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Data structure and microcontroller architecture performing
binary multiply-accumulate operations using multiple par-
tial copies of weights. Destination-register location, source-
register location, and weight-register location are received.
Using the weight-register location, a sub-set of the weight
bits is copied a select number of times based on a filter index
value that is received. Each copy of the sub-set of weights
is executed in parallel. Using the source-register location, a
sub-set of the input bits is selected based on the size of the
sub-set of weights, wherein the sub-set of input bits is
shifted one bit from a previous sub-set of input bits. XOR
operation is performed on each corresponding bit in the copy
of the sub-set of weights with each corresponding bit in the
selected sub-set of input bits. In a corresponding destination
sub-location, output of each XOR operation is aggregated
with each other and with current value of the corresponding
destination sub-location.
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ULTRA-LOW-POWER AND LOW-AREA
SOLUTION OF BINARY
MULTIPLY-ACCUMULATE SYSTEM AND
METHOD

BACKGROUND

Technical Field

[0001] The present disclosure generally relates to elec-
tronic devices of the type often used in embedded applica-
tions. More particularly, but not exclusively, the present
disclosure relates to utilizing multiple partial copies of
weights to perform binary multiply-accumulate operations
for deep neural networks.

Description of the Related Art

[0002] Many computer vision, speech recognition, and
signal processing applications benefit from the use of vari-
ous types of machine learning and artificial intelligence
mechanisms. These mechanisms are arranged to quickly
perform many hundreds or thousands of operations, often
concurrently. One such mechanism is a deep neural network
(DNN). ADNN is a computer-based tool that processes large
quantities of data and adaptively “learns” by conflating
proximally related features within the data, making broad
predictions about the data, and refining the predictions based
on reliable conclusions and new conflations. For example, a
DNN can learn a variety of characteristics of faces such as
edges, curves, angles, dots, color contrasts, bright spots,
dark spots, etc. The DNN can use these initially learned
characteristics to learn a variety of recognizable features of
faces such as eyes, eyebrows, foreheads, hair, noses, mouths,
cheeks, etc.; each of which is distinguishable from all of the
other features. The DNN can then learn higher order char-
acteristics such as a specific face, race, gender, age, emo-
tional state, etc.

[0003] Traditionally, DNNs used floating point values—
mostly 32-bit to perform various operations, including con-
volution. Convolution can be represented as a matrix mul-
tiplication operation, which is essentially computing the dot
product of each row of matrix A with each column of matrix
B. In these types of operations, computing the dot product
translates to a Multiply-Accumulate (MAC) operation,
which can be quite expensive to implement and generally
utilizes many logic gates. Therefore, greater die area and
more power consumption is utilized for floating point values
and more complex convolution. It is with respect to these
and other considerations that the embodiments described
herein have been made.

BRIEF SUMMARY

[0004] A method may be summarized as including receiv-
ing a destination-register location configured to store accu-
mulation results, wherein the destination-register location
includes a plurality of destination sub-locations; receiving a
source-register location configured to store a plurality of
input bits; receiving a weight-register location configured to
store a plurality of weight bits, wherein a weight length of
the plurality of weight bits is equal to an input length of the
plurality of input bits; copying, using the weight-register
location, a sub-set of the plurality of weight bits a select
plurality of number of times, wherein a size of the sub-set of
weights is based on a filter index value; and for each copy
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of'the sub-set of weights: selecting, using the source-register
location, a sub-set of the plurality of input bits based on the
size of the sub-set of weights, wherein the sub-set of input
bits is shifted one bit from a previous sub-set of the plurality
of input bits; performing an XOR operation on each corre-
sponding bit in the copy of the sub-set of weights with each
corresponding bit in the selected sub-set of input bits; and
aggregating, in a corresponding destination sub-location of
the plurality of destination sub-locations, an output of each
XOR operation with each other and with a current value of
the corresponding destination sub-location.

[0005] The method may further include receiving the filter
index value between 2 and 7. The method may further
include receiving the filter index value of zero to indicate a
fully connected layer. Copying the sub-set of the plurality of
weight bits the select plurality of number of times may
include copying the sub-set of the plurality of weight bits
five times. The method may further include for each copy of
the sub-set of weights: performing a one’s count operation
on an output from the XOR operations on each correspond-
ing bit in the copy of the sub-set of weights with each
corresponding bit in the selected sub-set of input bits.
[0006] The method may further include performing an
XOR operation on each corresponding remaining bit in the
plurality of weights with each corresponding remaining bit
in the input bits; performing a one’s count operation on an
output from the XOR operation on each corresponding
remaining bit in the plurality of weights with each corre-
sponding remaining bit in the input bits; and adding the
output of the one’s count operation with another output from
another one’s count operation performed on an output from
the XOR operation of each corresponding bit in a first copy
of the sub-set of weights with each corresponding bit in the
a first selected sub-set of input bits.

[0007] The method may further include for each copy of
the sub-set of weights: performing a one’s count operation
on an output from the XOR operations on each correspond-
ing bit in the copy of the sub-set of weights with each
corresponding bit in the selected sub-set of input bits;
generating a filtered output by concatenating outputs from
the one’s count operations for each copy of the sub-set of
weights; performing an XOR operation on each correspond-
ing remaining bit in the plurality of weights with each
corresponding remaining bit in the input bits; performing a
one’s count operation on an output from the XOR operation
on each corresponding remaining bit in the plurality of
weights with each corresponding remaining bit in the input
bits; generating a fully connected output by adding the
output of the one’s count operation with another output from
another one’s count operation performed on an output from
the XOR operation of each corresponding bit in a first copy
of the sub-set of weights with each corresponding bit in the
a first selected sub-set of input bits; selecting a final result
between the filtered output and the fully connected output
based on the filter index value; and combining the final result
with a current value stored at the destination-register loca-
tion.

[0008] A system may be summarized as including a
memory that stores a destination register configured to store
accumulation results, wherein the destination-register
includes a plurality of sub-destinations; a source register
configured to store a plurality of input bits; a weight register
configured to store a plurality of weight bits, wherein a
weight length of the plurality of weight bits is equal to an
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input length of the plurality of input bits; a microprocessor
coupled to the memory, wherein the microprocessor, in
operation copies a sub-set of the plurality of weight bits in
the weight register a select plurality of number of times,
wherein a size of the sub-set of weights is based on a filter
index value; and for each copy of the sub-set of weights
selects a sub-set of the plurality of input bits from the source
register based on the size of the sub-set of weights, wherein
the sub-set of input bits is shifted one bit from a previous
sub-set of the plurality of input bits; performs an XOR
operation on each corresponding bit in the copy of the
sub-set of weights with each corresponding bit in the
selected sub-set of input bits; and aggregates, in a corre-
sponding sub-destination of the plurality of sub-destinations
in the destination register, an output of each XOR operation
with each other and with a current value of the correspond-
ing sub-destination.

[0009] The microprocessor, in further operation, may
receive the filter index value between 2 and 7. The micro-
processor, in further operation, may receive the filter index
value of zero to indicate a fully connected layer. The
microprocessor, in further operation, may copy the sub-set
of the plurality of weight bits five times. The microproces-
sor, in further operation, for each copy of the sub-set of
weights may perform a one’s count operation on an output
from the XOR operations on each corresponding bit in the
copy of the sub-set of weights with each corresponding bit
in the selected sub-set of input bits.

[0010] The microprocessor, in further operation, may per-
form an XOR operation on each corresponding remaining
bit in the plurality of weights with each corresponding
remaining bit in the input bits; performs a one’s count
operation on an output from the XOR operation on each
corresponding remaining bit in the plurality of weights with
each corresponding remaining bit in the input bits; and adds
the output of the one’s count operation with another output
from another one’s count operation performed on an output
from the XOR operation of each corresponding bit in a first
copy of the sub-set of weights with each corresponding bit
in the a first selected sub-set of input bits.

[0011] The microprocessor, in further operation, for each
copy of the sub-set of weights may perform a one’s count
operation on an output from the XOR operations on each
corresponding bit in the copy of the sub-set of weights with
each corresponding bit in the selected sub-set of input bits;
generates a filtered output by concatenating outputs from the
one’s count operations for each copy of the sub-set of
weights; may perform an XOR operation on each corre-
sponding remaining bit in the plurality of weights with each
corresponding remaining bit in the input bits; may perform
a one’s count operation on an output from the XOR opera-
tion on each corresponding remaining bit in the plurality of
weights with each corresponding remaining bit in the input
bits; may generate a fully connected output by adding the
output of the one’s count operation with another output from
another one’s count operation performed on an output from
the XOR operation of each corresponding bit in a first copy
of the sub-set of weights with each corresponding bit in the
a first selected sub-set of input bits; may select a final result
between the filtered output and the fully connected output
based on the filter index value; and may combine the final
result with a current value stored at the destination register.
[0012] A non-transitory computer-readable medium hav-
ing contents that configure a microcontroller to perform a
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method, the method may be summarized as including
receiving a destination-register location configured to store
accumulation results, wherein the destination-register loca-
tion includes a plurality of destination sub-locations; receiv-
ing a source-register location configured to store a plurality
of input bits; receiving a weight-register location configured
to store a plurality of weight bits, wherein a weight length
of the plurality of weight bits is equal to an input length of
the plurality of input bits; copying, using the weight-register
location, a sub-set of the plurality of weight bits a select
plurality of number of times, wherein a size of the sub-set of
weights is based on a filter index value; and for each copy
of the sub-set of weights selecting, using the source-register
location, a sub-set of the plurality of input bits based on the
size of the sub-set of weights, wherein the sub-set of input
bits is shifted one bit from a previous sub-set of the plurality
of input bits; performing an XOR operation on each corre-
sponding bit in the copy of the sub-set of weights with each
corresponding bit in the selected sub-set of input bits; and
aggregating, in a corresponding destination sub-location of
the plurality of destination sub-locations, an output of each
XOR operation with each other and with a current value of
the corresponding destination sub-location. Receiving the
filter index value may include receiving the filter index value
between 2 and 7. Receiving a filter index value may include
receiving the filter index value of zero to indicate a fully
connected layer. Copying the sub-set of the plurality of
weight bits the select plurality of number of times may
include copying the sub-set of the plurality of weight bits
five times.

[0013] The non-transitory computer-readable medium,
may further include for each copy of the sub-set of weights
performing a one’s count operation on an output from the
XOR operations on each corresponding bit in the copy of the
sub-set of weights with each corresponding bit in the
selected sub-set of input bits. The non-transitory computer-
readable medium, may further include performing an XOR
operation on each corresponding remaining bit in the plu-
rality of weights with each corresponding remaining bit in
the input bits; performing a one’s count operation on an
output from the XOR operation on each corresponding
remaining bit in the plurality of weights with each corre-
sponding remaining bit in the input bits; and adding the
output of the one’s count operation with another output from
another one’s count operation performed on an output from
the XOR operation of each corresponding bit in a first copy
of the sub-set of weights with each corresponding bit in the
a first selected sub-set of input bits.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

[0014] Non-limiting and non-exhaustive embodiments are
described with reference to the following drawings, wherein
like labels refer to like parts throughout the various views,
unless the context indicates otherwise. The sizes and relative
positions of elements in the drawings are not necessarily
drawn to scale. For example, the shapes of various elements
are selected, enlarged, and positioned to improve drawing
legibility. The particular shapes of the elements as drawn
have been selected for ease of recognition in the drawings.
One or more embodiments are described hereinafter with
reference to the accompanying drawings in which:
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[0015] FIG. 1 is a block diagram showing an example
computing device for implementing embodiments described
herein;

[0016] FIGS. 2A and 2B are conceptual block diagrams
showing example of bit and register structures in accordance
with embodiments described herein;

[0017] FIGS. 3A and 3B are conceptual block diagrams
showing another example of bit and register structures in
accordance with embodiments described herein;

[0018] FIGS. 4A-4C are conceptual block diagrams show-
ing an example gate architecture in accordance with embodi-
ments described herein;

[0019] FIGS. 5A and 5B show a logical flow diagram of
a process for performing a new processor instruction to do
binary multiply-accumulate operations in accordance with
embodiments described herein; and

[0020] FIG. 6 shows a logical flow diagram of an alter-
native process for performing the new processor instruction
to do binary multiply-accumulate operations in accordance
with embodiments described herein.

DETAILED DESCRIPTION

[0021] In the following description, along with the accom-
panying drawings, certain details are set forth in order to
provide a thorough understanding of various embodiments
of devices, systems, methods, and articles. One of skill in the
art, however, will understand that other embodiments may
be practiced without these details. In other instances, well-
known structures and methods associated with, for example,
circuits, such as transistors, multipliers, adders, dividers,
comparators, integrated circuits, logic gates, finite state
machines, accelerometers, gyroscopes, magnetic field sen-
sors, memories, bus systems, etc., have not been shown or
described in in detail in some figures to avoid unnecessarily
obscuring descriptions of the embodiments. Moreover, well-
known structures or components that are associated with the
environment of the present disclosure, including but not
limited to the communication systems and networks, have
not been shown or described in order to avoid unnecessarily
obscuring descriptions of the embodiments.

[0022] Unless the context requires otherwise, throughout
the specification and claims that follow, the word “com-
prise” and variations thereof, such as “comprising,” and
“comprises,” are to be construed in an open, inclusive sense,
that is, as “including, but not limited to.”

[0023] Throughout the specification, claims, and draw-
ings, the following terms take the meaning explicitly asso-
ciated herein, unless the context clearly dictates otherwise.
The term “herein” refers to the specification, claims, and
drawings associated with the current application. The

29 ¢

phrases “in one embodiment,” “in another embodiment,” “in
various embodiments,” “in some embodiments,” “in other
embodiments,” and other variations thereof refer to one or
more features, structures, functions, limitations, or charac-
teristics of the present disclosure, and are not limited to the
same or different embodiments unless the context clearly
dictates otherwise. As used herein, the term “or” is an
inclusive “or” operator, and is equivalent to the phrases “A
or B, or both” or “A or B or C, or any combination thereof,”
and lists with additional elements are similarly treated. The
term “based on” is not exclusive, and allows for being based
on additional features, functions, aspects, or limitations not
described, unless the context clearly dictates otherwise. In
addition, throughout the specification, the meaning of “a,”
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“an,” and “the” include singular and plural references.
Furthermore, the particular features, structures, or charac-
teristics may be combined in any suitable manner in one or
more embodiments to obtain further embodiments.

[0024] FIG. 1 is a block diagram showing an example
computing device 108 for implementing embodiments
described herein. Computing device 108 includes a MEMS
110, processor 112, and an input/output 116. Although not
illustrated, computing device 108 may have other computing
components.

[0025] MEMS 110 obtain various sensor data that is
provided to processor 112 for processing. MEMS 110 may
include accelerometers or gyroscopes configured to sense
movement or positional data associated with the computing
device 108. Although FIG. 1 shows the use of a MEMS,
other sensing technologies or input sensors may also be
used. Such other sensors may include, but are not limited to,
a GPS system, a temperature sensor, a gas sensor, a pressure
sensor, a magnetism sensor, imaging sensors, etc., or various
combinations thereof.

[0026] Data obtained from MEMS 110 is provided to
processor 112 for additional processing. The processor 112
includes one or more processing cores or circuits. The
processor may comprise, for example, one or more proces-
sors, a state machine, a microprocessor, a programmable
logic circuit, discrete circuitry, logic gates, registers, etc.,
and or various combinations thereof. The processor 112 may
control overall operation of the computing device 108,
execution of applications programs by the computing device
108, etc.

[0027] The processor 112 includes an arithmetic logic unit
(ALU) 114. The processor 112, the ALU 114, or some
combination thereof, may perform embodiments described
herein. Thus, in some embodiments where the processor 112
performs the embodiments described herein, the ALU 114
may not be present in the computing device 108. Con-
versely, if the ALU 114 performs the embodiments described
herein, the computing device 108 may still include the
processor 112 to perform other actions associated with the
functioning of the computing device 108.

[0028] The computing device 108 also includes one or
more memories (not shown), such as one or more volatile or
non-volatile memories, or a combination thereof, which may
store, for example, all or part of instructions and data related
to applications and operations performed by the computing
device 108. For example, the memory may store computer
instructions that when executed by the processor 108 per-
form the actions described herein. The memory also stores
various information, including input data or weights, used to
perform embodiments described herein.

[0029] The computing device 108 also includes input/
output 116. The input/output 116 may be configured to
output information or results obtained or determined by
processor 112 or ALU 114, such as by performing embodi-
ments described herein. In other embodiments, input/output
116 may be configured to receive input data from other
computing devices or external sensors.

[0030] The computing device 108 may also include a bus
system (not illustrated), which may be configured such that
the processor, MEMS 110, input/output 116, memories, or
other circuits or circuitry (not illustrated) 108 are commu-
nicatively coupled to one another to send or receive, or send
and receive, data to or from other components. The bus
system may include one or more of data, address, power, or
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control busses, or some combination thereof, electrically
coupled to the various components of the computing device
108.

[0031] As described herein, ALU 114 may implement a
new processor instruction and data structure to perform
binary multiple-accumulate operations in neural network
calculations. In various embodiments, this new processor
instruction may take the form of:

[0032] stxcnt % rd, % rs, % rs0, filter_idx=#imm
where,
[0033] stxcnt is the calling operation for the instruction;

[0034] % rd is the destination register location, which
keeps the accumulation results;
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[0039] These instructions are for illustration purposes and
could be different for different computer languages. How-
ever, this illustration demonstrates how the new processor
instruction, data structure, and architecture described herein
can be used to perform a two-dimensional 3x3 convolution
filter. Similar embodiments can be used for other sizes of
filters, for example, from size 2x2 to 7x7. Other filter sizes
may also be considered by using additional bit lines, addi-
tional copies of weight bits, etc.

[0040] Similar embodiments can be utilized for a fully
connected layer. The following is an example demo code of
the kernel loop for a fully connected convolution layer,
which utilize the new processor instruction data structure
and logic architecture described herein:

movw %rl, #0
loop__FC:
1dw %r0, [%rS5]+
1dw %r2, [%r6]+

; reset accumulator

; load weights (w[31]~w[0])
; load row of input data (a[0,31]~a[0,0])

stxent %rl, %r2, %10, 0 ; 0 new processor instruction to perform fully connected

layer

cmp end_ fiter

; compare the cycle loop

jpdne loop_ FC

stw [%r7]+, %rl

; store result (r1) of the fully connected layer

[0035] % rs is the source register location, which keeps 32
continuous input data bits A that may be represented as
a[i,31]~ali, 0];

[0036] % rsO is the weights register location, which keeps
the source operand of weight bits W that may be represented
as w[31]~w[0] contains only one set without duplication;
and

[0037] filter_idx is used to indicate which filter is imple-
mented (from 2 to 7).

[0038] The following is an example demo code of the
kernel loop for a two-dimensional 3x3 convolution filter,
which utilize the new processor instruction data structure
and logic architecture described herein:

[0041] These instructions are for illustration purposes and
could be different for different computer languages. How-
ever, this illustration demonstrates how the new processor
instruction, data structure, and architecture described herein
can be used to perform a fully connected convolution layer.

[0042] FIGS. 2A and 2B are conceptual block diagrams
showing example of bit and register structures in accordance
with embodiments described herein. Convolution bit struc-
ture 200A in FIG. 2A illustrates a plurality of input bits 202
and multiple copies of weight bits 204a-204¢. The input bits
202 are obtained from an input register (not shown). In this
example, the input bits 202 include 32 bits.

1dw %r0, [%r5] ;load weights (w[31],w[30],w[29],w[28], ...,w[23],0,0...)

1dw %r2, [%r6]+ ; load first row of input data(a[0,31]~a[0,0])

1dw %r3, [%r6]+ ; load second row of input data (a[1,31]~a[1,0])

1dw %r4, [%r6]+ ; load third row of input data (a[2,31]~a[2,0])
loop__2D:

movw %rl, #0 ; reset accumulators

stxent %rl, %r2, %10, 3 ; new processor instruction to perform first convolutional part

rdO,
rd1, rd2, rd3, rd4 described herein
rotlw %10, #3
because first set of weights is used

; rotate left weights (w[28]~w[23],0,0,0...0,0,w[31]~w[29])

stxent %rl, %r3 %r0, 3 ; new processor instruction to perform second convolutional

part

rdO+rdOnew, rd1+rd1new, rd2+rd2new, rd3+rd3new,
rd4+rd4new described herein because first input row has

been used
rotlw %10, #3

; rotate left weights (w[25]~w[23],0,0,0...0,0,w[31]~w[26])

stxent %rl, %r4, %10, 3 ; new processor instruction to perform third convolutional

part

rd1+rd1new, rd2+rd2new, rd3+rd3new, rd4+rd4new
described herein because second input row has been used

rotrw %r0, #6 ; rotate right weights (for initial phase)

(W[31]~w[23],0,0,0...) to reset for another loop
; store result (r1) from running three new processor

stw [%r7]+, %rl
instructions

3 consecutive rows in 3x3 2D convolutional filter

sllw rowl, row2,row3 ; shift left the input data for the next filters

jpia loop_ 2D
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[0043] The number of copies of weight bits 204a-204e is
selected by an administrator or developer. In this example,
there are five copies of weight bits 204a-204e. Each copy of
the weight bits 204a-204¢ is a sub-set of weight bits
obtained from a weight register (not illustrated). The number
of bits in each copy of weight bits 204a-204¢ is selected
based on a filter input value that selects the size or type of
filter to be employed. In this example, the filter input value
is three, and thus each copy of weight bits 204a-204¢
includes the same three bits obtained from the weight
register.

[0044] Each copy of weight bits 204a-204e is arranged to
correspond to a separate sub-set of input bits 202. For
example, weight bits 204a correspond to input bits a31, a30,
and a29; weight bits 2045 correspond to input bits a30, a29,
and a28; weight bits 204¢ correspond to input bits a29, a28,
and a27; weight bits 204d correspond to input bits a28, a27,
and a26; and weight bits 204e correspond to input bits a27,
a26, and a25.

[0045] Each copy of weight bits 204a-204e corresponds to
a separate destination sub-location 212a-212e (also referred
to as destination sub-register) within destination register
210. For example, copy of weight bits 204a corresponds to
destination sub-location 212a, copy of weight bits 2045
corresponds to destination sub-location 21254, copy of
weight bits 204¢ corresponds to destination sub-location
212¢, copy of weight bits 2044 corresponds to destination
sub-location 2124, and copy of weight bits 204¢ corresponds
to destination sub-location 212e.

[0046] As described in more detail below, when the weight
bits 204a-204¢ are XOR’d with corresponding input bits 202
and aggregated together, the aggregate is combined with a
current result or value stored in the corresponding destina-
tion sub-location 212a-212¢. The resulting combination is
then re-stored in the corresponding destination sub-location
212a-212e.

[0047] FIG. 2B is a further conceptual block diagram of
the bit and register structure discussed above in FIG. 2A.
Block structure 200B includes input bits 202 and multiple
copies of weight bits 204a-204e. Structure 200 also includes
popcount 220a-220e, summation 222a-222¢, and destina-
tion sub-locations 212a-212e.

[0048] With respect to copy of weight bits 2044, weight bit
w31 is XOR’d with input bit a31, weight bit w30 is XOR’d
with input bit a30, and weight bit w29 is XOR’d with input
bit a29. The results of these XOR operations is provided to
popcount 220a, where the number of 1°s bits from the XOR
operations is calculated. The results from popcount 220a are
provided to summation 2224, which is combined with a
current value stored in destination sub-location 212a. The
output from summation 2224 is written to destination sub-
location 212a.

[0049] Embodiments for copies of weight bits 2045-204¢
are similarly employed but for shifted input bits. Details of
each are provided for completeness.

[0050] With respect to copy of weight bits 2045, weight bit
w31 is XOR’d with input bit a30, weight bit w30 is XOR’d
with input bit a29, and weight bit w29 is XOR’d with input
bit a28. The results of these XOR operations is provided to
popcount 2205, where the number of 1’s bits from the XOR
operations is calculated. The result from popcount 2205 is
provided to summation 2225, which is combined with a
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current value stored in destination sub-location 2124. The
output from summation 2225 is written to destination sub-
location 2125.

[0051] With respect to copy of weight bits 204¢, weight bit
w31 is XOR’d with input bit a29, weight bit w30 is XOR’d
with input bit a28, and weight bit w29 is XOR’d with input
bit a27. The results of these XOR operations is provided to
popcount 220¢, where the number of 1°s bits from the XOR
operations is calculated. The result from popcount 220c¢ is
provided to summation 222¢, which is combined with a
current value stored in destination sub-location 212¢. The
output from summation 222¢ is written to destination sub-
location 212c.

[0052] With respect to copy of weight bits 2044, weight bit
w31 is XOR’d with input bit a28, weight bit w30 is XOR’d
with input bit a27, and weight bit w29 is XOR’d with input
bit a26. The results of these XOR operations is provided to
popcount 2204, where the number of 1°s bits from the XOR
operations is calculated. The results from popcount 2204 are
provided to summation 2224, which is combined with a
current value stored in destination sub-location 212d. The
output from summation 2224 is written to destination sub-
location 2124d.

[0053] Withrespect to copy of weight bits 204e, weight bit
w31 is XOR’d with input bit a27, weight bit w30 is XOR’d
with input bit a26, and weight bit w29 is XOR’d with input
bit a25. The results of these XOR operations is provided to
popcount 220¢, where the number of 1°s bits from the XOR
operations is calculated. The results from popcount 220e are
provided to summation 222e¢, which is combined with a
current value stored in destination sub-location 212e. The
output from summation 222¢ is written to destination sub-
location 212e.

[0054] FIGS. 3A and 3B are conceptual block diagrams
showing another example of bit and register structures in
accordance with embodiments described herein. Convolu-
tion bit structure 300A in FIG. 3A illustrates a plurality of
input bits 302 and a plurality of weight bits 304. In various
embodiments, this bit structure is utilized when the filter
input value is zero indicating a fully connected convolution
layer.

[0055] The input bits 302 are obtained from an input
register (not shown). In this example, the input bits 302
include 32 bits. The weight bits 304 are obtained from a
weight register (not shown). In this example, the weight bits
304 include 32 bits. Each weight bit 304 corresponds to an
input bit 302. For example, weight bit w31 corresponds to
input bit a31, weight bit w30 corresponds to input bit a30,
and so on.

[0056] FIG. 3B is a further conceptual block diagram of
the bit and register structure discussed above in FIG. 3A.
Block structure 300B includes input bits 302, weight bits
304, popcount 306, summation 308, and destination sub-
location 310.

[0057] Each corresponding weight bit 304 is XOR’d with
a corresponding input bit 302. For example, weight bit w31
is XOR’d with input bit a31, weight bit w30 is XOR’d with
input bit a30, weight bit w29 is XOR’d with input bit a29,
weight bit w28 is XOR’d with input bit a28, and so on. The
results of these XOR operations is provided to popcount
306, where the number of 1’s bits from the XOR operations
is calculated. The results from popcount 306 are provided to
summation 308, which is combined with a current value
stored in destination sub-location 310. The output from
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summation 308 is written to destination sub-location 310. In
some embodiments, destination sub-location 310 uses the
same memory as destination sub-location 212a in FIG. 2A.
[0058] FIGS. 4A-4C are conceptual block diagrams show-
ing an example architecture in accordance with embodi-
ments described herein. Architecture 400A in FIG. 4A
includes a filter size decoder 402 and ORs 404a-404e. The
opcode from the fetched new processor instruction described
herein is input into filter size decoder 402. In some embodi-
ments, this input may be a separate input associated with the
new processor instruction. Each output from filter size
decoder is a single separate bit. Each separate output line or
output bit represents a different filter size, where output line
2_1 represents a 2x1 filter, output line 3_1 represents a 3x1
filter, output line 4_1 represents a 4x1 filter, output line 5_1
represents a 5x1 filter, output line 6_1 represents a 6x1 filter,
output line 7_1 represents a 7x1 filter, and output line X
represents a fully connected layer.

[0059] The output lines from filter size decoder 402 are
input into ORs 404a-404e. In particular, output line 2_1 is
input into OR 404a; output line 3_1 is input into OR
404a-4045b; output line 4_1 is input into OR 404a-404c;
output line 5_1 is input into OR 404a-404d; output line 6_1
is input into OR 4044-404¢; and output line 7_1 is input into
OR 4044a-404e. Output line 7_1 is also a separate line 406.
[0060] Ifthe output, labeled k1, from OR 404a is “1,” then
the filter is a size from 2x1 to 7x1. If the output, labeled k2,
from OR 4045 is “1,” then the filter is a size from 3x1 to 7x1.
If the output, labeled k3, from OR 404c is “1,” then the filter
is a size from 41 to 7x1. If the output, labeled k4, from OR
4044 is <1,” then the filter is a size from 5x1 to 7x1. If the
output, labeled k5, from OR 404e is “1,” then the filter is a
size from 6x1 to 7x1. If line 406, labeled k6, is ““1,” then the
filter is a size of 7x1.

[0061] Architecture 400B in FIG. 4B includes OR 410,
XOR 412a-412¢, AND 414a, and one’s count 416a-416e.
The outputs from OR 404a-404¢ and line 406 in FIG. 4A are
provided as a 6 bit input to OR 410 in FIG. 4B. Likewise,
the output line X from OR 402 in FIG. 4A is provided as a
6 bit input into OR 410. OR 410 performs a logical OR on
the inputs and outputs a six bit result. This result identifies
the convolution filter to be applied. Accordingly, the result
from OR 410 is provided as input to each of AND 414a-
414e.

[0062] Each XOR 412a-412¢ has two seven bit inputs, one
seven bit weight input and one seven bit data input. Seven
bits are used for each input because the filter size ranges
from 2x1 to 7x1. The actual number of active bit lines would
vary depending on the filter input value provided with the
new processor instruction. The seven bit weight input is a
copy of weight bits [31:25] from the 32 bit weight register
described herein. The seven bit data input is obtained from
the 32 bit data input register described herein, but each input
is shifted one bit. For example, the inputs to XOR 4124
include weights [31:25] and data [31:25]; the inputs to XOR
4125 include weights [31:25] and data [30:24]; the inputs to
XOR 412¢ include weights [31:25] and data [29:23]; the
inputs to XOR 4124 include weights [31:25] and data
[28:22]; and the inputs to XOR 412¢ include weights [31:25]
and data [27:21].

[0063] Each XOR 412a-412¢ performs a logical exclusive
OR operation on the two inputs. The corresponding first six
bits output (shown as Tmp_results[5:0]) from the corre-
sponding XOR 412a-412¢ are provided to corresponding
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AND 414a-414e. The corresponding seventh bit output
(shown as Tmp_result[6]) from the corresponding XOR
412a-412¢ are provided to corresponding one’s count 416a-
416e.

[0064] Each AND 414a-414e performs a logical AND
operation on the corresponding six bit input (Tmp_results
[5:0]) and the six bit filter output from OR 410. The
corresponding results (shown as Tmp_results2[5:0]) from
corresponding AND 414a-414e are provided to correspond-
ing one’s count 416a-416e.

[0065] Each one’s count 416a-416¢ performs operations
to count the number of ones bits between the results (Tmp_
results2[5:0]) from corresponding AND 414a-4145 and the
seventh bit output (Tmp_result[6]) from corresponding
XOR 412a-412¢. The output of one’s count 4164 is shown
as Result1[5:0]; the output of one’s count 4165 is shown as
Result2[5:0]; the output of one’s count 416¢ is shown as
Result3[5:0]; the output of one’s count 4164 is shown as
Result4[5:0]; and the output of one’s count 416¢ is shown as
Result5 [5:0].

[0066] Architecture 400C in FIG. 4C includes XOR 420,
one’s count 422, adder 424, MUX 426 and adder 428. In
general, the MUX 426 selects between using the outputs
from filters 2x1 to 7x1 in FIG. 4B or a fully connected layer.
[0067] XOR 420 has two 25 bit inputs, weights[24:0] and
data[24:0]. Weights[24:0] are the remaining weight bits in
the weight register that are not used in FIG. 4B, and
data[24:0] are obtained from the input register that also
provided the data input bits used in FIG. 4B. XOR 420
performs a logical exclusive OR operation on the inputs and
outputs a 25 bit result (shown as Tmp_result[24:0]). The
output from XOR 420 is provided to one’s count 422, where
a total number of ones bits are counted. The output from
one’s count 422 is a six bit output (shown as Result6[5:0])
that is provided to adder 424.

[0068] Adder 424 adds the result (Result6[5:0]) from
one’s count 422 with the output (Result1[5:0]) from one’s
count 4164 in FIG. 4B. This addition calculates the total
result of a fully connected layer because Resultl[5:0] is
obtained from data input[31:25] and Result6[5:0] is obtained
from data input[24:0], thus using all bits from the 32 bit
input register.

[0069] The output from adder 424 is shown as Result
full[5:0] and is provided as input to MUX 426. The com-
bined results from one’s count 416a-416¢ in FIG. 4B are
provided as a 32 bit input into MUX 426 in FIG. 4C. MUX
426 also includes a one bit control line, whose input is the
X output line from filer size decoder 402 in FIG. 4A. MUX
426 selects between using the results from a fully connected
layer or the results from a filter between 2x1 to 7x1.
[0070] The output from MUX 426 is provided to adder
428. Adder 428 adds the result from MUX 426 with the
current destination register value (shown as destination
register[31:0]). The output from adder 428 is then written to
the destination register. Therefore, in a non-fully connected
layer, the outputs of each separate one’s count 416a-4164 in
FIG. 4B are stored in the corresponding sub-locations of the
destination register, without having to make multiple calls or
writes to the destination register.

[0071] The components shown in FIGS. 4A-4C may
include or be made up of one or more logical gates.
[0072] The operation of one or more embodiments will
now be described with respect to FIGS. 5A, 5B and 6, and
for convenience will be described with respect to the
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embodiments of FIGS. 1-4 described above. In at least one
of various embodiments, processes 500 and 600 described in
conjunction with FIGS. 5A-5B and 6, respectively, may be
implemented by or executed on one or more computing
devices, such as computing device 108 in FIG. 1.

[0073] FIGS. 5A and 5B show a logical flow diagram of
a process 500 for performing a new processor instruction to
do binary multiply-accumulate operations in accordance
with embodiments described herein. Process 500 begins,
after a start block, at block 502, where a destination-register
location is received. The destination-register location iden-
tifies a memory location of a destination register. In various
embodiments, the destination register stores 32 bits in
memory. The destination register is logically separated into
a plurality of destination sub-locations. In at least one
embodiment, the destination register is separated into at
least five sub-locations. These destination register sub-loca-
tions are utilized as accumulators.

[0074] Process 500 proceeds to block 504, where a source-
register location is received. The source-register location
identifies the memory location of a source register that
includes a plurality of input bits. In at least one embodiment,
the source register stores 32 bits in memory. In some
embodiments, the source register is loaded with input data
received from another process or sensor. For example, the
input data may be a portion of an image that is being
analyzed using a DNN.

[0075] Process 500 continues at block 506, where a
weight-register location is received. The weight-register
location identifies the memory location of a weight register
that includes a plurality of weight bits. In at least one
embodiment, the weight register stores 32 bits in memory. In
some embodiments, the weight register is loaded with
weights for processing the input data. In at least one embodi-
ment, the weights may be selected for employment during
convolution of a DNN.

[0076] Process 500 proceeds next to block 508, where a
filter input value is received. In various embodiments, the
filter input value identifies the type or size of filters to be
employed during convolution of the DNN.

[0077] Process 500 continues next at block 510, where a
sub-set of the weight bits in the weight register are copied.
In some embodiments, the size of the copied sub-set is equal
to the filter input value. In other embodiments, the size of the
copied sub-set is equal to the maximum number of weight
bits when then filter input value is zero, such as in during
processing of a fully connected convolution layer. In at least
one embodiment, the sub-set of weight bits is selected from
the highest ordered bits in the weight bits.

[0078] Process 500 proceeds to decision block 512, where
a determination is made whether the number of copies of the
sub-set of weight bits equals a select plurality of number of
times. In at least one embodiment, the selected plurality of
number of times is five. Although embodiments described
herein discuss copying the sub-set of weight bits five times,
other numbers of times may also be used. The number of
copies may be selected based on the number of bits in the
source register, the filter input value, or other factors. If the
number of copies of the sub-set of weight bits equals the
selected plurality of number of times, then process 500 flows
to block 514 in FIG. 5B; otherwise, process 500 loops to
block 510 in FIG. 5A to make another copy of the sub-set of
weight bits.
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[0079] At block 514 in FIG. 5B, a copy of the sub-set of
weight bits is selected.

[0080] Process 500 proceeds to block 516, where a des-
tination sub-location of the plurality of destination sub-
locations is selected. This selected destination sub-location
corresponds to the selected copy of the sub-set of weight
bits. For example, a first destination sub-location may be
selected for a first copy.

[0081] Process 500 continues at block 518, where a cor-
responding sub-set of the plurality of input bits is selected
for the selected copy of the sub-set of weight bits. For
example, a first sub-set of input bits may be selected for a
first copy of the sub-set of weight bits. In various embodi-
ments, the number of bits in the sub-set of input bits is equal
to the number of bits in the copy of the sub-set of weight
bits.

[0082] Process 500 proceeds next to block 520, where an
XOR (exclusive “OR”™) operation is performed on each
corresponding bit in the selected copy of sub-set of weight
bits with each corresponding bit in the selected sub-set of
input bits. For example, if the selected sub-set of input bits
includes three bits: a31, a30, and a29, and if the selected
sub-set of weight bits includes three bits: w31, w30, and
w29, then the following corresponding bit XOR operations
are performed: a31 XOR w31, a30 XOR w30, and a29 XOR
w29.

[0083] Process 500 continues next at block 522, where the
output of each XOR operation in block 520 is aggregated
with each other and with a current value stored in the
selected destination sub-location. For example, if the output
of'a31 XOR w31 is 1, the output of a30 XOR w30 is 0, and
the output of a29 XOR w29 is 1, then the aggregated XOR
output value is 2. If the currently stored value in the selected
destination sub-location is 3, then the total aggregated value
is 5.

[0084] Process 500 proceeds to block 523, where the total
aggregated value is stored in the destination registration at
the selected destination sub-location. In this way, the pre-
viously stored value in the selected destination sub-location
is written over with the new total aggregated value.

[0085] Process 500 continues at decision block 524, where
a determination is made whether to select another copy of
the sub-set of weight bits. In various embodiments, the
determination to select another copy of the sub-set of weight
bits will continue until all copies have been selected. If
another copy of the sub-set of weight bits is to be selected,
process 500 flows to block 526; otherwise, process 500
terminates or otherwise returns to a calling process to
perform other actions.

[0086] At block 526, a next copy of the sub-set of weight
bits is selected. In various embodiments, block 526 may
include embodiments of block 514, but to select another,
non-processed copy of subset of weight bits.

[0087] Process 500 proceeds next to block 528, where a
destination sub-location that corresponds to the selected next
copy of sub-set of weight bits is selected. For example, a
second destination sub-location may be selected for a second
copy. In various embodiments, block 528 may include
embodiments of block 516.

[0088] Process 500 continues next to block 530, where a
next corresponding sub-set of the plurality of input bits is
selected for the selected next copy of sub-set of weight bits.
The selected next sub-set of input bits are selected by
shifting the sub-set one bit, such as one bit to the right, from
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the previously selected sub-set of input bits. For example, if
the input bits include a31, a30, a29, a28, a27, . . ., a0, and
the previously selected sub-set of input bits includes a31,
a30, and a29, then the next selected sub-set of input bits
includes a30, a29, and a28.

[0089] After block 530, process 500 loops to block 520
where an XOR operation is performed on each correspond-
ing bit in the selected next copy of the sub-set of weight bits
with each corresponding bit in the selected next sub-set of
input bits.

[0090] Although process 500 is described as looping
through the copies of the sub-set of weight bits, embodi-
ments are not so limited. In various embodiments, separate
copies of the sub-set of weight bits are utilized in parallel.
Thus, the performance of blocks, 514, 516, 518, 520, 522,
and 523 for a first copy of the sub-set of weight bits, a first
sub-set of input bits, and a first destination sub-location may
be in parallel to the performance of blocks, 514, 516, 518,
520, 522, and 523 for a second copy of the sub-set of weight
bits, a second sub-set of input bits, and a second destination
sub-location. In this way, multiple sub-set of input values are
processed in parallel. In at least one embodiment, these
parallel operations are being performed for five sub-sets of
input values using five copies of the sub-set of weight bits,
along with five corresponding destination sub-locations.
[0091] FIG. 6 shows a logical flow diagram of an alter-
native process 600 for performing the new processor instruc-
tion to do binary multiply-accumulate operations in accor-
dance with embodiments described herein.

[0092] Process 600 begins, after a start block, at block
602, where a destination-register location is received. In
various embodiments, block 602 may perform embodiments
similar to block 502 in FIG. 5A.

[0093] Process 600 proceeds to block 604, where a source-
register location is received. In various embodiments, block
604 may perform embodiments similar to block 504 in FIG.
5A.

[0094] Process 600 proceeds to block 606, where a
weight-register location is received. In various embodi-
ments, block 606 may perform embodiments similar to
block 506 in FIG. 5A.

[0095] Process 600 proceeds to block 608, where a filter
index value is received. In various embodiments, block 608
may perform embodiments similar to block 508 in FIG. 5A.
[0096] Process 600 continues next at block 610, where a
sub-set of the weight bits in the weight register is selected.
In some embodiments, the size of the sub-set is equal to the
filter input value. In other embodiments, the size of the
sub-set is equal to the maximum number of weight bits when
then filter input value is zero, such as in during processing
of a fully connected convolution layer. In at least one
embodiment, the sub-set of weight bits is selected from the
highest ordered bits in the weight bits.

[0097] Process 600 proceeds to block 612, where a des-
tination sub-location of the plurality of destination sub-
locations is selected. This selected destination sub-location
corresponds to the selected sub-set of weight bits. For
example, a first destination sub-location may be selected for
a first selected sub-set of weight bits.

[0098] Process 600 continues at block 614, where a cor-
responding sub-set of the plurality of input bits is selected
for the selected sub-set of weight bits. In various embodi-
ments, the number of bits in the sub-set of input bits is equal
to the number of bits in the selected sub-set of weight bits.
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[0099] Process 600 proceeds next to block 616, where an
XOR (exclusive “OR”™) operation is performed on each
corresponding bit in the selected of sub-set of weight bits
with each corresponding bit in the selected sub-set of input
bits. In various embodiments, block 616 may perform
embodiments similar to block 520 in FIG. 5B.

[0100] Process 600 continues next at block 618, where the
output of each XOR operation in block 616 is aggregated
with each other and with a current value stored in the
selected destination sub-location. In various embodiments,
block 618 may perform embodiments similar to block 522 in
FIG. 5B.

[0101] Process 600 proceeds to block 619, where the total
aggregated value is stored in the destination registration at
the selected destination sub-location. In various embodi-
ments, block 619 may perform embodiments similar to
block 523 in FIG. 5B.

[0102] Process 600 continues at decision block 620, where
a determination is made whether to select another sub-set of
input bits. In various embodiments, the determination to
select another sub-set of input bits is performed until a select
number of sub-sets have been selected. If another sub-set of
input bits is to be selected, process 600 flows to block 622;
otherwise, process 600 terminates or otherwise returns to a
calling process to perform other actions.

[0103] At block 622, a next destination sub-location is
selected. For example, a second destination sub-location
may be selected for a second sub-set of input bits. In various
embodiments, block 622 may include embodiments of block
612.

[0104] Process 600 continues next to block 624, where a
next corresponding sub-set of the plurality of input bits is
selected. The selected next sub-set of input bits are selected
by shifting the sub-set one bit, such as one bit to the right,
from the previously selected sub-set of input bits. In various
embodiments, block 624 may include embodiments of block
530 in FIG. 5B.

[0105] After block 624, process 600 loops to block 616
where an XOR operation is performed on each correspond-
ing bit in the selected sub-set of weight bits with each
corresponding bit in the selected next sub-set of input bits.
[0106] Although process 600 is described as looping
through separate sub-sets of input bits, embodiments are not
so limited. In various embodiments, separate sub-sets of
input bits are processed in parallel. Thus, the performance of
blocks, 612, 614, 616, 618, and 619 for a first sub-set of
input bits, a first destination sub-location, and the selected
sub-set of weight bits may be in parallel to the performance
of blocks, 612, 614, 616, 618, and 619 for a second sub-set
of input bits, a second destination sub-location, and the
selected sub-set of weight bits. In this way, multiple sub-set
of input values are processed in parallel. In at least one
embodiment, these parallel operations are being performed
for five sub-sets of input values, while reusing the sub-set of
weight bits, along with five corresponding destination sub-
locations.

[0107] Inthe foregoing description, certain specific details
are set forth to provide a thorough understanding of various
disclosed embodiments. However, one skilled in the relevant
art will recognize that embodiments may be practiced with-
out one or more of these specific details, or with other
methods, components, materials, etc. In other instances,
well-known structures associated with electronic and com-
puting systems including client and server computing sys-
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tems, as well as networks have not been shown or described
in detail to avoid unnecessarily obscuring descriptions of the
embodiments.

[0108] Unless the context requires otherwise, throughout
the specification and claims which follow, the word “com-
prise” and variations thereof, such as, “comprises” and
“comprising,” are to be construed in an open, inclusive
sense, e.g., “including, but not limited to.”

[0109] The headings and Abstract of the Disclosure pro-
vided herein are for convenience only and do not limit or
interpret the scope or meaning of the embodiments.

[0110] The various embodiments described above can be
combined to provide further embodiments. Aspects of the
embodiments can be modified, if necessary to employ con-
cepts of the various patents, application and publications to
provide yet further embodiments.

[0111] These and other changes can be made to the
embodiments in light of the above-detailed description. In
general, in the following claims, the terms used should not
be construed to limit the claims to the specific embodiments
disclosed in the specification and the claims, but should be
construed to include all possible embodiments along with
the full scope of equivalents to which such claims are
entitled. Accordingly, the claims are not limited by the
disclosure.

1. A method, comprising:
receiving a destination-register location configured to
store accumulation results, wherein the destination-
register location includes a plurality of destination
sub-locations;
receiving a source-register location configured to store a
plurality of input bits;
receiving a weight-register location configured to store a
plurality of weight bits, wherein a weight length of the
plurality of weight bits is equal to an input length of the
plurality of input bits;
copying, using the weight-register location, a sub-set of
the plurality of weight bits a select plurality of number
of times, wherein a size of the sub-set of weights is
based on a filter index value; and
for each copy of the sub-set of weights:
selecting, using the source-register location, a sub-set
of the plurality of input bits based on the size of the
sub-set of weights, wherein the sub-set of input bits
is shifted one bit from a previous sub-set of the
plurality of input bits;
performing an XOR operation on each corresponding
bit in the copy of the sub-set of weights with each
corresponding bit in the selected sub-set of input
bits; and
aggregating, in a corresponding destination sub-loca-
tion of the plurality of destination sub-locations, an
output of each XOR operation with each other and
with a current value of the corresponding destination
sub-location.
2. The method of claim 1, further comprising:
receiving the filter index value between 2 and 7.
3. The method of claim 1, further comprising:
receiving the filter index value of zero to indicate a fully
connected layer.
4. The method of claim 1, wherein copying the sub-set of
the plurality of weight bits the select plurality of number of
times comprises:
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copying the sub-set of the plurality of weight bits five
times.

5. The method of claim 1, further comprising:
for each copy of the sub-set of weights:
performing a one’s count operation on an output from
the XOR operations on each corresponding bit in the
copy of the sub-set of weights with each correspond-
ing bit in the selected sub-set of input bits.
6. The method of claim 1, further comprising:

performing an XOR operation on each corresponding
remaining bit in the plurality of weights with each
corresponding remaining bit in the input bits;
performing a one’s count operation on an output from the
XOR operation on each corresponding remaining bit in
the plurality of weights with each corresponding
remaining bit in the input bits; and
adding the output of the one’s count operation with
another output from another one’s count operation
performed on an output from the XOR operation of
each corresponding bit in a first copy of the sub-set of
weights with each corresponding bit in the a first
selected sub-set of input bits.
7. The method of claim 6, further comprising:
for each copy of the sub-set of weights:
performing a one’s count operation on an output from
the XOR operations on each corresponding bit in the
copy of the sub-set of weights with each correspond-
ing bit in the selected sub-set of input bits;
generating a filtered output by concatenating outputs from
the one’s count operations for each copy of the sub-set
of weights;
performing an XOR operation on each corresponding
remaining bit in the plurality of weights with each
corresponding remaining bit in the input bits;
performing a one’s count operation on an output from the
XOR operation on each corresponding remaining bit in
the plurality of weights with each corresponding
remaining bit in the input bits;
generating a fully connected output by adding the output
of the one’s count operation with another output from
another one’s count operation performed on an output
from the XOR operation of each corresponding bit in a
first copy of the sub-set of weights with each corre-
sponding bit in the a first selected sub-set of input bits;

selecting a final result between the filtered output and the
fully connected output based on the filter index value;
and

combining the final result with a current value stored at
the destination-register location.

8. A system, comprising:

a memory that stores:

a destination register configured to store accumulation
results, wherein the destination-register includes a
plurality of sub-destinations;

a source register configured to store a plurality of input
bits;

a weight register configured to store a plurality of
weight bits, wherein a weight length of the plurality
of weight bits is equal to an input length of the
plurality of input bits;
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a microprocessor coupled to the memory, wherein the
microprocessor, in operation:
copies a sub-set of the plurality of weight bits in the
weight register a select plurality of number of times,
wherein a size of the sub-set of weights is based on
a filter index value; and
for each copy of the sub-set of weights:
selects a sub-set of the plurality of input bits from the
source register based on the size of the sub-set of
weights, wherein the sub-set of input bits is shifted
one bit from a previous sub-set of the plurality of
input bits;
performs an XOR operation on each corresponding
bit in the copy of the sub-set of weights with each
corresponding bit in the selected sub-set of input
bits; and
aggregates, in a corresponding sub-destination of the
plurality of sub-destinations in the destination
register, an output of each XOR operation with
each other and with a current value of the corre-
sponding sub-destination.
9. The system of claim 8, wherein the microprocessor, in
further operation:
receives the filter index value between 2 and 7.
10. The system of claim 8, wherein the microprocessor, in
further operation:
receives the filter index value of zero to indicate a fully
connected layer.
11. The system of claim 8, wherein the microprocessor, in
further operation:
copies the sub-set of the plurality of weight bits five times.
12. The system of claim 8, wherein the microprocessor, in
further operation:
for each copy of the sub-set of weights:
performs a one’s count operation on an output from the
XOR operations on each corresponding bit in the
copy of the sub-set of weights with each correspond-
ing bit in the selected sub-set of input bits.
13. The system of claim 8, wherein the microprocessor, in
further operation:
performs an XOR operation on each corresponding
remaining bit in the plurality of weights with each
corresponding remaining bit in the input bits;
performs a one’s count operation on an output from the
XOR operation on each corresponding remaining bit in
the plurality of weights with each corresponding
remaining bit in the input bits; and
adds the output of the one’s count operation with another
output from another one’s count operation performed
on an output from the XOR operation of each corre-
sponding bit in a first copy of the sub-set of weights
with each corresponding bit in the a first selected
sub-set of input bits.
14. The system of claim 13, wherein the microprocessor,
in further operation:
for each copy of the sub-set of weights:
performs a one’s count operation on an output from the
XOR operations on each corresponding bit in the
copy of the sub-set of weights with each correspond-
ing bit in the selected sub-set of input bits;
generates a filtered output by concatenating outputs from
the one’s count operations for each copy of the sub-set
of weights;

Dec. 29, 2022

performs an XOR operation on each corresponding
remaining bit in the plurality of weights with each
corresponding remaining bit in the input bits;

performs a one’s count operation on an output from the
XOR operation on each corresponding remaining bit in
the plurality of weights with each corresponding
remaining bit in the input bits;
generates a fully connected output by adding the output of
the one’s count operation with another output from
another one’s count operation performed on an output
from the XOR operation of each corresponding bit in a
first copy of the sub-set of weights with each corre-
sponding bit in the a first selected sub-set of input bits;

selects a final result between the filtered output and the
fully connected output based on the filter index value;
and

combines the final result with a current value stored at the

destination register.

15. A non-transitory computer-readable medium having
contents that configure a microcontroller to perform a
method, the method comprising:

receiving a destination-register location configured to

store accumulation results, wherein the destination-
register location includes a plurality of destination
sub-locations;

receiving a source-register location configured to store a

plurality of input bits;

receiving a weight-register location configured to store a

plurality of weight bits, wherein a weight length of the
plurality of weight bits is equal to an input length of the
plurality of input bits;

copying, using the weight-register location, a sub-set of

the plurality of weight bits a select plurality of number
of times, wherein a size of the sub-set of weights is
based on a filter index value; and

for each copy of the sub-set of weights:

selecting, using the source-register location, a sub-set
of the plurality of input bits based on the size of the
sub-set of weights, wherein the sub-set of input bits
is shifted one bit from a previous sub-set of the
plurality of input bits;

performing an XOR operation on each corresponding
bit in the copy of the sub-set of weights with each
corresponding bit in the selected sub-set of input
bits; and

aggregating, in a corresponding destination sub-loca-
tion of the plurality of destination sub-locations, an
output of each XOR operation with each other and
with a current value of the corresponding destination
sub-location.

16. The non-transitory computer-readable medium of
claim 15, wherein receiving the filter index value comprises:

receiving the filter index value between 2 and 7.

17. The non-transitory computer-readable medium of
claim 15, wherein receiving a filter index value comprises:

receiving the filter index value of zero to indicate a fully

connected layer.

18. The non-transitory computer-readable medium of
claim 15, wherein copying the sub-set of the plurality of
weight bits the select plurality of number of times com-
prises:

copying the sub-set of the plurality of weight bits five

times.
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19. The non-transitory computer-readable medium of
claim 15, further comprising:
for each copy of the sub-set of weights:
performing a one’s count operation on an output from
the XOR operations on each corresponding bit in the
copy of the sub-set of weights with each correspond-
ing bit in the selected sub-set of input bits.
20. The non-transitory computer-readable medium of
claim 15, further comprising:
performing an XOR operation on each corresponding
remaining bit in the plurality of weights with each
corresponding remaining bit in the input bits;
performing a one’s count operation on an output from the
XOR operation on each corresponding remaining bit in
the plurality of weights with each corresponding
remaining bit in the input bits; and
adding the output of the one’s count operation with
another output from another one’s count operation
performed on an output from the XOR operation of
each corresponding bit in a first copy of the sub-set of
weights with each corresponding bit in the a first
selected sub-set of input bits.
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