US 20150363300A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2015/0363300 A1

Luan et al.

43) Pub. Date: Dec. 17, 2015

(54)

(71)

(72)

@
(22)

(86)

102
TNWIDED SCAMMER

GENERATING SOFTWARE TEST SCRIPT
FROM VIDEO

Applicants:Jinfeng LUAN, (US); Dror SAARONI,
(US); Xiaoming HU, (US);
HEWLETT-PACKARD
DEVELOPMENT COMPANY, L.P.,
Houston, TX (US)

Inventors: Jin-Feng Luan, Shanghai (CN); Dror
Saaroni, Yehud (IL); Xiao-Ming Hu,
Shanghai (CN)

Appl. No.: 14/761,534

PCT Filed: Jan. 31, 2013

PCT No.: PCT/CN2013/071200
§371 (o)D),
(2) Date: Jul. 16, 2015

100
™

Publication Classification

(51) Int.CL
GOGF 11/36 (2006.01)
GOGF 3/01 (2006.01)
GOG6K 9/00 (2006.01)
(52) US.CL
CPC ... GOGF 11/3684 (2013.01); GO6K 9/00335
(2013.01); GOGF 11/3688 (2013.01); GO6F
3/01 (2013.01)
(57) ABSTRACT

Methods and apparatus are disclosed to generate software test
script from video. Example methods disclosed herein include
determining a user action in a frame of a video comprising
recorded testing of software. The example method also
includes identifying an action parameter corresponding to the
user action. The example method also includes based on the
action parameter, generating without user intervention a
script to execute on the software.

SCRPT L 104

GEMNERATOR

Patent Application Publication Dec. 17,2015 Sheet 1 of 8 US 2015/0363300 A1

100
~

102 ac 104
“ TNVIDED SOANNER GE?&EEE@R -

FIG. 1

US 2015/0363300 A1

Dec. 17,2015 Sheet 2 of 8

Patent Application Publication

10380 .
pez—] 3oVl a _ ¢ 9l
e P
¥
~ FOT
£
W 90 108 HO Ly INIO
MOLLY I IS L
EE
0Lz
— A QFARFINON ™ N
ol ey)
et - - W3 1348
y . . L F0WHOYd ONILTHINGS LdIH0S
arp | TLHOYLAN HILTNRIYS NOLOY _,,_Q_E_Emomz:&
P A FIz
arr A FLYOYIIN NOLLDY H38N) - P 77
ol
HANNYOS 03a|A / | 3Hvad QALY U O
& F /
WLWOWLI w T — .
g1z —1 23TV NOILYHIL0 ™ ‘i
N — T
"y Gz
— W LW LI ML Y I) ;Y LIYLAN \\ agaiA (S0 O LY DIANE THNSIA
) s sgr A ~ | 3Wvdd a3AdYI
A WLYOVLZW 30N3Y 3434 3Wvdd | L o
¥ iz fzz
FOL 0T
HICH 003 FNIHOYH 153 L
oz | 0adlA i LA
WALSAS
0oz = ONILEIL FeviALA08

US 2015/0363300 A1

Dec. 17,2015 Sheet 3 of 8

Patent Application Publication

o E

mlmmm Klmcm W!.wam Wlmmm

Lngegd il ed AL 198 1 10l Cding § HOEOSUUG D dnisad] 0B I puipa LE
v aru adA] (1 1LA0eiqouiny L UOIIBUUnD dopse 2 j0uied Momling T
L o adA L {1 o opaignias G Uo s uun s dopsed] S0, O mLRA gl

OOMIZR + A, + W0 dRUadAL (b Lodelaouipn [utiiauun o dopis e aowas ol =3

FiG. 4

Patent Application Publication Dec. 17,2015 Sheet 4 of 8 US 2015/0363300 A1
Fa
102 —,
.
402
N EXTERMAL
INTERFACE

40— 408

METADATA VIDED

ANALYZER ANALYZER

FRAME ACTION

GRABBER RECO GNIZER

408 N~ 410
414 412
' N
INFORMATION gToRage | PEFERENCE
AGGREGATOR DEVICE MAGES
418
104 =] SCRIPT
GENERATOR

Patent Application Publication Dec. 17,2015 Sheet S of 8 US 2015/0363300 A1

5110 ﬂ&

{ START D

52 4

DOES VIDEQ IMCLUDE CORRESPONDIMNG

NO METADATA? YES
PROCEED WITHOUT — 504 G06— PROCEED BASED ON
METADATA METADSTA
i % % |

BB =y, DETERMIMNE USER ACTION
DETERMINE ACTION PARAMETER

,

512
™ CAPTURE MON-MARKED FRAME FROM THE VIDEQ

'

514 —| AGGREGATE INFORMATION TO COMMUNCATE TO
SCRIPT GENERATOR

;

516
N GENERATE TEST SCRIFT
C EMD 3

FIG. &

Patent Application Publication Dec. 17,2015 Sheet 6 of 8 US 2015/0363300 A1

504 N

(M ETADATA INCLUDE D) PO METADSTA INCLUD E9

: :

DETERMINE USER ACTION| _ .-
i §

FROM OPERATION P °%¢ hE —,
METADATA

' ;

DETERMINE USER ACTION

GEMERATE UEER ACTION |— 604 G0E —J BY COMPARING VISUAL
METADATA IMDICATOR TO

REFEREMCE IMAGES

:

610 —) GEMERATE USER ACTION
METADATA

[DEMTIFY MARKED FRAME
M THE VIDED

4 RETURN 3

FIG. 6

Patent Application Publication

Dec. 17,2015 Sheet 7 of 8 US 2015/0363300 A1

508
R

Qﬂ ETADATA IMCLUDED

IDENTIFY ACTION
FPARAMETER FROM
DPERATION PARAMETER
METADATA

-

Ea 7Oz

GEMERATE ACTION
FARAMETER METADATA

o 704

@D METADATA IMNCLU D@

IDEMTIFY ACTION
FARAMETER FROM
(DENTIFIED USER ACTION

7o N

GEMERATE ACTION
FARAMETER METADATA

< RETURN >

Patent Application Publication

RANDOM

ACCESS

M EMORY
-

B3d

— 816

READ OMLY
MEMORY

PROCESSOR

LOCAL
MEMORY
813

h— 832

— 104

SCRIPT
GENERATOR

Dec. 17,2015 Sheet 8 of 8

MASS

IMPLIT
DEVICE(S)

820

e

US 2015/0363300 A1

026
INTERFACE l—‘—hé\—[‘/d‘ET‘lND Rk

y 52

OUTRUT
DEVICES)

o~ 102

YIDEC
SCANMER

US 2015/0363300 Al

GENERATING SOFTWARE TEST SCRIPT
FROM VIDEO

BACKGROUND

[0001] Software testing is performed to verify that software
performs as it should. The process of software testing
includes detecting issues in software, debugging the software,
and veritying the issue is fixed. Undesirable issues in software
result in abnormal behavior of the software. For example, a
shopping application exhibiting abnormal behavior may dis-
play incorrect items in a shopping cart when trying to make
purchases via the shopping application.

BRIEF DESCRIPTION OF THE DRAWINGS

[0002] FIG. 1 illustrates an example script generating sys-
tem implemented in accordance with the teachings of this
disclosure.

[0003] FIG. 2 is an example software testing environment
having the script generating system of FIG. 1 to test software.
[0004] FIG. 3 illustrates an example portion of test script
that may be generated by the example script generating sys-
tem of FIGS. 1 and 2.

[0005] FIG. 4 is a detailed diagram of the example script
generating system of FIGS. 1 and 2.

[0006] FIG. 5 is a flowchart representative of example
machine readable instructions that may be executed to gen-
erate test script.

[0007] FIG. 6 is a flowchart representative of example
machine readable instructions that may be executed to deter-
mine a user action.

[0008] FIG. 7 is a flowchart representative of example
machine readable instructions that may be executed to iden-
tify an input parameter.

[0009] FIG. 8 is a block diagram of an example processing
platform capable of executing the example machine readable
instructions of FIGS. 5, 6 and/or 7 to implement the example
script generating system of FIGS. 1, 2 and/or 4.

DETAILED DESCRIPTION

[0010] Software testing involves detecting issues in soft-
ware that cause the software to behave abnormally. Based on
the testing, the software can be debugged to eliminate the
issues. Often, detecting issues in software and debugging the
software is completed as two separate steps. Quality assur-
ance engineers test software by executing the software (or
application or program) and performing one or more user
actions on the executing software. After a quality assurance
engineer discovers or detects an issue, a software developer
attempts to recreate the issue during a debugging process. A
software developer is a person that writes software, debugs
software, and corrects issues by re-writing software. In a
manual debugging process, a software developer identifies
user action(s) that led to the discovery of an issue, and repeats
the user action(s) to recreate the issue. In an automated debug-
ging process, a user simulation program executes a test script
(which may have been manually created by a software devel-
oper) to simulate the user actions that previously led to dis-
covery of an issue in an attempt to recreate the issue. In either
case, skipping, missing or partially performing one or more
operations or user actions may result in not being able to
recreate the issue.

[0011] Some prior software testing techniques document
sequences or orders of user input operations performed dur-

Dec. 17, 2015

ing a software testing process by recording (e.g., video
recording) a display screen of software and/or recording a
quality assurance engineer as the quality assurance engineer
tests the software. A software developer is then able to watch
the video and identify operations or user actions performed
by the quality assurance engineer that led to abnormal soft-
ware behavior. In some instances, the software developer may
then write a test script for the steps to be executed on the
software under test by a user simulation program to recreate
any discovered issues. That is, a software developer watches
the video and then writes down the user actions performed by
the quality assurance engineer, and uses the written user
actions to either perform manual debugging, or to manually
generate a test script to reproduce the discovered issues.
Unlike prior systems, examples disclosed herein enable auto-
generating test script from a video recording of software
under test. That is, the test script is generated without user
intervention (e.g., without a software developer watching the
video and taking notes of the user actions performed during
software testing).

[0012] Insome prior systems, a software developer manu-
ally provides a screenshot (e.g., a video frame) or a portion of
the screenshot (e.g., a button), a user action (e.g., a mouse
click), and a corresponding action parameter (e.g., coordi-
nates of the mouse click) to image recognition software that
generates script executable by a user simulation program to,
for example, recreate or simulate the user action. In some
prior systems, a software developer uses object recognition
software to generate test script executable by a user simula-
tion program. However, in such prior systems, the software
developer watches the software test video recording to manu-
ally identify relevant screenshots, user actions and action
parameters, and manually provides the identified information
to the image recognition software. Unlike prior systems,
examples disclosed herein enable identifying, without user
intervention, information from a video recording for use by
image recognition software to generate test script, and pro-
viding the information to the image recognition software also
without user intervention.

[0013] FIG. 1 illustrates an example script generating sys-
tem 100 that includes an example video scanner 102 and an
example script generator 104. In the illustrated example, the
video scanner 102 is in communication with the script gen-
erator 104. For example, the video scanner 102 may commu-
nicate with the script generator 104 via, for example, wired or
wireless communications over, for example, a data bus, a
Local Area Network (LAN), a wireless network, etc. As used
herein, the phrase “in communication,” including variants
thereof, encompasses direct communication and/or indirect
communication through one or more intermediary compo-
nents. In some examples, the script generator 104 is local to
the video scanner 102 and/or integrated therein.

[0014] In the illustrated example, the video scanner 102
identifies information in video recordings (e.g., software test
videos) of software under test, and provides the information
to the script generator 104 to automatically generate test
script without manual intervention. In the illustrated
example, a video recording of software under test is generated
by a quality assurance engineer, and the quality assurance
engineer provides the video recording to a software developer
after an issue is detected in the software under test. In some
examples, the example video scanner 102 analyzes the soft-
ware test video for an indication of a user action such as a
visual indicator indicative of an action performed by a user

US 2015/0363300 Al

(e.g., the quality assurance engineer). For example, the video
scanner 102 may automatically identify a visual indicator
corresponding to a user action (e.g., a mouse click) in the
software test video. Example visual indicators may be, for
example, a glow, a circle, a square, or other shape or indicia on
or around a graphical object subjected to a user action.
Example user actions include, for example, mouse actions
(e.g., Mouse_Down, Mouse_Up, Mouse_Move, Mouse_
Drag, etc.), touchscreen actions, keyboard events, etc.

[0015] In examples disclosed herein, video frames in soft-
ware test videos having visual indicators corresponding to
user actions are referred to as marked frames. In the illus-
trated example, the video scanner 102 captures a marked
frame from a software test video, and then captures a non-
marked frame that does not include a visual indicator. In some
examples, the video scanner 102 captures a portion of the
non-marked frame and/or an object displayed in the non-
marked frame. In the illustrated example, the non-marked
frame represents the user interface of the software under test
prior to execution of a user action that is indicated in the
marked frame using a visual indicator. The non-marked frame
is useful to provide a visual representation of the user inter-
face of the software under test to a user simulation program
without obstructions (e.g., without the inserted visual indica-
tors) so that the user simulation program can use image rec-
ognition to identify graphical user interface controls (e.g.,
buttons, text fields, etc.) on which to perform specified user
actions. For example, a visual indicator is overlaid on or
above a graphical user control of software under test in a
video recording after a user action is performed and, there-
fore, a user simulation program would be unable to match the
user interface control of interest (e.g., a graphical control on
which to perform a user action) in a marked frame with
graphical user interface controls of software under test while
executing the software under test. In the illustrated example,
the video scanner 102 also identifies a corresponding action
parameter corresponding to the user action (e.g., coordinates
of'a mouse click) from the marked frame.

[0016] In some examples, processing the software test
video involves the video scanner 102 retrieving and analyzing
metadata associated with the software test video. In the illus-
trated example, the metadata includes information describing
user actions. For example, when a user action is performed,
metadata such as, for example, a frame reference, an opera-
tion and an operation parameter are generated. For example,
the operation parameter may describe a mouse action or a
keyboard action (e.g., typing). In some examples, keyboard
actions may include Keyboard_Input, Key_Up, Key_Down,
character codes (e.g., ASCII codes), etc. In some examples,
the metadata may be embedded in the software test video. In
the illustrated example, the video scanner 102 provides the
user action, the user action parameter and the non-marked
frame and/or the portion of the non-marked frame in an infor-
mation package to the script generator 104 for further pro-
cessing.

[0017] In the illustrated example, the script generator 104
generates a test script (e.g., executable code or instructions)
based on the information package provided by the video
scanner 102. For example, the script generator 104 may gen-
erate a test script that is later used by a user simulation
program to recreate a user action while executing the software
under test during a subsequent automated debugging phase.
In some examples, the script generator 104 uses known algo-
rithms such as Image Based Automation (IBA) technology to

Dec. 17, 2015

generate test scripts from the information package. Image
Based Automation is software agnostic technology that uses
image recognition of objects on a display to perform user
actions. However, using other algorithms for generating test
scripts is also possible.

[0018] FIG. 2 is an illustration of an example software
testing environment 200 in which examples disclosed herein
may be implemented to test software. The example software
testing environment 200 of FIG. 2 includes an example soft-
ware testing system 201, the example script generating sys-
tem 100 of FIG. 1 and an example user simulation program
212. In the illustrated example, the software testing system
201 is in communication with the script generating system
100, and the script generating system 100 is in communica-
tion with the user simulation program 212.

[0019] In the illustrated example, the software testing sys-
tem 201 is used to test software and is provided with an
example software test machine 202 and an example video
recorder 204. In some examples, the software test machine
202 is a workstation (e.g., a desktop computer, a server, a
laptop, etc.) having an input (e.g., a mouse, a keyboard, a
haptic interface, etc.) and an output (e.g., a monitor). In some
examples, the software test machine 202 is operated by a
quality assurance engineer to test software.

[0020] In the illustrated example of FIG. 2, the video
recorder 204 records video of a display interface (e.g., a
graphical user interface (GUI)) of software under test to cap-
ture user actions performed by the quality assurance engineer
while testing the software. In some examples, the video
recorder 204 is a program that runs as a multi-tasked back-
ground process and/or a multi-tasked foreground process of
the software test machine 202 while software is under test. In
some examples, the video recorder 204 begins recording user
actions when the quality assurance engineer begins using the
software under test. The video recorder 204 of the illustrated
example generates an example software test video 206 to
record user actions performed by the quality assurance engi-
neer while testing the software.

[0021] Insome examples, the video recorder 204 superim-
poses or overlays example visual indicators 232 on a user
interface of the software under test captured in the software
test video 206 to indicate when and/or where user actions are
performed on the user interface of the software under test. For
example, when the quality assurance engineer performs a
mouse click, the video recorder 204 may superimpose or
overlay a colored circle (e.g., a visual indicator 232) at the
location on the screen where the quality assurance engineer
performed the mouse click. In some examples, different types
of visual indicators correspond to different types of user
actions. For example, a single-line red circle may represent a
single left-button mouse click, a single-line blue circle may
represent a single right-button mouse click, a double-line red
circle may represent a double left-button mouse click, a green
“X” may represent holding the left-mouse button down and
dragging the mouse cursor, a red “X” may represent releasing
the left-mouse button after dragging the mouse cursor, etc. As
aresult, the example software test video 206 includes marked
frames 220 having the visual indicators 232 and non-marked
frames 222 without the visual indicators 232. The marked
frames 220 and non-marked frames 222 can be subsequently
used by the script generating system 100 to generate test
script. For example, when the script generating system 100
detects a single-line red circle in the software test video 206,
the script generating system 100 generates a test script to

US 2015/0363300 Al

perform a single left-button mouse click on a user interface
feature of the software under test indicated by the single-line
red circle. Although certain example symbols, shapes and
colors are described above as implementing some visual indi-
cators 232 of the illustrated example, other symbols, shapes
or colors may additionally or alternatively be used to imple-
ment example visual indicators 232 to represent different
types of user input. The video recorder 204 of the illustrated
example may be configured to superimpose or overlay the
different types of visual indicators 232 using any suitable
technique such as providing the video recorder 204 a configu-
ration file mapping different user input types to different
symbols, shapes and colors (and/or combinations thereof).
The different symbols, shapes and colors may be selected
based on any suitable criteria including user preferences (e.g.,
preferences of a quality assurance engineer and/or a software
developer), company preferences (e.g., preferences of a com-
pany developing software), and/or industry standards (e.g.,
industry-adopted standards defined for quality assurance pro-
cesses).

[0022] Insome examples, the video recorder 204 generates
metadata describing performed user actions. For example, the
video recorder 204 may generate metadata 208 including
example frame reference metadata 214, example operation
metadata 216, and/or example operation parameter metadata
218. In some examples, the video recorder 204 stores the
metadata 208 generated for a software test video 206 in a data
structure such as an operations file or list. In some examples,
the video recorder 204 embeds the metadata 208 into the
software test video 206. The metadata 208 may be visible to
aviewer (e.g., as closed-caption text, codes or text that render
on a screen, etc.) or obscured from a viewer (e.g., in a vertical
blanking interval of a video frame or encoded into a video
frame in a manner that makes the metadata imperceptible to
humans but decodable by machines). In the illustrated
example of FIG. 2, the frame reference metadata 214
describes or specifies a frame position in the software test
video 206 during which the user action is performed. For
example, the frame reference metadata 214 may include a
frame number and/or a timestamp corresponding to a frame
position or time position in the software test video 206. In the
illustrated example of FIG. 2, the operation metadata 216
describes or specifies a user input action (e.g., a mouse action,
a touchscreen action, or a keyboard action). In the illustrated
example, when a user action is detected by the video recorder
204, the video recorder 204 generates the operation parameter
metadata 218 including the position or location on the screen
of the user action. For example, the video recorder 204 may
generate the operation parameter metadata 218 including the
coordinates (X, y) of a mouse cursor when a mouse click
action occurred. In the illustrated example, when the video
recorder 204 detects a keyboard action, the video recorder
204 generates the operation parameter metadata 218 includ-
ing the keyboard input (e.g., a text character or string) by the
user and/or the location on the screen where the input was
received.

[0023] The example script generating system 100 of FIG. 2
processes the software test video 206, and the metadata 208
(if provided), and generates example test script 210. In the
illustrated example, the user simulation program 212
executes the example test script 210 during a software debug-
ging phase to recreate one or more user actions that were
performed by, for example, the quality assurance engineer
during a software testing phase using the software testing

Dec. 17, 2015

system 201. In some examples, the video scanner 102 pro-
cesses the software test video 206, and the metadata 208 (if
provided), and provides an example information package 224
including information describing the user actions performed
in the software test video 206 to the script generator 104. As
described below in connection with FIG. 4, the example video
scanner 102 aggregates the information included in the
example information package 224 differently based on
whether example metadata 208 is provided. Regardless of
how the information is arranged in the example information
package 224, the information package 224 includes an
example user action metadata 226, example action parameter
metadata 228 and a non-marked frame 222. In the illustrated
example, the user action metadata 226 is indicative of the type
of user action performed by the user. For example, the user
action metadata 226 may include information identifying
user action events such as Mouse_Down, Mouse_Up,
Mouse_Move, Mouse_Drag, Keyboard_Input, Key_Up,
Key_Down, etc. In the illustrated example, the action param-
eter metadata 228 includes additional information regarding
the user action specified in the user action metadata 226. For
example, the action parameter metadata 228 may include a
text character or string and/or the screen location of a user
action (e.g., amouse click, a touchscreen touch event, etc.) on
the screen or graphical user interface of the software under
test.

[0024] In the illustrated example, the script generator 104
uses the information package 224 to generate test script 210,
which is subsequently executed by the user simulation pro-
gram 212. In some examples, the script generator 104 cap-
tures an image object 230 of a user interface feature of the
software under test from the software test video 206, and
provides the image object 230 in the test script 210. In the
illustrated example, a user interface feature captured as the
image object 230 is a button, a text field, a scroll control, or
another user interface object that is subject to a user action in
the software test video 206. In some examples, the user simu-
lation program 212 may not be able to identify the image
object 230 that is subject to a user action when a visual
indicator (e.g., the visual indicator 232) is superimposed or
overlaid on the image object. Thus, in some examples, the
script generator 104 detects the image object 230 from a
portion of the non-marked frame 222 at a screen location
(supplied by the action parameter metadata 228) at which the
user action (supplied by the user action metadata 226) was
performed. For example, a portion of the non-marked frame
222 may be a button as the image object 230 that is at the
screen location at which a mouse click occurred. In some
examples, the script generator 104 compiles the generated
test script 210 into a data structure. An example data structure
that may be compiled by the script generator 104 is described
below in connection with FIG. 3. In the illustrated example of
FIG. 2, the user simulation program 212 executes the test
script 210 received from the script generator 104 on corre-
sponding software that was previously tested using the soft-
ware testing system 201. In the illustrated example, the user
simulation program 212 executes the test script 210 while the
software under test is running on the same machine (e.g.,
computer) executing the user simulation program 212 so that
the user simulation program 212 can re-create (e.g., simulate)
user actions described in the test script 210 on the software
under test. In this manner, the user simulation program 212
can re-create abnormal behavior in the software under test

US 2015/0363300 Al

that was observed by the quality assurance engineer when
performing the same user actions at the software test machine
202.

[0025] The script generating system 100 of the illustrated
example eliminates the need for a software developer to be
involved in or intervene to analyze the software test video 206
and generate the test script 210. That is, the script generating
system 100 can analyze the software test video 206 and gen-
erate the test script 210 without user intervention. In some
instances, this is useful to provide software developers with
more time to dedicate to solving software issues rather than
trying to re-create them.

[0026] FIG. 3 illustrates an example data structure 300 of
test scripts 302 that may be generated by the example script
generator 104 of FIGS. 1 and 2 and executed by the example
user simulation program 212 of FIG. 2. In the illustrated
example, the test scripts 302 include example instruction
window descriptors 304, example instruction object descrip-
tors 306 and example instruction event descriptors 308. In the
illustrated example, the instruction window descriptor 304
specifies which window or panel of a display on which the
user simulation program 212 should focus when executing a
user action. For example, when the user simulation program
212 executes a script 310, the user simulation program 212
focuses on an application in which the window title is
“Remote Desktop Connection”, which may correspond to,
for example, the Microsoft remote desktop connection appli-
cation. In some examples, when the user simulation program
212 executes a script 312, the user simulation program 212
focuses on the “Remote Desktop Connection” window.
[0027] In the illustrated example, the user simulation pro-
gram 212 executes the instruction event descriptor 308 based
on the instruction object descriptor 306. For example, when
executing the script 310, the user simulation program 212
scans the window corresponding to the “Remote Desktop
Connection” user interface for an image object 316 and then
“clicks” on the image object 316 in the “Remote Desktop
Connection” user interface of the software under test. In the
illustrated example, the image object 316 included in the
script 310 is the example image object 230 of FIG. 2. In the
illustrated example, when executing the script 312, the user
simulation program 212 scans the “Remote Desktop Connec-
tion” window and inputs the text string “edit” in a text field
named “text”” Using similar processes, the example user
simulation program 212 of FIG. 2 executes each example
script 302 of the example data structure 300 of FIG. 3 to
recreate software issues that were discovered during a soft-
ware testing phase using the software testing system 201 of
FIG. 2.

[0028] FIG. 4 is a detailed diagram of an example imple-
mentation of the example script generating system 100 of
FIGS. 1 and 2. In the illustrated example of FIG. 4, the video
scanner 102 includes an example external interface 402, an
example metadata analyzer 404, an example video analyzer
406, an example frame grabber 408, an example action rec-
ognizer 410 and an example information aggregator 414. In
the illustrated example, the video scanner 102 also includes
an example storage device 412 to store at least a portion of the
software test video 206. In the illustrated example, the storage
device 412 stores one or more previously analyzed frames
from the software test video 206. In the illustrated example,
video scanner 102 is in communication with the example
script generator 104 via, for example, one or more networks
and/or local communication interfaces.

Dec. 17, 2015

[0029] While an example manner of implementing the
example script generating system 100 of FIGS. 1 and 2 is
illustrated in FIG. 4, one or more of the elements, processes
and/or devices illustrated in FIG. 4 may be combined,
divided, re-arranged, omitted, eliminated and/or imple-
mented in any other way. Further, the example video scanner
102, the example script generator 104, the example external
interface 402, the example metadata analyzer 404, the
example video analyzer 406, the example frame grabber 408,
the example action recognizer 410, the example storage
device 412, the example information aggregator 414 and/or,
more generally, the example script generating system 100 of
FIG. 4 may be implemented by hardware, software, firmware
and/or any combination of hardware, software and/or firm-
ware. Thus, for example, any of the example video scanner
102, the example script generator 104, the example external
interface 402, the example metadata analyzer 404, the
example video analyzer 406, the example frame grabber 408,
the example action recognizer 410, the example storage
device 412, the example information aggregator 414 and/or,
more generally, the example script generating system 100 of
FIG. 4 could be implemented by one or more circuit(s), pro-
grammable processor(s), application specific integrated cir-
cuit(s) (ASIC(s)), programmable logic device(s) (PLD(s))
and/or field programmable logic device(s) (FPLD(s)), etc.
When any of the apparatus or system claims of'this patent are
read to cover a purely software and/or firmware implementa-
tion, at least one of the example video scanner 102, the
example script generator 104, the example external interface
402, the example metadata analyzer 404, the example video
analyzer 406, the example frame grabber 408, the example
action recognizer 410, the example storage device 412 and/or
the example information aggregator 414 are hereby expressly
defined to include a tangible computer readable storage
device or storage disk such as a memory, DVD, CD, Blu-ray,
etc. storing the software and/or firmware. Further still, the
example script generating system 100 of FIG. 4 may include
one or more elements, processes and/or devices in addition to,
or instead of, those illustrated in FIG. 4, and/or may include
more than one of any or all of the illustrated elements, pro-
cesses and devices.

[0030] Inthe illustrated example of FIG. 4, the video scan-
ner 102 is provided with the external interface 402 to
exchange communications with, for example, the video
recorder 204 (F1G. 2). For example, the external interface 402
receives the software test video 206 (FIG. 2) from the video
recorder 204, and provides the software test video 206 to the
video analyzer 406 and/or to the storage device 412. In the
illustrated example, if the external interface 402 receives
metadata 208 (FIG. 2) associated with the software test video
206 from the video recorder 204, the external interface 402
provides the metadata 208 to the metadata analyzer 404.

[0031] In the illustrated example of FIG. 4, the metadata
analyzer 404 analyzes or parses the metadata 208 received
from the external interface 402. In some examples, the meta-
data 208 may be stored in a data structure such as an opera-
tions file or embedded in the software test video 206. In some
such examples, the metadata analyzer 404 may analyze the
metadata 208 stored in the operations file sequentially. As
described above in connection with FIG. 2, the example meta-
data 208 generated by the example video recorder 204 may
include the example frame reference metadata 214, the
example operation metadata 216 and the example operation
parameter metadata 218. In the illustrated example, the meta-

US 2015/0363300 Al

data analyzer 404 generates user action metadata 226 (FIG. 2)
based on the operation metadata 216. The metadata analyzer
404 of FIG. 4 also generates the action parameter metadata
228 (FIG. 2) based on the operation parameter metadata 218.

[0032] In the illustrated example of FIG. 4, the video ana-
lyzer 406 analyzes the software test video 206 received from
the external interface 402 and identifies a frame (e.g., the
example marked frame 220 of FIG. 2) in the software test
video 206 including a visual indicator (e.g., the example
visual indicator 232 of FIG. 2). In some examples, the video
analyzer 406 analyzes the software test video 206 frame-by-
frame. In the illustrated example, the video analyzer 406
buffers previously analyzed frames in to the storage device
412. The quantity of buffered frames stored in the storage
device 412 can be selected based on user preference or a
predetermined quantity. In the illustrated example, when a
marked frame (e.g., the marked frame 220) is identified, the
video analyzer 406 generates a frame reference using the
frame position of the marked frame 220 in the software test
video 206. The frame reference generated by the video ana-
lyzer 406 may include a frame number and/or a timestamp
corresponding to a frame position or time position in the
software test video 206.

[0033] Intheillustrated example of FIG. 4, the frame grab-
ber 408 uses the frame reference metadata 214 received from
the metadata analyzer 404 or the frame reference received
from the video analyzer 406 to identify a non-marked frame
(e.g., the example non-marked frame 222 of FIG. 2). For
example, the frame grabber 408 may retrieve a frame from the
storage device 412 that is n frame positions prior to the frame
position indicated by the frame reference metadata 214. In the
illustrated example, the number n frame positions can be
selected based on user preference, learned based on historical
values, or predetermined. In some examples, the frame grab-
ber 408 scans the retrieved frame to check whether the
retrieved frame has the superimposed or overlaid visual indi-
cator 232 included in the marked frame 220. In some such
examples, when the retrieved frame has the visual indicator
232, the frame grabber 408 may retrieve a second frame from
the storage device 412 that is n frame positions prior to the
frame position of the first retrieved frame. In the illustrated
example, the frame grabber 408 continues to retrieve frames
from the storage device 412 until a non-marked frame (e.g.,
the non-marked frame 222) is identified.

[0034] To identify a user actionindicated in a marked frame
(e.g., the marked frame 220), the example video scanner 102
is provided with the action recognizer 410. In the illustrated
example, the action recognizer 410 receives the marked frame
220 including the superimposed or overlaid visual indicator
232 from the video analyzer 406. The example action recog-
nizer 410 uses the visual indicator 232 superimposed or over-
laid in the marked frame 220 to identify the user action. In the
illustrated example, the action recognizer 410 compares the
visual indicator 232 to example reference images 416 stored
in the storage device 412. In the illustrated example, the
reference images 416 are stored in a lookup table and map
visual indicators to a corresponding user action. For example,
a single-line red circle may represent a single left-button
mouse click, a single-line blue circle may represent a single
right-button mouse click, a double-line red circle may repre-
sent a double left-button mouse click, a green “X” may rep-
resent holding the left-mouse button down and dragging the
mouse cursor, a red “X” may represent releasing the left-
mouse button after dragging the mouse cursor, etc. However,

Dec. 17, 2015

other methods to determine which user actions correspond to
different visual indicators 232 may additionally or alterna-
tively be used. In the illustrated example, the action recog-
nizer 410 generates the user action metadata 226 based on the
user action identified from an analysis of the reference images
416. In some examples, the center of the visual indicator 232
(e.g., a single-line colored circle) corresponds to the coordi-
nates (X, y) of the user action. In some examples, the action
recognizer 410 generates the action parameter metadata 228
(e.g., screen position or location of the visual indicator 232 in
the marked frame 220, a text character or string, etc.) based on
the user action.

[0035] Intheillustrated example, the information aggrega-
tor 414 aggregates information into the information package
224 of FIG. 2 to send to the script generator 104. For example,
if the software test video 206 has associated metadata 208, the
information aggregator 414 collects the user action metadata
226 and the action parameter metadata 228 from the metadata
analyzer 404 and the non-marked frame 222 from the frame
grabber 408, and stores the user action metadata 226, the
action parameter metadata 228 and the non-marked frame
222 inthe information page 224. In some other examples, the
information aggregator 414 may collect the user action meta-
data 226 and the action parameter metadata 228 from the
actionrecognizer 410 and the non-marked frame 222 from the
frame grabber 408.

[0036] As described above in connection with the example
script generating system 100 of FIGS. 1 and 2, the example
script generator 104 of FIG. 4 generates test script 210 (FIG.
2) to execute in an example user simulation program 212
(FIG. 2). For example, the script generator 104 may use
Image Based Automation technology to generate test script
210 using the information included in the information pack-
age 224. In some examples, the script generator 104 identifies
an image object (e.g., the example image object 230 of FIG.
2 and/or the example image object 316 of FIG. 3) to include
in the test script 210. However, other methods of generating
test script from the information included in the example infor-
mation package 224 for execution by a user simulation pro-
gram 212 may additionally or alternatively be used.

[0037] Flowcharts representative of example machine
readable instructions for implementing the script generating
system 100 of FIGS. 1, 2 and 4 are shown in FIGS. 5-7. In
these examples, the machine readable instructions comprise
programs for execution by a processor such as the processor
812 shown in the example processing platform 800 discussed
below in connection with FIG. 8. The programs may be
embodied in software stored on a tangible computer readable
medium such as a CD-ROM, a floppy disk, a hard drive, a
digital versatile disk (DVD), a Blu-ray disk, or a memory
associated with the processor 812, but the programs in their
entirety and/or parts thereof could alternatively be executed
by a device other than the processor 812 and/or embodied in
firmware or dedicated hardware. Further, although the
example programs are described with reference to the flow-
charts illustrated in FIGS. 5-7, many other methods of imple-
menting the script generating system of FIGS. 1, 2 and 4 may
alternatively be used. For example, the order of execution of
the blocks may be changed, and/or some of the blocks
described may be changed, eliminated, or combined.

[0038] The example processes of FIGS. 5-7 may be imple-
mented using coded instructions (e.g., computer readable
instructions) stored on a tangible computer readable medium
such as a hard disk drive, a flash memory, a read-only memory

US 2015/0363300 Al

(ROM), a compact disk (CD), a digital versatile disk (DVD),
a cache, a random-access memory (RAM) and/or any other
storage media in which information is stored for any duration
(e.g., for extended time periods, permanently, brief instances,
for temporarily buffering, and/or for caching of the informa-
tion). As used herein, the term tangible computer readable
medium is expressly defined to include any type of computer
readable storage and to exclude propagating signals. Addi-
tionally or alternatively, the example processes of FIGS. 5-7
may be implemented using coded instructions (e.g., computer
readable instructions) stored on a non-transitory computer
readable medium such as a hard disk drive, a flash memory, a
read-only memory, a compact disk, a digital versatile disk, a
cache, a random-access memory and/or any other storage
media in which information is stored for any duration (e.g.,
for extended time periods, permanently, brief instances, for
temporarily buffering, and/or for caching of the information).
As used herein, the term non-transitory computer readable
medium is expressly defined to include any type of computer
readable storage device or storage disk and to exclude propa-
gating signals. As used herein, when the phrase “at least” is
used as the transition term in a preamble of a claim, it is
open-ended in the same manner as the term “comprising” is
open ended.

[0039] The program of FIG. 5 begins at block 502 at which
the example external interface 402 (FIG. 4) determines
whether the test video 206 (FIG. 2) of software under test
includes corresponding metadata 208 (FIG. 2). For example,
the external interface 402 receives the example software test
video 206 (FIG. 2) from the video recorder 204 (FIG. 2), and
analyzes the example software test video 206 for the corre-
sponding metadata 208. If the metadata 208 is not provided
by the video recorder 204, the process of FIG. 5 proceeds
without the metadata 208 (block 504). Otherwise, if the exter-
nal interface 402 identifies the metadata 208 from the video
recorder 204, the process of FIG. 5 proceeds with the meta-
data 208 (block 506).

[0040] At block 508, the video scanner 102 determines a
user action. For example, the metadata analyzer 404 (FIG. 4)
or the action recognizer 410 (FIG. 4) may determine a user
action as described below in connection with FIG. 6.

[0041] At block 510, the video scanner 102 determines an
action parameter corresponding to the user action. For
example, the metadata analyzer 404 or the action recognizer
410 determines an action parameter as described below in
connection with FIG. 7.

[0042] At block 512, the video scanner 102 captures a
non-marked frame (e.g., the non-marked frame 222) from the
software test video 206 that does not include the visual indi-
cator 232. For example, the frame grabber 408 (FIG. 4) uses
the frame reference metadata 214 received from the metadata
analyzer 404 and/or the frame reference received from the
video analyzer 406 to retrieve a frame from the storage device
412. In some examples, the frame grabber 408 scans the
retrieved frame for the visual indicator 232 and may retrieve
additional frame(s) from the storage device 412 until it
retrieves a non-marked frame 222 without a visual indicator
232. In the illustrated example, when the frame grabber 408
identifies a non-marked frame 222, the frame grabber 408
communicates the non-marked frame 222 to the information
aggregator 414 (FIG. 4).

[0043] At block 514, the video scanner 102 aggregates
information to provide to the script generator 104 to generate
the test script 210 (FIG. 2). For example, the information

Dec. 17, 2015

aggregator 414 collects the user action metadata 226 and the
action parameter metadata 228 provided by the metadata
analyzer 404 and/or the action recognizer 410 and the non-
marked frame 222 from the frame grabber 408. The informa-
tion aggregator 414 then communicates the collected infor-
mation to the script generator 104 in an information package
224. At block 516, the script generator 104 generates the test
script 210 based on the information package 224, and the
example process 500 ends.

[0044] The program of FIG. 6 illustrates an example
method of determining a user action. The example process of
FIG. 6 may be used to implement block 508 of FIG. 5. When
the software test video 206 has associated metadata 208 pro-
vided by the video recorder 204 (FIG. 2), the metadata ana-
lyzer 404 (FIG. 4) determines a user action based on the
operation metadata 216 of FIG. 2 (block 602). For example,
the metadata analyzer 404 analyzes the metadata 208
received via the external interface 402 and identifies the
operation metadata 216. The example metadata analyzer 404
uses the operation metadata 216 to identify a user action and
generate the user action metadata 226 to describe the user
action (block 604). Control then returns to a calling function
or process such as the example program 500 of FIG. 5 and the
example process of FIG. 6 ends.

[0045] When the video recorder 204 does not provide the
metadata 208, the video scanner 102 identifies a marked
frame 220 in the software test video 206 (block 606). For
example, the video analyzer 406 analyzes the software test
video 206 frame-by-frame until it finds a visual indicator 232
in a frame (e.g., the marked frame 220). In the illustrated
example, the video analyzer 406 communicates the marked
frame 220 to the action recognizer 410.

[0046] At block 608, the video scanner 102 determines the
user action based on the visual indicator 232 superimposed or
overlaid on the user interface in the marked frame 220 by, for
example, using the action recognizer 410 to compare the
visual indicator 232 to the reference images 416 stored in the
storage device 412. In this manner, the action recognizer 410
identifies a user action corresponding to a reference image
416 that matches the visual indicator 232. The example action
recognizer 410 uses the identified user action to generate the
user action metadata 226 (block 610). Control then returns to
acalling function or process such as the example program 500
of FIG. 5, and the example process of FIG. 6 ends.

[0047] The program of FIG. 7 illustrates an example
method of identifying a user parameter. The example process
of FIG. 7 may be used to implement block 510 of FIG. 5.
When the software test video 206 has associated metadata
208 provided by the video recorder 204 (FIG. 2), the metadata
analyzer 404 analyzes the metadata 208 received via the
external interface 402 and identifies the operation parameter
metadata 218 (block 702). In the illustrated example, the
example metadata analyzer 404 uses the operation parameter
metadata 218 to generate the action parameter metadata 228
(e.g., a text character or string, a keyboard input, coordinates
of a user action, etc.) (block 704). Control then returns to a
calling function or process such as the example program 500
of FIG. 5, and the example process of FIG. 7 ends.

[0048] When the video recorder 204 does not provide the
metadata 208, the video scanner 102 identifies the action
parameter from an identified user action (block 706). For
example, the action recognizer 410 identifies the action
parameter based on a user action (e.g., screen position or
location of the visual indicator 232, a text character or string,

US 2015/0363300 Al

etc.) identified at block 606 of FIG. 6 in the marked frame 220
received from the video analyzer 406. The action recognizer
410 generates the action parameter metadata 228 using the
action parameter (block 708). Control then returns to a calling
function or process such as the example program 500 of FIG.
5, and the example process of FIG. 7 ends.

[0049] FIG. 8 is a block diagram of an example processing
platform 800 capable of executing the instructions of FIGS.
5-7 to implement the script generating system 100 of FIGS. 1,
2 and 4. The processing platform 800 can be, for example, a
server, a personal computer, an Internet appliance, or any
other type of computing device.

[0050] The processing platform 800 of the instant example
includes a processor 812. For example, the processor 812 can
be implemented by one or more microprocessors or control-
lers from any desired family or manufacturer.

[0051] The processor 812 includes a local memory 813
(e.g., a cache) and is in communication with a main memory
including a volatile memory 814 and a non-volatile memory
816 via a bus 818. The volatile memory 814 may be imple-
mented by Synchronous Dynamic Random Access Memory
(SDRAM), Dynamic Random Access Memory (DRAM),
RAMBUS Dynamic Random Access Memory (RDRAM)
and/or any other type of random access memory device. The
non-volatile memory 816 may be implemented by flash
memory and/or any other desired type of memory device.
Access to the main memory 814, 816 is controlled by a
memory controller.

[0052] In the illustrated example, the processing platform
800 also includes a video scanner 102 and a script generator
104. Although the video scanner 102 and the script generator
104 are shown as separate components, the video scanner 102
and/or the script generator 104 may be implemented by one or
more of the other components of the processing platform 800.

[0053] The processing platform 800 also includes an inter-
face circuit 820. The interface circuit 820 may be imple-
mented by any type of interface standard, such as an Ethernet
interface, a universal serial bus (USB), and/or a PCI express
interface.

[0054] One or more input devices 822 are connected to the
interface circuit 820. The input device(s) 822 permit a user to
enter data and commands into the processor 812. The input
device(s) can be implemented by, for example, a keyboard, a
mouse, atouchscreen, a track-pad, atrackball, isopoint and/or
a voice recognition system.

[0055] One or more output devices 824 are also connected
to the interface circuit 820. The output devices 824 can be
implemented, for example, by display devices (e.g., a liquid
crystal display, a cathode ray tube display (CRT), a printer
and/or speakers). The interface circuit 820, thus, typically
includes a graphics driver card.

[0056] The interface circuit 820 also includes a communi-
cation device such as a modem or network interface card to
facilitate exchange of data with external computers via a
network 826 (e.g., an Ethernet connection, a digital sub-
scriber line (DSL), a telephone line, coaxial cable, a cellular
telephone system, etc.).

[0057] The processing platform 800 also includes one or
more mass storage devices 828 for storing software and data.
Examples of such mass storage devices 828 include floppy
disk drives, hard drive disks, compact disk drives and digital
versatile disk (DVD) drives. The mass storage device 828
may implement a local storage device.

Dec. 17, 2015

[0058] Coded instructions 832 representative of the
machine readable instructions of FIGS. 5-7 may be stored in
the mass storage device 828, in the volatile memory 814, in
the non-volatile memory 816, and/or on a removable storage
disc such as a CD or DVD.

[0059] From the foregoing, it will be appreciated that
example methods, apparatus and articles of manufacture dis-
closed herein increase the efficiency of testing and debugging
software by generating test script from video without user
intervention rather than needing a person to generate test
script by watching the video and manually documenting steps
required to re-create a problematic issue in software under
test.

[0060] Although certain example methods, apparatus and
articles of manufacture have been disclosed herein, the scope
of coverage of this patent is not limited thereto. On the con-
trary, this patent covers all methods, apparatus and articles of
manufacture fairly falling within the scope of the claims of
this patent.

What is claimed is:

1. A method of generating a script comprising:

determining a user action in a first frame of a video com-

prising recorded testing of software;

identifying an action parameter corresponding to the user

action; and

based on the action parameter, generating without user

intervention a script to execute on the software.

2. A method as defined in claim 1 wherein determining the
user action further comprises identifying a visual indicator in
the first frame, the visual indicator indicative of the user
action.

3. A method as defined in claim 2 further comprising com-
paring the visual indicator to a reference image correspond-
ing to at least one of a type of mouse click or a touchscreen
touch element.

4. A method as defined in claim 2 further comprising:

identifying a second frame of the video, wherein the sec-

ond frame is displayed prior to the first frame; and

capturing a portion of the second frame that includes a

location of the visual indicator, wherein generating the
script is based on the user action, the action parameter
and the portion of the second frame.

5. A method as described in claim 1 wherein determining
the user action further comprises analyzing a data structure of
user actions recorded in the video.

6. A method as described in claim 1 wherein the action
parameter includes a screen position of the user action.

7. A method as described in claim 1 wherein the action
parameter includes a text string.

8. A method as described in claim 1 wherein identifying the
action parameter further comprises analyzing user actions
recorded in the video.

9. An apparatus to generate a script comprising:

an action recognizer to determine a user action in a first

frame of a video comprising recorded testing of soft-
ware, the action recognizer to identify an action param-
eter corresponding to the user action;

aframe grabber to capture a second frame based on a frame

position of the first frame; and

a script generator to, based on the user action, the action

parameter, and the second frame, generate without user
intervention a script to execute on the software.

US 2015/0363300 Al

10. The apparatus as defined in claim 9, wherein the action
recognizer further comprises identifying a visual indicator in
the first frame, the visual indicator indicative of the user
action.

11. The apparatus as defined in claim 10 wherein the frame
grabber is to capture a portion of the second frame that
includes a location of the visual indicator.

12. The apparatus as defined in claim 9, further comprising:

ametadata analyzer to analyze user actions recorded in the

video.

13. A tangible computer readable storage medium com-
prising instructions that, when executed, cause a machine to
at least:

determine a user action in a first frame of a video compris-

ing recorded testing of software;

identify an action parameter corresponding to the user

action; and

based on the user action and the action parameter, generate

without user intervention a script to execute on the soft-
ware.

14. The tangible computer readable storage medium
according to claim 13, wherein the instructions further cause
the machine to identify a visual indicator in the first frame, the
visual indicator indicative of the user action.

15. The tangible computer readable storage medium
according to claim 13, wherein the instructions further cause
the machine to analyze user actions recorded in the video to
determine the user action.

#* #* #* #* #*

Dec. 17, 2015

