for each of these triple loss values. For example, in Eq.
(2), if models m, and mg are reversed, instead of image x; being the anchor image for
comparisons, one of the images of set Xg can represent the anchor. Computing a combination of
both loss values makes the training more robust, because it constrains the network 200 to pull
together the feature vectors only of the first model models m, , but also of the second model mg
at once. For additional robustness, additional loss values can be computed and backpropagated by
allowing each of the four images to serve as the anchor, giving four loss values for N=2 as in the

case shown 1n FIG. 2.
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[0026] With loss function L7 , the CNN 120 is trained to look through visual variations and to
map different-looking images of the same model into similar feature vectors, while also ensuring
that the feature vectors of images from different models are pushed well apart. The CNN 120 is
tasked to learn the distinction between “different-looking images of the same model” and “images
of different models”, returning similar descriptors in the former case and dissimilar descriptors in
the latter case. Loss function L of CN 120 1s trained differently than that of the renderer 122, such
that CNN 120 understands the appearance of each model and that different images actually contain

similar features.

[0027] A different loss function is applied to function (7 of the renderer 122, with a goal being
to render images highly dissimilar for different objects, but also as dissimilar as possible between
images of the same object (e.g., using viewpoint disparity). In an aspect, the roles of the renderer
122 and the CNN 120 are adversarial, yet complementary. The set of rendered images capture the
overall appearance of the model, while not representing the model from the same viewpoint but
from meaningfully selected viewpoints that best highlight the appearance variations of models.
The parameters of the renderer 122 (e.g., list of viewpoints, lighting conditions, etc.) should be
optimized to maximize the visual variation within the set of images rendered from each object, to
best capture the overall appearance of the object and not just a particular appearance, such as from

one side.
[0028] The loss function £, for renderer 122 is calculated according to the following relation:

£6(06) = Laiss (Gog(ma), Gog(mp) ) + Lasssr (Gog(ma)) + Laissr (Gop(ms))  Ea. (3)

1

”TQT(xA)—TQT(XB) H2+1e—6

Wlth '[’diSS(XA’ XB) = Z(XAEXA) Z(XBEXB) 1- Eq(3a)
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1

HTGT(xP)_TGT(xQ) ”2“3_6

and  Lgise(X) = Expex) D(xgex, xgrap) L~ Eq. (3b)

[0029] The function L., 1s defined to optimize (G to maximize visual variation among the N
images that it generates from each model (i.e., maximally dissimilar) (e.g., to achieve the situation
illustrated in Sampling B of FIG. 3). Additionally, the function £L;;,, 1s defined to optimize the
function (G to maximize visual dissimilarity between N images of model A and N images of model
B. The triple loss function £; of Eq. 3 relies on regression function Ty, of CNN 120 (Eq. 3a, 3b)
for the reason that a strong distance metric is needed to compare images, which is actually what
T, 1s trained for since it i1s optimized to extract semantically-rich features from the images,
looking beyond pixelwise values. By computing the distance between the feature vectors extracted
by Ty, rather than directly between the images, the renderer 122 can generate images that are
semantically dissimilar rather than just pixel-wise different. In an aspect, while Ty, i1s used to
compute the loss for the function G, of renderer 122, parameters for Tg,. are frozen while training
the function Gy, (i.e., frozen parameters for Ty are not impacted by the result of this loss

computation).

[0030] Embeddings 250 represent the feature vectors Z derived by CNN 120 for each of the
four rendered images 230 in an embedding space (a lower-dimensional space) represented in FIG.
2 as a space with three dimensions (the feature vectors in this example have three dimensions for
illustrative purposes), therefore each vector can be represented as a point in 3D space. The
dimension scale represents the number of features or characteristics being represented. For real
world applications, however, such features could number much greater than three. Feature vectors
251, 252 are associated with the rendered images of model ma similar to the target model; feature

vectors 253 are associated with the rendered images of model ms, being dissimilar to the target
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model. As demonstrated, the training objective is to derive network parameters that pull similar
feature vectors close in embedding space, while pushing feature vectors for a dissimilar model
further away. For example, one feature vector can represent an anchor vector, such as feature
vector 251 for being associated with the anchor image 231 of the four image inputs 230, against
which the other vectors are compared. The pull/push distances are the consequences of the triplet
loss function described above. The triple loss function is formulated to pull together the feature
vectors of semantically-similar images 251, 252 (i.e., it forces the CNN 120 to extract feature
vectors that are close to one to another to minimize the denominator in the triple loss equation).
The triple loss formulation also pushes apart the feature vectors 253 of dissimilar samples away
from anchor feature vector 251. Backpropagating this triplet loss in the pipeline basically teaches
the network parameters to pull together the features of similar content and to push apart the features

of dissimilar ones.

[0031] Following the training phase for the pipeline 200, the known 3D models are fed through
the trained pipeline, and for each known 3D model, feature vectors are extracted and then used as
keys to generate an index for the model labels (e.g., ma, ms) with feature-descriptors and to form

a feature-descriptor database linked to the data repository of known 3D models 150.

[0032] In an inference-based prediction process, the trained pipeline 200 is used to retrieve 3D
models from a known database which are visually similar to a given 3D model. As previously
described, the new 3D model may pertain to a new unknown object, where the 3D model may be
obtained from a 3D scan of the new object. Another instance of a new 3D model requiring a
database query could include a coarse 3D model needing replacement by a more detailed and
accurate model. Given the new 3D model, the trained pipeline is used to obtain a set of feature

vectors Z for the new 3D model corresponding to the N images rendered for the model. Each vector
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in Z can be compared to the feature-descriptors of the feature-descriptor database linked to data
repository of known 3D models 150. The prediction may be achieved using query module 124 by
aggregating the results over the whole set (e.g., by counting the object classes the most present
among nearest neighbors), which identifies the most similar 3D model in the database. For
example, for each of the N feature vectors, query module 124 queries the database with the feature
vector to find the nearest neighbors, retrieving nearest neighbors and corresponding label (e.g., a
model ID, such as ma). All the results from the database may be aggregated by query module 124
to return the most similar model ID as the prediction for the classification, such as the model that

appears most frequently in the results of NV queries.

[0033] FIG. 4 illustrates an example of a computing environment within which embodiments
of the present disclosure may be implemented. A computing environment 400 includes a computer
system 410 that may include a communication mechanism such as a system bus 421 or other
communication mechanism for communicating information within the computer system 410. The
computer system 410 further includes one or more processors 420 coupled with the system bus
421 for processing the information. In an embodiment, computing environment 400 corresponds
to system for performing the above described embodiments, in which the computer system 410

relates to a computer described below in greater detail.

[0034] The processors 420 may include one or more central processing units (CPUs), graphical
processing units (GPUs), or any other processor known in the art. More generally, a processor as
described herein 1s a device for executing machine-readable instructions stored on a computer
readable medium, for performing tasks and may comprise any one or combination of, hardware
and firmware. A processor may also comprise memory storing machine-readable instructions

executable for performing tasks. A processor acts upon information by manipulating, analyzing,
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modifying, converting or transmitting information for use by an executable procedure or an
information device, and/or by routing the information to an output device. A processor may use
or comprise the capabilities of a computer, controller or microprocessor, for example, and be
conditioned using executable instructions to perform special purpose functions not performed by
a general purpose computer. A processor may include any type of suitable processing unit
including, but not limited to, a central processing unit, a microprocessor, a Reduced Instruction
Set Computer (RISC) microprocessor, a Complex Instruction Set Computer (CISC)
microprocessor, a microcontroller, an Application Specific Integrated Circuit (ASIC), a Field-
Programmable Gate Array (FPGA), a System-on-a-Chip (SoC), a digital signal processor (DSP),
and so forth. Further, the processor(s) 420 may have any suitable microarchitecture design that
includes any number of constituent components such as, for example, registers, multiplexers,
arithmetic logic units, cache controllers for controlling read/write operations to cache memory,
branch predictors, or the like. The microarchitecture design of the processor may be capable of
supporting any of a variety of instruction sets. A processor may be coupled (electrically and/or as
comprising executable components) with any other processor enabling interaction and/or
communication there-between. A user interface processor or generator is a known element
comprising electronic circuitry or software or a combination of both for generating display images
or portions thereof. A user interface comprises one or more display images enabling user

interaction with a processor or other device.

[0035] The system bus 421 may include at least one of a system bus, a memory bus, an address
bus, or a message bus, and may permit exchange of information (e.g., data (including computer-
executable code), signaling, etc.) between various components of the computer system 410. The

system bus 421 may include, without limitation, a memory bus or a memory controller, a peripheral
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bus, an accelerated graphics port, and so forth. The system bus 421 may be associated with any
suitable bus architecture including, without limitation, an Industry Standard Architecture (ISA), a
Micro Channel Architecture (MCA), an Enhanced ISA (EISA), a Video Electronics Standards
Association (VESA) architecture, an Accelerated Graphics Port (AGP) architecture, a Peripheral
Component Interconnects (PCI) architecture, a PCI-Express architecture, a Personal Computer
Memory Card International Association (PCMCTIA) architecture, a Universal Serial Bus (USB)

architecture, and so forth.

[0036] Continuing with reference to FIG. 4, the computer system 410 may also include a
system memory 430 coupled to the system bus 421 for storing information and instructions to be
executed by processors 420. The system memory 430 may include computer readable storage
media in the form of volatile and/or nonvolatile memory, such as read only memory (ROM) 431
and/or random access memory (RAM) 432. The RAM 432 may include other dynamic storage
device(s) (e.g., dynamic RAM, static RAM, and synchronous DRAM). The ROM 431 may
include other static storage device(s) (e.g., programmable ROM, erasable PROM, and electrically
erasable PROM). In addition, the system memory 430 may be used for storing temporary variables
or other intermediate information during the execution of instructions by the processors 420. A
basic input/output system 433 (BIOS) containing the basic routines that help to transfer
information between elements within computer system 410, such as during start-up, may be stored
in the ROM 431. RAM 432 may contain data and/or program modules that are immediately
accessible to and/or presently being operated on by the processors 420. System memory 430 may
additionally include, for example, operating system 434, application modules 435, and other

program modules 436. Application modules 435 may include aforementioned modules described
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for FIG. 1 and may also include a user portal for development of the application program, allowing

input parameters to be entered and modified as necessary.

[0037] The operating system 434 may be loaded into the memory 430 and may provide an
interface between other application software executing on the computer system 410 and hardware
resources of the computer system 410. More specifically, the operating system 434 may include a
set of computer-executable instructions for managing hardware resources of the computer system
410 and for providing common services to other application programs (e.g., managing memory
allocation among various application programs). In certain example embodiments, the operating
system 434 may control execution of one or more of the program modules depicted as being stored
in the data storage 440. The operating system 434 may include any operating system now known
or which may be developed in the future including, but not limited to, any server operating system,

any mainframe operating system, or any other proprietary or non-proprietary operating system.

[0038] The computer system 410 may also include a disk/media controller 443 coupled to the
system bus 421 to control one or more storage devices for storing information and instructions,
such as a magnetic hard disk 441 and/or a removable media drive 442 (e.g., floppy disk drive,
compact disc drive, tape drive, flash drive, and/or solid state drive). Storage devices 440 may be
added to the computer system 410 using an appropriate device interface (e.g., a small computer
system interface (SCSI), integrated device electronics (IDE), Universal Serial Bus (USB), or

FireWire). Storage devices 441, 442 may be external to the computer system 410.

[0039] The computer system 410 may include a user input/output interface module 460 to
process user inputs from user input devices 461, which may comprise one or more devices such as

a keyboard, touchscreen, tablet and/or a pointing device, for interacting with a computer user and
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providing information to the processors 420. User interface module 460 also processes system

outputs to user display devices 462, (e.g., via an interactive GUI display).

[0040] The computer system 410 may perform a portion or all of the processing steps of
embodiments of the invention in response to the processors 420 executing one or more sequences
of one or more instructions contained in a memory, such as the system memory 430. Such
instructions may be read into the system memory 430 from another computer readable medium of
storage 440, such as the magnetic hard disk 441 or the removable media drive 442. The magnetic
hard disk 441 and/or removable media drive 442 may contain one or more data stores and data
files used by embodiments of the present disclosure. The data store 440 may include, but are not
limited to, databases (e.g., relational, object-oriented, etc.), file systems, flat files, distributed data
stores in which data is stored on more than one node of a computer network, peer-to-peer network
data stores, or the like. Data store contents and data files may be encrypted to improve security.
The processors 420 may also be employed in a multi-processing arrangement to execute the one
or more sequences of instructions contained in system memory 430. In alternative embodiments,
hard-wired circuitry may be used in place of or in combination with software instructions. Thus,

embodiments are not limited to any specific combination of hardware circuitry and software.

[0041] As stated above, the computer system 410 may include at least one computer readable
medium or memory for holding instructions programmed according to embodiments of the
invention and for containing data structures, tables, records, or other data described herein. The
term “computer readable medium” as used herein refers to any medium that participates in
providing instructions to the processors 420 for execution. A computer readable medium may take
many forms including, but not limited to, non-transitory, non-volatile media, volatile media, and

transmission media. Non-limiting examples of non-volatile media include optical disks, solid state
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drives, magnetic disks, and magneto-optical disks, such as magnetic hard disk 441 or removable
media drive 442. Non-limiting examples of volatile media include dynamic memory, such as
system memory 430. Non-limiting examples of transmission media include coaxial cables, copper
wire, and fiber optics, including the wires that make up the system bus 421. Transmission media
may also take the form of acoustic or light waves, such as those generated during radio wave and

infrared data communications.

[0042] Computer readable medium instructions for carrying out operations of the present
disclosure may be assembler instructions, instruction-set-architecture (ISA) instructions, machine
instructions, machine dependent instructions, microcode, firmware instructions, state-setting data,
or either source code or object code written in any combination of one or more programming
languages, including an object oriented programming language such as Smalltalk, C++ or the like,
and conventional procedural programming languages, such as the "C" programming language or
similar programming languages. The computer readable program instructions may execute entirely
on the user's computer, partly on the user's computer, as a stand-alone software package, partly on
the user's computer and partly on a remote computer or entirely on the remote computer or server.
In the latter scenario, the remote computer may be connected to the user's computer through any
type of network, including a local area network (LAN) or a wide area network (WAN), or the
connection may be made to an external computer (for example, through the Internet using an
Internet Service Provider). In some embodiments, electronic circuitry including, for example,
programmable logic circuitry, field-programmable gate arrays (FPGA), or programmable logic
arrays (PLA) may execute the computer readable program instructions by utilizing state
information of the computer readable program instructions to personalize the electronic circuitry,

in order to perform aspects of the present disclosure.
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[0043] Aspects of the present disclosure are described herein with reference to flowchart
illustrations and/or block diagrams of methods, apparatus (systems), and computer program
products according to embodiments of the disclosure. It will be understood that each block of the
flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart
illustrations and/or block diagrams, may be implemented by computer readable medium

instructions.

[0044] The computing environment 400 may further include the computer system 410
operating in a networked environment using logical connections to one or more remote computers,
such as remote computing device 473. The network interface 470 may enable communication, for
example, with other remote devices 473 or systems and/or the storage devices 441, 442 via the
network 471. Remote computing device 473 may be a personal computer (laptop or desktop), a
mobile device, a server, a router, a network PC, a peer device or other common network node, and
typically includes many or all of the elements described above relative to computer system 410.
When used in a networking environment, computer system 410 may include modem 472 for
establishing communications over a network 471, such as the Internet. Modem 472 may be

connected to system bus 421 via user network interface 470, or via another appropriate mechanism.

[0045] Network 471 may be any network or system generally known in the art, including the
Internet, an intranet, a local area network (LAN), a wide area network (WAN), a metropolitan area
network (MAN), a direct connection or series of connections, a cellular telephone network, or any
other network or medium capable of facilitating communication between computer system 410
and other computers (e.g., remote computing device 473). The network 471 may be wired,
wireless or a combination thereof. Wired connections may be implemented using Ethernet,

Universal Serial Bus (USB), RJ-6, or any other wired connection generally known in the art.
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Wireless connections may be implemented using Wi-F1, WiIMAX, and Bluetooth, infrared, cellular
networks, satellite or any other wireless connection methodology generally known in the art.
Additionally, several networks may work alone or in communication with each other to facilitate

communication in the network 471.

[0046] It should be appreciated that the program modules, applications, computer-executable
instructions, code, or the like depicted in FIG. 4 as being stored in the system memory 430 are
merely illustrative and not exhaustive and that processing described as being supported by any
particular module may alternatively be distributed across multiple modules or performed by a
different module. In addition, various program module(s), script(s), plug-in(s), Application
Programming Interface(s) (API(s)), or any other suitable computer-executable code hosted locally
on the computer system 410, the remote device 473, and/or hosted on other computing device(s)
accessible via one or more of the network(s) 471, may be provided to support functionality
provided by the program modules, applications, or computer-executable code depicted in FIG. 4
and/or additional or alternate functionality. Further, functionality may be modularized differently
such that processing described as being supported collectively by the collection of program
modules depicted in FIG. 4 may be performed by a fewer or greater number of modules, or
functionality described as being supported by any particular module may be supported, at least in
part, by another module. In addition, program modules that support the functionality described
herein may form part of one or more applications executable across any number of systems or
devices in accordance with any suitable computing model such as, for example, a client-server
model, a peer-to-peer model, and so forth. In addition, any of the functionality described as being
supported by any of the program modules depicted in FIG. 4 may be implemented, at least

partially, in hardware and/or firmware across any number of devices.
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[0047] It should further be appreciated that the computer system 410 may include alternate
and/or additional hardware, software, or firmware components beyond those described or depicted
without departing from the scope of the disclosure. More particularly, it should be appreciated that
software, firmware, or hardware components depicted as forming part of the computer system 410
are merely illustrative and that some components may not be present or additional components
may be provided in various embodiments. While various illustrative program modules have been
depicted and described as software modules stored in system memory 430, it should be appreciated
that functionality described as being supported by the program modules may be enabled by any
combination of hardware, software, and/or firmware. It should further be appreciated that each of
the above-mentioned modules may, in various embodiments, represent a logical partitioning of
supported functionality. This logical partitioning is depicted for ease of explanation of the
functionality and may not be representative of the structure of software, hardware, and/or firmware
for implementing the functionality. Accordingly, it should be appreciated that functionality
described as being provided by a particular module may, in various embodiments, be provided at
least in part by one or more other modules. Further, one or more depicted modules may not be
present in certain embodiments, while in other embodiments, additional modules not depicted may
be present and may support at least a portion of the described functionality and/or additional
functionality. Moreover, while certain modules may be depicted and described as sub-modules of
another module, in certain embodiments, such modules may be provided as independent modules

or as sub-modules of other modules.

[0048] Although specific embodiments of the disclosure have been described, one of ordinary
skill in the art will recognize that numerous other modifications and alternative embodiments are

within the scope of the disclosure. For example, any of the functionality and/or processing
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capabilities described with respect to a particular device or component may be performed by any
other device or component. Further, while various illustrative implementations and architectures
have been described in accordance with embodiments of the disclosure, one of ordinary skill in
the art will appreciate that numerous other modifications to the illustrative implementations and
architectures described herein are also within the scope of this disclosure. In addition, it should be
appreciated that any operation, element, component, data, or the like described herein as being
based on another operation, element, component, data, or the like can be additionally based on one
or more other operations, elements, components, data, or the like. Accordingly, the phrase “based

on,” or variants thereof, should be interpreted as “based at least in part on.”

[0049] The flowchart and block diagrams in the Figures illustrate the architecture,
functionality, and operation of possible implementations of systems, methods, and computer
program products according to various embodiments of the present disclosure. In this regard, each
block in the flowchart or block diagrams may represent a module, segment, or portion of
instructions, which comprises one or more executable instructions for implementing the specified
logical function(s). In some alternative implementations, the functions noted in the block may
occur out of the order noted in the Figures. For example, two blocks shown in succession may, in
fact, be executed substantially concurrently, or the blocks may sometimes be executed in the
reverse order, depending upon the functionality involved. It will also be noted that each block of
the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special purpose hardware-based systems that
perform the specified functions or acts or carry out combinations of special purpose hardware and

computer instructions.
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CLAIMS

What is claimed 1s:

1. A system of differentiable networks trainable to learn an optimized query of a 3D model

database used for object recognition, the system comprising:

a processor; and

a non-transitory memory having stored thereon modules executed by the processor, the
modules comprising:

a database of a virtual representation data for a plurality 3D models of objects, the data
configured as a list of points and vectors representing faces of the objects in 3D space;

an end-to-end differentiable pipeline comprising a first differentiable network and a

second differentiable network,

wherein the first differentiable network is configured as a differentiable renderer to be
trained to generate a first set of 2D images from a first 3D model of a first object and a second
set of 2D images from a second 3D model of a second object, the first set of 2D images being
rendered according to optimized rendering parameters for producing 2D images, the rendering
parameters determined by gradient descent of a first triple loss function with optimization (1) to
maximize visual variation among N images generated for the first 3D model and (i1) ) to
maximize visual dissimilarity between N images generated for the first model and N images

generated for the second model; and

wherein the second differentiable network is configured as a convolutional neural
network defined by a regression function and to be trained to generate searchable features of the
first set of 2D 1images, the features configured as feature vectors extracted from the first set of 2D
images according to optimized neural network parameters determined by gradient descent of a
second triple loss function with optimization to achieve high correlation to an input image of the

first set of 2D 1mages and low correlation to images of the second set of 2D images.

2. The system of claim 1, wherein the first triple loss function relies on the distance between

the feature vectors extracted by the second triple loss function.
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3. The system of claim1, wherein the first triple loss function relies on a computed distance

between feature vectors extracted by the second triple loss function.

4. The system of claim 1, wherein the first triple loss function is optimized to capture the
overall appearance of the first object and the second object by representing meaningfully

selected viewpoints according to appearance variations.

S. The system of claim 1, further comprising a data repository of known 3D models,
wherein following training, the trained pipeline is used to receive each known 3D model,
determine feature vectors associated with each known 3D model, and generate an index for
model labels of the known 3D models with feature-descriptors to form a feature-descriptor

database linked to the data repository of known 3D models.

6. The system of claim 5, wherein the trained pipeline is configured to receive a new 3D

model of an unknown target object, and to generate feature vectors the new 3D model;
the system further comprising:
a query module configured to:

compare each of the feature vectors to the in feature-descriptors of the feature-descriptor

database;
find nearest neighbors of feature-descriptors,
retrieve nearest neighbors and corresponding model labels, and

return a prediction for the classification of the unknown target object corresponding to

the model label for one of the nearest neighbors.

7. A method for training a pipeline of differentiable networks to learn an optimized query of

a 3D model database used for object recognition, the method comprising:

training a first differentiable network configured as a differentiable renderer by
generating a first set of 2D images from a first 3D model of a first object and a second set of 2D
images from a second 3D model of a second object, the first set of 2D images being rendered

according to optimized rendering parameters for producing 2D images, the rendering parameters
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determined by gradient descent of a first triple loss function with optimization (1) to maximize
visual variation among N images generated for the first 3D model and (i1) ) to maximize visual
dissimilarity between N images generated for the first model and N images generated for the

second model; and

training a second differentiable network configured as a convolutional neural network
defined by a regression function by generating searchable features of the first set of 2D images,
the features configured as feature vectors extracted from the first set of 2D images according to
optimized neural network parameters determined by gradient descent of a second triple loss
function with optimization to achieve high correlation to an input image of the first set of 2D

images and low correlation to images of the second set of 2D images.

8. The method of claim 7, wherein the first triple loss function relies on the distance

between the feature vectors extracted by the second triple loss function.

9. The method of claim 7, wherein the first triple loss function relies on a computed distance

between feature vectors extracted by the second triple loss function.

10. The method of claim 7, wherein the first triple loss function is optimized to capture the
overall appearance of the first object and the second object by representing meaningfully

selected viewpoints according to appearance variations.

11. The method of claim 7, further comprising:

following training, using the trained pipeline to receive each known 3D model, determine
feature vectors associated with each known 3D model, and generate an index for model labels of
the known 3D models with feature-descriptors to form a feature-descriptor database linked to the

data repository of known 3D models.

12. The method of claim 11, further comprising:
receiving, by the trained pipeline, a new 3D model of an unknown target object;

generating feature vectors the new 3D model;
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comparing each of the feature vectors to the feature-descriptors of the feature-descriptor

database;
finding nearest neighbors of feature-descriptors;
retrieving nearest neighbors and corresponding model labels; and

returning a prediction for the classification of the unknown target object corresponding to

the model label for one of the nearest neighbors.
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