
US 20220414420A1 
IN 

( 19 ) United States 
( 12 ) Patent Application Publication ( 10 ) Pub . No .: US 2022/0414420 A1 

LUISE et al . ( 43 ) Pub . Date : Dec. 29 , 2022 

( 52 ) U.S. CI . 
CPC 

( 54 ) ULTRA - LOW - POWER AND LOW - AREA 
SOLUTION OF BINARY 
MULTIPLY - ACCUMULATE SYSTEM AND 
METHOD 

GO6N 3/04 ( 2013.01 ) ; G06F 9/30014 
( 2013.01 ) ; G06F 7/57 ( 2013.01 ) ; G06F 

9/30101 ( 2013.01 ) 

( 71 ) Applicants : STMICROELECTRONICS S.r.l. , 
Agrate Brianza ( IT ) ; 
STMicroelectronics International 
N.V. , Geneva ( CH ) 

( 57 ) ABSTRACT 

( 72 ) Inventors : Loris LUISE , Ornago ( IT ) ; Surinder 
Pal SINGH , NOIDA ( IN ) ; Fabio 
Giuseppe DE AMBROGGI , Biassono 
( IT ) 

( 73 ) Assignees : STMICROELECTRONICS S.r.l. , 
Agrate Brianza ( IT ) ; 
STMicroelectronics International 
N.V. , Geneva ( CH ) 

( 21 ) Appl . No .: 17 / 360,986 

Data structure and microcontroller architecture performing 
binary multiply - accumulate operations using multiple par 
tial copies of weights . Destination - register location , source 
register location , and weight - register location are received . 
Using the weight - register location , a sub - set of the weight 
bits is copied a select number of times based on a filter index 
value that is received . Each copy of the sub - set of weights 
is executed in parallel . Using the source - register location , a 
sub - set of the input bits is selected based on the size of the 
sub - set of weights , wherein the sub - set of input bits is 
shifted one bit from a previous sub - set of input bits . XOR 
operation is performed on each corresponding bit in the copy 
of the sub - set of weights with each corresponding bit in the 
selected sub - set of input bits . In a corresponding destination 
sub - location , output of each XOR operation is aggregated 
with each other and with current value of the corresponding 
destination sub - location . 

( 22 ) Filed : Jun . 28 , 2021 

Publication Classification 

( 51 ) Int . Ci . 
GOON 3/04 
G06F 9/30 
GO6F 7/57 

( 2006.01 ) 
( 2006.01 ) 
( 2006.01 ) 

Computing Device 

MEMS 
0 

Processor 
112 

Input / Output 



Patent Application Publication Dec. 29 , 2022 Sheet 1 of 10 US 2022/0414420 A1 

Computing Device 

MEMS 

Processor 
ALU 

Input / Output 

FIG . 1 



2004 

Patent Application Publication 

202 

. 

W 

2046 

031 030 029 028 027 026 025 024 023 022 . 1 . 01 60 

204 ~ _w31w30 w29 Ordo 

rd1 

204c4w31w30 w29 Crd2 w31 ] w30 w29 Ord3 { 204e - w31 w30 w29 Ord4 

W31 W30 W29 
2040 . 

W 

Dec. 29 , 2022 Sheet 2 of 10 

rd ( 210 ) 

Result1 ( 5 : 0 ) 

Result2 ( 5 : 0 ) 

Result3 ( 5 : 0 ) 

Result4 ( 5 : 0 ) 

Result5 ( 5 : 0 ) 

2'600 

rdo ( 2120 ) 

rdl ( 212b ) 

rd2 ( 2120 ) 

( 2120 ) 

( 212 ) 

US 2022/0414420 A1 

FIG . 2A 



Patent Application Publication Dec. 29 , 2022 Sheet 3 of 10 US 2022/0414420 A1 

200B 

2126 2120 

rd1 

2226 * + 2220 

220b popcnt popcnt 2200 

2040 W31 W30 W29 W31 W30 W29 2040 
A 

202 a31 a30 029 028 027 025 a24 

2040 W31W301W29 W31 W30 W29 W31 W30 W29 2040 

2200 2010 I 1220 
popcnt 220e popcnt popcnt 

2220 2220 
+ + 

222c 

2120 
2120 212e 

FIG . 2B 



300A 

302 

0 

031 030 029 028 027 026 025 024 023 022 

S 

w | 

Patent Application Publication 

W31 W30 29 28 27 26 25 24 23 w22 

OMIM 
0 

rd FIG . 3A 

3008 

302 

a30 a29a28 027 

24 023 a 

031 030 029 028 027 026 025 024 023 022 

o 

A 

Dec. 29 , 2022 Sheet 4 of 10 

304 

w 

w31 w30 w29 w28 w27 w26 w25 w24 w23w22 . rrrrr 1 0 1 1 1 1 1 1 1 1 

306 

popcnt 

308 

hotele T 

US 2022/0414420 A1 

FIG . 3B 



4040 

402 

Patent Application Publication 

Filter size ( one - hot ) 

single bit : X fully connected 
2.1 

2x1 filter 

3 

3x1 filter 
4.1 4x1 filter 5.1 5x1 filter 

6x1 filter 7x1 filter 

2 

Filter 3 size 
5 

Decoder 

Opcode from fetched instruction 

71 

K1 means : 

If ki - 1 there is a filter from 2x1 to 7x1 

4046 

K2 means : 

I k2 = 1 there is a filter from 3x1 to 7x1 

WARUN 

k2 

My 

1 bit 

K3 means : 

If k31 there is a filter from 4x1 to 7x1 

4040 

K4 means : 

If k41 there is a filter from 5x1 to 7x1 

???? 

K3 

Dec. 29 , 2022 Sheet 5 of 10 

71 

K5 means : 

If k5 = 1 there is a filter from 6x1 or 7x1 

I 

404d 
51 6 711 

K6 means : 

If k61 there is a 7x1 filter 

k4 

or 

1 bit 

-1 

k5 
????????????? » 1 bit 

US 2022/0414420 A1 

71 
406 
M 
1 bit 

FIG . 4A 



Patent Application Publication 

bits 

5 0 ] 

4160 

17 

Toit Obits 

[ k1 , k2 , k3 , k4 , k5 , k6 ] 

6bits 

Mask 

( X , X , X , X , X , X ] 

?? ?? 

Obits 

6bits ( 410 ) 

Weights ( 31:25 ] 

Tmp_result2 ( 5 : 0 ) 

And 
Tmp_result [ 5:01 6bits 

1's 

Result1 ( 5 : 0 ) 

( 4140 ) 

Obits 

Dato ( 31:25 ] Xor 

count 
Tmp_result [ 6 ] 

6bits 

bits ( 4120 ) 

k1 , K2 , k3,64,65 , k6 

weights [ 31:25 ] 

Tmp_result2 ( 5 : 0 ) 

And 

Tmp_result ( 5 : 0 ) 

I's 

Resuit2 [ 5 : 0 ) 

count 

Data [ 30:24 ] Xor 

Tmp_result [ 6 ] 

( 416 ) 

? 

( 412 ) 

k1 , K2 , k3 , K4 , k5 , k6 

weights [ 31:25 ] 

Tmp_result2 ( 5 : 0 ) 

And 

Tmp_result ( 5:01 

1's 

5 Result3 [ 5 : 0 ) 

count 

Data [ 29:23 ] Xor 

Tmp_result [ 6 ] 

4160 ) 

4120 

k1 , K2 , k3,64 , k5 , k6 

weights [ 31:25 ] 

Tmp_result25 : 0 ) 

And 

i's 

Result4 [ 5 : 0 ] 

Data [ 28:22 ] Xor 

count 
Tmp_result [ 6 ] 

4160 ) 

( 412d 

k1 , K2 , k3 , k4 , k5 , k6 

weights ( 31:25 ] 

Tmp_result2 [ 5 : 0 ] 

Tmp_result ( 5 : 0 ) 

And 
) 

l's 

Result5 ( 5 : 0 ) . 

4148 

count 

Data [ 27:21 ] Xor 

Tmp_result [ 6 ] 

4160 

Dec. 29 , 2022 Sheet 6 of 10 

Imp_result [ 5 : 01 | ( 4140 ) 

[ 5 0 

US 2022/0414420 A1 

FIG . 4B 

412e ) 



X 

Patent Application Publication 

422 

424 

1 bit 

426 

weights [ 24 : 0 ] 

25bits Data [ 24 : 0 ] 25bits 

Xor 

Tmp._result [ 24 : 0 ] i's 
count 

25bits 

Result6 [ 5 : 0 ) 

Obits 
Resulti ( 5 : 0 ) 

Result_full ( 5 : 0 ) 
6bits 

428 

6bits 
[ Result1 ( 5 : 0 ) , Result2 [ 5 : 0 ) , Result3 ( 5 : 0 ) , Result4 ( 5 : 0 ) , Result5 ( 5 : 0 ) , 2'b00 ) 

32 bits 

Destination 
Add 

samplemooons 
register [ 31 : 0 ) 32bits 

Dec. 29 , 2022 Sheet 7 of 10 

Destination 
register [ 31 : 0 ) 

US 2022/0414420 A1 

FIG . 4C 



Patent Application Publication Dec. 29 , 2022 Sheet 8 of 10 US 2022/0414420 A1 

500 

START 

Receive destination - register location that includes plurality of 
destination sub - locations 502 

m 

Receive source - register location associated with plurality of 
input bits 

m Receive weight - register location associated with plurality of 
weight bits 

Receive filter input value 

Copy sub - set of weight bits 

Number of copies of sub - set of 
Weight bits equal to select plurality 

of number of times ? 
Yes 

A 

FIG . 5A 



Patent Application Publication Dec. 29 , 2022 Sheet 9 of 10 US 2022/0414420 A1 

500 

Select copy of sub - set of weight bits 

Select destination sub - location that corresponds to selected 
copy of sub - set of weight bits 

Select corresponding sub - set of plurality of input bits 

Perform XOR on each corresponding bit in selected 
copy of sub - set of weight bits with each 

corresponding bit in selected sub - set of input bits 
520 

Aggregate output of each XOR with each other and 
with current value of selected destination sub - location 522 

Store aggregated value of selected 
destination sub - location 523 526 

Yes Select another copy of sub - set of 
weight bits ? 

No 

Select next copy of 
sub - set of weight bits 

END 528 

Select destination sub 
location that corresponds 
to selected next copy of 
sub - set of weight bits 

Select next corresponding 
sub - set of plurality of 
input bits shifted one 

bit from previous 
sub - set of input bits FIG . 5B 



Patent Application Publication Dec. 29 , 2022 Sheet 10 of 10 US 2022/0414420 A1 

600 

START 

w Receive destination - register location that includes plurality of 
destination sub - locations 602 

Receive source - register location associated with plurality of 
input bits 

Receive weight - register location associated with plurality of 
Weight bits 

Receive filter index value 608 

Select sub - set of weight bits -610 
Select destination sub - location 612 

Select sub - set of plurality of input bits 

Perform XOR on each corresponding bit in selected sub - set 
of weight bits with each corresponding bit in selected 

sub - set of input bits 
616 

Aggregate output of each XOR with each other and with current 
value of selected destination sub - location 

Store aggregated value of selected 
destination sub - location 

Select next destination 
sub - locotion 

624 
Select another sub - set of 

input bits ? 
Select next sub - set of input bits shifted 

one bit from previous sub - set 
of input bits FIG . 6 



US 2022/0414420 A1 Dec. 29 , 2022 
1 

ULTRA - LOW - POWER AND LOW - AREA 
SOLUTION OF BINARY 

MULTIPLY - ACCUMULATE SYSTEM AND 
METHOD 

BACKGROUND 

Technical Field 

[ 0001 ] The present disclosure generally relates to elec 
tronic devices of the type often used in embedded applica 
tions . More particularly , but not exclusively , the present 
disclosure relates to utilizing multiple partial copies of 
weights to perform binary multiply - accumulate operations 
for deep neural networks . 

Description of the Related Art 
[ 0002 ] Many computer vision , speech recognition , and 
signal processing applications benefit from the use of vari 
ous types of machine learning and artificial intelligence 
mechanisms . These mechanisms are arranged to quickly 
perform many hundreds or thousands of operations , often 
concurrently . One such mechanism is a deep neural network 
( DNN ) . ADNN is a computer - based tool that processes large 
quantities of data and adaptively “ learns ” by conflating 
proximally related features within the data , making broad 
predictions about the data , and refining the predictions based 
on reliable conclusions and new conflations . For example , a 
DNN can learn a variety of characteristics of faces such as 
edges , curves , angles , dots , color contrasts , bright spots , 
dark spots , etc. The DNN can use these initially learned 
characteristics to learn a variety of recognizable features of 
faces such as eyes , eyebrows , foreheads , hair , noses , mouths , 
cheeks , etc .; each of which is distinguishable from all of the 
other features . The DNN can then learn higher order char 
acteristics such as a specific face , race , gender , age , emo 
tional state , etc. 
[ 0003 ] Traditionally , DNNs used floating point values 
mostly 32 - bit to perform various operations , including con 
volution . Convolution can be represented as a matrix mul 
tiplication operation , which is essentially computing the dot 
product of each row of matrix A with each column of matrix 
B. In these types of operations , computing the dot product 
translates to a Multiply - Accumulate ( MAC ) operation , 
which can be quite expensive to implement and generally 
utilizes many logic gates . Therefore , greater die area and 
more power consumption is utilized for floating point values 
and more complex convolution . It is with respect to these 
and other considerations that the embodiments described 
herein have been made . 

of the sub - set of weights : selecting , using the source - register 
location , a sub - set of the plurality of input bits based on the 
size of the sub - set of weights , wherein the sub - set of input 
bits is shifted one bit from a previous sub - set of the plurality 
of input bits ; performing an XOR operation on each corre 
sponding bit in the copy of the sub - set of weights with each 
corresponding bit in the selected sub - set of input bits ; and 
aggregating , in a corresponding destination sub - location of 
the plurality of destination sub - locations , an output of each 
XOR operation with each other and with a current value of 
the corresponding destination sub - location . 
[ 0005 ] The method may further include receiving the filter 
index value between 2 and 7. The method may further 
include receiving the filter index value of zero to indicate a 
fully connected layer . Copying the sub - set of the plurality of 
weight bits the select plurality of number of times may 
include copying the sub - set of the plurality of weight bits 
five times . The method may further include for each copy of 
the sub - set of weights : performing a one's count operation 
on an output from the XOR operations on each correspond 
ing bit in the copy of the sub - set of weights with each 
corresponding bit in the selected sub - set of input bits . 
[ 0006 ] The method may further include performing an 
XOR operation on each corresponding remaining bit in the 
plurality of weights with each corresponding remaining bit 
in the input bits ; performing a one's count operation on an 
output from the XOR operation on each corresponding 
remaining bit in the plurality of weights with each corre 
sponding remaining bit in the input bits ; and adding the 
output of the one's count operation with another output from 
another one's count operation performed on an output from 
the XOR operation of each corresponding bit in a first copy 
of the sub - set of weights with each corresponding bit in the 
a first selected sub - set of input bits . 
[ 0007 ] The method may further include for each copy of 
the sub - set of weights : performing a one's count operation 
on an output from the XOR operations on each correspond 
ing bit in the copy of the sub - set of weights with each 
corresponding bit in the selected sub - set of input bits ; 
generating a filtered output by concatenating outputs from 
the one's count operations for each copy of the sub - set of 
weights ; performing an XOR operation on each correspond 
ing remaining bit in the plurality of weights with each 
corresponding remaining bit in the input bits ; performing a 
one's count operation on an output from the XOR operation 
on each corresponding remaining bit in the plurality of 
weights with each corresponding remaining bit in the input 
bits ; generating a fully connected output by adding the 
output of the one's count operation with another output from 
another one's count operation performed on an output from 
the XOR operation of each corresponding bit in a first copy 
of the sub - set of weights with each corresponding bit in the 
a first selected sub - set of input bits ; selecting a final result 
between the filtered output and the fully connected output 
based on the filter index value ; and combining the final result 
with a current value stored at the destination - register loca 
tion . 
[ 0008 ] A system may be summarized as including a 
memory that stores a destination register configured to store 
accumulation results , wherein the destination - register 
includes a plurality of sub - destinations ; a source register 
configured to store a plurality of input bits ; a weight register 
configured to store a plurality of weight bits , wherein a 
weight length of the plurality of weight bits is equal to an 

a 
BRIEF SUMMARY 

[ 0004 ] A method may be summarized as including receiv 
ing a destination - register location configured to store accu 
mulation results , wherein the destination - register location 
includes a plurality of destination sub - locations ; receiving a 
source - register location configured to store a plurality of 
input bits ; receiving a weight - register location configured to 
store a plurality of weight bits , wherein a weight length of 
the plurality of weight bits is equal to an input length of the 
plurality of input bits ; copying , using the weight - register 
location , a sub - set of the plurality of weight bits a select 
plurality of number of times , wherein a size of the sub - set of 
weights is based on a filter index value ; and for each copy 

a 



US 2022/0414420 A1 Dec. 29 , 2022 
2 

input length of the plurality of input bits ; a microprocessor 
coupled to the memory , wherein the microprocessor , in 
operation copies a sub - set of the plurality of weight bits in 
the weight register a select plurality of number of times , 
wherein size of the sub - set of weights is based on a filter 
index value ; and for each copy of the sub - set of weights 
selects a sub - set of the plurality of input bits from the source 
register based on the size of the sub - set of weights , wherein 
the sub - set of input bits is shifted one bit from a previous 
sub - set of the plurality of input bits ; performs an XOR 
operation on each corresponding bit in the copy of the 
sub - set of weights with each corresponding bit in the 
selected sub - set of input bits ; and aggregates , in a corre 
sponding sub - destination of the plurality of sub - destinations 
in the destination register , an output of each XOR operation 
with each other and with a current value of the correspond 
ing sub - destination . 
[ 0009 ] The microprocessor , in further operation , may 
receive the filter index value between 2 and 7. The micro 
processor , in further operation , may receive the filter index 
value of zero to indicate a fully connected layer . The 
microprocessor , in further operation , may copy the sub - set 
of the plurality of weight bits five times . The microproces 
sor , in further operation , for each copy of the sub - set of 
weights may perform a one's count operation on an output 
from the XOR operations on each corresponding bit in the 
copy of the sub - set of weights with each corresponding bit 
in the selected sub - set of input bits . 
[ 0010 ] The microprocessor , in further operation , may per 
form an XOR operation on each corresponding remaining 
bit in the plurality of weights with each corresponding 
remaining bit in the input bits ; performs a one's count 
operation on an output from the XOR operation on each 
corresponding remaining bit in the plurality of weights with 
each corresponding remaining bit in the input bits ; and adds 
the output of the one's count operation with another output 
from another one's count operation performed on an output 
from the XOR operation of each corresponding bit in a first 
copy of the sub - set of weights with each corresponding bit 
in the a first selected sub - set of input bits . 
[ 0011 ] The microprocessor , in further operation , for each 
copy of the sub - set of weights may perform a one's count 
operation on an output from the XOR operations on each 
corresponding bit in the copy of the sub - set of weights with 
each corresponding bit in the selected sub - set of input bits ; 
generates a filtered output by concatenating outputs from the 
one's count operations for each copy of the sub - set of 
weights ; may perform an XOR operation on each corre 
sponding remaining bit in the plurality of weights with each 
corresponding remaining bit in the input bits ; may perform 
a one's count operation on an output from the XOR opera 
tion on each corresponding remaining bit in the plurality of 
weights with each corresponding remaining bit in the input 
bits ; may generate a fully connected output by adding the 
output of the one's count operation with another output from 
another one's count operation performed on an output from 
the XOR operation of each corresponding bit in a first copy 
of the sub - set of weights with each corresponding bit in the 
a first selected sub - set of input bits ; may select a final result 
between the filtered output and the fully connected output 
based on the filter index value ; and may combine the final 
result with a current value stored at the destination register . 
[ 0012 ] A non - transitory computer - readable medium hav 
ing contents that configure a microcontroller to perform a 

method , the method may be summarized as including 
receiving a destination - register location configured to store 
accumulation results , wherein the destination - register loca 
tion includes a plurality of destination sub - locations ; receiv 
ing a source - register location configured to store a plurality 
of input bits ; receiving a weight - register location configured 
to store a plurality of weight bits , wherein a weight length 
of the plurality of weight bits is equal to an input length of 
the plurality of input bits , copying , using the weight - register 
location , a sub - set of the plurality of weight bits a select 
plurality of number of times , wherein a size of the sub - set of 
weights is based on a filter index value ; and for each copy 
of the sub - set of weights selecting , using the source - register 
location , a sub - set of the plurality of input bits based on the 
size of the sub - set of weights , wherein the sub - set of input 
bits is shifted one bit from a previous sub - set of the plurality 
of input bits ; performing an XOR operation on each corre 
sponding bit in the copy of the sub - set of weights with each 
corresponding bit in the selected sub - set of input bits ; and 
aggregating , in a corresponding destination sub - location of 
the plurality of destination sub - locations , an output of each 
XOR operation with each other and with a current value of 
the corresponding destination sub - location . Receiving the 
filter index value may include receiving the filter index value 
between 2 and 7. Receiving a filter index value may include 
receiving the filter index value of zero to indicate a fully 
connected layer . Copying the sub - set of the plurality of 
weight bits the select plurality of number of times may 
include copying the sub - set of the plurality of weight bits 
five times . 

[ 0013 ] The non - transitory computer - readable medium , 
may further include for each copy of the sub - set of weights 
performing a one's count operation on an output from the 
XOR operations on each corresponding bit in the copy of the 
sub - set of weights with each corresponding bit in the 
selected sub - set of input bits . The non - transitory computer 
readable medium , may further include performing an XOR 
operation on each corresponding remaining bit in the plu 
rality of weights with each corresponding remaining bit in 
the input bits ; performing a one's count operation on an 
output from the XOR operation on each corresponding 
remaining bit in the plurality of weights with each corre 
sponding remaining bit in the input bits ; and adding the 
output of the one's count operation with another output from 
another one's count operation performed on an output from 
the XOR operation of each corresponding bit in a first copy 
of the sub - set of weights with each corresponding bit in the 
a first selected sub - set of input bits . 

a 

BRIEF DESCRIPTION OF THE SEVERAL 
VIEWS OF THE DRAWINGS 

a 

[ 0014 ] Non - limiting and non - exhaustive embodiments are 
described with reference to the following drawings , wherein 
like labels refer to like parts throughout the various views , 
unless the context indicates otherwise . The sizes and relative 
positions of elements in the drawings are not necessarily 
drawn to scale . For example , the shapes of various elements 
are selected , enlarged , and positioned to improve drawing 
legibility . The particular shapes of the elements as drawn 
have been selected for ease of recognition in the drawings . 
One or more embodiments are described hereinafter with 
reference to the accompanying drawings in which : 



US 2022/0414420 A1 Dec. 29 , 2022 
3 

a 

[ 0015 ] FIG . 1 is a block diagram showing an example 
computing device for implementing embodiments described 
herein ; 
[ 0016 ] FIGS . 2A and 2B are conceptual block diagrams 
showing example of bit and register structures in accordance 
with embodiments described herein ; 
[ 0017 ] FIGS . 3A and 3B are conceptual block diagrams 
showing another example of bit and register structures in 
accordance with embodiments described herein ; 
[ 0018 ] FIGS . 4A - 4C are conceptual block diagrams show 
ing an example gate architecture in accordance with embodi 
ments described herein ; 
[ 0019 ] FIGS . 5A and 5B show a logical flow diagram of 
a process for performing a new processor instruction to do 
binary multiply - accumulate operations in accordance with 
embodiments described herein ; and 
[ 0020 ] FIG . 6 shows a logical flow diagram of an alter 
native process for performing the new processor instruction 
to do binary multiply - accumulate operations in accordance 
with embodiments described herein . 

a 

DETAILED DESCRIPTION 

[ 0021 ] In the following description , along with the accom 
panying drawings , certain details are set forth in order to 
provide a thorough understanding of various embodiments 
of devices , systems , methods , and articles . One of skill in the 
art , however , will understand that other embodiments may 
be practiced without these details . In other instances , well 
known structures and methods associated with , for example , 
circuits , such as transistors , multipliers , adders , dividers , 
comparators , integrated circuits , logic gates , finite state 
machines , accelerometers , gyroscopes , magnetic field sen 
sors , memories , bus systems , etc. , have not been shown or 
described in in detail in some figures to avoid unnecessarily 
obscuring descriptions of the embodiments . Moreover , well 
known structures or components that are associated with the 
environment of the present disclosure , including but not 
limited to the communication systems and networks , have 
not been shown or described in order to avoid unnecessarily 
obscuring descriptions of the embodiments . 
[ 0022 ] Unless the context requires otherwise , throughout 
the specification and claims that follow , the word " com 
prise ” and variations thereof , such as “ comprising , " and 
" comprises , ” are to be construed in an open , inclusive sense , 
that is , as " including , but not limited to . ” 
[ 0023 ] Throughout the specification , claims , and draw 
ings , the following terms take the meaning explicitly asso 
ciated herein , unless the context clearly dictates otherwise . 
The term “ herein ” refers to the specification , claims , and 
drawings associated with the current application . The 
phrases “ in one embodiment , ” “ in another embodiment , ” “ in 
various embodiments , ” “ in some embodiments , ” “ in other 
embodiments , ” and other variations thereof refer to one or 
more features , structures , functions , limitations , or charac 
teristics of the present disclosure , and are not limited to the 
same or different embodiments unless the context clearly 
dictates otherwise . As used herein , the term “ or ” is an 
inclusive “ or ” operator , and is equivalent to the phrases “ A 
or B , or both ” or “ A or B or C , or any combination thereof , " 
and lists with additional elements are similarly treated . The 
term “ based on ” is not exclusive , and allows for being based 
on additional features , functions , aspects , or limitations not 
described , unless the context clearly dictates otherwise . In 
addition , throughout the specification , the meaning of “ a , " 

“ an , ” and “ the ” include singular and plural references . 
Furthermore , the particular features , structures , or charac 
teristics may be combined in any suitable manner in one or 
more embodiments to obtain further embodiments . 
[ 0024 ] FIG . 1 is a block diagram showing an example 
computing device 108 for implementing embodiments 
described herein . Computing device 108 includes a MEMS 
110 , processor 112 , and an input / output 116. Although not 
illustrated , computing device 108 may have other computing 
components . 
[ 0025 ] MEMS 110 obtain various sensor data that is 
provided to processor 112 for processing . MEMS 110 may 
include accelerometers or gyroscopes configured to sense 
movement or positional data associated with the computing 
device 108. Although FIG . 1 shows the use of a MEMS , 
other sensing technologies or input sensors may also be 
used . Such other sensors may include , but are not limited to , 
a GPS system , a temperature sensor , a gas sensor , a pressure 
sensor , a magnetism sensor , imaging sensors , etc. , or various 
combinations thereof . 
[ 0026 ] Data obtained from MEMS 110 is provided to 
processor 112 for additional processing . The processor 112 
includes one or more processing cores or circuits . The 
processor may comprise , for example , one or more proces 
sors , a state machine , a microprocessor , a programmable 
logic circuit , discrete circuitry , logic gates , registers , etc. , 
and or various combinations thereof . The processor 112 may 
control overall operation of the computing device 108 , 
execution of applications programs by the computing device 
108 , etc. 
[ 0027 ] The processor 112 includes an arithmetic logic unit 
( ALU ) 114. The processor 112 , the ALU 114 , or some 
combination thereof , may perform embodiments described 
herein . Thus , in some embodiments where the processor 112 
performs the embodiments described herein , the ALU 114 
may not be present in the computing device 108. Con 
versely , if the ALU 114 performs the embodiments described 
herein , the computing device 108 may still include the 
processor 112 to perform other actions associated with the 
functioning of the computing device 108 . 
[ 0028 ] The computing device 108 also includes one or 
more memories ( not shown ) , such as one or more volatile or 
non - volatile memories , or a combination thereof , which may 
store , for example , all or part of instructions and data related 
to applications and operations performed by the computing 
device 108. For example , the memory may store computer 
instructions that when executed by the processor 108 per 
form the actions described herein . The memory also stores 
various information , including input data or weights , used to 
perform embodiments described herein . 
[ 0029 ] The computing device 108 also includes input / 
output 116. The input / output 116 may be configured to 
output information or results obtained or determined by 
processor 112 or ALU 114 , such as by performing embodi 
ments described herein . In other embodiments , input / output 
116 may be configured to receive input data from other 
computing devices or external sensors . 
[ 0030 ] The computing device 108 may also include a bus 
system ( not illustrated ) , which may be configured such that 
the processor , MEMS 110 , input / output 116 , memories , or 
other circuits or circuitry ( not illustrated ) 108 are commu 
nicatively coupled to one another to send or receive , or send 
and receive , data to or from other components . The bus 
system may include one or more of data , address , power , or 



US 2022/0414420 A1 Dec. 29 , 2022 
4 

control busses , or some combination thereof , electrically 
coupled to the various components of the computing device 
108 . 
[ 0031 ] As described herein , ALU 114 may implement a 
new processor instruction and data structure to perform 
binary multiple - accumulate operations in neural network 
calculations . In various embodiments , this new processor 
instruction may take the form of : 

[ 0032 ] stxcnt % rd , % rs , % rso , filter_idx = # imm 
where , 
[ 0033 ] stxcnt is the calling operation for the instruction ; 
[ 0034 ] % rd is the destination register location , which 
keeps the accumulation results ; 

[ 0039 ] These instructions are for illustration purposes and 
could be different for different computer languages . How 
ever , this illustration demonstrates how the new processor 
instruction , data structure , and architecture described herein 
can be used to perform a two - dimensional 3x3 convolution 
filter . Similar embodiments can be used for other sizes of 
filters , for example , from size 2x2 to 7x7 . Other filter sizes 
may also be considered by using additional bit lines , addi 
tional copies of weight bits , etc. 
[ 0040 ] Similar embodiments can be utilized for a fully 
connected layer . The following is an example demo code of 
the kernel loop for a fully connected convolution layer , 
which utilize the new processor instruction data structure 
and logic architecture described herein : 

movw % rl , # 0 ; reset accumulator 
loop_FC : 

1dw % ro , [ % r5 ] + ; load weights ( w [ 31 ] -W [ 0 ] ) 
1dw % r2 , [ % r6 ] + ; load row of input data ( a [ 0,31 ] -a [ 0,0 ] ) 
stxcnt % r1 , % r2 , % 10 , 0 ; 0 new processor instruction to perform fully connected 

layer 
cmp end_fiter ; compare the cycle loop 

jpdne loop_FC 
stw [ % r7 ] + , % r1 ; store result ( rl ) of the fully connected layer 

[ 0035 ] % rs is the source register location , which keeps 32 
continuous input data bits A that may be represented as 
a [ i , 31 ] -a [ i , 0 ] ; 
[ 0036 ] % rs is the weights register location , which keeps 
the source operand of weight bits W that may be represented 
as w [ 31 ] -w [ 0 ] contains only one set without duplication ; 
and 
[ 0037 ] filter_idx is used to indicate which filter is imple 
mented ( from 2 to 7 ) . 
[ 0038 ] The following is an example demo code of the 
kernel loop for a two - dimensional 3x3 convolution filter , 
which utilize the new processor instruction data structure 
and logic architecture described herein : 

[ 0041 ] These instructions are for illustration purposes and 
could be different for different computer languages . How 
ever , this illustration demonstrates how the new processor 
instruction , data structure , and architecture described herein 
can be used to perform a fully connected convolution layer . 
[ 0042 ] FIGS . 2A and 2B are conceptual block diagrams 
showing example of bit and register structures in accordance 
with embodiments described herein . Convolution bit struc 
ture 200A in FIG . 2A illustrates a plurality of input bits 202 
and multiple copies of weight bits 204a - 204e . The input bits 
202 are obtained from an input register ( not shown ) . In this 
example , the input bits 202 include 32 bits . 

3 

1dw % ro , [ % r5 ] ; load weights ( w [ 31 ] , w [ 30 ] , w [ 29 ] , w [ 28 ] , ... , W [ 23 ] , 0,0 ... ) 
1dw % r2 , [ % r6 ] + ; load first row of input data ( a [ 0,31 ] -a [ 0,0 ] ) 
1dw % r3 , [ % r6 ] + ; load second row of input data ( a [ 1,31 ] -a [ 1,0 ] ) 
1dw % r4 , [ % r6 ] + load third row of input data ( a [ 2,31 ] ~ a [ 2,0 ] ) 

loop_2D : 
movw % r1 , # 0 ; reset accumulators 
stxcnt % rl , % r2 , % 10 , 3 ; new processor instruction to perform first convolutional part 

rdo , 
rd1 , rd2 , rd3 , rd4 described herein 

rotlw % ro , # 3 ; rotate left weights ( w [ 28 ] ~ w [ 23 ] , 0,0,0 ... 0,0 , w [ 31 ] ~ w [ 29 ] ) 
because first set of weights is used 

stxcnt % rl , % r3 % ro , 3 ; new processor instruction to perform second convolutional 
part 

rd0 + rd0new , rd1 + rd1new , rd2 + rd2new , rd3 + rd3new , 
rd4 + rd4new described herein because first input row has 
been used 

rotlw % ro , # 3 ; rotate left weights ( w [ 25 ] ~ w [ 23 ] , 0,0,0 ... 0,0 , w [ 31 ] -w [ 26 ] ) 
stxcnt % rl , % r4 , % ro , 3 ; new processor instruction to perform third convolutional 

part 
rd1 + rdl new , rd2 + rd2new , rd3 + rd3new , rd4 + rd4new 
described herein because second input row has been used 

rotrw % ro , # 6 ; rotate right weights ( for initial phase ) 
( w [ 31 ] -w [ 23 ] , 0,0,0 ... ) to reset for another loop 

stw [ % r7 ] + , % r1 ; store result ( rl ) from running three new processor 
instructions 

3 consecutive rows in 3x3 2D convolutional filter 
sllw rowl , row2 , row3 ; shift left the input data for the next filters 

jpia loop_2D 



US 2022/0414420 A1 Dec. 29 , 2022 
5 

9 

- 

[ 0043 ] The number of copies of weight bits 204a - 204e is 
selected by an administrator or developer . In this example , 
there are five copies of weight bits 204a - 204e . Each copy of 
the weight bits 204a - 204e is a sub - set of weight bits 
obtained from a weight register ( not illustrated ) . The number 
of bits in each copy of weight bits 204a - 204e is selected 
based on a filter input value that selects the size or type of 
filter to be employed . In this example , the filter input value 
is three , and thus each copy of weight bits 204a - 204e 
includes the same three bits obtained from the weight 
register . 
[ 0044 ] Each copy of weight bits 204a - 204e is arranged to 
correspond to a separate sub - set of input bits 202. For 
example , weight bits 204a correspond to input bits a31 , a30 , 
and a29 ; weight bits 204b correspond to input bits a30 , a29 , 
and a28 ; weight bits 204c correspond to input bits a29 , a28 , 
and a27 ; weight bits 204d correspond to input bits a28 , a27 , 
and a26 ; and weight bits 204e correspond to input bits a27 , 
a26 , and a25 . 
[ 0045 ] Each copy of weight bits 204a - 204e corresponds 
a separate destination sub - location 212a - 212e ( also referred 
to as destination sub - register ) within destination register 
210. For example , copy of weight bits 204a corresponds to 
destination sub - location 212a , copy of weight bits 204b 
corresponds to destination sub - location 212b , copy of 
weight bits 204c corresponds to destination sub - location 
212c , copy of weight bits 204d corresponds to destination 
sub - location 212d , and copy of weight bits 204e corresponds 
to destination sub - location 212e . 
[ 004 ] As described in more detail below , when the weight 
bits 204a - 204e are XOR'd with corresponding input bits 202 
and aggregated together , the aggregate is combined with a 
current result or value stored in the corresponding destina 
tion sub - location 212a - 212e . The resulting combination is 
then re - stored in the corresponding destination sub - location 
212a - 212e . 

[ 0047 ] FIG . 2B is a further conceptual block diagram of 
the bit and register structure discussed above in FIG . 2A . 
Block structure 200B includes input bits 202 and multiple 
copies of weight bits 204a - 204e . Structure 200 also includes 
popcount 220a - 220e , summation 222a - 222e , and destina 
tion sub - locations 212a - 212e . 
[ 0048 ] With respect to copy of weight bits 204a , weight bit 
w31 is XOR'd with input bit a31 , weight bit w30 is XOR’d 
with input bit a30 , and weight bit w29 is XOR'd with input 
bit a29 . The results of these XOR operations is provided to 
popcount 220a , where the number of l’s bits from the XOR 
operations is calculated . The results from popcount 220a are 
provided to summation 222a , which is combined with a 
current value stored in destination sub - location 212a . The 
output from summation 222a is written to destination sub 
location 212a . 

[ 0049 ] Embodiments for copies of weight bits 2046-204e 
are similarly employed but for shifted input bits . Details of 
each are provided for completeness . 
[ 0050 ] With respect to copy of weight bits 204b , weight bit 
w31 is XOR'd with input bit a30 , weight bit w30 is XOR'd 
with input bit a29 , and weight bit w29 is XOR'd with input 
bit a28 . The results of these XOR operations is provided to 
popcount 220b , where the number of l’s bits from the XOR 
operations is calculated . The result from popcount 2205 is 
provided to summation 222b , which is combined with a 

current value stored in destination sub - location 212b . The 
output from summation 222b is written to destination sub 
location 212b . 
[ 0051 ] With respect to copy of weight bits 2040 , weight bit 
w31 is XOR’d with input bit a29 , weight bit w30 is XOR'd 
with input bit a28 , and weight bit w29 is XOR’d with input 
bit a27 . The results of these XOR operations is provided to 
popcount 220c , where the number of l’s bits from the XOR 
operations is calculated . The result from popcount 220c is 
provided to summation 222c , which is combined with a 
current value stored in destination sub - location 212c . The 
output from summation 222c is written to destination sub 
location 212c . 
[ 0052 ] With respect to copy of weight bits 204d , weight bit 
w31 is XOR'd with input bit a28 , weight bit w30 is XOR'd 
with input bit a27 , and weight bit w29 is XOR'd with input 
bit a26 . The results of these XOR operations is provided to 
popcount 220d , where the number of l’s bits from the XOR 
operations is calculated . The results from popcount 220d are 
provided to summation 222d , which is combined with a 
current value stored in destination sub - location 212d . The 
output from summation 222d is written to destination sub 
location 212d . 
[ 0053 ] With respect to copy of weight bits 204e , weight bit 
w31 is XOR'd with input bit a27 , weight bit w30 is XOR’d 
with input bit a26 , and weight bit w29 is XOR’d with input 
bit a25 . The results of these XOR operations is provided to 
popcount 220e , where the number of l’s bits from the XOR 
operations is calculated . The results from popcount 220e are 
provided to summation 222e , which is combined with a 
current value stored in destination sub - location 212e . The 
output from summation 222e is written to destination sub 
location 212e . 
[ 0054 ] FIGS . 3A and 3B are conceptual block diagrams 
showing another example of bit and register structures in 
accordance with embodiments described herein . Convolu 
tion bit structure 300A in FIG . 3A illustrates a plurality of 
input bits 302 and a plurality of weight bits 304. In various 
embodiments , this bit structure is utilized when the filter 
input value is zero indicating a fully connected convolution 
layer . 
[ 0055 ] The input bits 302 are obtained from an input 
register ( not shown ) . In this example , the input bits 302 
include 32 bits . The weight bits 304 are obtained from a 
weight register ( not shown ) . In this example , the weight bits 
304 include 32 bits . Each weight bit 304 corresponds to an 
input bit 302. For example , weight bit w31 corresponds to 
input bit a31 , weight bit w30 corresponds to input bit a30 , 
and so on . 
[ 0056 ] FIG . 3B is a further conceptual block diagram of 
the bit and register structure discussed above in FIG . 3A . 
Block structure 300B includes input bits 302 , weight bits 
304 , popcount 306 , summation 308 , and destination sub 
location 310 . 
[ 0057 ] Each corresponding weight bit 304 is XOR'd with 
a corresponding input bit 302. For example , weight bit w31 
is XOR'd with input bit a31 , weight bit w30 is XOR'd with 
input bit a30 , weight bit w29 is XOR’d with input bit a29 , 
weight bit w28 is XOR’d with input bit a28 , and so on . The 
results of these XOR operations is provided to popcount 
306 , where the number of l’s bits from the XOR operations 
is calculated . The results from popcount 306 are provided to 
summation 308 , which is combined with a current value 
stored in destination sub - location 310. The output from 

a 

> 



US 2022/0414420 A1 Dec. 29 , 2022 
6 

a 

1 

summation 308 is written to destination sub - location 310. In 
some embodiments , destination sub - location 310 uses the 
same memory as destination sub - location 212a in FIG . 2A . 
[ 0058 ] FIGS . 4A - 4C are conceptual block diagrams show 
ing an example architecture in accordance with embodi 
ments described herein . Architecture 400A in FIG . 4A 
includes a filter size decoder 402 and ORs 404a - 404e . The 
opcode from the fetched new processor instruction described 
herein is input into filter size decoder 402. In some embodi 
ments , this input may be a separate input associated with the 
new processor instruction . Each output from filter size 
decoder is a single separate bit . Each separate output line or 
output bit represents a different filter size , where output line 
2_1 represents a 2x1 filter , output line 3_1 represents a 3x1 
filter , output line 4_1 represents a 4x1 filter , output line 5_1 
represents a 5x1 filter , output line 6_1 represents a 6x1 filter , 
output line 7_1 represents a 7x1 filter , and output line X 
represents a fully connected layer . 
[ 0059 ] The output lines from filter size decoder 402 are 
input into ORs 404a - 404e . In particular , output line 2_1 is 
input into OR 404a ; output line 3_1 is input into OR 
404a - 404b ; output line 4_1 is input into OR 404a - 404c ; 
output line 5_1 is input into OR 404a - 404d ; output line 6_1 
is input into OR 404a - 404e ; and output line 7_1 is input into 
OR 404a - 404e . Output line 7_1 is also a separate line 406 . 
[ 0060 ] If the output , labeled k1 , from OR 404a is “ 1 , " then 
the filter is a size from 2x1 to 7x1 . If the output , labeled k2 , 
from OR 404b is “ 1 , " then the filter is a size from 3x1 to 7x1 . 
If the output , labeled k3 , from OR 404c is “ 1 , ” then the filter 
is a size from 4'1 to 7x1 . If the output , labeled k4 , from OR 
404d is “ 1 , " then the filter is a size from 5x1 to 7x1 . If the 
output , labeled k5 , from OR 404e is “ 1 , " then the filter is a 
size from 6x1 to 7x1 . If line 406 , labeled ko , is “ 1 , " then the 
filter is a size of 7x1 . 
[ 0061 ] Architecture 400B in FIG . 4B includes OR 410 , 
XOR 412a - 412e , AND 414a , and one's count 416a - 416e . 
The outputs from OR 404a - 404e and line 406 in FIG . 4A are 
provided as a 6 bit input to OR 410 in FIG . 4B . Likewise , 
the output line X from OR 402 in FIG . 4A is provided as a 
6 bit input into OR 410. OR 410 performs a logical OR on 
the inputs and outputs a six bit result . This result identifies 
the convolution filter to be applied . Accordingly , the result 
from OR 410 is provided as input to each of AND 414a 
414e . 
[ 0062 ] Each XOR 412a - 412e has two seven bit inputs , one 
seven bit weight input and one seven bit data input . Seven 
bits are used for each input because the filter size ranges 
from 2x1 to 7x1 . The actual number of active bit lines would 
vary depending on the filter input value provided with the 
new processor instruction . The seven bit weight input is a 
copy of weight bits [ 31:25 ] from the 32 bit weight register 
described herein . The seven bit data input is obtained from 
the 32 bit data input register described herein , but each input 
is shifted one bit . For example , the inputs to XOR 412a 
include weights [ 31:25 ] and data [ 31:25 ] ; the inputs to XOR 
412b include weights [ 31:25 ] and data [ 30:24 ] ; the inputs to 
XOR 412c include weights [ 31:25 ] and data [ 29:23 ] ; the 
inputs to XOR 412d include weights [ 31:25 ] and data 
[ 28:22 ] ; and the inputs to XOR 412e include weights [ 31:25 ] 
and data 27:21 ) . 
[ 0063 ] Each XOR 412a - 412e performs a logical exclusive 
OR operation on the two inputs . The corresponding first six 
bits output ( shown as Tmp_results [ 5 : 0 ] ) from the corre 
sponding XOR 412a - 412e are provided to corresponding 

AND 414a - 414e . The corresponding seventh bit output 
( shown as Tmp_result [ 6 ] ) from the corresponding XOR 
412a - 412e are provided to corresponding one's count 416a 
416e . 
[ 0064 ] Each AND 414a - 414e performs a logical AND 
operation on the corresponding six bit input ( Tmp_results 
[ 5 : 0 ] ) and the six bit filter output from OR 410. The 
corresponding results ( shown as Tmp_results2 [ 5 : 0 ] ) from 
corresponding AND 414a - 414e are provided to correspond 
ing one's count 416a - 416e . 
[ 0065 ] Each one's count 416a - 416e performs operations 
to count the number of ones bits between the results ( Tmp_ 
results2 [ 5 : 0 ] ) from corresponding AND 414a - 414b and the 
seventh bit output ( Tmp_result [ 6 ] ) from corresponding 
XOR 412a - 412e . The output of one's count 416a is shown 
as Result1 [ 5 : 0 ] ; the output of one's count 416b is shown as 
Result2 [ 5 : 0 ] ; the output of one's count 416c is shown as 
Result3 [ 5 : 0 ] ; the output of one's count 416d is shown as 
Result4 [ 5 : 0 ] ; and the output of one's count 416e is shown as 
Result5 [ 5 : 0 ] . 
[ 0066 ] Architecture 400C in FIG . 4C includes XOR 420 , 
one's count 422 , adder 424 , MUX 426 and adder 428. In 
general , the MUX 426 selects between using the outputs 
from filters 2x1 to 7x1 in FIG . 4B or a fully connected layer . 
[ 0067 ] XOR 420 has two 25 bit inputs , weights [ 24 : 0 ] and data [ 24 : 0 ) . Weights [ 24 : 0 ] are the remaining weight bits in 
the weight register that are not used in FIG . 4B , and 
data [ 24 : 0 ] are obtained from the input register that also 
provided the data input bits used in FIG . 4B . XOR 420 
performs a logical exclusive OR operation on the inputs and 
outputs a 25 bit result ( shown as Tmp_result [ 24 : 0 ] ) . The 
output from XOR 420 is provided to one's count 422 , where 
a total number of ones bits are counted . The output from 
one's count 422 is a six bit output ( shown as Result6 [ 5 : 0 ] ) 
that is provided to adder 424 . 
[ 0068 ] Adder 424 adds the result ( Result6 [ 5 : 0 ] ) from 
one's count 422 with the output ( Result1 [ 5 : 0 ] ) from one's 
count 416a in FIG . 4B . This addition calculates the total 
result of a fully connected layer because Result1 [ 5 : 0 ] is 
obtained from data input [ 31:25 ] and Result6 [ 5 : 0 ] is obtained 
from data input [ 24 : 0 ] , thus using all bits from the 32 bit 
input register . 
[ 0069 ] The output from adder 424 is shown as Result 
full [ 5 : 0 ] and is provided as input to MUX 426. The com 
bined results from one's count 416a - 416e in FIG . 4B are 
provided as a 32 bit input into MUX 426 in FIG . 4C . MUX 
426 also includes a one bit control line , whose input is the 
X output line from filer size decoder 402 in FIG . 4A . MUX 
426 selects between using the results from a fully connected 
layer or the results from a filter between 2x1 to 7x1 . 
[ 0070 ] The output from MUX 426 is provided to adder 
428. Adder 428 adds the result from MUX 426 with the 
current destination register value ( shown as destination 
register [ 31 : 0 ] ) . The output from adder 428 is then written to 
the destination register . Therefore , in a non - fully connected 
layer , the outputs of each separate one's count 416a - 416d in 
FIG . 4B are stored in the corresponding sub - locations of the 
destination register , without having to make multiple calls or 
writes to the destination register . 
[ 0071 ] The components shown in FIGS . 4A - 4C may 
include or be made up of one or more logical gates . 
[ 0072 ] The operation of one or more embodiments will 
now be described with respect to FIGS . 5A , 5B and 6 , and 
for convenience will be described with respect the 

a 

1 



US 2022/0414420 A1 Dec. 29 , 2022 
7 

a 

embodiments of FIGS . 1-4 described above . In at least one 
of various embodiments , processes 500 and 600 described in 
conjunction with FIGS . 5A - 5B and 6 , respectively , may be 
implemented by or executed on one or more computing 
devices , such as computing device 108 in FIG . 1 . 
[ 0073 ] FIGS . 5A and 5B show a logical flow diagram of 
a process 500 for performing a new processor instruction to 
do binary multiply - accumulate operations in accordance 
with embodiments described herein . Process 500 begins , 
after a start block , at block 502 , where a destination - register 
location is received . The destination - register location iden 
tifies a memory location of a destination register . In various 
embodiments , the destination register stores 32 bits in 
memory . The destination register is logically separated into 
a plurality of destination sub - locations . In at least one 
embodiment , the destination register is separated into at 
least five sub - locations . These destination register sub - loca 
tions are utilized as accumulators . 
[ 0074 ] Process 500 proceeds to block 504 , where a source 
register location is received . The source - register location 
identifies the memory location of a source register that 
includes a plurality of input bits . In at least one embodiment , 
the source register stores 32 bits in memory . In some 
embodiments , the source register is loaded with input data 
received from another process or sensor . For example , the 
input data may be a portion of an image that is being 
analyzed using a DNN . 
[ 0075 ] Process 500 continues at block 506 , where a 
weight - register location is received . The weight - register 
location identifies the memory location of a weight register 
that includes a plurality of weight bits . In at least one 
embodiment , the weight register stores 32 bits in memory . In 
some embodiments , the weight register is loaded with 
weights for processing the input data . In at least one embodi 
ment , the weights may be selected for employment during 
convolution of a DNN . 
[ 0076 ] Process 500 proceeds next to block 508 , where a 
filter input value is received . In various embodiments , the 
filter input value identifies the type or size of filters to be 
employed during convolution of the DNN . 
[ 0077 ] Process 500 continues next at block 510 , where a 
sub - set of the weight bits in the weight register are copied . 
In some embodiments , the size of the copied sub - set is equal 
to the filter input value . In other embodiments , the size of the 
copied sub - set is equal to the maximum number of weight 
bits when then filter input value is zero , such as in during 
processing of a fully connected convolution layer . In at least 
one embodiment , the sub - set of weight bits is selected from 
the highest ordered bits in the weight bits . 
[ 0078 ] Process 500 proceeds to decision block 512 , where 
a determination is made whether the number of copies of the 
sub - set of weight bits equals a select plurality of number of 
times . In at least one embodiment , the selected plurality of 
number of times is five . Although embodiments described 
herein discuss copying the sub - set of weight bits five times , 
other numbers of times may also be used . The number of 
copies may be selected based on the number of bits in the 
source register , the filter input value , or other factors . If the 
number of copies of the sub - set of weight bits equals the 
selected plurality of number of times , then process 500 flows 
to block 514 in FIG . 5B ; otherwise , process 500 loops to 
block 510 in FIG . 5A to make another copy of the sub - set of 
weight bits . 

[ 0079 ] At block 514 in FIG . 5B , a copy of the sub - set of 
weight bits is selected . 
[ 0080 ] Process 500 proceeds to block 516 , where a des 
tination sub - location of the plurality of destination sub 
locations is selected . This selected destination sub - location 
corresponds to the selected copy of the sub - set of weight 
bits . For example , a first destination sub - location may be 
selected for a first copy . 
[ 0081 ] Process 500 continues at block 518 , where a cor 
responding sub - set of the plurality of input bits is selected 
for the selected copy of the sub - set of weight bits . For 
example , a first sub - set of input bits may be selected for a 
first copy of the sub - set of weight bits . In various embodi 
ments , the number of bits in the sub - set of input bits is equal 
to the number of bits in the copy of the sub - set of weight 
bits . 
[ 0082 ] Process 500 proceeds next to block 520 , where an 
XOR ( exclusive “ OR ” ) operation is performed on each 
corresponding bit in the selected copy of sub - set of weight 
bits with each corresponding bit in the selected sub - set of 
input bits . For example , if the selected sub - set of input bits 
includes three bits : a31 , a30 , and a29 , and if the selected 
sub - set of weight bits includes three bits : w31 , w30 , and 
w29 , then the following corresponding bit XOR operations 
are performed : a31 XOR w31 , a30 XOR w30 , and a29 XOR 
w29 . 
[ 0083 ] Process 500 continues next at block 522 , where the 
output of each XOR operation in block 520 is aggregated 
with each other and with a current value stored in the 
selected destination sub - location . For example , if the output 
of a31 XOR w31 is 1 , the output of a30 XOR w30 is 0 , and 
the output of a29 XOR w29 is 1 , then the aggregated XOR 
output value is 2. If the currently stored value in the selected 
destination sub - location is 3 , then the total aggregated value 
is 5 . 
[ 0084 ] Process 500 proceeds to block 523 , where the total 
aggregated value is stored in the destination registration at 
the selected destination sub - location . In this way , the pre 
viously stored value in the selected destination sub - location 
is written over with the new total aggregated value . 
[ 0085 ] Process 500 continues at decision block 524 , where 
a determination is made whether to select another copy of 
the sub - set of weight bits . In various embodiments , the 
determination to select another copy of the sub - set of weight 
bits will continue until all copies have been selected . If 
another copy of the sub - set of weight bits is to be selected , 
process 500 flows to block 526 ; otherwise , process 500 
terminates or otherwise returns to a calling process to 
perform other actions . 
[ 0086 ] At block 526 , a next copy of the sub - set of weight 
bits is selected . In various embodiments , block 526 may 
include embodiments of block 514 , but to select another , 
non - processed copy of subset of weight bits . 
[ 0087 ] Process 500 proceeds next to block 528 , where a 
destination sub - location that corresponds to the selected next 
copy of sub - set of weight bits is selected . For example , a 
second destination sub - location may be selected for a second 
copy . In various embodiments , block 528 may include 
embodiments of block 516 . 
[ 0088 ] Process 500 continues next to block 530 , where a 
next corresponding sub - set of the plurality of input bits is 
selected for the selected next copy of sub - set of weight bits . 
The selected next sub - set of input bits are selected by 
shifting the sub - set one bit , such as one bit to the right , from 



US 2022/0414420 A1 Dec. 29 , 2022 
8 

a 

a 

a 

the previously selected sub - set of input bits . For example , if 
the input bits include a31 , a30 , a29 , a28 , a27 , ... , a0 , and 
the previously selected sub - set of input bits includes a31 , 
a30 , and a29 , then the next selected sub - set of input bits 
includes a30 , a29 , and a28 . 
[ 0089 ] After block 530 , process 500 loops to block 520 
where an XOR operation is performed on each correspond 
ing bit in the selected next copy of the sub - set of weight bits 
with each corresponding bit in the selected next sub - set of 
input bits . 
[ 0090 ] Although process 500 is described as looping 
through the copies of the sub - set of weight bits , embodi 
ments are not so limited . In various embodiments , separate 
copies of the sub - set of weight bits are utilized in parallel . 
Thus , the performance of blocks , 514 , 516 , 518 , 520 , 522 , 
and 523 for a first copy of the sub - set of weight bits , a first 
sub - set of input bits , and a first destination sub - location may 
be in parallel to the performance of blocks , 514 , 516 , 518 , 
520 , 522 , and 523 for a second copy of the sub - set of weight 
bits , a second sub - set of input bits , and a second destination 
sub - location . In this way , multiple sub - set of input values are 
processed in parallel . In at least one embodiment , these 
parallel operations are being performed for five sub - sets of 
input values using five copies of the sub - set of weight bits , 
along with five corresponding destination sub - locations . 
[ 0091 ] FIG . 6 shows a logical flow diagram of an alter 
native process 600 for performing the new processor instruc 
tion to do binary multiply - accumulate operations in accor 
dance with embodiments described herein . 
[ 0092 ] Process 600 begins , after a start block , at block 
602 , where a destination - register location is received . In 
various embodiments , block 602 may perform embodiments 
similar to block 502 in FIG . 5A . 
[ 0093 ] Process 600 proceeds to block 604 , where a source 
register location is received . In various embodiments , block 
604 may perform embodiments similar to block 504 in FIG . 
5A . 
[ 0094 ] Process 600 proceeds to block 606 , where a 
weight - register location is received . In various embodi 
ments , block 606 may perform embodiments similar to 
block 506 in FIG . 5A . 
[ 0095 ] Process 600 proceeds to block 608 , where a filter 
index value is received . In various embodiments , block 608 
may perform embodiments similar to block 508 in FIG . 5A . 
[ 0096 ] Process 600 continues next at block 610 , where a 
sub - set of the weight bits in the weight register is selected . 
In some embodiments , the size of the sub - set is equal to the 
filter input value . In other embodiments , the size of the 
sub - set is equal to the maximum number of weight bits when 
then filter input value is zero , such as in during processing 
of a fully connected convolution layer . In at least one 
embodiment , the sub - set of weight bits is selected from the 
highest ordered bits in the weight bits . 
[ 0097 ] Process 600 proceeds to block 612 , where a des 
tination sub - location of the plurality of destination sub 
locations is selected . This selected destination sub - location 
corresponds to the selected sub - set of weight bits . For 
example , a first destination sub - location may be selected for 
a first selected sub - set of weight bits . 
[ 0098 ] Process 600 continues at block 614 , where a cor 
responding sub - set of the plurality of input bits is selected 
for the selected sub - set of weight bits . In various embodi 
ments , the number of bits in the sub - set of input bits is equal 
to the number of bits in the selected sub - set of weight bits . 

[ 0099 ] Process 600 proceeds next to block 616 , where an 
XOR ( exclusive " OR " ) operation is performed on each 
corresponding bit in the selected of sub - set of weight bits 
with each corresponding bit in the selected sub - set of input 
bits . In various embodiments , block 616 may perform 
embodiments similar to block 520 in FIG . 5B . 
[ 0100 ] Process 600 continues next at block 618 , where the 
output of each XOR operation in block 616 is aggregated 
with each other and with a current value stored in the 
selected destination sub - location . In various embodiments , 
block 618 may perform embodiments similar to block 522 in 
FIG . 5B . 
[ 0101 ] Process 600 proceeds to block 619 , where the total 
aggregated value is stored in the destination registration at 
the selected destination sub - location . In various embodi 
ments , block 619 may perform embodiments similar to 
block 523 in FIG . 5B . 
[ 0102 ] Process 600 continues at decision block 620 , where 
a determination is made whether to select another sub - set of 
input bits . In various embodiments , the determination to 
select another sub - set of input bits is performed until a select 
number of sub - sets have been selected . If another sub - set of 
input bits is to be selected , process 600 flows to block 622 ; 
otherwise , process 600 terminates or otherwise returns to a 
calling process to perform other actions . 
[ 0103 ] At block 622 , a next destination sub - location is 
selected . For example , a second destination sub - location 
may be selected for a second sub - set of input bits . In various 
embodiments , block 622 may include embodiments of block 
612 . 
[ 0104 ] Process 600 continues next to block 624 , where a 
next corresponding sub - set of the plurality of input bits is 
selected . The selected next sub - set of input bits are selected 
by shifting the sub - set one bit , such as one bit to the right , 
from the previously selected sub - set of input bits . In various 
embodiments , block 624 may include embodiments of block 
530 in FIG . 5B . 
[ 0105 ] After block 624 , process 600 loops to block 616 
where an XOR operation is performed on each correspond 
ing bit in the selected sub - set of weight bits with each 
corresponding bit in the selected next sub - set of input bits . 
[ 0106 ] Although process 600 is described as looping 
through separate sub - sets of input bits , embodiments are not 
so limited . In various embodiments , separate sub - sets of 
input bits are processed in parallel . Thus , the performance of 
blocks , 612 , 614 , 616 , 618 , and 619 for a first sub - set of 
input bits , a first destination sub - location , and the selected 
sub - set of weight bits may be in parallel to the performance 
of blocks , 612 , 614 , 616 , 618 , and 619 for a second sub - set 
of input bits , a second destination sub - location , and the 
selected sub - set of weight bits . In this way , multiple sub - set 
of input values are processed in parallel . In at least one 
embodiment , these parallel operations are being performed 
for five sub - sets of input values , while reusing the sub - set of 
weight bits , along with five corresponding destination sub 
locations . 
[ 0107 ] In the foregoing description , certain specific details 
are set forth to provide a thorough understanding of various 
disclosed embodiments . However , one skilled in the relevant 
art will recognize that embodiments may be practiced with 
out one or more of these specific details , or with other 
methods , components , materials , etc. In other instances , 
well - known structures associated with electronic and com 
puting systems including client and server computing sys 



US 2022/0414420 A1 Dec. 29 , 2022 
9 

tems , as well as networks have not been shown or described 
in detail to avoid unnecessarily obscuring descriptions of the 
embodiments . 
[ 0108 ] Unless the context requires otherwise , throughout 
the specification and claims which follow , the word “ com 
prise ” and variations thereof , such as , “ comprises ” and 
" comprising , ” are to be construed in an open , inclusive 
sense , e.g. , " including , but not limited to . ” 
[ 0109 ] The headings and Abstract of the Disclosure pro 
vided herein are for convenience only and do not limit or 
interpret the scope or meaning of the embodiments . 
[ 0110 ] The various embodiments described above can be 
combined to provide further embodiments . Aspects of the 
embodiments can be modified , if necessary to employ con 
cepts of the various patents , application and publications to 
provide yet further embodiments . 
[ 0111 ] These and other changes can be made to the 
embodiments in light of the above - detailed description . In 
general , in the following claims , the terms used should not 
be construed to limit the claims to the specific embodiments 
disclosed in the specification and the claims , but should be 
construed to include all possible embodiments along with 
the full scope of equivalents to which such claims are 
entitled . Accordingly , the claims are not limited by the 
disclosure . 

1. A method , comprising : 
receiving a destination - register location configured to 

store accumulation results , wherein the destination 
register location includes a plurality of destination 
sub - locations ; 

receiving a source - register location configured to store a 
plurality of input bits ; 

receiving a weight - register location configured to store a 
plurality of weight bits , wherein a weight length of the 
plurality of weight bits is equal to an input length of the 
plurality of input bits ; 

copying , using the weight - register location , a sub - set of 
the plurality of weight bits a select plurality of number 
of times , wherein a size of the sub - set of weights is 
based on a filter index value ; and 

for each copy of the sub - set of weights : 
selecting , using the source - register location , a sub - set 

of the plurality of input bits based on the size of the 
sub - set of weights , wherein the sub - set of input bits 
is shifted one bit from a previous sub - set of the 
plurality of input bits ; 

performing an XOR operation on each corresponding 
bit in the copy of the sub - set of weights with each 
corresponding bit in the selected sub - set of input 
bits ; and 

aggregating , in a corresponding destination sub - loca 
tion of the plurality of destination sub - locations , an 
output of each XOR operation with each other and 
with a current value of the corresponding destination 
sub - location . 

2. The method of claim 1 , further comprising : 
receiving the filter index value between 2 and 7 . 
3. The method of claim 1 , further comprising : 
receiving the filter index value of zero to indicate a fully 

connected layer . 
4. The method of claim 1 , wherein copying the sub - set of 

the plurality of weight bits the select plurality of number of 
times comprises : 

copying the sub - set of the plurality of weight bits five 
times . 

5. The method of claim 1 , further comprising : 
for each copy of the sub - set of weights : 

performing a one's count operation on an output from 
the XOR operations on each corresponding bit in the 
copy of the sub - set of weights with each correspond 
ing bit in the selected sub - set of input bits . 

6. The method of claim 1 , further comprising : 
performing an XOR operation on each corresponding 

remaining bit in the plurality of weights with each 
corresponding remaining bit in the input bits ; 

performing a one's count operation on an output from the 
XOR operation on each corresponding remaining bit in 
the plurality of weights with each corresponding 
remaining bit in the input bits ; and 

adding the output of the one's count operation with 
another output from another one's count operation 
performed on an output from the XOR operation of 
each corresponding bit in a first copy of the sub - set of 
weights with each corresponding bit in the a first 
selected sub - set of input bits . 

7. The method of claim 6 , further comprising : 
for each copy of the sub - set of weights : 

performing a one's count operation on an output from 
the XOR operations on each corresponding bit in the 
copy of the sub - set of weights with each correspond 
ing bit in the selected sub - set of input bits ; 

generating a filtered output by concatenating outputs from 
the one's count operations for each copy of the sub - set 
of weights ; 

performing an XOR operation on each corresponding 
remaining bit in the plurality of weights with each 
corresponding remaining bit in the input bits ; 

performing a one's count operation on an output from the 
XOR operation on each corresponding remaining bit in 
the plurality of weights with each corresponding 
remaining bit in the input bits ; 

generating a fully connected output by adding the output 
of the one's count operation with another output from 
another one's count operation performed on an output 
from the XOR operation of each corresponding bit in a 
first copy of the sub - set of weights with each corre 
sponding bit in the a first selected sub - set of input bits ; 

selecting a final result between the filtered output and the 
fully connected output based on the filter index value ; 
and 

combining the final result with a current value stored at 
the destination - register location . 

8. A system , comprising : 
a memory that stores : 

a destination register configured to store accumulation 
results , wherein the destination - register includes a 
plurality of sub - destinations ; 

a source register configured to store a plurality of input 
bits ; 

a weight register configured to store a plurality of 
weight bits , wherein a weight length of the plurality 
of weight bits is equal to an input length of the 
plurality of input bits ; 

a 

a 

a 

a 



US 2022/0414420 A1 Dec. 29 , 2022 
10 

a 

a 

a 

a microprocessor coupled to the memory , wherein the 
microprocessor , in operation : 
copies a sub - set of the plurality of weight bits in the 

weight register a select plurality of number of times , 
wherein a size of the sub - set of weights is based on 
a filter index value ; and 

for each copy of the sub - set of weights : 
selects a sub - set of the plurality of input bits from the 

source register based on the size of the sub - set of 
weights , wherein the sub - set of input bits is shifted 
one bit from a previous sub - set of the plurality of 
input bits ; 

performs an XOR operation on each corresponding 
bit in the copy of the sub - set of weights with each 
corresponding bit in the selected sub - set of input 
bits ; and 

aggregates , in a corresponding sub - destination of the 
plurality of sub - destinations in the destination 
register , an output of each XOR operation with 
each other and with a current value of the corre 
sponding sub - destination . 

9. The system of claim 8 , wherein the microprocessor , in 
further operation : 

receives the filter index value between 2 and 7 . 
10. The system of claim 8 , wherein the microprocessor , in 

further operation : 
receives the filter index value of zero to indicate a fully 

connected layer . 
11. The system of claim 8 , wherein the microprocessor , in 

further operation : 
copies the sub - set of the plurality of weight bits five times . 
12. The system of claim 8 , wherein the microprocessor , in 

further operation : 
for each copy of the sub - set of weights : 

performs a one's count operation on an output from the 
XOR operations on each corresponding bit in the 
copy of the sub - set of weights with each correspond 
ing bit in the selected sub - set of input bits . 

13. The system of claim 8 , wherein the microprocessor , in 
further operation : 

performs an XOR operation on each corresponding 
remaining bit in the plurality of weights with each 
corresponding remaining bit in the input bits ; 

performs a one's count operation on an output from the 
XOR operation on each corresponding remaining bit in 
the plurality of weights with each corresponding 
remaining bit in the input bits ; and 

adds the output of the one's count operation with another 
output from another one's count operation performed 
on an output from the XOR operation of each corre 
sponding bit in a first copy of the sub - set of weights 
with each corresponding bit in the a first selected 
sub - set of input bits . 

14. The system of claim 13 , wherein the microprocessor , 
in further operation : 

for each copy of the sub - set of weights : 
performs a one's count operation on an output from the 
XOR operations on each corresponding bit in the 
copy of the sub - set of weights with each correspond 
ing bit in the selected sub - set of input bits ; 

generates a filtered output by concatenating outputs from 
the one's count operations for each copy of the sub - set 
of weights ; 

performs an XOR operation on each corresponding 
remaining bit in the plurality of weights with each 
corresponding remaining bit in the input bits ; 

performs a one's count operation on an output from the 
XOR operation on each corresponding remaining bit in 
the plurality of weights with each corresponding 
remaining bit in the input bits ; 

generates a fully connected output by adding the output of 
the one's count operation with another output from 
another one's count operation performed on an output 
from the XOR operation of each corresponding bit in a 
first copy of the sub - set of weights with each corre 
sponding bit in the a first selected sub - set of input bits ; 

selects a final result between the filtered output and the 
fully connected output based on the filter index value ; 
and 

combines the final result with a current value stored at the 
destination register . 

15. A non - transitory computer - readable medium having 
contents that configure a microcontroller to perform a 
method , the method comprising : 

receiving a destination - register location configured to 
store accumulation results , wherein the destination 
register location includes a plurality of destination 
sub - locations ; 

receiving a source - register location configured to store a 
plurality of input bits ; 

receiving a weight - register location configured to store a 
plurality of weight bits , wherein a weight length of the 
plurality of weight bits is equal to an input length of the 
plurality of input bits ; 

copying , using the weight - register location , a sub - set of 
the plurality of weight bits a select plurality of number 
of times , wherein a size of the sub - set of weights is 
based on a filter index value ; and 

for each copy of the sub - set of weights : 
selecting , using the source - register location , a sub - set 

of the plurality of input bits based on the size of the 
sub - set of weights , wherein the sub - set of input bits 
is shifted one bit from a previous sub - set of the 
plurality of input bits ; 

performing an XOR operation on each corresponding 
bit in the copy of the sub - set of weights with each 
corresponding bit in the selected sub - set of input 
bits ; and 

aggregating , in a corresponding destination sub - loca 
tion of the plurality of destination sub - locations , an 
output of each XOR operation with each other and 
with a current value of the corresponding destination 
sub - location . 

16. The non - transitory computer - readable medium of 
claim 15 , wherein receiving the filter index value comprises : 

receiving the filter index value between 2 and 7 . 
17. The non - transitory computer - readable medium of 

claim 15 , wherein receiving a filter index value comprises : 
receiving the filter index value of zero to indicate a fully 

connected layer . 
18. The non - transitory computer - readable medium of 

claim 15 , wherein copying the sub - set of the plurality of 
weight bits the select plurality of number of times com 
prises : 

copying the sub - set of the plurality of weight bits five 
times . 

a 

a 

a 



US 2022/0414420 A1 Dec. 29 , 2022 
11 

19. The non - transitory computer - readable medium of 
claim 15 , further comprising : 

for each copy of the sub - set of weights : 
performing a one's count operation on an output from 

the XOR operations on each corresponding bit in the 
copy of the sub - set of weights with each correspond 
ing bit in the selected sub - set of input bits . 

20. The non - transitory computer - readable medium of 
claim 15 , further comprising : 

performing an XOR operation on each corresponding 
remaining bit in the plurality of weights with each 
corresponding remaining bit in the input bits ; 

performing a one's count operation on an output from the 
XOR operation on each corresponding remaining bit in 
the plurality of weights with each corresponding 
remaining bit in the input bits ; and 

adding the output of the one's count operation with 
another output from another one's count operation 
performed on an output from the XOR operation of 
each corresponding bit in a first copy of the sub - set of 
weights with each corresponding bit in the a first 
selected sub - set of input bits . 


