US 20240127882A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2024/0127882 Al

VOGELSANG et al.

43) Pub. Date: Apr. 18, 2024

(54) MEMORY SYSTEM WITH MULTIPLE OPEN G1IC 11/4091 (2006.01)
ROWS PER BANK G1IC 11/4094 (2006.01)
] (52) US. CL
(71) Applicant: Rambus Inc., San Jose, CA (US) CPC ... G1IC 11/4085 (2013.01); GO6F 13/4282
. (2013.01); G1IC 11/4091 (2013.01); G1IC
(72) Inventors: Thomas VOGELSANG, Mountain 11/4094 (2013.01)
View, CA (US); John Eric Linstadt,
Palo Alto, CA (US); Liji
Gopalakrishnan, Sunnyvale, CA (US) (57) ABSTRACT
(21) Appl. No.: 18/497,149
(22) Filed: Oct. 30, 2023 A dynamic random access memory (DRAM) component
(e.g., module or integrated circuit) can be configured to have
Related U.S. Application Data multiple rows in the same bank open concurrently. The
(63) Continuation of application No. 17/390,370, filed on controller of the component divides the address space of the
Jul. 30. 2021. now Pat. No. 11.842 7651 WiliCh is a banks into segments based on row address ranges. These
contimuation of application No. 16/338.646. filed on oW address ranges do not necessarily correspond to row
T address ranges of the bank’s subarrays (a.k.a. memory array
Apr. 2, 2020, now Pat. No. 11,114,150. . .
tiles—MATs). When a command is sent to open a row, the
(60) Provisional application No. 62/835,717, filed on Apr. controller marks a plurality of the segments as blocked. The
18, 2019. controller thereby tracks address ranges in a bank where it
A . . will not open a second row unless and until the first row is
Publication Classification . .
closed. The memory component may store information
(51) Int. CL about which, and how many, segments should be blocked in
G1IC 11/408 (2006.01) response to opening a row. This information may be read by
GOG6F 13/412 (2006.01) the controller during initialization.
100—¢ .
CONTROLLER 110 INRRSNERRERRRNRRNNARNERRRERNN|
SCHEDULER — MAT a+2 127
11
IRAAEREEEEEREARERRN R RN
11 e > SAa+2 137
- B L0 00 O OO OO U OO 00O OO W
MAT a+1 126
1 16\
° __ LR 0300 3 O O O O OO0 0 OO0 0 OO OO I
. SAa+1 136
b+2 B0 0L 0 0 0 O O 00 OO 0O O 000 OO0 OO O OO W
1s7 MAT a 125
KA
_1_5§ INNAEREREEREEENREERNREREREERNREN
b SAai3sb
_1__§ RO 0L O O O O O D 6 O O OO OO
b-1
154 MAT a-1 124
—2 LR 0300 30 O O IO 0 O 00 O3 OO OO O
153 SAa-1134
. RARRR RN ERRRRN AR NRRRRRRRRERY!
* . =147
* BANK#X145M__|
1 17-/"‘71—8——3“— . 146
MEMORY 120

Patent Application Publication Apr. 18,2024 Sheet 1 of 17 US 2024/0127882 A1

N--147

146
0

RY 1

N

5

<

#X 1
MEMO

7
BANK

~N & © N

(s X9,

-

a-1134

MAT a 125
SA

SA a+2 1
MAT a+1 12
SAa+113

E N IOF OO IO 0 O 0 O O O O 2O 0O OO O O N
MAT a-1 12

MAT a+2 1

IEEEE NN E RN NN EEEEEE NN
T T I I T T T T T T T TITITTTT
a
NS O O O

FIG. 1

Wl « <

b+2
157
b+1
156

b

5
154
b-2
153

118

16—
117

SCHEDULER
1
1

CONTROLLER 110

Patent Application Publication

(@+2)*N

(@+1)*N

(a-1)*N

(a-2)*N

MAT
a+3
ADDR
RANGE

MAT
a+2
ADDR
RANGE

Vv

MAT
a+1
ADDR
RANGE

A4

MAT a
ADDR
RANGE

hd

MAT a-1
ADDR
RANGE

A4

MAT a-2
ADDR
RANGE

WV

MAT a-3
ADDR
RANGE

202

204
)

SEG s-5 ADDR RANGE

FIG. 2A

Apr. 18,2024 Sheet 2 of 17 US 2024/0127882 Al

[]

L J

[]

SEG s+5 ADDR RANGE

SEG s+4 ADDR RANGE _
¢ (s+4)*2'
SEG s+3 ADDR RANGE _
¢ (s+3)*2'
SEG s+2 ADDR RANGE _
< (s+2)*2
SEG s+1 ADDR RANGE _
¢ (s+1)*2'
SEG s ADDR RANGE _
¢ (s)2
SEG s-1 ADDR RANGE _
¢ (s-1)*2'
SEG s-2 ADDR RANGE _
¢ (s-2)*2'
SEG s-3 ADDR RANGE _
¢ (s-3)*2'
SEG s-4 ADDR RANGE _
¢ (s-4)*2'

US 2024/0127882 Al

Apr. 18,2024 Sheet 3 of 17

Patent Application Publication

Cx(L+8)>Y5 2,8
N«(L+8)>Y>N.B

4ddv MOd L# 34SVO

Cx(L+8)>Y>2,S
Nx«(Z+8)>H>N.(L+B)

d4ddv MOd ¢# 4SvO

g¢ 'Oid

JONVY J4Aaav 6-s O3S

JONVY JAav #-s O3S

JONVY dAdav €-s O3S

JONVY JAav ¢-s O3S

JONVY JAav L-s O3S

JONVH
4aav
¢ e 1VIN

JONVH
4aav
CE1VIN

N

JONVH
4aav
I-e LVIN

N

N

JONVH
4aav
e 1VIA

JONVY 1dayv L+s 93S

JONVY Jdav ¢+s 93S

JONVY Jdav €+s 93S

JONVY 1dayv v+s O3S

JONVY Jdav g+s O3S

A4

JONVH
4aav
l+E

1VIN

N

JONVY
4aav
z+e
1VIA

JONVY
4aav
c+e
1VIA

N

N«(Z-e)

N«(L-8)

N+E

N«(L+€)

Nx(Z+€)

US 2024/0127882 Al

Apr. 18,2024 Sheet 4 of 17

Patent Application Publication

7S

SIN3IND3IS aaxo014d

(1 +8)>H52,S
Ni«(L+B)>HSN.B

d4dav MOd L# 38O

Cx(L+8)>Y>2,8
N« (Z+B)>¥H>N.(L+B)

4dav MOd ¢# 3SvO

¢ Ol

JONVY dddv 6-s O3S

$IONVY HAQV v OIS

JONVY ¥AQV £-S 9383

JONVY ¥AAY z-S O3S,

JIONVY Haay -s 938

AONYYH HAAv s 93S

JONVY HAQY L+ O3S

JONVY daay N+wx0mm

| 2%%

JONVYH HAAV £+5 OISK
e S SO 5

JONVY HAQY #+S O3S

JONVY Hdav §+s 93S

JONVY
d4aav
€e 1LVIN

dONvVd
4aav
B ILVIN

JONVH
d4aav
L-8 LVIN

JONVY
4aav
e 1VIN

dONVY
daav
L+e

1VIN

dONVY
daav
Z+e
1VIN

1
|
)

JONVYH
daav
c+e

1VIN

ONIMO0149
— #dSVO

ONDDOTE
> Z#3SVYD

Patent Application Publication

Apr. 18,2024 Sheet 5 of 17

o)
™)

328

327

Q|
(op]

-y
4

L
h

DATA INTERFACE 370

1t

O
ap)

CA INTERFACE

L0
o

-y
7.

£
5

324

323

N
op)

Y
2

-
h

321

DATA INTERFACE 370

T

1t

SPD
385

y

DQ

CA

DQ

CONTROLLER 310

ADDR TABLE 316

.
>

A

Y

BLOCKING CNTL LOGIC

2

1

3

US 2024/0127882 Al

Patent Application Publication Apr. 18,2024 Sheet 6 of 17 US 2024/0127882 A1

o
<
1
w
-
-
O
1
=
s o)
< &
4
<
H S
P
< ©|
o L O
® - i
< [ag]
<
o —
o
3 &
0
g <
5
wi
O/U\
b4 K
w
S & g
N P\I_‘/
P
QO
= 3
0 < S
L 0 a]
e
Zvl S < —
(& ~ E
N o
X
O
O
-
m

Patent Application Publication Apr. 18,2024 Sheet 7 of 17 US 2024/0127882 A1

READ MAT ADDRESS RANGE
INFORMATION FROM MEMORY
COMPONENT
502

READ BLOCKING RANGE
INFORMATION FROM MEMORY
COMPONENT
504

INITIALIZE BLOCKING TABLE
CONTROL
206

INITIALIZE BLOCKING TABLE
208

FIG. 5

Patent Application Publication Apr. 18,2024 Sheet 8 of 17 US 2024/0127882 A1

PRECHARGE ALL ROWS; CLEAR BLOCCKED
FLAG AND COUNTER VALUE
602

RECEIVE REQUEST TO OPEN A ROW
604

FLAG REQUEST AS BLOCKED IF REQUESTED ROW
iS IN A SEGMENT MARKED AS BLOCKED
606

PLACE REQUEST iIN SCHEDULER QUEUE
608

SCHEDULER SELECTS NEXT
TRANSACTION BASED ON POLICY AND
BLOCKED STATUS
616

l
SELECTED TRANSACTIONS SENT TO
MEMORY COMPONENT
612

FOR SEGMENTS WITH A NON-ZERO COUNTER VALUE,
DECREMENT VALUES IN BLOCKED SEGMENT TABLE
614

FOR SEGMENTS THAT ARE STARTING A DELAYED
AVAILABILITY COMMAND, CLEAR THE BLOCKED SEGMENT
FLAG AND SET THE COUNTER VALUE TO THE NUMBER OF

CYCLES UNTIL COMMAND COMPLETES
616

|
CLEAR BLOCKED STATUS IN SCHEDULER QUEUE
FOR REQUESTS ASSOCIATED WITH SEGMENTS
THAT BECAME UNBLOCKED
618

IF COMMAND BEING STARTED OPENS A ROW, SET
BLOCKED SEGMENT FLAG SET FOR SEGMENTS
WITHIN BLOCKING RANGE OF NEWLY OPENED

ROW
620

FIG. 6

Patent Application Publication

EXAMPLE ENTRY
STRUCTURE

FLAG

COUNTER

702\ 1) ROWS CLOSED

7041

0

0

0

0

3) PRECHARGE
ISSUED

0

0

trp

g I e i]
oSS ™ AN
A ot o)
o IR P

trp

7101

9)

AFTER tgp CYCLES

0

0

0

0

Apr. 18,2024 Sheet 9 of 17

2) NEW ROW OPENED

0

0

0

0

7081 4) AFTER N1 CYCLES

1

0

1

0

trp — N1

trp — N1

trp — N1

FIG. 7A

US 2024/0127882 Al

OPENED
ROW

Patent Application Publication

EXAMPLE ENTRY
STRUCTURE

Apr. 18,2024 Sheet 10 of 17

FLAG

COUNTER

2) 15T NEW ROW

US 2024/0127882 Al

712
—4 1) ROWS CLOSED 7144 OPENED
0 0 0 0
0 0 0 0
0 0 1% e %02 Sty
~ 9 o), 4 %, i 1ST
0 0 ARSI oWe_OPENED
a—— ROW
0 0 1 2450 g
716— 3) 1°7 PRECHARGE 48— 4) SECOND NEW ROW
A ISSUED 4 OPENED
oy PRIy
0 0 Ry oo
OPENED
0 0 1 0 ROW
0 trp: 1 Sotre = N1 o1
: Zi > . S N
02 otrpls — 0 e N1SESEES, . ROW
03 trps 0 trp — N1
720~4 5) AFTERtrp CYCLES 722—¢ 6) 2"° PRE ISSUED
13 25205 R e
1 3205 Tg— 1250505505 Rt wk—
13 0 1 S
0 0 0 0
0 0 0 0
EIG. 7B

US 2024/0127882 Al

Apr. 18,2024 Sheet 11 of 17

Patent Application Publication

8 'OId

¢8 WWAA/NINIA

A
|onuoD M
PUE PUBWIWOY) 088 0.8 ‘ gied
AHd J8jjojuo)
josnuon eregt ejeq
pue puewwo?) nwsuels | SAIS08Y
_
18lghy y v V¥
IIIII #l — — Jeinoy 181N0Y
| | — —— ejeq ol
(ued Jed) I Jsjnpayos | _ BINPeoS “ ¥ o: A Ble(pesy
2160] “ N# Huey I **t ot Muey |
I I
uoneiqiied _
pue a9l e N 1 | 2918 _
Y | g, e [T siis e | ayng Joyng
_ I + 4 _ ezl J
! SoronD || _ mm:m_so R eleq peay
" W# Yuey “ cee “ o# ey ||
lllll #II»IWH-“I Ill_lul».il_ 21607
jouon Mol |—I T8 Buiddeyy SS3IpPY eleq oM
[SRR eleq peojhed
1Bqssol) _
A 018 Jojjonuon Alowsiy
_o:cooo jsenboy asuodsay §

US 2024/0127882 Al

Apr. 18,2024 Sheet 12 of 17

Patent Application Publication

d3dvaio 38 NVO SNLVLS ASNG-MNVE ANV d349dVHO3Hd
39 NVO (SINIWOIS/SLYIN TTV) M¥NVE FHLINT FHL ATILYNYIL V.

6 OH

_
v16
‘SINTJNO3FS 310344V 404 SNLVLS daxd014d 13S
'ANVINWOD 1OV ONJS ANV "MV} 98 A4SILVS

+

216
'SINIWODIS A310344V 40 SNLVLS aaxd01g ¥va1d
«(S-3dd) ANVININOD LNINWDIS IDUVYHO I
AN3S ANV LNIWDAS IHL HO4 S¥¥ A4SILYS

076
ON

¢@3axo01aNN

N3IWO3S S3A

ON

906
4MOY N3dO SIHOLVIN
MO

S3A

S3A

13S "ANVININOD
10V AN3S

404 SNLY1S X004

PMVA) fROEE AJSILYS

- 226
816 ‘a31gvN3
'a37gvN3 SI 3YNLYI4 MNVE
Sl 3YNLYId MNVE LN3IAN3I43a 4
IN3IAN3I43a I daav IN3INo3s
Jaav LNINo3S 3ANIONI
3ANTONI "ANVININOD
"ANVININOD 109 70D AN3S
AN3S ANV Y999 ‘as)
ANV 9% AJSILYS || NV 9% AdSILYS
» A A A
916
> 'SININDAS 0¢6
a3.L0344v 'SNLYLS ASNE YNV 138

‘SININOFS A310344V
d04 SN1LVLS Y0014 13S
‘ANVININOD 1OV AN3FS
MY 0¥ AJSILYS

¥06
¢NIdO MNY

JNvVE Ol 1S3N03Y

(£A3A9DYVHI-IHd LON"T'1)

206
ENAARY
3714l NI NS4 MNvd

A

US 2024/0127882 Al

Apr. 18,2024 Sheet 13 of 17

Patent Application Publication

_
_

“ [1-d:0170D
_
601 "
_
_
60T 860! !
AVHYY NYHA B “
_
_
|

_ _ 100/L0V
1NO™ QY "
2601 /A “
J7gavl ¥aav _
_
HMAAY MM € T60T | | T90T
[1-¥0laovl)/ _ W/
NI™ YA _
K |
_
y Y “ y Y

|

“ [1-4:0lMmO¥
_
_

AHOWIN | ¥37104LINOD

= I/ ,
o~ |
2 _
& .
i
Q | [1-d:0110D
>
= I
= 6Ll _
Q |
@ _
= _
- S6IT 6L "
- AVHYHY NVHA |
(=]
= "
= _
2 _ _
7 L _ TOD/LOV
- Lnoay _ —
S < | [1-:0109VL
S HAAY adleEE1T “
g z6LT ~J¢ : 10V
- 31av. ¥aav ! 7 “ ‘ " Iud
= ke ONI 1Sd] | ONI 1sY
2 €aav. &M [1-10laovl |
£ NI s | N0 MON N3O [* S
= 1611 _ ISl T
nm H1IND " UIND
2 | ! 1
[
S " [1-:0IMO
(=9
=y |
<« I
g AHOWAN ! ¥3TI0HLNOD
= o md
=W

= AR _
I~ |
& |
S .
i
Q | [1-d:0110D
>
= I
= |
S ?ﬁﬂqﬂ%mﬁ |
z _
= |
— S62T 6Ct "
= AVHYY VYA _
(=]
s “
. |
2 _ _
- = _ TODILOY
- Lno ay |
m < " [1-10]09VL
=} dHaav QdleEazT |
g zeTt ~¢ | Loy
<« J1gv.L ¥aav ; _ . i
\ 4 _ I ¥
s HAQY M T5TasvI ‘i H 195 s
E NITHM | H o l6ck 5577 0 T92T
2 H Avydv | | H AvddY
= H AVD MOY N3d -
= H ‘aqasn | 1 |WOMO ° 0 aasn
nm H /3344 " H /33u4
[
S " [1-a:0IMO
(=9
= |
< _
g AHOWIN ! HITIOYLINOD
= A md
=W

Patent Application Publication Apr. 18,2024 Sheet 16 of 17 US 2024/0127882 A1l

RECEIVE, FROM A MEMORY DEVICE, INFORMATION
ASSOCIATING ROW ADDRESSES OF A DRAM DEVICE TO
RESPECTIVE INDICATORS THAT ARE TO BE SET TO A FIRST
VALUE IN RESPONSE TO COMMANDS TO THE DRAM DEVICE
TO OPEN ROWS, THE RESPECTIVE INDICATORS
ASSOCIATED WITH A RESPECTIVE PLURALITY OF ROW
ADDRESS SEGMENTS, THE ROW ADDRESS SEGMENTS
CORRESPONDING TO RESPECTIVE ROW ADDRESS RANGES
1302

SET A PLURALITY OF THE RESPECTIVE INDICATORS TO THE
FIRST VALUE, THE PLURALITY OF THE RESPECTIVE
INDICATORS BEING SET TO THE FIRST VALUE IN RESPONSE
TO AT LEAST THE MEMORY CONTROLLER PROCESSING A
COMMAND TO THE DRAM DEVICE TO OPEN A FIRST ROW IN
THE RESPECTIVE ROW ADDRESS RANGE ASSOCIATED WITH
AT LEAST ONE OF THE RESPECTIVE INDICATORS, THE FIRST
VALUE BEING ASSOCIATED WITH THE RESPECTIVE
ASSOCIATED ROW ADDRESS SEGMENTS BEING
UNAVAILABLE FOR OPENING A SECOND ROW IN THE
ASSOCIATED RESPECTIVE ROW ADDRESS RANGE
1304

US 2024/0127882 Al

Apr. 18,2024 Sheet 17 of 17

Patent Application Publication

7L D
7orL AMOINAN
oIvl
SYALINVHV
ocrl _— -
Vlvl AN
LNaNOdINOD
LIN9NID S1NdNI ¥3sN ($3)SS300¥d
¢ o
o0vT -
(8)3aoinaa covl

NOILVOINNAIWOD

(S)40SS300¥d

US 2024/0127882 Al

MEMORY SYSTEM WITH MULTIPLE OPEN
ROWS PER BANK

BRIEF DESCRIPTION OF THE DRAWINGS

[0001]
system.
[0002] FIGS. 2A-2C are diagrams illustrating blocking
segments.

[0003] FIG. 3 is a block diagram illustrating a memory
module memory system.

[0004] FIG. 4 is a block diagram illustrating a direct attach
memory system.

[0005] FIG. 5 is a flowchart illustrating a method of
configuring a memory controller.

[0006] FIG. 6 is a flowchart illustrating a method of
operating a memory controller.

[0007] FIGS. 7A-7B are diagrams illustrating address
table operations.

FIG. 1 is a block diagram illustrating a memory

[0008] FIG. 8 is a block diagram illustrating a memory
system.
[0009] FIG. 9 is a flowchart illustrating a method of

operating a memory controller.

[0010] FIG. 10 is a block diagram illustrating open row
mapping.

[0011] FIG. 11 is a block diagram illustrating open row
counter tags.

[0012] FIG. 12 is a block diagram illustrating dynamic
open row tags.

[0013] FIG. 13 is a flowchart illustrating a method of

controlling a memory device.

[0014] FIG. 14 is a block diagram of a processing system.
DETAILED DESCRIPTION OF THE
EMBODIMENTS
[0015] In an embodiment, a dynamic random access

memory (DRAM) component (e.g., module or integrated
circuit) may have multiple rows in the same bank open
concurrently. The controller of the DRAM component
divides the address space of the banks into segments based
on row address ranges. These row address ranges do not
necessarily correspond to row address ranges of the bank’s
subarrays (a.k.a. memory array tiles—MATs). When a com-
mand is sent to open a row, the controller marks a plurality
of the segments (i.e., row address ranges) as blocked. The
controller thereby tracks address ranges in a bank where it
will not open a second row unless and until the first row is
closed. In an embodiment, the memory component stores
information about which, and how many, segments should
be blocked in response to opening a row. This information
is read by the controller during initialization.

[0016] Because more than one row in a bank may be open
concurrently, column access operations sent to the memory
component specify which row is the subject of the column
access. In an embodiment, the entire row address is used to
specify the subject row. In another embodiment, a map of
open rows to tag values is maintained by the memory
component. The memory controller sends a tag value to
specify the subject row. These tag values may be generated,
for example, using a function (e.g., hash) of the row address,
using a count of the open rows, or using a priority encoder.
[0017] FIG. 1 is a block diagram illustrating a memory
system. In FIG. 1, memory system 100 comprises controller
110, and memory component 120. Memory component 120

Apr. 18,2024

includes memory banks 145-147. Memory banks 145-147
include subarrays of memory cells (a.k.a., memory array
tiles—MATs) 124-127. Between subarrays are sense ampli-
fier stripes 134-137. Controller 110 includes scheduler 111,
configuration 112, and address tables 116-118. Address
tables 116-118 store entries 153-157.

[0018] Controller 110 and memory component 120 may
be integrated circuit type devices, such as are commonly
referred to as a “chips”. A memory controller, such as
controller 110, manages the flow of data going to and from
memory devices and/or memory modules. Memory 120 may
be a standalone device, or may be a memory module, or
component thereof. A memory controller can be a separate,
standalone chip, or integrated into another chip. For
example, a memory controller may be included on a single
die with a microprocessor, or included as part of a more
complex integrated circuit system such as a block of a
system on a chip (SOC).

[0019] Controller 110 is operatively coupled to memory
120 via at least one command address interface. Controller
110 is operatively coupled to memory 120 to send com-
mands to memory 120. Memory 120 receives the commands
(and addresses) via a corresponding command address inter-
face.

[0020] Inanembodiment, memory 120 may be configured
(e.g., placed in a first mode) to operate according to DRAM
protocols that only allow one row per bank to be open at a
time. Memory 120 may also be configured (e.g., placed in a
second mode) such that multiple rows in the same bank
145-147 may be open concurrently as long as the open rows
are in subarrays 124-127 that do not share a sense amplifier
stripe 134-137. Thus, for example, when memory 120
activates a row in a subarray 124-127, the two sense
amplifier stripes 134-137 surrounding the subarray 134-137
are used to activate the addressed row and the rest of the
sense amplifier stripes in the bank 145-147 do not participate
in the activation. Memory 120 may be placed in the first
mode or the second mode by, for example, setting a value in
a mode register, asserting a signal on a pin during reset,
startup, or initialization, and/or other means such as via a test
interface.

[0021] To activate/read a row in MAT a 125, for example,
sense amplifier stripe a 135 and sense amplifier stripe a+1
136 are used to read the contents of the addressed row while
sense amplifier stripe a—1 134 and sense amplifier stripe a+2
137 remain in their previous states. Accordingly, a second
row in MAT a-1 124 cannot be opened because MAT a-1
uses sense amplifier stripe a 135 (which is already being
used by the open row in MAT a 125.) Likewise, a second
row in MAT a+1 126 cannot be opened because MAT a+1
uses sense amplifier stripe a+1 136 (which is also already
being used by the open row in MAT a 125.) However, a row
in MAT a+2 127 may be open(ed) because MAT a+2 uses
sense amplifier a+2 137 and sense amplifier stripe a+3 (not
shown in FIG. 1.)

[0022] Controller 110 includes scheduler 111. Scheduler
111 selects transactions/commands to be sent to memory
120. Scheduler 111 maintains address tables 116-118 for
banks 145-147 that indicate which address ranges are
blocked due to open rows. The entries in the address tables
(e.g., entries 153-157 stored in address table 116) may
correspond to respective address ranges and hold one or
more indicators of whether the address range is available or
unavailable for opening a row in that address range. The

US 2024/0127882 Al

entries 153-157 in address tables 116-118 may comprise a
single bit or other value corresponding to whether or not the
address range is available for opening a row. The entries
153-157 in address tables 116-118 may comprise a value that
that tracks when an address range will become available. For
example, when memory 120 is configured to auto-precharge,
a timer value may be incremented or decremented under
certain conditions to track when the precharge will be
complete and therefore the address range becomes available.

[0023] When the row addresses associated with each sub-
array 124-127 begin and end on powers of two (i.e., each
MAT 124-127 has 2’ rows, where i is a positive integer), then
each entry 153-157 in address tables 116-118 may corre-
spond to a single respective MAT 124-127. Thus, in this
case, there may be a one-to-one correspondence between
entries 153-157 and MATs 124-127. In other words, entry
b-1 154 may indicate whether a row in MAT a-1 124 may
be opened; entry b 155 may indicate whether a row in MAT
a 125 may be opened, and so on. If the entry 153-157
indicates the MAT 124-127 is unavailable for opening a row,
scheduler 111 may refrain from sending a command to
memory 120 to open the row until the MAT 124-127
becomes available. When a row is opened, the entry (e.g.,
entry b 155) corresponding to the MAT (e.g., MAT a 125)
with the opened row, and the two adjacent entries (e.g., entry
b-1 154 for MAT a-1 124 and entry b+1 156 for MAT a+1
126) are marked as being unavailable (a.k.a., blocked) for
opening a row. Conversely, when the row is closed, the entry
(e.g., entry b 155) corresponding to the MAT (e.g., MAT a
125) with the previously open row, and the two adjacent
entries (e.g., entry b—1 154 for MAT a-1 124 and entry b+1
156 for MAT a+1 126) are marked as being available (a.k.a.,
unblocked) for opening a row.

[0024] When the row addresses associated with each sub-
array 124-127 do not begin and end on powers of two,
controller 110 may use the full row address to determine
which MAT 124-127 (and therefore which entry 153-157 in
address table 116 holds the indicator) holds the addressed
row. Once the MAT (e.g., MAT a 125) holding the row
addressed for opening is determined, the entry (e.g., entry b
155) corresponding to the MAT with row addressed for
opening, and the two adjacent entries (e.g., entry b—1 154 for
MAT a-1 124 and entry b+1 156 for MAT a+1 126) are
marked a being unavailable for opening a row. Similarly,
once the MAT (e.g., MAT a 125) holding the row addressed
for closing is determined, the entry (e.g., entry b 155)
corresponding to the MAT with row addressed for closing,
and the two adjacent entries (e.g., entry b—-1 154 for MAT
a-1 124 and entry b+1 156 for MAT a+1 126) are marked
as being available for opening a row.

[0025] In an embodiment, entries 153-157 correspond to
address ranges that are powers of two, but the row addresses
associated with each subarray 124-127 do not begin and end
on powers of two. In this case, the address ranges (a.k.a.,
segments) associated with each entry 153-157 may be
greater than or less than the number of rows in each subarray
124-127. Controller 110 marks the segment associated with
the open row and a configured number (which may be
greater than 1) of entries 153-157 on either side of the
segment associated with the open row as blocked. When that
configured number is selected properly in relation to the
number of rows in each MAT 124-127, and the size of the
address ranges associated with each entry 153-157, control-
ler 110 views (at least) the two MATs 124-127 adjacent to

Apr. 18,2024

the MAT with the open row as being blocked. In an
embodiment, the size of the address ranges for each entry
153-157 and the number of surrounding segments to be
marked blocked is read from memory 120.

[0026] FIGS. 2A-2C are diagrams illustrating blocking
segments. In FIG. 2A, example row address ranges associ-
ated with MAT a-3 to MAT a+3 are illustrated on vertical
scale. Likewise, the row address ranges for example seg-
ments s-5 to s+5 (which are each 2’ rows in size—i.e., a
power of two) are illustrated on the same vertical scale. Note
that the segment boundaries do not necessarily coincide with
MAT address range boundaries and vice versa. This is
illustrated by arrows 202 and 204. Thus, FIGS. 2A-2C may
be seen as illustrating a configuration where entries 153-157
correspond to address ranges that are powers of two, but the
row addresses associated with each subarray 124-127 do not
begin and end on powers of two.

[0027] FIG. 2B illustrates example requests to open a row
in the segment s address range. Case #1 illustrates a row
address that is between rows s*21 and (s+1)*2i (thus making
it in the segment s address range) and is also between a*N
and (a+1)*N, (thus making it in the MAT a address range)
where N is the number of rows in a MAT. Case #2 illustrates
a row address that is between rows s*2i and (s+1)*2i (thus
making it in the segment s address range), but is instead
between (a+1)*N and (a+2)*N, (thus making it in the MAT
a+1 address range). Thus, if either of these rows is opened,
the MATs that would need to be marked ‘blocked” would be:
MAT a-1, MAT a, MAT a+1, and MAT a+2.

[0028] MAT a-1 would need to be marked blocked
because MAT a-1 shares a sense amplifier stripe with MAT
a, and case #1 illustrates that opening a row in segment s
may result in an open row in MAT a. MAT a would need to
be marked blocked because the row to be opened: (a) may
be in MAT a (case #1); or (b) may be in MAT a+1 (case #2)
and MAT a shares a sense amplifier stripe with MAT a+1.
MAT a+1 would need to be marked blocked because the row
to be opened: (a) may be in MAT a (case #1) and MAT a+1
shares a sense amplifier stripe with MAT a; or (b) may be in
MAT a+1 (case #2). MAT a+2 would need to be marked
blocked because MAT a+1 shares a sense amplifier stripe
with MAT a+2, and case #2 illustrates that opening a row in
segment s may result in an open row in MAT a+1.

[0029] To ensure that no rows of MATs a-1, a, a+1, and
a+2 are opened while a row in segment s is open, segment
s—4 to segment s+4 are marked blocked by controller 110.
This is illustrated in FIG. 2C. Thus, blocking, by controller
110, a range of segments (i.e., s+4 segment) around the
segment with the open row ensures further row opening
operations directed to MATs that are unavailable are not sent
to memory 120. By selecting segment sizes to be a power of
two (i.e., 21), controller 120 can use a configured number of
the most significant bits of the row address (but not all of the
row address bits) as an index to address tables 116-119 to get
entries 153-157 and the indicators therein. These bits may be
referred to as a segment address and correspond to the value
of's in the discussion herein. In an embodiment, memory 120
sends the segment size (i.e., 2’ and/or i) and the number of
segments to be blocked (e.g., +4) around an open row to
controller 110. Controller 110 stores this configuration 112.
Controller uses configuration 112 to operate address tables
116-119.

[0030] In an embodiment, a complete address that is
transmitted to memory 120 by controller 110 may include

US 2024/0127882 Al

fields corresponding to a bank group (BG), bank (BA),
segment (s), row (R), and column (C). Some commands may
not need to specify a complete address and therefore may
only transmit some of these address fields. Table 1 illustrates
example address fields for selected commands that may be
transmitted to memory 120 when there can be multiple open
rows in a bank.

TABLE 1

Command name Address fields

Activate (ACT) BG, BA, R
Column command (e.g. read or write open row--COL) BG, BA, s, C
Precharge all banks

Precharge bank (all segments)
Precharge segment (PRE-S)

BG, BA
BG, BA, s

[0031] Table 2 illustrates example timing constraints
between example commands when there can be multiple
open rows in a bank.

TABLE 2

Timing

constraint

name Description

tre ACT to ACT command in the same bank and blocked
segment

trrD ACT command in bank to ACT command in different bank

treo, ACT to ACT command in the same bank and non-blocked
segment

teen COL command to COL command within the same segment

teen, COL command to COL command between non-blocked
segments (optional)

teuw Period for four (4) ACT commands to different banks

traw, Period for four (4) ACT commands to segments in the same
bank

Other Bank group and rank timing constraints still apply

[0032] FIG. 3 is a block diagram illustrating a memory

module memory system. In FIG. 3, memory system 300
comprises controller 310 and memory module 320. Control-
ler 310 may be or correspond to controller 110 discussed
herein with reference to FIG. 1. Controller 310 includes
blocking control logic 312 and address table 316. Controller
310 is operatively coupled to module 320 via data signals
(DQ) and command-address signals (CA). Module 320
includes memory components 321-329, data interface 370,
command-address interface 380, and serial presence detect
(SPD) circuitry 385. SPD 385 is illustrated as operatively
coupled to blocking control logic 312 of controller 310. In
an embodiment, configuration information is read from SPD
385. The configuration information read from SPD 385 may
include a segment size (e.g., number of rows—preferably a
power of two) and the number of surrounding segments
(e.g., =1, £2, 3, +1 only, +1, and -3, etc.) to mark as
blocked in address table 316 when a row is open in a given
segment.

[0033] In an embodiment, a memory controller 310
includes address table 316 to associate indicators with row
address segments, where the row address segments corre-
spond to respective row address ranges. Blocking control
logic 312 sets the indicators to values that associate the
respective row address segments as being unavailable for
opening a row. Typically, a plurality of the indicators are set
in response to the memory controller processing a command

Apr. 18,2024

to a memory device to open a row. Controller 310 also
receives information, from memory 320, that associates row
addresses to which of the indicators are to be set in response
to the command to the memory device to open a row. This
information may be received via SPD 385.

[0034] FIG. 4 is a block diagram illustrating a direct attach
memory system. In FIG. 4, memory system 400 comprises
controller 410 and memory device 420. Controller 410 may
be or correspond to controller 110 discussed herein with
reference to FIG. 1. Controller 410 includes blocking control
logic 412 and address table 416. Controller 410 is opera-
tively coupled to memory 420 via data signals (DQ) and
command-address signals (CA). Device 420 includes
memory banks (arrays) 445, data interface 470, command-
address interface 480, and configuration information cir-
cuitry 485. Configuration information circuitry 485 is illus-
trated as operatively coupled to blocking control logic 412
of controller 410. In an embodiment, configuration infor-
mation is read from configuration information circuitry 485.
Configuration information may be read from configuration
information circuitry 485 using, for example, mode register
set commands sent by controller 410. The configuration
information read from configuration information circuitry
485 may include a segment size (e.g., number of rows—
preferably a power of two) and the number of surrounding
segments (e.g., +1, 2, £3, +1 only, +1, and -3, etc.) to mark
as blocked in address table 416 when a row is open in a
given segment.

[0035] In an embodiment, a memory controller 410
includes address table 416 to associate indicators with row
address segments, where the row address segments corre-
spond to respective row address ranges. Blocking control
logic 412 sets the indicators to values that associate the
respective row address segments as being unavailable for
opening a row. Typically, a plurality of the indicators are set
in response to the memory controller processing a command
to a memory device to open a row. Controller 410 also
receives information, from memory 420, that associates row
addresses to which of the indicators are to be set in response
to the command to the memory device to open a row. This
information may be received from memory device 420.
[0036] FIG. 5 is a flowchart illustrating a method of
configuring a memory controller. The steps illustrated in
FIG. 5 may be performed, for example, by one or more
elements of system 100, system 300, and/or system 400.
MAT address range information is read from a memory
component (502). For example, memory controller 310 may
read SPD 385 to obtain the size of the address range each
entry in address table 316 should block (or unblock.) In
another example, memory controller 410 may read configu-
ration information circuitry 485 to obtain the size of the
address range each entry in address table 416 should block
(or unblock.)

[0037] Blocking range information is read from the
memory component (504). For example, memory controller
310 may read SPD 385 to obtain the number of segments
surrounding an open row that should be marked blocked by
entries in address table 316. In another example, memory
controller 410 may read configuration information circuitry
485 to obtain the number of segments surrounding an open
row that should be marked blocked by entries in address
table 416.

[0038] Blocking table control is initialized (506). For
example, blocking control logic 312 of controller 310 may

US 2024/0127882 Al

be initialized with the number of banks, number of segments
to be used, the size of the segments (as read from SPD 385),
and the number of segments to be blocked around an open
row (also read from SPD 385.) In another example, blocking
control logic 412 of controller 410 may be initialized with
the number of banks, number of segments to be used, the
size of the segments (as read from configuration information
circuitry 485), and the number of segments to be blocked
around an open row (also read from configuration informa-
tion circuitry 485.)

[0039] The blocking table is initialized (508). For
example, blocking control logic 312 may initialize address
table 316. Address table 316 may be initialized with segment
entries that indicate that no segments are blocked. In another
example, blocking control logic 412 may initialize address
table 416. Address table 416 may be initialized with segment
entries that indicate that no segments are blocked.

[0040] FIG. 6 is a flowchart illustrating a method of
operating a memory controller. The steps illustrated in FIG.
6 may be performed, for example, by one or more elements
of system 100, system 300, and/or system 400. FIG. 7 is a
diagram illustrating address table operations. FIG. 7 illus-
trates example actions and states of an example address table
during the operations illustrated in FIG. 6.

[0041] All rows are precharged and the blocked flag and
counter values are cleared (602). For example, controller
110 may send a command to memory 120 to precharge all
of the rows in bank 145. Once the precharge all rows
command completes, the entries in the address table are set
to states indicating all address ranges are available to be
opened. Thus, both the ‘blocked’ flag and the counter values
for all of the address table entries are set to indicate the row
is available.

[0042] A request to open a row is received (604). For
example, scheduler 111 may receive a request that requires
controller 110 to open a row in memory 120. The request is
flagged as blocked if the requested row is in a segment
marked as blocked (606). For example, scheduler 111 may,
based on the contents of address table 116, determine that
the requested row is blocked. A requested row may be
determined to be blocked if either the ‘blocked’ flag or the
counter value in the corresponding address table entry is
non-zero.

[0043] The request is placed in the scheduler queue (608).
For example, scheduler 111 may place the flagged (blocked)
request in a scheduler queue. Based on policies and blocked
status, the scheduler selects the next transaction (610). For
example, based on the blocked status of the request, sched-
uler 111 may not select the flagged request until it is
unblocked.

[0044] For entries with a non-zero counter value, the
counter values in the segment table are decremented (614).
For segments that are starting a delayed availability com-
mand, the blocked segment flag is cleared, and the counter
value is set to the number of cycles until the command
completes (616). For example, the counter values in the
entries waiting for a command to complete before they are
available are decremented. Non-zero counter values are
initially set when commands are issued that cause closing of
a row after a known time. Some examples: (1) an explicit
precharge command would set the countdown value initially
to tzp in length; (2) a write command with auto-precharge
would set the countdown to the duration of the column
command including t,, for the write plus tar; and, (3) a

Apr. 18,2024

refresh command would set the countdown to the duration to
tgx—the duration in a refresh command.

[0045] For requests associated with segments that have
become unblocked, the blocked status in the scheduler
queue is cleared (618). For example, as a result of the count
value in one or more entries in address table 116 being
decremented, one or more segments that are associated with
commands waiting in the scheduler queue may become
unblocked.

[0046] If command opens a row, the blocked segment flag
is set for segments within blocking range of the newly
opened row (620). For example, when scheduler 111 sends
a command to memory 120 to open a row, scheduler 111
may set the ‘blocked’ flag for the corresponding range of
entries 153-157 in address table 116 to indicate those
segments are blocked. Flow proceeds back to box 604.
[0047] FIGS. 7A-7B are diagrams illustrating address
table operations. In FIGS. 7A-7B, address table entries
corresponding to blocked address ranges are illustrated in
cross-hatch filling.

[0048] A first example progression of states and operations
for an address table is illustrated in FIG. 7A. In FIG. 7A, the
initial state of the address table has no blocked segments.
This state is illustrated, for example, by the entries 702 in
FIG. 7A storing a ‘0’ entry in both the flag and counter fields
of each for each address range (which are not cross-hatch
filled.) When a new row is opened, the specified number of
segments are marked as blocked by setting the blocked flag
in the corresponding address table entries. This state is
illustrated, for example, by the entries 704 in FIG. 7A that
have a ‘1’ entry in the flag field and a zero (0) in the counter
fields (which are cross-hatch filled).

[0049] When a precharge command is issued to close the
opened row, the flag for the blocked segments is cleared
(e.g., set to “0’) and the counter field is set to txp. This state
is illustrated, for example, by the entries 706 in FIG. 7A that
have a ‘0’ entry in the flag field and a t. initial value in the
counter fields (which are cross-hatch filled). After N1 dec-
rement cycles (where N1<t,,), the counters in the blocked
segments have decreased in value by N1. This state is
illustrated, for example, by the entries 708 in FIG. 7A that
have a ‘0’ entry in the flag field and a non-zero t5,-N1 value
in the counter fields (which are cross-hatch filled). After t,,
(or more) cycles, the counter fields have saturated at zero
and the state of the address table has no blocked segments.
This state is illustrated, for example, by the entries 710 in
FIG. 7A storing a ‘0’ entry in both the flag and counter fields
of each for each address range (which are not cross-hatch
filled.)

[0050] A second example progression of states and opera-
tions for an address table is illustrated in FIG. 7B. In FIG.
7B, the initial state of the address table has no blocked
segments. This state is illustrated, for example, by the entries
712 in FIG. 7B storing a ‘0’ entry in both the flag and counter
fields of each for each address range (which are not cross-
hatch filled.) When a first new row is opened, the specified
number of segments are marked as blocked by setting the
blocked flag in the corresponding address table entries. This
state is illustrated, for example, by the entries 714 in FIG. 7B
that have a ‘1’ entry in the flag field and a zero (0) in the
counter fields (which are cross-hatch filled).

[0051] When a precharge command is issued to close the
first opened row, the flag for the blocked segments is cleared
(e.g., set to “0’) and the counter field is set to txp. This state

US 2024/0127882 Al

is illustrated, for example, by the entries 716 in FIG. 7B that
have a ‘0’ entry in the flag field and a t initial value in the
counter fields (which are cross-hatch filled).

[0052] After N1 decrement cycles (where NI1<t;,), a
second row is opened that has a segment to be blocked that
overlaps one of the segments blocked by the precharge
command closing the first opened row. When the second
new row is opened, the specified number of segments are
marked as blocked by setting the blocked flag in the corre-
sponding address table entries. Also, at the time when the
second opened row is opened, the counters for the segments
blocked by the precharge operation for the first row have
decreased in value by NI1. This state is illustrated, for
example, by the entries 718 in FIG. 7B (which are cross-
hatch filled). It should be understood that, as a matter of
design choice, the counter of the ‘shared’ blocked segment
(3™ from the top) could be set to zero when the second row
is opened, or the counter could continue to count down.
[0053] After t,, (or more) cycles, the counter fields have
saturated at zero. Accordingly, the only blocked segments
are those whose flag was set by the opening of the second
row (which are cross-hatch filled). This state is illustrated,
for example, by the entries 720 in FIG. 7B storing a ‘1’ entry
in the flag filed and counter fields storing zeros (which are
cross-hatch filled.)

[0054] When a precharge command is issued to close the
second opened row, the flag for the blocked segments is
cleared (e.g., set to ‘0’) and the counter field is set to tar. This
state is illustrated, for example, by the entries 722 in FIG. 7B
that have a ‘0’ entry in the flag field and a tar initial value
in the counter fields (which are cross-hatch filled).

[0055] FIG. 8 is a block diagram illustrating a memory
system. In FIG. 8, memory system 800 comprises memory
controller 810, memory component 820, and host 801. Host
801 is operatively coupled to controller 810. Controller 810
is operatively coupled to memory component 820. Control-
ler 810 may be or correspond to controller 110, controller
310, or controller 410 discussed herein with reference to the
Figures. Controller 810 includes address mapping 813 and
per-bank finite state machines 8124-8126. In an embodi-
ment, address mapping 813 may decode row addresses to
segment addresses. In another embodiment, row addresses
are related to segment addresses by other circuitry.

[0056] When there can be multiple open rows in a bank,
bank finite state machines 8124-8125 operate to handle the
dependencies (e.g., blocked rows, timing constraint within a
bank) resulting from having multiple open rows in a bank.
For example, bank finite state machines 812a-8126 may
consider the timing constraints, for example such as those
described in Table 2, and the status (e.g., blocked vs.
unblocked) of segments when scheduling commands to be
sent to memory component 820. Finite state machines
8124-8125 may maintain address tables 816a-816b, respec-
tively, in order to determine whether a segment being
accessed is blocked. Controller 810 is operatively coupled to
memory component 820 via data signals (DQ) and com-
mand-address signals (CA). Commands sent to memory
component 820 may comprise commands that include a
segment address field. The commands and address fields
may include, for example, those commands and address
fields described in Table 1. An increased number (when
compared to a non-multiple open row per-bank configura-
tion) of CA signals and/or command cycles may be used to
communicate the segment address field.

Apr. 18,2024

[0057] FIG. 9 is a flowchart illustrating a method of
operating a memory controller. The steps illustrated in FIG.
9 may be performed by one or more of controller 110,
controller 310, controller 410, controller 810, and/or their
components. A bank finite state machine (FSM) holds in an
idle state until a request is received (902). For example, bank
FSM 812a may wait until a request is received from host
801. If the requested bank is open (i.e., at least one row is
open/not precharged), flow proceed to block 906. Otherwise,
flow proceeds to block 920 (904). If the requested row
address matches an open row, flow proceeds to box 922.
Otherwise, flow proceeds to block 910 (906).

[0058] If the row number did not match an open row, and
the segment of the requested row is not blocked, flow
proceeds to block 916. Otherwise, flow proceeds to block
912 (910). If the segment of the requested row was blocked,
a precharge segment (PRE-S) command is sent (after satis-
fying t ;<) and the blocked status of the affected segments
is set to unblocked (912). Flow then proceeds to block 914.
After t. and t,5, have been satisfied, an activate (ACT)
command is sent for the requested row and the blocked
status is set for the affected segments (e.g., requested seg-
ment 1, 2, etc.—according to configuration value) (914).
Flow then proceeds to block 918.

[0059] After tgp and t.p, are satisfied, a column com-
mand (e.g., read or write) is sent. When multiple open rows
per bank is configured, the column command may include a
segment address or other tags to identify the row associated
with the column command (918). Flow then proceeds back
to block 902.

[0060] Ifthe segment of the requested row was unblocked,
trrpe A0d tz,,, are satisfied before sending an activate
command for the requested row and setting the status of the
affected segments to blocked (916). Flow then proceeds to
block 918.

[0061] Ifthe bank was not open, t5 and t, are satisfied
before sending an activate command for the requested row
and setting the status of the affected segments to blocked and
setting the status of the bank to busy (920). Flow then
proceeds to block 922. t,,, and t..,, are satisfied before
sending the column command. When multiple open rows per
bank is configured, the column command may include a
segment address or other tags to identify the row associated
with the column command (922). Flow then proceeds back
to block 902.

[0062] As described herein, when configured, multiple
rows may be open in a bank and additional address field bits
(e.g., segment address—s) may be needed to specify the
open row that is target of the column command. These
additional address field bits may require additional cycles
and/or additional command/address signals to transmit
(when compared to non-multiple open row per-bank opera-
tion.) FIGS. 10-12 disclose methods and apparatus for
specifying the open row that is target of a column command.

[0063] FIG. 10 is a block diagram illustrating open row
mapping. In FIG. 10, the controller includes a row address
mapping function circuitry 1061. The memory component
includes row address mapping function circuitry 1091. Map-
ping circuitry 1061 and mapping circuitry 1091 implement
the same transformation of the row address from R number
of row address bits to t number of tag bits, where t is less
than R (t<R). The memory component also includes a row

US 2024/0127882 Al

address table 1092, multiplexor 1093, DRAM array 1095,
row decoder circuitry 1098, and column decoder circuitry
1099.

[0064] In operation, mapping system 1000 functions as
follows. When a row is opened (e.g., with an activate
command—ACT), mapping circuitry 1091 generates,
according to the function f, t number of tag bits (TAGD[O:
t-1]) from the R number of row address bits (or a subset
thereof.) Examples of this function include extracting a
subset of row address bits, and/or a hashing function.
Memory uses the tag bits to write the entire row address
(ROW[0:R-1]) into row address table 1092 at the address
given by the tag bits (TAGD[0:t-1]). The activate command
also selects, via multiplexor 1093, the tag bits generated by
mapping circuitry 1091 as the read address applied to row
address table 1092 thereby passing the current row address
(ROW[0:R-1]) to row decoders 1098. Other configurations
that do not pass the row address (ROW[0:R-1]) through
address table 1092 before being applied to row decoders
1098 are contemplated.

[0065] When the controller sends a column operation to
the memory, mapping circuitry 1061 generates, according to
the same function f, t number of tag bits (TAGC[0:t-1])
from the R number of row address bits (or a subset thereof).
These tag bits are sent to the memory which uses the
received tag bits TAGC[0:t-1] as the read address applied to
row address table 1092. Since the function f() is the same
for both mapping circuitry 1061 and mapping circuitry
1091, for the same row address value ROW[0:R-1], the tag
bits TAGDJ[0:t-1] used to write that row address into row
address table 1092 for the activate command have the same
value as the tag bits TAGC[0:t-1] being used to read a row
address from row address table (992) and therefore retrieve,
from row address table 1092, the entire row address using
just the tag bits TAGC[0:t-1]. The row address read from
row address table 1092 is passed to row decoders 1098 as the
row to be the subject of the column command.

[0066] 1t should be understood that the function f(),
and/or the controller should manage the aliasing of tag bit
values. Aliasing is where two different values of the ROW
[0:R-1] bit result in the same tag bit values—TAGC[0:t-1]
and/or TAGD[0:t-1]. Thus, row address table 1092 may
include additional indicators associated with the row address
values to avoid aliasing and/or overwriting valid row
addresses (e.g., a “used’ bit for each row address entry.)
[0067] FIG. 11 is a block diagram illustrating open row
counter tags. In FIG. 11, the controller includes open row
count circuitry 1161 and open row content addressable
memory (CAM) 1163. The memory component also
includes open row count circuitry 1191. Count circuitry
1161 and count circuitry 1191 both increment in response to
row activate commands. The value of this count is used as
t number of tag bits, where t is less than R (t<R). When the
bank is precharged, both count circuitry 1161 and count
circuitry 1191 reset their count values to the same value. The
memory component also includes a row address table 1192,
multiplexor 1193, DRAM array 1195, row decoder circuitry
1198, and column decoder circuitry 1199.

[0068] In operation, row counter tag system 1100 func-
tions as follows. When a row is opened (e.g., with an activate
command—ACT), count circuitry 1191 supplies (either pre-
or post-increment), its count value, TAGD[0:t-1] as t num-
ber of tag bits (TAGD[0:t-1]). Controller also increments
count circuitry 1161 such that the value output by count

Apr. 18,2024

circuitry 1161, TAGC[0:t-1] effectively matches the value
supplied by count circuitry 1191 at all times. The location of
the entry being written into address table 1192, (i.e., TAGC
[0:t-1]=TAGD][0:t-1]) is stored in association with the row
address ROW[0:R-1] in open row CAM 1163.

[0069] Memory uses tag bits TAGC[0:t-1] to write the
entire row address (ROW[0:R-1]) into row address table
1192 at the address given by the tag bits (TAGD[0:t-1]). The
activate command also selects, via multiplexor 1193, the tag
bits TAGD[0:t-1] supplied count circuitry 1191 as the read
address applied to row address table 1192 thereby passing
the current row address (ROW[0:R-1]) to row decoders
1198. Other configurations that do not pass the row address
(ROW[0:R-1]) through address table 1192 before being
applied to row decoders 1198 are contemplated.

[0070] When the controller sends a column operation to
the memory, the row address is applied to open row CAM
1163 which, in turn, supplies the associated tag bits TAGC
[0:1—1] that give the location of the entire row address in row
address table 1192. These tag bits are sent to the memory
which uses the received tag bits TAGC[0:t-1] as the read
address applied to row address table 1192. Since count
supplied by count circuitry 1161 and count circuitry 1191 is
effectively always the same, the tag bits TAGD[0:t—1] used
to write that row address into row address table 1192 for the
activate command have the same value as the tag bits
TAGC[0:t-1] being used to read a row address from row
address table 1192 and therefore retrieve, from row address
table 1192, the entire row address using just the tag bits
TAGC[0:t-1]. The row address read from row address table
1192 is passed to row decoders 1198 as the row to be the
subject of the column command.

[0071] FIG. 12 is a block diagram illustrating dynamic
open row tags. In FIG. 12, the controller includes free/used
array 1261, priority encoder 1262, and open row content
addressable memory (CAM) 1263. The memory component
includes free/used array 1261 and priority encoder 1262.
Free/used array 1261 and free/used array 1291 both set and
reset their entries in response to the same commands and in
the same manner. Thus, the contents (and therefore outputs)
of free/used array 1261 and free/used array 1291 are effec-
tively the same at all times. When the bank is precharged,
both free/used array 1261 and free/used array 1291 reset
their contents to the same value. The memory component
also includes a row address table 1292, multiplexor 1293,
DRAM array 1295, row decoder circuitry 1298, and column
decoder circuitry 1299.

[0072] Inoperation, dynamic tag system 1200 functions as
follows. When a row is opened (e.g., with an activate
command—ACT), free/used array 1291 supplies an array of
bits indicating which entries in address table 1292 are use,
and which are free. This array is supplied to priority encode
1292 which selects a free entry in row address table 1292 as
the location to store the row address ROW[0:R-1]. The
location of the free entry, TAGD[0:t-1], is used as the t
number of tag bits. Free/used array 1261 also supplies an
array of bits indicating which entries in address table 1292
are used, and which are free. This array is supplied to
priority encode 1262 which selects the same free entry as
priority encode 1292 selected. The location of the free entry,
TAGDIJ[0:t-1] is stored in association with the row address
ROWJ[0:R-1] in open row CAM 1263.

[0073] Memory uses tag bits TAGD[0:t-1] to write the
entire row address (ROW[0:R-1]) into row address table

US 2024/0127882 Al

1292 at the address given by the tag bits. The activate
command also selects, via multiplexor 1293, the tag bits
TAGD][0:t-1] supplied count circuitry 1291 as the read
address applied to row address table 1292 thereby passing
the current row address (ROW[0:R-1]) to row decoders
1298. Other configurations that do not pass the row address
(ROW[0:R-1]) through address table 1292 before being
applied to row decoders 1298 are contemplated.

[0074] When the controller sends a column operation to
the memory, the row address is applied to open row CAM
1263 which, in turn, supplies the associated tag bits TAGC
[0:1—1] that give the location of the entire row address in row
address table 1292. These tag bits are sent to the memory
which uses the received tag bits TAGC[0:t-1] as the read
address applied to row address table 1292. The row address
read from row address table 1292 is passed to row decoders
1298 as the row to be the subject of the column command.
[0075] FIG. 13 is a flowchart illustrating a method of
controlling a memory device. The steps illustrated in FIG. 13
may be performed by one or more elements of controller
110, controller 310, controller 410, controller 810, and/or
their components. From a memory device, information
associating row addresses of a DRAM device to respective
indicators that are to be set to a first value in response to
commands to the DRAM device to open rows is received
where the respective indicators are associated with a respec-
tive plurality of row address segments, and the row address
segments correspond to respective row address ranges
(1302). For example, memory controller 310 may read SPD
385 to obtain the size of the address range each entry in
address table 316 should block (or unblock) and to obtain the
number of segments surrounding an open row that should be
marked blocked by entries in address table 316. In another
example, memory controller 410 may read configuration
information circuitry 485 to obtain the size of the address
range each entry in address table 416 should block (or
unblock) and to obtain the number of segments surrounding
an open row that should be marked blocked by entries in
address table 416.

[0076] A plurality of the respective indicators are set to the
first value, the plurality of the respective indicators being set
to the first value in response to at least the memory controller
processing a command to the DRAM device to open a first
row in the respective row address range associated with at
least one of the respective indicators, the first value being
associated with the respective associated row address seg-
ments being unavailable for opening a second row in the
associated respective row address range (1304). For
example, controller 110 may set indicators in address table
116 for a range of segments (i.e., sx4) around a segment with
an open row thereby ensuring further row opening opera-
tions directed to MATs that are unavailable are not sent to
memory 120.

[0077] The methods, systems and devices described above
may be implemented in computer systems, or stored by
computer systems. The methods described above may also
be stored on a non-transitory computer readable medium.
Devices, circuits, and systems described herein may be
implemented using computer-aided design tools available in
the art, and embodied by computer-readable files containing
software descriptions of such circuits. This includes, but is
not limited to one or more elements of memory system 100,
memory system 300, memory system 400, memory system
800, system 1000, system 1100, system 1200, and their

Apr. 18,2024

components. These software descriptions may be: behav-
ioral, register transfer, logic component, transistor, and
layout geometry-level descriptions. Moreover, the software
descriptions may be stored on storage media or communi-
cated by carrier waves.

[0078] Data formats in which such descriptions may be
implemented include, but are not limited to: formats sup-
porting behavioral languages like C, formats supporting
register transfer level (RTL) languages like Verilog and
VHDL, formats supporting geometry description languages
(such as GDSII, GDSIII, GDSIV, CIF, and MEBES), and
other suitable formats and languages. Moreover, data trans-
fers of such files on machine-readable media may be done
electronically over the diverse media on the Internet or, for
example, via email. Note that physical files may be imple-
mented on machine-readable media such as: 4 mm magnetic
tape, 8 mm magnetic tape, 3% inch floppy media, CDs,
DVDs, and so on.

[0079] FIG. 14 is a block diagram illustrating one embodi-
ment of a processing system 1400 for including, processing,
or generating, a representation of a circuit component 1420.
Processing system 1400 includes one or more processors
1402, a memory 1404, and one or more communications
devices 1406. Processors 1402, memory 1404, and commu-
nications devices 1406 communicate using any suitable
type, number, and/or configuration of wired and/or wireless
connections 1408.

[0080] Processors 1402 execute instructions of one or
more processes 1412 stored in a memory 1404 to process
and/or generate circuit component 1420 responsive to user
inputs 1414 and parameters 1416. Processes 1412 may be
any suitable electronic design automation (EDA) tool or
portion thereof used to design, simulate, analyze, and/or
verify electronic circuitry and/or generate photomasks for
electronic circuitry. Representation 1420 includes data that
describes all or portions of memory system 100, memory
system 300, memory system 400, memory system 800,
system 1000, system 1100, system 1200, and their compo-
nents, as shown in the Figures.

[0081] Representation 1420 may include one or more of
behavioral, register transfer, logic component, transistor, and
layout geometry-level descriptions. Moreover, representa-
tion 1420 may be stored on storage media or communicated
by carrier waves.

[0082] Data formats in which representation 1420 may be
implemented include, but are not limited to: formats sup-
porting behavioral languages like C, formats supporting
register transfer level (RTL) languages like Verilog and
VHDL, formats supporting geometry description languages
(such as GDSII, GDSIII, GDSIV, CIF, and MEBES), and
other suitable formats and languages. Moreover, data trans-
fers of such files on machine-readable media may be done
electronically over the diverse media on the Internet or, for
example, via email

[0083] User inputs 1414 may comprise input parameters
from a keyboard, mouse, voice recognition interface, micro-
phone and speakers, graphical display, touch screen, or other
type of user interface device. This user interface may be
distributed among multiple interface devices. Parameters
1416 may include specifications and/or characteristics that
are input to help define representation 1420. For example,
parameters 1416 may include information that defines
device types (e.g., NFET, PFET, etc.), topology (e.g., block
diagrams, circuit descriptions, schematics, etc.), and/or

US 2024/0127882 Al

device descriptions (e.g., device properties, device dimen-
sions, power supply voltages, simulation temperatures,
simulation models, etc.).

[0084] Memory 1404 includes any suitable type, number,
and/or configuration of non-transitory computer-readable
storage media that stores processes 1412, user inputs 1414,
parameters 1416, and circuit component 1420.

[0085] Communications devices 1406 include any suitable
type, number, and/or configuration of wired and/or wireless
devices that transmit information from processing system
1400 to another processing or storage system (not shown)
and/or receive information from another processing or stor-
age system (not shown). For example, communications
devices 1406 may transmit circuit component 1420 to
another system. Communications devices 1406 may receive
processes 1412, user inputs 1414, parameters 1416, and/or
circuit component 1420 and cause processes 1412, user
inputs 1414, parameters 1416, and/or circuit component
1420 to be stored in memory 1404.

[0086] Implementations discussed herein include, but are
not limited to, the following examples:

[0087] Example 1: A memory controller, comprising: cir-
cuitry to associate respective indicators with a respective
plurality of row address segments, the row address segments
corresponding to respective row address ranges; circuitry to
set the respective indicators to a first value that is associated
with the respective row address segment being unavailable
for opening a row in the associated respective row address
range, where a plurality of the respective indicators are set
to the first value in response to at least the memory controller
processing a command to a memory component to open a
row in the respective row address range associated with at
least one of the respective indicators; and, circuitry to
receive information, from a memory component, associating
row addresses to which of the respective indicators are to be
set to the first value in response to the command to the
memory component to open a row.

[0088] Example 2: The memory controller of example 1,
wherein the memory component is a memory module and
the information is communicated via a serial presence detect
(SPD) communication channel.

[0089] Example 3: The memory controller of example 1,
wherein the controller reads the information from a DRAM
integrated circuit memory device.

[0090] Example 4: The memory controller of example 1,
wherein the plurality of the respective indicators correspond
to memory subarrays that share at least one row of sense
amplifiers.

[0091] Example 5: The memory controller of example 1,
further comprising: circuitry to send, to the memory com-
ponent, a column access command that communicates infor-
mation used to select a one of a plurality of concurrently
open rows in the memory component.

[0092] Example 6: The memory controller of example 5,
wherein the information used to select a one of a plurality of
open rows in the memory component comprises an index to
a row address table on the memory component.

[0093] Example 7: The memory controller of example 5,
wherein a function applied to the row address is used to
generate the index.

[0094] Example 8: The memory controller of example 5,
wherein a counter generates the index based on a number of
activate row commands sent to the memory component
since the last precharge command.

Apr. 18,2024

[0095] Example 9: The memory controller of example 5,
further comprising: a table associating row addresses to
index values.

[0096] Example 10: A memory component, comprising:
circuitry to receive commands that result in a plurality of
rows of a bank being open concurrently; and, circuitry to
receive a column access command that includes information
used to select a one of a plurality of concurrently open rows
in the memory component.

[0097] Example 11: The memory component of example
10, wherein the information used to select the one of the
plurality of concurrently open rows includes an index value.
[0098] Example 12: The memory component of example
11, further comprising: a row address table that associates
index values to row addresses.

[0099] Example 13: The memory component of example
12, further comprising: circuitry to apply a function to a
received row address <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>