US 20190340019A1

a2y Patent Application Publication o) Pub. No.: US 2019/0340019 A1

a9y United States

Brewer

(54) THREAD COMMENCEMENT AND
COMPLETION USING WORK DESCRIPTOR
PACKETS IN A SYSTEM HAVING A
SELF-SCHEDULING PROCESSOR AND A
HYBRID THREADING FABRIC

43) Pub. Date: Nov. 7, 2019
(52) U.S. CL
CPC ... GOGF 9/4881 (2013.01); GOGF 9/3836

(2013.01); GOGF 9/30192 (2013.01); GO6F
17/142 (2013.01); GOGF 9/3806 (2013.01):
GOGF 9/542 (2013.01); GO6F 2209/5011
(2013.01); GOGF 9/30098 (2013.01)

(71) Applicant: Micron Technology, Inc., Boise, ID
(US) 57 ABSTRACT
Representative apparatus, method, and system embodiments
(72) Inventor: Tony M. Brewer, Plano, TX (US) are disclosed for a self-scheduling processor which also
provides additional functionality. Representative embodi-
(21) Appl. No.: 16/399,642 ments include a self-scheduling processor, comprising: a
) processor core adapted to execute a received instruction; and
(22) Filed: Apr. 30, 2019 a core control circuit adapted to automatically schedule an
instruction for execution by the processor core in response
Related U.S. Application Data to a received work descriptor data packet. In another
(60) Provisional application No. 62/667,691, filed on May embodiment, the core control circuit is also adapted to
72018 schedule a fiber create instruction for execution by the
’ ’ processor core, to reserve a predetermined amount of
Publication Classification memory space in a thread control memory to store return
arguments, and to generate one or more work descriptor data
(51) Int. CL packets to another processor or hybrid threading fabric
GO6F 9/48 (2006.01) circuit for execution of a corresponding plurality of execu-
GO6F 9/38 (2006.01) tion threads. Event processing, data path management, sys-
GO6F 9/30 (2006.01) tem calls, memory requests, and other new instructions are
GO6F 9/54 (2006.01) also disclosed.
f300
e |
t i
'
HF 105 | CORE CONTROL DATA PATH L35 ;
! CIRCUIT CONTROL !
DISPATCH K CIRCULTRY ;
! i
QUEUE | CONTROL LOGIC 7 %
! AND THREAD 130 !
: SELECTION b9 La ~| PROCESSOR ;
! CIRCUITRY CORE(S) !
' |
l | Y |
1
L ! i
: NETWORK CORE_CONTROL |
FIRST | INTERFACE | -335 MEMORY |
INTERCONNECTION | CIRCUITRY R0
NETWORK | |
T ; I THREAD (CONTROL) ;
! ~ MEMORY '
150 b - - i
t
| %)
i
E NETWORK RESPONSE !
| MEMORY |
i ;
I i
i 1
i i
] 1

US 2019/0340019 A1

Nov. 7,2019 Sheet 1 of 14

Patent Application Publication

Y007 ‘007 \
002 002 002
./ ./ ./ el e AHOW3W
1INJHII LINJHII 1INJHII
(41H) (41H) (41H) Mw
JTHavA ... JIHavA JTHAvA
INIQV3IHHL INIQV3HHL INIQV3IHHL H37104LNOJ
(IHEAH (THEAH (IHEAH 01" AHOWIW
JHOMLIN NOILIINNOJHLINI 1SHIA
@ @ 0G7 J
(d[H) N0
H0SS3I06d S0T-"| HILVESIa
INIQV3IHHL —] (4IH)] 40S53004d [_] (S)FIVIHIINI
AIHEAH JOV44IINT 1SOH 1SOH T NOILVIINNWWOI
oom\ GI7 J]9 J 0ET J
T "9I4

US 2019/0340019 A1

Nov. 7,2019 Sheet 2 of 14

Patent Application Publication

B00F 00~
LTNJHIY L LINJHI) HITI04INO)
AIH AlH AHON
002 @ o0z @ 0z
(S)30¥443INT
YHOMLIN NOTLOINNODYILNI LSHI4 = T IVELN

3030 HILYdSIA

di k= o/ _ I

JOVIHAINT

o0e 1S0H
i/

¢ ‘9Id

US 2019/0340019 A1

Nov. 7,2019 Sheet 3 of 14

Patent Application Publication

r

LN
2000001~ 2000008~
LINOKT) LINOKTD
Ay 414
002 @ 002 @
JHOALN JHOALN
VKN VAN
NOTLIMNOEINT <= olLvarhwboy 1 " oLlvinwoy [S| NOLLIANOGEINT
J J
@E 7 m 08} 3 - @
dIN ke=>{ dTH IH (= di
we/ e o/ e
€ "9I4

A

Patent Application Publication Nov. 7,2019 Sheet 4 of 14 US 2019/0340019 A1

FIG. 4
[210 f210 /-210
HTF HTF HTF
RECONFIGURABLE RECONFIGURABLE RECONFIGURABLE
COMPUTING COMPUTING COMPUTING
CIRCUIT CIRCUIT CIRCUIT
("TILE") ("TILE") ("TILE")
SECOND INTERCONNECTION NETWORK \

ZOSJ \ 280

US 2019/0340019 A1

Nov. 7,2019 Sheet 5 of 14

Patent Application Publication

AHOWW
3SNOJS3H HHOMLIN

mmm\

057
)

JHOMLIN
NOILIINNOJHLINI
1SHI

303n0
HILVdSIC

GOT J 3IH

AHOK3H ~\gie
(T04LNOJ) QVaHHL
0z’ AHLTNOHT)
AHOW3W GEE-"| JVaHaINT
T04INOS 3407 Worrgt
I\
300 | . ALINOHT)
H0SST0Hd ™ oec—| NOTLOITS
OV3HL ONY
coe Y, 91907 T0HINO)
AHLINOHT)
T0HINOY LINHI)
cee— HLVd VIV T0HINO) 3407
dlH oe”
o0e
§ ‘914

i/

Patent Application Publication Nov. 7,2019 Sheet 6 of 14 US 2019/0340019 A1

FIG. 6

4/r320

THREAD (CONTROL) MEMORY

THREAD ID POOL REGISTER(S)

|32

THREAD STATE (TABLE) REGISTER(S)

34

PROGRAM COUNT REGISTERS(S)

326

GENERAL PURPOSE REGISTER(S)

328

PENDING FIBER RETURN COUNT REGISTER(S)

332

RETURN ARGUMENT BUFFERS
(REGISTER(S)) (HEAD RAB)

334

THREAD RETURN REGISTER(S)

|_~336

CUSTOM ATOMIC TRANSACTION
IDENTIFIER(S) REGISTER(S)

338

EVENT RECEIVED MASK REGISTER(S)

342

EVENT STATE REGISTER(S)

344

DATA CACHE

346

Patent Application Publication Nov. 7,2019 Sheet 7 of 14 US 2019/0340019 A1

FIG. 7

NETWORK RESPONSE MEMORY

MEMORY REQUEST/COMMAND REGISTER(S) |~ 348

THREAD ID AND TRANSACTION ID REGISTER(S) b~ 3%

REQUEST CACHE LINE INDEX REGISTER(S) |}~ 394

REGISTER BYTES L~ 356

GENERAL PURPOSE REGISTER INDEX _~358
AND TYPE REGISTER(S)

Patent Application Publication Nov. 7,2019 Sheet 8 of 14 US 2019/0340019 A1

FIG. 8 "
| i 35 |

| | EXECUTION d |

% nil =
. i /3 |
L 37 | FIRST PRIORITY E
o . INSTRUCTION | || !
30 " | | secono ppzoprry I | N .

o | Kl E

o i \ i Y

L 5 360 ; EXECUTION

| | e ﬁ -------] ; PIPELINE

L THREAD e PROCESSOR

; SELﬁﬁ)T(mN ; i CORE 305
i s || |

i THREAD i ‘) ______ | i

¥ SELECTION . ‘ (ORE K— . NETWORK !

[A ool CONTROL = COMHAND a0
| |[4057| cIRouTTRY : ; MEWORY | QUEUE .

| I w— . q i

i e T 390 |

X ﬂ CONTROL | ! ” |
e s | :

| | 331 !

! Q 375 380 7
- PACKET PACKET ¥l
o= MR s oEcoDER ENCODER f=—=>1 OUTPUT |=i=>

| CIRCUTT CIRCUTT QUEES |

| NETWORK INTERFACE CIRCUITRY |

Patent Application Publication Nov. 7,2019 Sheet 9 of 14 US 2019/0340019 A1

(START: RECEIVE A WORK DESCRIPTOR PACKET)/400 FIG. 9A
Y
DECODE WORK DESCRIPTOR PACKET |~ 402
Y

POPULATE THE THREAD MEMORY WITH INFORMATION 404
RECEIVED IN THE WORK DESCRIPTOR PACKET

atr 2
NO
THREAD IDENTIFIER AVAILABLE?
/
RS 8 { M
ASSIEN THREAD INDENTIFIER WAIT UNTIL THREAD
‘ TOENTIFIER 1S AVATLABLE
ASSIGN INITIAL VALID STATE (AND PRIORITY) 412 5
= C
PROVIDE THREAD IDENTIFIER TO THE EXECUTION QUEVE |44

!

SELECT THREAD IDENTIFIER FROM THE EXECUTION 416
QUEUE (AT A PREDETERMINED FREQUENCY)

|

USING THREAD IDENTIFIER, ACCESS THREAD 418
MEMORY AND OBTAIN PROGRAM COUNT

!

SELECT INSTRUCTION CORRESPONDING T0 THE PROGRAM COUNT | 420
FROM THE INSTRUCTION CACHE AND PROVIDE INSTRUCTION
T0 THE EXECUTION PIPELINE TO EXECUTE THE INSTRUCTION

'

YES
THREAD EXECUTION COMPLETE? = ‘
422

NO RETURN THREAD IDENTIFIER TO THE THREAD ID | -424
POOL REGISTERS FOR REUSE BY ANOTHER THREAD

(®) !
THREAD MEMORY REGISTERS ASSOCIATED WITH | -426
THAT THREAD ID MAY BE CLEARED (OPTIONALLY)

®

Patent Application Publication = Nov. 7,2019 Sheet 10 of 14 US 2019/0340019 A1

FIG. 9B

®
@ND THREAD CONTROL)}~ *3*
1
YES
THREAD STATE REMAIN VALID?
lNo 428

SUSPEND CONTINUED THREAD EXECUTION |~ *+30

—l

THREAD STATUS CHANGE TO VALID?
NO 432

YES

US 2019/0340019 A1

Nov. 7,2019 Sheet 11 of 14

Patent Application Publication

507"

omm;/

INITdId [FHIVI
NOILNJ3X [HLSNI

ovm\\

Weo o
w7
” / 1
\ TEE
|0 \
= INNOJ dIXS 91907
A ALTHOTHd A0 ~0HINO
I
10373 | 3o S m QTVA QV3HHL
ALTHOTHd i
HE
d) 7 (VRHON) ALTHOTHd
e AHONH 09¢ —
A OV3HHL o
™ QI QV3tHL
309n0 —
e/ S 1 ALTHOIHd AN
mmm\ 1SHIA
0T QV3HL
ALTHOTH QY3UHL
QIVA QV3EHL
ot "9I4

Patent Application Publication

Nov. 7,2019 Sheet 12 of 14 US 2019/0340019 A1

[DATA PACKET |

[DATA PACKET
[DATA PACKET

[DATA PACKET

162,
162,

162,

Ve 162N+1

FIG. 11
™ 4
158,

I:ROUTING (ADDRESS) PACKET

/.1582

I:HOUTING (ADDRESS) PACKET:I

Patent Application Publication Nov. 7,2019 Sheet 13 of 14 US 2019/0340019 A1

FIG. 12
MENORY LOAD L= ADJUSTED
NETWORK INTERFACE
REQUEST | = REQUEST
PACKET CIRCULTRY PACKET
!
LOAD
368~ REQUEST 395
ACCESS SIZE -
g S g7
WIERY THRESHOLD LOGIC CIRCUIT
\
362 |

>HIGH || <LOW [<MAX
THRESH| | THRESH| SIZE

e P 482
— AVERAGED
UTILIZATION

RESPONSE
- PACKET

US 2019/0340019 A1

Nov. 7,2019 Sheet 14 of 14

Patent Application Publication

YoV 1A D
...................................... —LI0W 1295 000 Ny~ 73y | W
! Lt (044 WVHS 0414 WS |03 TIA | 0414 Wvha
B —w] e
m%& .IL“(N@ T 300 dIH ol " eé\ oﬁ
TS @%I_ m K C ISH
g 300N | Q04N 150 | AHONMW 79 O | 0414 HH rem—
S T 10V [NeNLT] ovaeel 0 WS |
29 -4 m 89y 7 INAINT WAISIS JIH
[0 oz | < - m
T 300 d@ WS, b e e/ 1 I NGnL30 T1235KS O3 m:
IN) 110360 51 S - o |
A T S | ©TOSAS _ AMOHH === e L3t iricy
WA | m 02g—| OV3HHL | TIVOSKS .
o | s e
| |IND LTG0 | 06" 09-1 I W o LBE qIWA
A e — N0 A — Y34
BSH | ALTHOTH MD1 m,u_%z.
....... S 1 arma | 300 | oy — AN
13] NOTLNOIT [HISNT | | ovauHL (V3LHL AN
(({ M y
o o 0 SE LS ot (1 el]
ccp —JALTHOTHA TVHEON ‘
(T OVatHL 1l
ALTHOTH 0V3EHL _
QTTVA V3L oy
(T V3L }
0 3409 dIK
ET "9Id

US 2019/0340019 Al

THREAD COMMENCEMENT AND
COMPLETION USING WORK DESCRIPTOR
PACKETS IN A SYSTEM HAVING A
SELF-SCHEDULING PROCESSOR AND A
HYBRID THREADING FABRIC

CROSS-REFERENCE TO A RELATED
APPLICATION

[0001] This application is a nonprovisional of and claims
the benefit of and priority to U.S. Provisional Patent Appli-
cation No. 62/667,691, filed May 7, 2018, inventor Tony M.
Brewer, titled “Thread Commencement and Completion
Using Word [sic-Work] Descriptor Packets in a System
Having a Self-Scheduling Processor and a Hybrid Threading
Fabric”, which is commonly assigned herewith, and all of
which is hereby incorporated herein by reference in its
entirety with the same full force and effect as if set forth in
its entirety herein (hereinafter referred to as the “related
application™).

FIELD OF THE INVENTION

[0002] The present invention, in general, relates to con-
figurable computing circuitry, and more particularly, relates
to a heterogeneous computing system which includes a
self-scheduling processor, configurable computing circuitry
with an embedded interconnection network, dynamic recon-
figuration, and dynamic control over energy or power con-
sumption.

BACKGROUND OF THE INVENTION

[0003] Many existing computing systems have reached
significant limits for computation processing capabilities,
both in terms of speed of computation, energy (or power)
consumption, and associated heat dissipation. For example,
existing computing solutions have become increasingly
inadequate as the need for advanced computing technologies
grows, such as to accommodate artificial intelligence and
other significant computing applications.

[0004] Accordingly, there is an ongoing need for a com-
puting architecture capable of providing high performance
using sparse data sets, involving limited or no data reuse,
which typically cause poor cache hit rates. Such a computing
architecture should be tolerant of latency to memory and
allow high sustained executed instructions per clock.
[0005] There is also an ongoing need for a computing
architecture capable of providing high performance and
energy efficient solutions for compute-intensive kernels,
such as for computation of Fast Fourier Transforms (FFTs)
and finite impulse response (FIR) filters used in sensing,
communication, and analytic applications, such as synthetic
aperture radar, 5G base stations, and graph analytic appli-
cations such as graph clustering using spectral techniques,
machine learning, 5G networking algorithms, and large
stencil codes, for example and without limitation.

[0006] There is also an ongoing need for a processor
architecture capable of significant parallel processing and
further interacting with and controlling a configurable com-
puting architecture for performance of any of these various
applications.

SUMMARY OF THE INVENTION

[0007] As discussed in greater detail below, the represen-
tative apparatus, system and method provide for a comput-

Nov. 7,2019

ing architecture capable of providing high performance and
energy efficient solutions for compute-intensive kernels,
such as for computation of Fast Fourier Transforms (FFTs)
and finite impulse response (FIR) filters used in sensing,
communication, and analytic applications, such as synthetic
aperture radar, 5G base stations, and graph analytic appli-
cations such as graph clustering using spectral techniques,
machine learning, 5G networking algorithms, and large
stencil codes, for example and without limitation.

[0008] As mentioned above, sparse data sets typically
cause poor cache hit rates. The representative apparatus,
system and method provide for a computing architecture
capable of allowing some threads to be waiting for response
from memory while other threads are continuing to execute
instructions. This style of compute is tolerant of latency to
memory and allows high sustained executed instructions per
clock.

[0009] Also as discussed in greater detail below, the
representative apparatus, system and method provide for a
processor architecture capable of self-scheduling, significant
parallel processing and further interacting with and control-
ling a configurable computing architecture for performance
of any of these various applications.

[0010] A self-scheduling processor is disclosed. In a rep-
resentative embodiment, the processor comprises: a proces-
sor core adapted to execute a received instruction; and a core
control circuit coupled to the processor core, the core control
circuit adapted to automatically schedule an instruction for
execution by the processor core in response to a received
work descriptor data packet. In another representative
embodiment, the processor comprises: a processor core
adapted to execute a received instruction; and a core control
circuit coupled to the processor core, the core control circuit
adapted to automatically schedule an instruction for execu-
tion by the processor core in response to a received event
data packet.

[0011] A multi-threaded, self-scheduling processor is also
disclosed which can create threads on local or remote
compute elements. In a representative embodiment, the
processor comprises: a processor core adapted to execute a
fiber create instruction; and a core control circuit coupled to
the processor core, the core control circuit adapted to
automatically schedule the fiber create instruction for execu-
tion by the processor core and generate one or more work
descriptor data packets to another processor or hybrid
threading fabric circuit for execution of a corresponding
plurality of execution threads. In another representative
embodiment, the processor comprises: a processor core
adapted to execute a fiber create instruction; and a core
control circuit coupled to the processor core, the core control
circuit adapted to schedule the fiber create instruction for
execution by the processor core, to reserve a predetermined
amount of memory space in a thread control memory to store
return arguments, and to generate one or more work descrip-
tor data packets to another processor or hybrid threading
fabric circuit for execution of a corresponding plurality of
execution threads.

[0012] In another representative embodiment, a processor
comprises: a core control circuit comprising: an intercon-
nection network interface; a thread control memory coupled
to the interconnection network interface; an execution queue
coupled to the thread control memory; a control logic and
thread selection circuit coupled to the execution queue, to
the thread control memory; and an instruction cache coupled

US 2019/0340019 Al

to the control logic and thread selection circuit; and further,
a processor core is coupled to the instruction cache of the
core control circuit.

[0013] In another representative embodiment, a processor
comprises: a core control circuit comprising: an intercon-
nection network interface; a thread control memory coupled
to the interconnection network interface; a network response
memory; an execution queue coupled to the thread control
memory; a control logic and thread selection circuit coupled
to the execution queue, to the thread control memory; an
instruction cache coupled to the control logic and thread
selection circuit; and a command queue; and further, a
processor core is coupled to the instruction cache and to the
command queue of the core control circuit.

[0014] In another representative embodiment, a processor
comprises: a processor core and a core control circuit
coupled to the processor core, with the core control circuit
comprising: an interconnection network interface couple-
able to an interconnection network to receive a work
descriptor data packet, to decode the received work descrip-
tor data packet into an execution thread having an initial
program count and any received argument; an execution
queue coupled to the thread control memory; and a control
logic and thread selection circuit coupled to the execution
queue, the control logic and thread selection circuit adapted
to assign an available thread identifier to the execution
thread, to automatically place the thread identifier in the
execution queue, and to periodically select the thread iden-
tifier for execution of the execution thread.

[0015] In another representative embodiment, a processor
comprises: a processor core and a core control circuit
coupled to the processor core, with the core control circuit
comprising: an interconnection network interface couple-
able to an interconnection network to receive a work
descriptor data packet, to decode the received work descrip-
tor data packet into an execution thread having an initial
program count and any received argument; an execution
queue coupled to the thread control memory; and a control
logic and thread selection circuit coupled to the execution
queue, the control logic and thread selection circuit adapted
to assign an available thread identifier to the execution
thread, to automatically place the thread identifier in the
execution queue, and to periodically select the thread iden-
tifier for execution of an instruction of an execution thread
by a processor core.

[0016] In another representative embodiment, a processor
comprises: a processor core and a core control circuit
coupled to the processor core, with the core control circuit
comprising: an execution queue coupled to the thread con-
trol memory; and a control logic and thread selection circuit
coupled to the execution queue, the control logic and thread
selection circuit adapted to assign an available thread iden-
tifier to the execution thread, to automatically place the
thread identifier in the execution queue, and to periodically
select the thread identifier for execution of an instruction of
an execution thread by the processor core.

[0017] In another representative embodiment, a processor
comprises: a processor core and a core control circuit
coupled to the processor core, with the core control circuit
comprising: a thread control memory comprising a plurality
of registers, the plurality of registers comprising a thread
identifier pool register storing a plurality of thread identifi-
ers, a program count register storing a received program
count, a data cache, and a general purpose register storing a

Nov. 7,2019

received argument; an execution queue coupled to the thread
control memory; and a control logic and thread selection
circuit coupled to the execution queue, the control logic and
thread selection circuit adapted to assign an available thread
identifier to the execution thread, to automatically place the
thread identifier in the execution queue, and to periodically
select the thread identifier for execution of an instruction of
the execution thread by the processor core, the processor
core using data stored in the data cache or general purpose
register.

[0018] In another representative embodiment, a processor
comprises: a processor core and a core control circuit
coupled to the processor core, with the core control circuit
comprising: a thread control memory comprising a plurality
of registers, the plurality of registers comprising a thread
identifier pool register storing a plurality of thread identifi-
ers, a program count register storing a received program
count, and thread state registers storing a valid state or a
paused state for each thread identifier of the plurality of
thread identifiers; an execution queue coupled to the thread
control memory; and a control logic and thread selection
circuit coupled to the execution queue, the control logic and
thread selection circuit adapted to assign an available thread
identifier to the execution thread, to automatically place the
thread identifier in the execution queue when it has a valid
state, and for as long as the valid state remains, to periodi-
cally select the thread identifier for execution of an instruc-
tion of the execution thread by the processor core until
completion of the execution thread.

[0019] In another representative embodiment, a processor
comprises: a processor core and a core control circuit
coupled to the processor core, with the core control circuit
comprising: a thread control memory comprising a plurality
of registers, the plurality of registers comprising a thread
identifier pool register storing a plurality of thread identifi-
ers, a program count register storing a received program
count, and thread state registers storing a valid state or a
paused state for each thread identifier of the plurality of
thread identifiers; an execution queue coupled to the thread
control memory; and a control logic and thread selection
circuit coupled to the execution queue, the control logic and
thread selection circuit adapted to assign an available thread
identifier to the execution thread, to automatically place the
thread identifier in the execution queue when it has a valid
state, and for as long as the valid state remains, to periodi-
cally select the thread identifier for execution of an instruc-
tion of the execution thread by the processor core, and to
pause thread execution by not returning the thread identifier
to the execution queue when it has a pause state.

[0020] In another representative embodiment, a processor
comprises: a processor core and a core control circuit
coupled to the processor core, with the core control circuit
comprising: a thread control memory comprising a plurality
of registers, the plurality of registers comprising a thread
identifier pool register storing a plurality of thread identifi-
ers, a thread state register, a program count register storing
a received program count, a data cache, and a general
purpose register storing a received argument; an execution
queue coupled to the thread control memory; and a control
logic and thread selection circuit coupled to the execution
queue, the control logic and thread selection circuit adapted
to assign an available thread identifier to the execution
thread, to automatically place the thread identifier in the

US 2019/0340019 Al

execution queue, and to periodically select the thread iden-
tifier for execution of an instruction of an execution thread
by the processor core.

[0021] In another representative embodiment, a processor
comprises: a processor core adapted to execute a plurality of
instructions; and a core control circuit coupled to the pro-
cessor core, with the core control circuit comprising: an
interconnection network interface coupleable to an intercon-
nection network to receive a work descriptor data packet, to
decode the received work descriptor data packet into an
execution thread having an initial program count and any
received argument; a thread control memory coupled to the
interconnection network interface and comprising a plurality
of registers, the plurality of registers comprising a thread
identifier pool register storing a plurality of thread identifi-
ers, a thread state register, a program count register storing
the received program count, a data cache, and a general
purpose register storing the received argument; an execution
queue coupled to the thread control memory; a control logic
and thread selection circuit coupled to the execution queue
and to the thread control memory, the control logic and
thread selection circuit adapted to assign an available thread
identifier to the execution thread, to place the thread iden-
tifier in the execution queue, to select the thread identifier for
execution, to access the thread control memory using the
thread identifier as an index to select the initial program
count for the execution thread; and an instruction cache
coupled to the processor core and to the control logic and
thread selection circuit to receive the initial program count
and provide to the processor core a corresponding instruc-
tion for execution, of the plurality of instructions.

[0022] In another representative embodiment, a processor
comprises: a core control circuit comprising: an intercon-
nection network interface coupleable to an interconnection
network to receive a work descriptor data packet, to decode
the received work descriptor data packet into an execution
thread having an initial program count and any received
argument; a thread control memory coupled to the intercon-
nection network interface and comprising a plurality of
registers, the plurality of registers comprising a thread
identifier pool register storing a plurality of thread identifi-
ers, a thread state register, a program count register storing
the received program count, a data cache, and a general
purpose register storing the received argument; an execution
queue coupled to the thread control memory; a control logic
and thread selection circuit coupled to the execution queue
and to the thread control memory, the control logic and
thread selection circuit adapted to assign an available thread
identifier to the execution thread, to automatically place the
thread identifier in the execution queue, to periodically
select the thread identifier for execution, to access the thread
control memory using the thread identifier as an index to
select the initial program count for the execution thread; and
an instruction cache coupled to the control logic and thread
selection circuit to receive the initial program count and
provide a corresponding instruction for execution; and fur-
ther, a processor core is coupled to the instruction cache of
the core control circuit, the processor core adapted to
execute the corresponding instruction.

[0023] In another representative embodiment, a processor
comprises: a core control circuit comprising: an intercon-
nection network interface coupleable to an interconnection
network to receive a work descriptor data packet, to decode
the received work descriptor data packet into an execution

Nov. 7,2019

thread having an initial program count and any received
argument; a thread control memory coupled to the intercon-
nection network interface and comprising a plurality of
registers, the plurality of registers comprising a thread
identifier pool register storing a plurality of thread identifi-
ers, a thread state register, a program count register storing
the received program count, and a general purpose register
storing the received argument; an execution queue coupled
to the thread control memory; a control logic and thread
selection circuit coupled to the execution queue and to the
thread control memory, the control logic and thread selection
circuit adapted to assign an available thread identifier to the
execution thread, to place the thread identifier in the execu-
tion queue, to select the thread identifier for execution, to
access the thread control memory using the thread identifier
as an index to select the initial program count for the
execution thread; an instruction cache coupled to the control
logic and thread selection circuit to receive the initial
program count and provide a corresponding instruction for
execution; and a command queue; and further, a processor
core is coupled to the instruction cache and the command
queue of the core control circuit, the processor core adapted
to execute the corresponding instruction.

[0024] In another representative embodiment, a processor
comprises: a core control circuit coupled to the intercon-
nection network interface and comprising: an interconnec-
tion network interface coupleable to an interconnection
network to receive a work descriptor data packet, to decode
the received work descriptor data packet into an execution
thread having an initial program count and any received
argument; a thread control memory coupled to the intercon-
nection network interface and comprising a plurality of
registers, the plurality of registers comprising a thread
identifier pool register storing a plurality of thread identifi-
ers, a thread state register, a program count register storing
the received program count, and a general purpose register
storing the received argument; an execution queue coupled
to the thread control memory; a control logic and thread
selection circuit coupled to the execution queue and to the
thread control memory, the control logic and thread selection
circuit adapted to assign an available thread identifier to the
execution thread, to place the thread identifier in the execu-
tion queue, to select the thread identifier for execution, to
access the thread control memory using the thread identifier
as an index to select the initial program count for the
execution thread, and an instruction cache coupled to the
control logic and thread selection circuit to receive the initial
program count and provide a corresponding instruction for
execution; and further, a processor core is coupled to the
instruction cache of the core control circuit, the processor
core adapted to execute the corresponding instruction.

[0025] In another representative embodiment, a processor
comprises: a core control circuit comprising: an intercon-
nection network interface coupleable to an interconnection
network to receive a call work descriptor data packet, to
decode the received work descriptor data packet into an
execution thread having an initial program count and any
received argument, and to encode a work descriptor packet
for transmission to other processing elements; a thread
control memory coupled to the interconnection network
interface and comprising a plurality of registers, the plurality
of registers comprising a thread identifier pool register
storing a plurality of thread identifiers, a thread state register,
a program count register storing the received program count,

US 2019/0340019 Al

and a general purpose register storing the received argu-
ment; an execution queue coupled to the thread control
memory; a network response memory coupled to the inter-
connection network interface; a control logic and thread
selection circuit coupled to the execution queue, to the
thread control memory, and to the instruction cache, the
control logic and thread selection circuit adapted to assign
an available thread identifier to the execution thread, to place
the thread identifier in the execution queue, to select the
thread identifier for execution, to access the thread control
memory using the thread identifier as an index to select the
initial program count for the execution thread; an instruction
cache coupled to the control logic and thread selection
circuit to receive the initial program count and provide a
corresponding instruction for execution; and a command
queue storing one or more commands for generation of one
or more work descriptor packets; and further, a processor
core is coupled to the instruction cache and the command
queue of the core control circuit, the processor core adapted
to execute the corresponding instruction.

[0026] For any of the various representative embodiments,
the core control circuit may further comprise: an intercon-
nection network interface coupleable to an interconnection
network, the interconnection network interface adapted to
receive a work descriptor data packet, to decode the received
work descriptor data packet into an execution thread having
an initial program count and any received argument. For any
of the various representative embodiments, the interconnec-
tion network interface may be further adapted to receive an
event data packet, to decode the received event data packet
into an event identifier and any received argument.

[0027] For any of the various representative embodiments,
the core control circuit may further comprise: a control logic
and thread selection circuit coupled to the interconnection
network interface, the control logic and thread selection
circuit adapted to assign an available thread identifier to the
execution thread.

[0028] For any of the various representative embodiments,
the core control circuit may further comprise: a thread
control memory having a plurality of registers, with the
plurality of registers comprising one or more of the follow-
ing, in any selected combination: a thread identifier pool
register storing a plurality of thread identifiers; a thread state
register; a program count register storing a received initial
program count; a general purpose register storing the
received argument; a pending fiber return count register; a
return argument buffer or register; a return argument link list
register; a custom atomic transaction identifier register; an
event state register; an event mask register; and a data cache.

[0029] For any of the various representative embodiments,
the interconnection network interface may be further
adapted to store the execution thread having the initial
program count and any received argument in the thread
control memory using a thread identifier as an index to the
thread control memory.

[0030] For any of the various representative embodiments,
the core control circuit may further comprise: a control logic
and thread selection circuit coupled to the thread control
memory and to the interconnection network interface, the
control logic and thread selection circuit adapted to assign
an available thread identifier to the execution thread.

[0031] For any of the various representative embodiments,
the core control circuit may further comprise: an execution

Nov. 7,2019

queue coupled to the thread control memory, the execution
queue storing one or more thread identifiers.

[0032] For any of the various representative embodiments,
the core control circuit may further comprise: a control logic
and thread selection circuit coupled to the execution queue,
to the interconnection network interface, and to the thread
control memory, the control logic and thread selection
circuit adapted to assign an available thread identifier to the
execution thread, to place the thread identifier in the execu-
tion queue, to select the thread identifier for execution, and
to access the thread control memory using the thread iden-
tifier as an index to select the initial program count for the
execution thread.

[0033] For any of the various representative embodiments,
the core control circuit may further comprise: an instruction
cache coupled to the control logic and thread selection
circuit to receive the initial program count and provide a
corresponding instruction for execution.

[0034] In another representative embodiment, the proces-
sor further may further comprise: a processor core coupled
to the instruction cache of the core control circuit, the
processor core adapted to execute the corresponding instruc-
tion.

[0035] For any of the various representative embodiments,
the core control circuit may be further adapted to assign an
initial valid state to the execution thread. For any of the
various representative embodiments, the core control circuit
may be further adapted to assign a pause state to the
execution thread in response to the processor core executing
a memory load instruction. For any of the various represen-
tative embodiments, the core control circuit may be further
adapted to assign a pause state to the execution thread in
response to the processor core executing a memory store
instruction.

[0036] For any of the various representative embodiments,
the core control circuit may be further adapted to end
execution of a selected thread in response to the execution
of a return instruction by the processor core. For any of the
various representative embodiments, the core control circuit
may be further adapted to return a corresponding thread
identifier of the selected thread to the thread identifier pool
register in response to the execution of a return instruction
by the processor core. For any of the various representative
embodiments, the core control circuit may be further
adapted to clear the registers of the thread control memory
indexed by the corresponding thread identifier of the
selected thread in response to the execution of a return
instruction by the processor core.

[0037] For any of the various representative embodiments,
the interconnection network interface may be further
adapted to generate a return work descriptor packet in
response to the execution of a return instruction by the
processor core.

[0038] For any of the various representative embodiments,
the core control circuit may further comprise: a network
response memory. For any of the various representative
embodiments, the network response memory may comprise
one or more of the following, in any selected combination:
a memory request register; a thread identifier and transaction
identifier register; a request cache line index register; a bytes
register; and a general purpose register index and type
register.

[0039] For any of the various representative embodiments,
the interconnection network interface may be adapted to

US 2019/0340019 Al

generate a point-to-point event data message. For any of the
various representative embodiments, the interconnection
network interface may be adapted to generate a broadcast
event data message.

[0040] For any of the various representative embodiments,
the core control circuit may be further adapted to use an
event mask stored in the event mask register to respond to
a received event data packet. For any of the various repre-
sentative embodiments, the core control circuit may be
further adapted to determine an event number corresponding
to a received event data packet. For any of the various
representative embodiments, the core control circuit may be
further adapted to change the status of a thread identifier
from pause to valid in response to a received event data
packet to resume execution of a corresponding execution
thread. For any of the various representative embodiments,
the core control circuit may be further adapted to change the
status of a thread identifier from pause to valid in response
to an event number of a received event data packet to resume
execution of a corresponding execution thread.

[0041] For any of the various representative embodiments,
the control logic and thread selection circuit may be further
adapted to successively select a next thread identifier from
the execution queue for execution of a single instruction of
a corresponding execution thread. For any of the various
representative embodiments, the control logic and thread
selection circuit may be further adapted to perform a round-
robin selection of a next thread identifier from the execution
queue, of the plurality of thread identifiers, each for execu-
tion of a single instruction of a corresponding execution
thread. For any of the various representative embodiments,
the control logic and thread selection circuit may be further
adapted to perform a round-robin selection of a next thread
identifier from the execution queue, of the plurality of thread
identifiers, each for execution of a single instruction of a
corresponding execution thread until completion of the
execution thread. For any of the various representative
embodiments, the control logic and thread selection circuit
may be further adapted to perform a barrel selection of a
next thread identifier from the execution queue, of the
plurality of thread identifiers, each for execution of a single
instruction of a corresponding execution thread.

[0042] For any of the various representative embodiments,
the control logic and thread selection circuit may be further
adapted to assign a valid status or a pause status to a thread
identifier. For any of the various representative embodi-
ments, the control logic and thread selection circuit may be
further adapted to assign a priority status to a thread iden-
tifier. For any of the various representative embodiments, the
control logic and thread selection circuit may be further
adapted to, following execution of a corresponding instruc-
tion, to return the corresponding thread identifier to the
execution queue with an assigned valid status and an
assigned priority.

[0043] For any of the various representative embodiments,
the core control circuit may further comprise: a network
command queue coupled to the processor core.

[0044] For any of the various representative embodiments,
the interconnection network interface may comprise: an
input queue; a packet decoder circuit coupled to the input
queue, to the control logic and thread selection circuit, and
to the thread control memory; an output queue; and a packet
encoder circuit coupled to the output queue, to the network
response memory, and to the network command queue.

Nov. 7,2019

[0045] For any of the various representative embodiments,
the execution queue may further comprise: a first priority
queue; and a second priority queue. For any of the various
representative embodiments, the control logic and thread
selection circuit may further comprise: thread selection
control circuitry coupled to the execution queue, the thread
selection control circuitry adapted to select a thread identi-
fier from the first priority queue at a first frequency and to
select a thread identifier from the second priority queue at a
second frequency, the second frequency lower than the first
frequency. For any of the various representative embodi-
ments, the thread selection control circuitry may be adapted
to determine the second frequency as a skip count from
selection of a thread identifier from the first priority queue.
[0046] For any of the various representative embodiments,
the core control circuit may further comprise: data path
control circuitry adapted to control access size over the first
interconnection network. For any of the various representa-
tive embodiments, the core control circuit may further
comprise: data path control circuitry adapted to increase or
decrease memory load access size in response to time
averaged usage levels. For any of the various representative
embodiments, the core control circuit may further comprise:
data path control circuitry adapted to increase or decrease
memory store access size in response to time averaged usage
levels. For any of the various representative embodiments,
the control logic and thread selection circuit may be further
adapted to increase a size of a memory load access request
to correspond to a cache line boundary of the data cache.
[0047] For any of the various representative embodiments,
the core control circuit may further comprise: system call
circuitry adapted to generate one or more system calls to a
host processor. For any of the various representative
embodiments, the system call circuitry may further com-
prise: a plurality of system call credit registers storing a
predetermined credit count to modulate a number of system
calls in any predetermined period of time.

[0048] For any of the various representative embodiments,
the core control circuit may be further adapted, in response
to a request from a host processor, to generate a command
to the command queue for the interconnection network
interface to copy and transmit all data from the thread
control memory corresponding to a selected thread identifier
for monitoring thread state.

[0049] For any of the various representative embodiments,
the processor core may be adapted to execute a fiber create
instruction to generate one or more commands to the com-
mand queue for the interconnection network interface to
generate one or more call work descriptor packets to another
processor core or to a hybrid threading fabric circuit. For any
of the various representative embodiments, the core control
circuit may be further adapted, in response to execution of
a fiber create instruction by the processor core, to reserve a
predetermined amount of memory space in the general
purpose registers or return argument registers.

[0050] For any of the various representative embodiments,
in response to the generation of one or more call work
descriptor packets to another processor core or to a hybrid
threading fabric, the core control circuit may be adapted to
store a thread return count in the thread return register. For
any of the various representative embodiments, in response
to receipt of a return data packet, the core control circuit may
be adapted to decrement the thread return count stored in the
thread return register. For any of the various representative

US 2019/0340019 Al

embodiments, in response to the thread return count in the
thread return register being decremented to zero, the core
control circuit may be adapted to change a paused status to
a valid status for a corresponding thread identifier for
subsequent execution of a thread return instruction for
completion of the created fibers or threads.

[0051] For any of the various representative embodiments,
the processor core may be adapted to execute a waiting or
nonwaiting fiber join instruction. For any of the various
representative embodiments, the processor core may be
adapted to execute a fiber join all instruction.

[0052] For any of the various representative embodiments,
the processor core may be adapted to execute a non-cached
read or load instruction to designate a general purpose
register for storage of data received from a memory. For any
of the various representative embodiments, the processor
core may be adapted to execute a non-cached write or store
instruction to designate data in a general purpose register for
storage in a memory.

[0053] For any of the various representative embodiments,
the core control circuit may be adapted to assign a transac-
tion identifier to any load or store request to memory and to
correlate the transaction identifier with a thread identifier.
[0054] For any of the various representative embodiments,
the processor core may be adapted to execute a first thread
priority instruction to assign a first priority to an execution
thread having a corresponding thread identifier. For any of
the various representative embodiments, the processor core
may be adapted to execute a second thread priority instruc-
tion to assign a second priority to an execution thread having
a corresponding thread identifier.

[0055] For any of the various representative embodiments,
the processor core may be adapted to execute a custom
atomic return instruction to complete an executing thread of
a custom atomic operation. For any of the various represen-
tative embodiments, in conjunction with a memory control-
ler, the processor core may be adapted to execute a floating
point atomic memory operation. For any of the various
representative embodiments, in conjunction with a memory
controller, the processor core may be adapted to execute a
custom atomic memory operation.

[0056] A method of self-scheduling execution of an
instruction is also disclosed, with a representative method
embodiment comprising: receiving a work descriptor data
packet; and automatically scheduling the instruction for
execution in response to the received work descriptor data
packet.

[0057] Another method of self-scheduling execution of an
instruction is also disclosed, with a representative method
embodiment comprising: receiving an event data packet; and
automatically scheduling the instruction for execution in
response to the received event data packet.

[0058] A method of a first processing element to generate
a plurality of execution threads for performance by a second
processing element is also disclosed, with a representative
method embodiment comprising: executing a fiber create
instruction; and in response to the execution of the fiber
create instruction generating one or more work descriptor
data packets to the second processing element for execution
of the plurality of execution threads.

[0059] A method of a first processing element to generate
a plurality of execution threads for performance by a second
processing element is also disclosed, with a representative
method embodiment comprising: executing a fiber create

Nov. 7,2019

instruction; and in response to the execution of the fiber
create instruction reserving a predetermined amount of
memory space in a thread control memory to store return
arguments and generating one or more work descriptor data
packets to the second processing element for execution of
the plurality of execution threads.

[0060] A method of self-scheduling execution of an
instruction is also disclosed, with a representative method
embodiment comprising: receiving a work descriptor data
packet; decoding the received work descriptor data packet
into an execution thread having an initial program count and
any received argument; assigning an available thread iden-
tifier to the execution thread; automatically queuing the
thread identifier for execution of the execution thread; and
periodically selecting the thread identifier for execution of
the execution thread.

[0061] Another method of self-scheduling execution of an
instruction is also disclosed, with a representative method
embodiment comprising: receiving a work descriptor data
packet; decoding the received work descriptor data packet
into an execution thread having an initial program count and
any received argument; assigning an available thread iden-
tifier to the execution thread; automatically queuing the
thread identifier for execution of the execution thread when
it has a valid state; and for as long as the valid state remains,
periodically selecting the thread identifier for execution of
an instruction of the execution thread until completion of the
execution thread.

[0062] Another method of self-scheduling execution of an
instruction is also disclosed, with a representative method
embodiment comprising: receiving a work descriptor data
packet; decoding the received work descriptor data packet
into an execution thread having an initial program count and
any received argument; assigning an available thread iden-
tifier to the execution thread; automatically queuing the
thread identifier in an execution queue for execution of the
execution thread when it has a valid state; and for as long as
the valid state remains, periodically selecting the thread
identifier for execution of an instruction of the execution
thread; and pausing thread execution by not returning the
thread identifier to the execution queue when it has a pause
state.

[0063] Another method of self-scheduling execution of an
instruction is also disclosed, with a representative method
embodiment comprising: receiving a work descriptor data
packet; decoding the received work descriptor data packet
into an execution thread having an initial program count and
any received argument; storing the initial program count and
any received argument in a thread control memory; assign-
ing an available thread identifier to the execution thread;
automatically queuing the thread identifier for execution of
the execution thread when it has a valid state;

accessing the thread control memory using the thread iden-
tifier as an index to select the initial program count for the
execution thread; and for as long as the valid state remains,
periodically selecting the thread identifier for execution of
an instruction of the execution thread until completion of the
execution thread.

[0064] For any of the various representative embodiments,
the method may further comprise: receiving an event data
packet; and decoding the received event data packet into an
event identifier and any received argument.

US 2019/0340019 Al

[0065] For any of the various representative embodiments,
the method may further comprise: assigning an initial valid
state to the execution thread.

[0066] For any of the various representative embodiments,
the method may further comprise: assigning a pause state to
the execution thread in response to the execution of a
memory load instruction. For any of the various represen-
tative embodiments, the method may further comprise:
assigning a pause state to the execution thread in response to
the execution of a memory store instruction.

[0067] For any of the various representative embodiments,
the method may further comprise: terminating execution of
a selected thread in response to the execution of a return
instruction. For any of the various representative embodi-
ments, the method may further comprise: returning a cor-
responding thread identifier of the selected thread to the
thread identifier pool in response to the execution of a return
instruction. For any of the various representative embodi-
ments, the method may further comprise: clearing the reg-
isters of a thread control memory indexed by the corre-
sponding thread identifier of the selected thread in response
to the execution of a return instruction. For any of the
various representative embodiments, the method may fur-
ther comprise: generating a return work descriptor packet in
response to the execution of a return instruction.

[0068] For any of the various representative embodiments,
the method may further comprise: generating a point-to-
point event data message. For any of the various represen-
tative embodiments, the method may further comprise:
generating a broadcast event data message.

[0069] For any of the various representative embodiments,
the method may further comprise: using an event mask to
respond to a received event data packet. For any of the
various representative embodiments, the method may fur-
ther comprise: determining an event number corresponding
to a received event data packet. For any of the various
representative embodiments, the method may further com-
prise: changing the status of a thread identifier from pause to
valid in response to a received event data packet to resume
execution of a corresponding execution thread. For any of
the various representative embodiments, the method may
further comprise: changing the status of a thread identifier
from pause to valid in response to an event number of a
received event data packet to resume execution of a corre-
sponding execution thread.

[0070] For any of the various representative embodiments,
the method may further comprise: successively selecting a
next thread identifier from the execution queue for execution
of a single instruction of a corresponding execution thread.
For any of the various representative embodiments, the
method may further comprise: performing a round-robin
selection of a next thread identifier from the execution
queue, of the plurality of thread identifiers, each for execu-
tion of a single instruction of a corresponding execution
thread. For any of the various representative embodiments,
the method may further comprise: performing a round-robin
selection of a next thread identifier from the execution
queue, of the plurality of thread identifiers, each for execu-
tion of a single instruction of a corresponding execution
thread until completion of the execution thread. For any of
the various representative embodiments, the method may
further comprise: performing a barrel selection of a next
thread identifier from the execution queue, of the plurality of

Nov. 7,2019

thread identifiers, each for execution of a single instruction
of a corresponding execution thread.

[0071] For any of the various representative embodiments,
the method may further comprise: assigning a valid status or
a pause status to a thread identifier. For any of the various
representative embodiments, the method may further com-
prise: assigning a priority status to a thread identifier.
[0072] For any of the various representative embodiments,
the method may further comprise: following execution of a
corresponding instruction, returning the corresponding
thread identifier to the execution queue with an assigned
valid status and an assigned priority.

[0073] For any of the various representative embodiments,
the method may further comprise: selecting a thread iden-
tifier from a first priority queue at a first frequency and
selecting a thread identifier from a second priority queue at
a second frequency, the second frequency lower than the first
frequency. For any of the various representative embodi-
ments, the method may further comprise: determining the
second frequency as a skip count from selection of a thread
identifier from the first priority queue.

[0074] For any of the various representative embodiments,
the method may further comprise: controlling data path
access size. For any of the various representative embodi-
ments, the method may further comprise: increasing or
decreasing memory load access size in response to time
averaged usage levels. For any of the various representative
embodiments, the method may further comprise: increasing
or decreasing memory store access size in response to time
averaged usage levels. For any of the various representative
embodiments, the method may further comprise: increasing
a size of a memory load access request to correspond to a
cache line boundary of the data cache.

[0075] For any of the various representative embodiments,
the method may further comprise: generating one or more
system calls to a host processor. For any of the various
representative embodiments, the method may further com-
prise: using a predetermined credit count, modulating a
number of system calls in any predetermined period of time.
[0076] For any of the various representative embodiments,
the method may further comprise: in response to a request
from a host processor, copying and transmitting all data from
a thread control memory corresponding to a selected thread
identifier for monitoring thread state.

[0077] For any of the various representative embodiments,
the method may further comprise: executing a fiber create
instruction to generate one or more commands to generate
one or more call work descriptor packets to another proces-
sor core or to a hybrid threading fabric circuit. For any of the
various representative embodiments, the method may fur-
ther comprise: in response to execution of a fiber create
instruction, reserving a predetermined amount of memory
space for storing any return arguments. For any of the
various representative embodiments, the method may fur-
ther comprise: in response to the generation of one or more
call work descriptor packets, storing a thread return count in
the thread return register. For any of the various represen-
tative embodiments, the method may further comprise: in
response to receipt of a return data packet, decrementing the
thread return count stored in the thread return register. For
any of the various representative embodiments, the method
may further comprise: in response to the thread return count
in the thread return register being decremented to zero,
changing a paused status to a valid status for a corresponding

US 2019/0340019 Al

thread identifier for subsequent execution of a thread return
instruction for completion of the created fibers or threads.
[0078] For any of the various representative embodiments,
the method may further comprise: executing a waiting or
nonwaiting fiber join instruction. For any of the various
representative embodiments, the method may further com-
prise: executing a fiber join all instruction.

[0079] For any of the various representative embodiments,
the method may further comprise: executing a non-cached
read or load instruction to designate a general purpose
register for storage of data received from a memory.
[0080] For any of the various representative embodiments,
the method may further comprise: executing a non-cached
write or store instruction to designate data in a general
purpose register for storage in a memory.

[0081] For any of the various representative embodiments,
the method may further comprise: assigning a transaction
identifier to any load or store request to memory and to
correlate the transaction identifier with a thread identifier.

[0082] For any of the various representative embodiments,
the method may further comprise: executing a first thread
priority instruction to assign a first priority to an execution
thread having a corresponding thread identifier. For any of
the various representative embodiments, the method may
further comprise: executing a second thread priority instruc-
tion to assign a second priority to an execution thread having
a corresponding thread identifier.

[0083] For any of the various representative embodiments,
the method may further comprise: executing a custom
atomic return instruction to complete an executing thread of
a custom atomic operation.

[0084] For any of the various representative embodiments,
the method may further comprise: executing a floating point
atomic memory operation.

[0085] For any of the various representative embodiments,
the method may further comprise: executing a custom
atomic memory operation.

[0086] Numerous other advantages and features of the
present invention will become readily apparent from the
following detailed description of the invention and the
embodiments thereof, from the claims and from the accom-
panying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0087] The objects, features and advantages of the present
invention will be more readily appreciated upon reference to
the following disclosure when considered in conjunction
with the accompanying drawings, wherein like reference
numerals are used to identify identical components in the
various views, and wherein reference numerals with alpha-
betic characters are utilized to identify additional types,
instantiations or variations of a selected component embodi-
ment in the various views, in which:

[0088] Figure (or “FIG.”) 1 is a block diagram of a
representative first embodiment of a hybrid computing sys-
tem.

[0089] Figure (or “FIG.”) 2 is a block diagram of a
representative second embodiment of a hybrid computing
system.

[0090] Figure (or “FIG.”) 3 is a block diagram of a
representative third embodiment of a hybrid computing
system.

Nov. 7,2019

[0091] Figure (or “FIG.”) 4 is a high-level block diagram
of a portion of a representative embodiment of a hybrid
threading fabric circuit cluster.

[0092] Figure (or “FIG.”) 5 is a high-level block diagram
of a representative embodiment of a hybrid threading pro-
cessor 300.

[0093] Figure (or “FIG.”) 6 is a detailed block diagram of
a representative embodiment of a thread memory of the
hybrid threading processor.

[0094] Figure (or “FIG.”) 7 is a detailed block diagram of
a representative embodiment of a network response memory
of the hybrid threading processor.

[0095] Figure (or “FIG.”) 8 is a detailed block diagram of
a representative embodiment of a hybrid threading proces-
SOf.

[0096] Figures (or “FIGS.”) 9A and 9B (collectively FIG.
9) are a flow chart of a representative embodiment of a
method for self-scheduling and thread control for a hybrid
threading processor.

[0097] Figure (or “FIG.”) 10 is a detailed block diagram of
a representative embodiment of a thread selection control
circuitry of the control logic and thread selection circuitry of
the hybrid threading processor.

[0098] Figure (or “FIG.”) 11 is a block diagram of a
representative embodiment of a portion of the first intercon-
nection network and representative data packets.

[0099] Figure (or “FIG.”) 12 is a detailed block diagram of
a representative embodiment of data path control circuitry of
a hybrid threading processor.

[0100] Figure (or “FIG.”) 13 is a detailed block diagram of
a representative embodiment of system call circuitry of a
hybrid threading processor and host interface circuitry.

DETAILED DESCRIPTION OF
REPRESENTATIVE EMBODIMENTS

[0101] While the present invention is susceptible of
embodiment in many different forms, there are shown in the
drawings and will be described herein in detail specific
exemplary embodiments thereof, with the understanding
that the present disclosure is to be considered as an exem-
plification of the principles of the invention and is not
intended to limit the invention to the specific embodiments
illustrated. In this respect, before explaining at least one
embodiment consistent with the present invention in detail,
it is to be understood that the invention is not limited in its
application to the details of construction and to the arrange-
ments of components set forth above and below, illustrated
in the drawings, or as described in the examples. Methods
and apparatuses consistent with the present invention are
capable of other embodiments and of being practiced and
carried out in various ways. Also, it is to be understood that
the phraseology and terminology employed herein, as well
as the abstract included below, are for the purposes of
description and should not be regarded as limiting.

[0102] FIGS. 1, 2 and 3 are block diagrams of represen-
tative first, second, and third embodiments of a hybrid
computing system 100A, 100B, 100C (collectively referred
to as a system 100). FIG. 4 is a high-level block diagram of
a portion of a representative embodiment of a hybrid thread-
ing fabric circuit cluster 205 with a second interconnection
network 250. FIG. 5 is a high-level block diagram of a
representative embodiment of a hybrid threading processor
(“HTP”) 300. FIG. 6 is a detailed block diagram of a
representative embodiment of a thread memory 320 (also

US 2019/0340019 Al

referred to equivalently as a thread control memory 320 or
thread context memory 320) of the HTP 300. FIG. 7 is a
detailed block diagram of a representative embodiment of a
network response memory 325 of the HTP 300. FIG. 8 is a
detailed block diagram of a representative embodiment of an
HTP 300. FIG. 9 is a flow chart of a representative embodi-
ment of a method for self-scheduling and thread control for
an HTP 300.

[0103] Referring to FIGS. 1-9, a hybrid computing system
100 includes a hybrid threading processor (“HTP”) 300,
which is coupled through a first interconnection network 150
to one or more hybrid threading fabric (“HTF”) circuits 200.
It should be understood that term “fabric”, as used herein,
means and includes an array of computing circuits, which in
this case are reconfigurable computing circuits. FIGS. 1, 2,
and 3 show different system 100A, 100B, and 100C arrange-
ments which include additional components forming com-
paratively larger and smaller systems 100, any and all of
which are within the scope of the disclosure. As shown in
FIGS. 1 and 2, which may each be an arrangement suitable
for a system-on-a-chip (“SOC”), for example and without
limitation, a hybrid computing system 100A, 100B, in
various combinations as illustrated, may also include,
optionally, a memory controller 120 which may be coupled
to a memory 125 (which also may be a separate integrated
circuit), any of various communication interfaces 130 (such
as a PCle communication interface), one or more host
processor(s) 110, and a host interface (“HIF””) 115. As shown
in FIG. 3, which may each be an arrangement suitable for a
“chiplet” configuration on a common substrate 101, for
example and without limitation, a hybrid computing system
100C may also include, optionally, a communication inter-
face 130, with or without these other components. Any and
all of these arrangements are within the scope of the dis-
closure, and collectively are referred to herein as a system
100. Any of these hybrid computing systems 100 also may
be considered a “node”, operating under a single operating
system (“OS”), and may be coupled to other such local and
remote nodes as well.

[0104] Hybrid threading, as used herein, refers to the
capability to spawn multiple fibers and threads of compu-
tation across different, heterogeneous types of processing
circuits (hardware), such as across HTF circuits 200 (as a
reconfigurable computing fabric) and across a processor,
such as the HTP 300 or another type of RISC-V processor.
Hybrid threading also refers to a programming language/
style in which a thread of work transitions from one compute
element to the next to move the compute to where the data
is located, which is also implemented in representative
embodiments. A host processor 110 is typically a multi-core
processor, which may be embedded within the hybrid com-
puting system 100, or which may be an external host
processor coupled into the hybrid computing system 100 via
a communication interface 130, such as a PCle-based inter-
face. These processors, such as the HTP 300 and the one or
more host processor(s) 110, are described in greater detail
below.

[0105] The memory controller 120 may be implemented
as known or becomes known in the electronic arts. Alter-
natively, in a representative embodiment, the memory con-
troller 120 may be implemented as described in the related
applications. The first memory 125 also may be imple-
mented as known or becomes known in the electronic arts,
and as described in greater detail below.

Nov. 7,2019

[0106] Also in a representative embodiment, the HTP 300
is a RISC-V ISA based multi-threaded processor having one
or more processor cores 305 having an extended instruction
set, with one or more core control circuits 310 and one or
more second memories 315, referred to as a core control
memories 315, as discussed in greater detail below. Gener-
ally, the HTP 300 provides barrel-style, round-robin instan-
taneous thread switching to maintain a high instruction-per-
clock rate.

[0107] The HIF 115, for the purposes herein, provides for
a host processor 110 to send work to the HTP 300 and the
HTF circuits 200, and for the HTP 300 to send work to the
HTF circuits 200, both as “work descriptor packets” trans-
mitted over the first interconnection network 150. A unified
mechanism is provided to start and end work on an HTP 300
and an HTF circuit 200: call work descriptor packets are
utilized to start work on an HTP 300 and an HTF circuit 200,
and return work descriptor packets are utilized to end work
on an HTP 300 and an HTF circuit 200. The HIF 115
includes a dispatch circuit and queue (abbreviated “dispatch
queue” 105), which also provides management functionality
for monitoring the load provided to and resource availability
of'the HTF circuits 200 and/or HTP 300. When resources are
available on the HTF circuits 200 and/or HTP 300, the
dispatch queue 105 determines the HTF circuit 200 and/or
HTP 300 resource that is least loaded. In the case of multiple
HTF circuit clusters 205 with the same or similar work
loading, it chooses an HTF circuit cluster 205 that is
currently executing the same kernel if possible (to avoid
having to load or reload a kernel configuration). Similar
functionality of the HIF 115 may also be included in an HTP
300, for example, particularly for system 100 arrangements
which may not include a separate HIF 115. Other HIF 115
functions are described in greater detail below. An HIF 115
may be implemented as known or becomes known in the
electronic arts, e.g., as one or more state machines with
registers (forming FIFOs, queues, etc.).

[0108] The first interconnection network 150 is a packet-
based communication network providing data packet rout-
ing between and among the HTF circuits 200, the hybrid
threading processor 300, and the other optional components
such as the memory controller 120, a communication inter-
face 130, and a host processor 110. The first interconnection
network 150 is typically embodied as a plurality of crossbar
switches having a folded clos configuration, and typically a
mesh network for additional connections, depending upon
the system 100 embodiment. For purposes of the present
disclosure, the first interconnection network 150 forms part
of an asynchronous switching fabric (“AF”), meaning that a
data packet may be routed along any of various paths, such
that the arrival of any selected data packet at an addressed
destination may occur at any of a plurality of different times,
depending upon the routing. This is in contrast with the
synchronous mesh communication network 275 of the sec-
ond interconnection network 250 discussed in greater detail
below. Aspects of the first interconnection network 150 are
discussed in greater detail below with reference to FIGS. 10
and 11.

[0109] A HTF circuit 200, in turn, typically comprises a
plurality of HTF circuit clusters 205, with each HTF circuit
cluster 205 coupled to the first interconnection network 150
for data packet communication. Each HTF circuit cluster
205 may operate independently from each of the other HTF
circuit clusters 205. Each HTF circuit cluster 205, in turn,

US 2019/0340019 Al

comprises an array of a plurality of HTF reconfigurable
computing circuits 210, which are referred to equivalently
herein as “tiles” 210, and a second interconnection network
250. The tiles 210 are embedded in or otherwise coupled to
the second interconnection network 250, which comprises
two different types of networks, discussed in related appli-
cations. As an overview, the HTF circuit 200 is a course
grained reconfigurable compute fabric comprised of inter-
connected compute tiles 210, for execution of a plurality of
different compute operations.

[0110] The HTP 300 is a barrel style multi-threaded pro-
cessor that is designed to perform well on applications with
high degree of parallelism operating on sparse data sets (i.e.,
applications having minimal data reuse). The HTP 300 is
based on the open source RISC-V processor, and executes in
user mode. The HTP 300 includes more RISC-V user mode
instructions, plus a set of custom instructions to allow thread
management, sending and receiving events to/from other
HTPs 300, HTF circuits 200 and one or more host proces-
sors 110, and instructions for efficient access to memory 125.
[0111] A processor core 305 has an associated cache
memory, such as the data cache 346 illustrated as part of the
core control memory 315, or which may be arranged internal
to and/or contained within the processor core 305 (not
separately illustrated). Such a cache 346 is typically utilized
for storing data which will be reused, such that the data may
be fetched from the cache and a memory load operation to
the memory 125 is not required. Many applications, how-
ever, reuse very little data, and one or more memory load
operations to the memory 125 are typically required for the
application. As that data will not be reused, in representative
embodiments, the data held in such a cache 346 associated
with the processor core 305 will not be evicted or overwrit-
ten by the data fetched from the memory 125 during the
memory load operation, as discussed in greater detail below,
but will remain available in the cache for potential reuse.
[0112] As such, sparse data sets typically cause poor cache
hit rates. The HTP 300 with many threads per HTP processor
core 305 allows some threads to be waiting for response
from memory 125 while other threads are continuing to
execute instructions. This style of compute is tolerant of
latency to memory 125 and allows high sustained executed
instructions per clock. The event mechanism allows threads
from many HTP cores 305 to communicate in an efficient
manner. Threads pause executing an instruction while wait-
ing for memory 125 responses or event messages, allowing
other threads to use the instruction execution resources. The
HTP 300 is self-scheduling and event driven, allowing
threads to efficiently be created, destroyed and communicate
with other threads.

[0113] Work descriptor packets are utilized to commence
work on an HTP 300 and a HTF circuit 200. Receipt of a
work descriptor packet by an HTP 300 constitutes an
“event” which will trigger hardware-based self-scheduling
and subsequent execution of the associated functions or
work, referred to as threads of execution, in the HTP 300,
without the need for further access to main memory 125.
Once a thread is started it executes instructions until a thread
return instruction is executed. The thread return instruction
sends a return work descriptor packet to the original caller.
[0114] For purposes of the present disclosure, at a high or
general level, a work descriptor packet includes the infor-
mation needed to initialize a thread context for the HTP 300,
such as a program count (e.g., as a 64-bit address) for where

Nov. 7,2019

in the stored instructions (stored in instruction cache 340) to
commence thread execution, and any arguments or
addresses in first memory 125 to obtain arguments or other
information which will be used in the thread execution, and
a return address for transmission of computation results, for
example and without limitation. There can be many different
kinds of work descriptor packets, depending upon the opera-
tions or instructions to be performed, with many examples
illustrated and discussed below. The instruction cache 340
has been populated in advance of any execution, such as in
the initial system 100 configuration.

[0115] Accordingly, in many instances, the HTP 300
allows threads to be created and execution started without a
single access to main memory 125. This “light weight”
thread creation allows many threads to be created when an
application’s parallel region is entered with minimal delay
and very low latency, in sharp contrast with prior art
computing architectures, as thread creation is done by ini-
tializing a small (64B) work descriptor packet in hardware,
then sending that packet to the destination HTP 300 where
a thread is to be started. The receiving HTP 300 takes the
packet and initialize a thread’s hardware context from the
work descriptor packet. The thread is immediately started
executing instructions. As mentioned above, the work
descriptor packet contains only the instruction PC where
execution is to start and some number of call arguments
(e.g., up to four). The receiving HTP 300 initializes the
remainder of the thread context state autonomously in
preparation for starting the thread executing instructions.
[0116] An executing thread has memory stack space and
main memory 125 context space. The context space is only
used if the state of the thread needs to be written to memory
125 to be accessed by the host processor 110. Each HTP 300
is initialized with a core stack base address and a core
context base address, where the base addresses point a block
of stacks and a block of context spaces. The thread stack
base address is obtained by taking the core stack base
address and adding the thread ID multiplied by the thread
stack size. The thread context base address is obtained in a
similar fashion.

[0117] An HTP 300 typically comprises one or more
processor cores 305 which may be any type of processor
core, such as a RISC-V processor core, an ARM processor
core, etc., all for example and without limitation. A core
control circuit 310 and a core control memory 315 are
provided for each processor core 305, and are illustrated in
FIG. 5 for one processor core 305. For example, when a
plurality of processor cores 305 are implemented, such as in
one or more HTPs 300, corresponding pluralities of core
control circuits 310 and core control memories 315 are also
implemented, with each core control circuit 310 and core
control memory 315 utilized in the control of a correspond-
ing processor core 305. In addition, one or more of the HTPs
300 may also include data path control circuitry 395, which
is utilized to control access sizes (e.g., memory 125 load
requests) over the first interconnection network 150 to
manage potential congestion of the data path.

[0118] Inturn, a core control circuit 310 comprises control
logic and thread selection circuitry 330 and network inter-
face circuitry 335. The core control memory 315 comprises
a plurality of registers or other memory circuits, conceptu-
ally divided and referred to herein as thread memory (or
thread control memory) 320 and network response memory
325. The thread memory 320 includes a plurality of registers

US 2019/0340019 Al

to store information pertaining to thread state and execution,
while the network response memory 325 includes a plurality
of registers to store information pertaining to data packets
transmitted to and from first memory 125 on the first
interconnection network 150, such as requests to the first
memory 125 for reading or storing data, for example and
without limitation.

[0119] Referring to FIG. 6, the thread memory 320
includes a plurality of registers, including thread ID pool
registers 322 (storing a predetermined number of thread IDs
which can be utilized, and typically populated when the
system 100 is configured, such as with identification num-
bers 0 to 31, for a total of 32 thread IDs, for example and
without limitation); thread state (table) registers 324 (storing
thread information such as valid, idle, paused, waiting for
instruction(s), first (normal) priority, second (low) priority,
temporary changes to priority if resources are unavailable);
program counter registers 326 (e.g., storing an address or a
virtual address for where the thread is commencing next in
the instruction cache 340); general purpose registers 328 for
storing integer and floating point data; pending fiber return
count registers 332 (tracking the number of outstanding
threads to be returned to complete execution); return argu-
ment buffers 334 (“RAB”, such as a head RAB as the head
of a link list with return argument buffers), thread return
registers 336 (e.g., storing the return address, a call identi-
fier, any thread identifier associated with the calling thread);
custom atomic transaction identifier(s) registers 338; event
received mask registers 342 (to designate which events to
“listen” for, as discussed in greater detail below), even state
registers 344, and a data cache 346 (typically providing 4-8
cache lines of cache memory for each thread). All of the
various registers of the thread memory 320 are indexed
using the assigned thread ID for a given or selected thread.

[0120] Referring to FIG. 7, the network response memory
325 includes a plurality of registers, such as memory request
(or command) registers 348 (such as commands to read,
write, or perform a custom atomic operation); thread ID and
transaction identifiers (“transaction IDs”) registers 352 (with
transaction IDs utilized to track any requests to memory, and
associating each such transaction ID with the thread ID for
the thread which generated the request to memory 125); a
request cache line index register 354 (to designate which
cache line in the data cache 346 is to be written to when data
is received from memory for a given thread (thread ID),
register bytes register 356 (designating the number of bytes
to write to the general purpose registers 328); and a general
purpose register index and type registers 358 (indicating
which general purpose register 328 is to be written to, and
whether it is sign extended or floating point).

[0121] As described in greater detail below, an HTP 300
will receive a work descriptor packet. In response, the HTP
300 will find an idle or empty context and initialize a context
block, assigning a thread ID to that thread of execution
(referred to herein generally as a “thread”), if a thread 1D is
available, and puts that thread ID in a an execution (i.e.,
“ready-to-run”) queue 345. Threads in the execution (ready-
to-run) queue 345 are selected for execution, typically in a
round-robin or “barrel” style selection process, with a single
instruction for the first thread provided to the execution
pipeline 350 of the processor core 305, followed by a single
instruction for the second thread provided to the execution
pipeline 350, followed by a single instruction for the third
thread provided to the execution pipeline 350, followed by

Nov. 7,2019

a single instruction for the next thread provided to the
execution pipeline 350, and so on, until all threads in the
execution (ready-to-run) queue 345 have had a correspond-
ing instruction provided to the execution pipeline 350, at
which point the thread selection commences again with a
next instruction for the first thread in the execution (ready-
to-run) queue 345 provided to the execution pipeline 350,
followed by a next instruction for the second thread pro-
vided to the execution pipeline 350, and so on, cycling
through all of the threads of the execution (ready-to-run)
queue 345. This execution will continue for each such thread
until execution for that thread has been completed, such as
by executing a thread return instruction, at which point a
response packet (having the results of the thread execution)
is transmitted back to the source of the work descriptor
packet, i.e., back to the source of the work descriptor call
packet. In addition, in a representative embodiment and as
discussed in greater detail below, the execution (ready-to-
run) queue 345 is optionally provided with different levels of
priority, illustrated as a first priority queue 355 and a second
(lower) priority queue 360, with execution of the threads in
the first priority queue 355 occurring more frequently than
the execution of the threads in the second (lower) priority
queue 360.

[0122] As a result, the HTP 300 is an “event driven”
processor, and will automatically commence thread execu-
tion upon receipt of a work descriptor packet (provided a
thread ID is available, but without any other requirements
for initiating execution), i.e., arrival of a work descriptor
packet automatically triggers the start of thread execution
locally, without any reference to or additional requests to
memory 125. This is tremendously valuable, as the response
time to commence execution of many threads in parallel,
such as thousands or threads, is comparatively low. The HTP
300 will continue thread execution until thread execution is
complete, or it is waiting for a response, at which point that
thread will enter a “pause” state, as discussed in greater
detail below. A number of different pause states are dis-
cussed in greater detail below. Following receipt of that
response, the thread is returned to an active state, at which
point the thread resumes execution with its thread ID
returned to the execution (ready-to-run) queue 345. This
control of thread execution is performed in hardware, by the
control logic and thread selection circuitry 330, in conjunc-
tion with thread state information stored in the thread
memory 320.

[0123] In addition to a host processor 110 generating work
descriptor packets, an HTP 300 can also generate and
transmit work descriptor packets to initiate work, as one or
more compute threads, on another computing resource, such
as another HTP 300 or any HTF circuit 200. Such a work
descriptor packet is a “call” work descriptor packet, and
generally comprises a source identifier or address for the
host processor 110 or the HTP 300 which is generating the
call work descriptor packet, a thread ID (such as a 16-bit call
identifier (ID)) used to identify or correlate the return with
the original call, a 64-bit virtual kernel address (as a program
count, to locate the first instruction to begin execution of the
thread, typically held in the instruction cache 340 of an HTP
300 (or of a HTF circuit 200), which also may be a virtual
address space), and one or more call arguments, e.g., up to
four call arguments).

[0124] Similarly, when the thread has been completed, the
HTP 300 or HTF circuit 200 generates another work descrip-

US 2019/0340019 Al

tor packet, referred to as a “return” work descriptor packet,
which is generally created when the HTP 300 or HTF circuit
200 executes the last instruction of the thread, referred to as
a return instruction, with the return work descriptor packet
assembled by the packet encoder 380, discussed below. The
return packet will be addressed back to the source (using the
identifier or address provided in the call work descriptor
packet), the thread ID (or call ID) from the call work
descriptor packet (to allow the source to correlate the return
with the issued call, especially when multiple calls have
been generated by the source and are simultaneously out-
standing), and one or more return values (as results), such as
up to four return values.

[0125] FIG. 8 is a detailed block diagram of a represen-
tative embodiment of an HTP 300. For ease of illustration
and discussion, it should be noted that not all registers of the
thread memory 320 and the network response memory 325
are illustrated in FIG. 8. Referring to FIG. 8, the core control
circuit 310 comprises control logic and thread selection
circuitry 330 and network interface circuitry 335. The con-
trol logic and thread selection circuitry 330 comprises
circuitry formed using combinations of any of a plurality of
various logic gates (e.g., NAND, NOR, AND, OR, EXCLU-
SIVE OR, etc.) and various state machine circuits (control
logic 331), and multiplexers (e.g., input multiplexer 387,
thread selection multiplexer 385), for example and without
limitation. The network interface circuitry 335 includes AF
input queues 365 to receive data packets (including work
descriptor packets) from the first interconnection network
150; AF output queues 370 to transfer data packets (includ-
ing work descriptor packets) to the first interconnection
network 150; a data packet decoder circuit 375 to decode
incoming data packets from the first interconnection net-
work 150, take data (in designated fields) and transfer the
data provided in the packet to the relevant registers of the
thread memory 320 and the network response memory 325
(in conjunction with the thread ID assigned to the thread by
the control logic and thread selection circuitry 330, as
discussed in greater detail below, which thread ID also
provides or forms the index to the thread memory 320; and
data packet encoder circuit 380 to encode outgoing data
packets (such as requests to memory 125, using a transaction
ID from thread ID and transaction identifiers (“transaction
1Ds”) registers 352) for transmission on the first intercon-
nection network 150. The data packet decoder circuit 375
and the data packet encoder circuit 380 may ecach be
implemented as state machines or other logic circuitry.

[0126] When a work descriptor packet arrives, the control
logic and thread selection circuitry 330 assigns an available
thread ID to the thread of the word descriptor packet, from
the thread ID pool registers 322, with the assigned thread 1D
used as an index to the other registers of the thread memory
320 which are then populated with corresponding data from
the work descriptor packet, typically the program count and
one or more arguments. The control logic and thread selec-
tion circuitry 330 initializes the remainder of the thread
context state autonomously in preparation for starting the
thread executing instructions, such as loading the data cache
registers 346 and loading the thread return registers 336, for
example and without limitation. Also for example, an
executing thread has main memory stack space and main
memory context space. The context space is only used if the
state of the thread needs to be written to memory to be
accessed by the host. Each HTP 300 processor core 305 is

Nov. 7,2019

initialized with a core stack base address and a core context
base address, where the base addresses point a block of
stacks and a block of context spaces. The thread stack base
address is obtained by taking the core stack base address and
adding the thread ID multiplied by the thread stack size. The
thread context base address is obtained in a similar fashion.
[0127] That thread ID is given a valid status (indicating it
is ready to execute), and the thread ID is pushed to the first
priority queue 355 of the execution (ready-to-run) queue(s)
345, as threads are typically assigned a first (or normal)
priority. Selection circuitry of the control logic and thread
selection circuitry 330, such as a multiplexer 385, selects the
next thread ID in the execution (ready-to-run) queue(s) 345,
which is used as in index into the thread memory 320 (the
program count registers 326 and thread state registers 324),
to select the instruction from the instruction cache 340
which is then provided to the execution pipeline 350 for
execution. The execution pipeline then executes that instruc-
tion.

[0128] At completion of execution of the instruction,
under the control of the control logic and thread selection
circuitry 330 the same triplet of information (thread ID,
valid state, and priority) can be returned to the execution
(ready-to-run) queue(s) 345, for continued selection for
round-robin execution, depending upon various conditions.
For example, if the last instruction for a selected thread ID
was a return instruction (indicating that thread execution
was completed and a return data packet is being provided),
the control logic and thread selection circuitry 330 will
return the thread ID to the available pool of thread IDs in the
thread ID pool registers 322, to be available for use by
another, different thread. Also for example, the valid indi-
cator could change, such as changing to a pause state (such
as while the thread may be waiting for information to be
returned from or written to memory 125 or waiting for
another event), and in which case, the thread ID (now having
a pause status) is not returned to the execution (ready-to-run)
queue(s) 345 until the status changes back to valid.

[0129] Continuing with the former example, when the last
instruction for a selected thread ID was a return instruction,
the return information (thread ID and return arguments) is
then pushed by the execution pipeline 350 to the network
command queue 390, which is typically implemented as
first-in, first out (FIFO). The thread ID is used as an index
into the thread return registers 336 to obtain the return
information, such as the transaction ID and the source
(caller) address (or other identifier), and the packet encoder
circuit then generates an outgoing return data packet (on the
first interconnection network 150).

[0130] Continuing with the latter example, an instruction
of a thread may be a load instruction, i.e., a read request to
the memory 125, which is then pushed by the execution
pipeline 350 to the network command queue 390. The
packet encoder circuit then generates an outgoing data
packet (on the first interconnection network 150) with the
request to memory 125 (as either a read or a write request),
including the size of the request and an assigned transaction
ID (from the thread ID and transaction IDs registers 352,
which is also used as an index into the network response
memory 325), the address of the HTP 300 (as the return
address of the requested information). When a packet is then
received from the first interconnection network 150 and
decoded, the transaction ID is used as an index into the
network response memory 325, the thread ID of the thread

US 2019/0340019 Al

which made the request is obtained, which also provides the
location in the data cache 346 to write the data returned in
the response, with the transaction ID then returned to the
thread ID and transaction 1D registers 352 to be reused, and
the status of the corresponding thread ID is set again to valid
and the thread ID is again pushed to the execution (ready-
to-run) queue(s) 345, to resume execution.

[0131] A store request to memory 125 is executed simi-
larly, with the outgoing packet also having the data to be
written to memory 125, an assigned transaction ID, the
source address of the HTP 300, and with the return packet
being an acknowledgement with the transaction ID. The
transaction ID is also then returned to the thread ID and
transaction 1D registers 352 to be reused, and the status of
the corresponding thread ID is set again to valid and the
thread ID is again pushed to the execution (ready-to-run)
queue(s) 345, to resume execution.

[0132] FIG. 9 is a flow chart of a representative embodi-
ment of a method for self-scheduling and thread control for
an HTP 300, and provides a useful summary, with the HTP
300 having already been populated with instructions in the
instruction cache 340 and a predetermined number of thread
IDs in the thread identifier pool register 322. The method
starts, step 400, upon reception of a work descriptor packet.
The work descriptor packet is decoded, step 402, and the
various registers of the thread memory 320 is populated with
the information received in the work descriptor packet,
initializing a context block, step 404. When a thread ID is
available, step 406, a thread 1D is assigned, step 408 (and if
a thread ID is not available in step 406, the thread will wait
until a thread ID becomes available, step 410). A valid status
is initially assigned to the thread (along with any initially
assigned priority, such as a first or second priority), step 412,
and the thread ID is provided to the execution (ready-to-run)
queue 345, step 414. A thread ID in the execution (ready-
to-run) queue 345 is then selected for execution (at a
predetermined frequency, discussed in greater detail below),
step 416. Using the thread ID, the thread memory 320 is
accessed, and a program count (or address) is obtained, step
418. The instruction corresponding to the program count (or
address) is obtained from the instruction cache 340 and
provided to the execution pipeline 350 for execution, step
420.

[0133] When the thread execution is complete, i.e., the
instruction being executed is a return instruction, step 422,
the thread ID is returned to the thread ID pool registers 322
for reuse by another thread, step 424, the thread memory 320
registers associated with that thread ID may be cleared
(optionally), step 426, and the thread control may end for
that thread, return step 434. When the thread execution is not
complete in step 422, and when the thread state remains
valid, step 428, the thread ID (with its valid state and
priority) is returned to the execution (ready-to-run) queue
345, returning to step 414 for continued execution. When the
thread state is no longer valid (i.e., the thread is paused) in
step 428, with the paused status for that thread ID indicated
in the thread memory 320, execution of that thread is
suspended, step 430, until the status for that thread ID
returns to valid, step 432, and the thread ID (with its valid
state and priority) is returned to the execution (ready-to-run)
queue 345, returning to step 414 for continued execution.
[0134] Similarly, the HTP 300 may generate calls, such as
to create threads on local or remote compute elements, such
as to create threads on other HIPs 300 or HTF circuits 200.

Nov. 7,2019

Such calls are also created as outgoing data packets, and
more specifically as outgoing work descriptor packets on the
first interconnection network 150. For example, an instruc-
tion of a current thread being executed may be a “fiber
create” instruction (stored as a possible instruction in the
instruction cache 340), to spawn a plurality of threads for
execution on the various compute resources. As discussed in
greater detail below, such a fiber create instruction desig-
nates (using an address or virtual address (node identifier))
what computing resource(s) will execute the threads, and
will also provide associated arguments. When the fiber
create instruction is executed in the execution pipeline 350,
the fiber create command is pushed into the network com-
mand queue 390, and the next instruction is executed in the
execution pipeline 350. The command is pulled out of the
network command queue 390, and the packet encoder 380
has the information needed to create and send a work
descriptor packet to the specified destination HTF 200 or
HTP 300.

[0135] If the created threads will have return arguments,
then such an instruction will also allocate and reserve
associated memory space, such as in the return argument
buffers 334. If there is insufficient space in the return
argument buffers 334, the instruction will be paused until
return argument buffers 334 are available. The number of
fibers or threads created is only limited by the amount of
space to hold the response arguments. Created threads that
do not have return arguments can avoid reserving return
argument space, avoiding the possible pause state. This
mechanism ensures that returns from completed threads
always have a place to store their arguments. As the returns
come back to the HTP 300 as data packets on the first
interconnection network 150, those packets are decoded, as
discussed above, with the return data stored in the associ-
ated, reserved space in the return argument buffers 334 of the
thread memory 320, as indexed by the thread ID associated
with the fiber create instruction. As many registers could be
utilized for the return argument, the return argument buffers
334 can be provided as a link list of all the spawned threads
or return argument buffers or registers allocated for that
thread ID. Significantly, this mechanism can allow poten-
tially thousands of threads to be created very quickly,
effectively minimizing the time involved in a transition from
a single thread execution to high thread count parallelism.

[0136] As discussed in greater detail below, various types
of fiber join instructions are utilized to determine when all
of the spawned threads have completed, and can be an
instruction with or without waiting. A count of the number
of spawned threads is maintained in the pending fiber return
count registers 332, which count is decremented as thread
returns are received by the HTP 300. A join operation can be
carried out by copying the returns into the registers associ-
ated with the spawning thread ID. If the join instruction is
a waiting instruction, it will stay in a paused state until the
return arrives which designates that thread ID of the spawn-
ing thread. In the interim, other instructions are executed by
the execution pipeline 350 until the pause state of the join
instruction changes to a valid state and the join instruction
is returned to the execution (ready-to-run) queue 345.

[0137] A thread return instruction may also be utilized as
the instruction following the fiber create instruction, instead
of a join instruction. When the count in the pending fiber
return count registers 332 reaches zero, with the receipt of
the last thread return data packet, a thread return instruction

US 2019/0340019 Al

may also be executed, and indicates that the fiber create
operation has been completed and all returns received,
allowing the thread 1D, the return argument buffers 334, and
link list to be freed for other uses. In addition, it may also
generate and transmit a work descriptor return packet (e.g.,
having result data) to the source which called the main
thread (e.g., to the identifier or address of the source which
generated the call).

[0138] The join all instruction does not require that argu-
ments be returned, only acknowledgements which decre-
ment the count in the pending fiber return count registers
332. When that count reaches zero, that thread is restarted,
as the join all is now complete.

[0139] Communication between processing elements is
required to facilitate processing of parallel algorithms. The
representative embodiments provide an efficient means for
threads of a set of processing resources to communicate,
using various event messages, which may also include data
(such as arguments or results). The event messaging allows
any host processors 110 with hardware maintained cache
coherency and any acceleration processors (such as the HTP
300) with software maintained cache coherency to effi-
ciently participate in event messaging.

[0140] The event messaging supports both point to point
and broadcast event messages. Each processing resource
(HTP 300) can determine when a received event operation
has completed and the processing resource should be
informed. The event receive modes include simple (a single
received event completes the operation), collective (a coun-
ter is used to determine when sufficient events have been
received to complete the operation), and broadcast (an event
received on a specific channel completes the event). Addi-
tionally, events can be sent with an optional 64-bit data
value.

[0141] The HTP 300 has a set of event receive states,
stored in the event state registers 344, that consists of a 2-bit
receive mode, a 16-bit counter/channel number, and a 64-bit
event data value. AN HTP 300 can have multiple sets of
event receive states per thread context, where each set is
indexed by an event number. Thus, an event can be targeted
to a specific thread (thread ID) and event number. The sent
event can be a point-to-point message with a single desti-
nation thread, or a broadcast message sent to all threads
within a group of processing resources belonging to the
same process. When such events are received, the paused or
sleeping thread can be reactivated to resume processing.
[0142] This use of event state registers 344 is much more
efficient than a standard Linux based host processor, which
can send and receive events through an interface that allows
the host processor 110 to periodically poll on completed
receive events. Threads waiting on event messages can
pause execution until the receive operation completes, i.e.,
the HTP 300 can pause execution of threads pending the
completion of receive events, rather than waste resources by
polling, allowing other threads to be executing during these
intervals. Each HTP 300 also maintains a list of processing
resources that should participate in receiving events to avoid
process security issues.

[0143] A point-to-point message will specify an event
number and the destination (e.g., node number, which HTP
300, which core, and which thread ID). On the receive side,
an HTP 300 will have been configured or programmed with
one or more event numbers held in the event state registers
344. If that HTP 300 receives an event message having that

Nov. 7,2019

event number, it is triggered and transitions from a paused
state to a valid state to resume execution, such as executing
an event received instruction (e.g., EER, below). That
instruction will then determine if the correct event number
was received, and if so, write any associated 64-bit data into
general purpose registers 328, for use by another instruction.
If the event received instruction executes and the correct
event number was not received, it will be paused until that
specific event number is received.

[0144] An event listen (EEL) instruction may also be
utilized, with an event mask stored in the event received
mask registers 342, indicating one or more events which will
be used to trigger or wake up the thread. When an event
message with any of those designated events arrives, the
receiving HTP 300 will know which event number was
triggered, e.g., what other process may have been com-
pleted, and will receive event data from those completed
events. The event listen instruction may also have waiting
and a no waiting variations, as discussed in greater detail
below.

[0145] For event messaging in a collective mode, the
receiving HTP 300 will collect (wait for) a set of receive
events before triggering, setting a count in the event state
registers 344 to the value required, which is decremented as
the required event messages are received, and triggering
once the count has been decremented to zero.

[0146] In a broadcast mode, a sender processing resource
can transmit a message to any thread within the node. For
example, a sending HTP 300 may transmit a series of
point-to-point messages to each other HTP 300 within the
node, and each receiving HTP 300 will then pass the
message to each internal core 305. Each core control circuit
310 will go through its thread list to determine if it corre-
sponds to an event number which it has been initialized to
receive, and upon which channel that may have been des-
ignated on the first interconnection network 150.

[0147] This broadcast mode is especially useful when
thousands of threads may be executing in parallel, in which
the last thread to execute transmits a broadcast event mes-
sage indicating completion. For example, a first count of all
threads requiring completion may be maintained in the event
state registers 344, while a second count of all threads which
have executed may be maintained in memory 125. As each
thread executes, it also performs a fetch and increment
atomic operation on the second count, such as through an
atomic operation of the memory 125 (and compares it to the
first count), and sets its mode to receive a broadcast message
by executing an EER instruction to wait until it receives a
broadcast message. The last one to execute will see the
fetched value of the second count as the required first count
minus one, indicating that it is the last thread to execute, and
therefore sends the broadcast message, which is a very fast
and efficient way to indicate completion of significant par-
allel processing.

[0148] As mentioned above, while the HTP 300 may
utilize standard RISC-V instructions, a significantly
extended set of instructions are provided to take advantage
of all the system 100 compute resources, as discussed in
greater detail below. Threads created from the host processor
110 are typically referred to as master threads, and threads
created from the HTP 300 are typically referred to as fibers
or fiber threads, and all are executed identically on the
destination HTP 300 and HTF 200, without going through
the memory 125.

US 2019/0340019 Al

[0149] Load Instructions:

[0150] The HTP 300 has a comparatively small number of
read/write buffers per thread, also referred to as data cache
registers 346. The buffers (data cache registers 346) tempo-
rarily store shared memory data for use by the owning
thread. The data cache registers 346 are managed by a
combination of hardware and software. Hardware automati-
cally allocates buffers and evicts data when needed. Soft-
ware, through the use of RISC-V instructions decides which
data should be cached (read and write data), and when the
data cache registers 346 should be invalidated (if clean) or
written back to memory (if dirty). The RISC-V instruction
set provides a FENCE instruction as well as acquire and
release indicators on atomic instructions.

[0151] The standard RISC-V load instructions automati-
cally use the read data cache registers 346. A standard load
checks to see if the needed data is in an existing data cache
register 346. If it is then the data is obtained from the data
cache register 346 and the executing thread is able to
continue execution without pausing. If the needed data is not
in a data cache register 346, then the HTP 300 finds an
available data cache register 346 (evicting data from a buffer
needed), and reads 64-bytes from memory into the data
cache register 346. The executing thread is paused until the
memory read has completed and the load data is written into
a RISC-V register.

[0152] Read buffering has two primary benefits: 1) larger
accesses are more efficient for the memory controller 120,
and 2) accesses to the buffer allow the executing thread to
avoid stalling. However, there are situations when using the
buffer causes problems. An example is a gather operation
where accesses would typically cause thrashing of the data
cache registers 346. For this reason, a set of special load
instructions are provided to force a load instruction to check
for a cache hit, but on a cache miss to issue a memory
request for just the requested operand and not put the
obtained data in a data cache register 346, and instead put the
data into one of the general purpose registers 328.

[0153] These load instruction provides for “probabilistic”
caching based upon anticipated frequency of access, for
frequently used data versus sparsely or rarely used data. This
is especially significant for use with sparse data sets, which
if put into the data cache registers 346, would overwrite
other data which will be needed again more frequently,
effectively polluting the data cache registers 346. The load
instruction (NB or NC) allows frequently used data to
remain in the data cache registers 346, and less frequently
used (sparse) data which would be typically cached to be
designated instead for non-cached storage in the general
purpose registers 328.

[0154] Instructions of this type have an NB suffix (non-
buffered) (or equivalently, an NC suffice (non-cached):

[0155] LB.NB RA,40(SP).

The NB (NC) load instructions are expected to be used in
runtime libraries written in assembly.

[0156] The following load instructions were added as 32
bit instructions, where Imm is the immediate field, RA is a
register name, rsl is a source index, rd is a destination index,
and the bits in fields 14-12 and 6-0 specify the instruction,
in Table 1.

Nov. 7,2019
TABLE 1

3120 1915 1412 117 60
Imm[11:0] 151 000 rd 0000010 LB.NB
Imm[11:0] 151 001 rd 0000010 LH.NB
Imm[11:0] 151 010 rd 0000010 LW.NB
Imm[11:0] 151 o1 rd 0000010 LD.NB
Imm[11:0] 151 100 d 0000010 LBU.NB
Imm[11:0] 151 101 o 0000010 LHU.NB
Imm[11:0] 151 110 0000110 LWU.NB
Imm[11:0] 151 010 rd 0000110 FLW.NB
Imm[11:0] 151 o1 rd 0000110 FLD.NB
[0157] Bandwidth to memory is often the major contribu-

tor to limiting an application’s performance. The represen-
tative embodiments provides a means to inform the HTP 300
as to how large of a memory load request should be issued
to memory 125. The representative embodiments reduce
wasted memory and bandwidth of the first interconnection
network 150 due to access memory data that is not used by
the application.

[0158] A further optimization exists where an application
knows the size of a data structure being accessed and can
specify the amount of data to be loaded into a data cache
register 346. As an example, if an algorithm uses a structure
that is 16-bytes in size, and the structures are scattered in
memory, then it would be optimal to issue 16-byte memory
reads and place the data into a data cache register 346. The
representative embodiments define a set of memory load
instructions that provide both the size of the operand to be
loaded into an HTP 300 register, and the size of the access
to memory if the load misses the data cache register 346. The
actual load to memory 125 may be smaller than the instruc-
tion specified size if the memory access would cross a cache
line boundary. In this case, the access size is reduced to
ensure that the response data is written to a single cache line
of the data cache registers 346.

[0159] When the requested data would be less than a cache
line, the load instruction may also request additional data
that the HTP 300 is currently unneeded but likely to be
needed in the future, which is worth obtaining at the same
time (e.g., as a pre-fetch), optimizing the read size access to
memory 125. This instruction can also override any reduc-
tions in access size which might have been utilized (as
discussed in greater detail below with reference to FIG. 12)
for bandwidth management.

[0160] The representative embodiments therefore mini-
mize wasted bandwidth by only requesting memory data that
is known to be needed. The result is an increase in appli-
cation performance.

[0161] A set of load instructions have been defined that
allow the amount of data to be accessed to be specified. The
data is written into a buffer, and invalidated by an eviction,
a FENCE, or an atomic with acquire specified. The load
instructions provide hints as to how much additional data (in
8-byte increments) is to be accessed from memory and
written to the memory buffer. The load will only access
additional data to the next 64-byte boundary. A load instruc-
tion specifies the number of additional 8-byte elements to
load using the operation suffix RBO-RB7:

[0162] LD.RB7 RA,40(SP)

[0163] The instruction formats are shown in Table 2. The
number of 8-byte data elements to load into the buffer is
specified as bits 6 and 4:3 of the 32-bit instruction. These
load instructions can be used in assembly written routines,

US 2019/0340019 Al

or ideally by a complier. It is expected that initially only
hand written assembly will take advantage of these instruc-
tions.

TABLE 2
3120 19 15 1412 117 60
Imm([11:0] 1s1 000 d x0xx010 LB.RC1-7
Imm([11:0] 1s1 001 d x0xx010 LH.RC1-7
Imm([11:0] 1s1 010 d x0xx010 LW.RC1-7
Imm([11:0] 1s1 011 d x0xx010 LD.RC1-7
Imm[11:0] sl 100 rd x0xx010 LBU.RC1-7
Imm[11:0] sl 101 d x0xx010 LHU.RC1-7
Imm[11:0] sl 110 rd x0xx010 LWU.RC1-7
Imm[11:0] sl 010 rd x0xx110 FLW.RC1-7
Imm[11:0] sl 011 d x0xx110 FLD.RC1-7
[0164] Store Instructions
[0165] The HTP 300 has a small number of memory

buffers that temporarily store shared memory data. The
memory buffers allow multiple writes to memory to be
consolidated into a smaller number of memory write
requests. This has two benefits: 1) the fewer write requests
is more efficient for the first interconnection network 150
and memory controllers 120, and 2) an HTP 300 suspends
the thread that performs a memory store until the data is
stored to either the HTP 300 memory buffer, or at the
memory controller 120. Stores to the HTP 300 memory
buffer are very quick and will typically not cause the thread
to suspend execution. When a buffer is written to the
memory controller 120, then the thread is suspended until a
completion is received in order to ensure memory 125
consistency.

[0166] The standard RISC-V store instructions write data
to the HTP 300 memory buffers. However, there are situa-
tions in which it is known that it is better to write the data
directly to memory and not write to a memory buffer. One
such situation is a scatter operation. A scatter operation
would typically write just a single data value to the memory
buffer. Writing to the buffer causes the buffers to thrash and
other store data that would benefit from write coalescing is
forced back to memory. A set of store instructions are
defined for the HTP 300 to indicate that write buffering
should not be used. These instructions write data directly to
memory 125, causing the executing thread to be paused until
the write completes.

[0167] The store no buffering instructions are expected to
be used in hand assembled libraries and are indicated with
a NB suffix:

[0168] ST.NB RA40(SP)
The following store instructions were added as shown in

Table 3.

TABLE 3

3125 2420 1915 1412 117 60

11:5 152 151 000 Imm [:
11:5 152 151 001 Imm [:
11:5 152 151 010 Imm [:

[

1 0100010 SB.NB
]
]
11:5] 152 151 011 Imm
]
]

0100010 SH.NB
0100010 SW.NB
0100010 SD.NB
0100110 FSW.NB
0100110 FSD.NB

11:5 152 151 010 Imm [:

Imm [
Imm [
Imm [
Imm [
Imm [
Imm [11:5 152 151 011

Nov. 7,2019

[0169] Custom Atomic Store and Clear Lock (CL) Instruc-
tions:
[0170] Custom atomic operations set a lock on the pro-

vided address when the atomic operation is observed by the
memory controller. The atomic operation is performed on an
associated HTP 300. The HTP 300 should inform the
memory controller when the lock should be cleared. This
should be on the last store operation that the HTP 300
performs for the custom atomic operation (or on a fiber
terminate instruction if no store is required). The HTP 300
indicates that the lock is to be cleared by executing a special
store operation. The store and clear lock instructions.

[0171] The following sequence of instructions could be
used to implement a custom atomic DCAS operation.

// a0 - atomic address

// al - 64-bit memory value of a0

// a2 - DCAS compare value 1

// a3 - DCAS compare value 2

// a4 - DCAS swap value 1

// a5 - DCAS swap value 2
atomic__dcas:

bne al, a2, fail

ld.nb a6, 8(a0)

// first 8-byte compare

// load second 8-byte memory value - should
hit memory cache

// second 8-byte compare

// store first 8-byte swap value to thread

store buffer

// store second 8-byte value and clear

memory lock

// AMO success response

bne a6, a3, fail
sd a4, 0(a0)

sd.cl a5, 8(a0)

eft x0
fail:
li al, 1
eft.cl al,(a0) // AMO failure response (and clear
memory lock)
atomic_ float add:
fadd.d a2, al, a2 // al contains memory value, a2 contains
value to be added in
// a0 contains memory address, clear lock
and terminate atomic
eft // evicet all line from buffer, terminate
atomic thread

fsd.cl a2, 0(a0)

The store instructions that indicate the lock should be
cleared are:

[0172] SB.CL RA,40(SP)
[0173] SH.CL RA,40(SP)
[0174] SW.CL RA.40(SP)
[0175] SD.CL RA,40(SP)
[0176] FSW.CL RA,40(SP)
[0177] FSD.CL RA40(SP)
The format for these store instructions is shown Table 4.
TABLE 4

3125 2420 1915 1412 117 60
Imm [11:5] 12 15l 000 Imm [4:0] 0110010 SB.CL
Imm [11:5] 12 15l 001 Imm [4:0] 0110010 SH.CL
Imm [11:5] 12 15l 010 Imm [4:0] 0110010 SW.CL
Imm [11:5] 12 15l 011 Imm [4:0] 0110010 SD.CL
Imm [11:5] 12 15l 010 Imm [4:0] 0110110 FSW.CL
Imm [11:5] 12 15l 011 Imm [4:0] 0110110 FSD.CL

[0178] Fiber Create Instructions:

[0179] The Fiber Create (“EFC”) instruction initiates a
thread on an HTP 300 or HTF 200.

[0180] EFC.HTP.A4

[0181] EFC.HTF.A4

US 2019/0340019 Al

This instruction performs a call on an HTP 300 (or HTF
200), begins execution at the address in register a0. (Option-
ally, a suffix .DA may be utilized. The instruction suffix DA
indicates that the target HTP 300 is determined by the virtual
address in register al. If the DA suffix is not present, then an
HTP 300 on the local system 100 is targeted.) The suffix Al,
Al, A2 and A4 specifies the number of additional arguments
to be passed to the HTP 300 or HTF 200. The argument
count is limited to the values O, 1, 2, or 4 (e.g., a packet
should fit in 64B). The additional arguments are from
register state (a2-a5).

[0182] It should be noted that if a return buffer is not
available at the time the EFC instruction is executed, then
the EFC instruction will wait until a return argument buffer
is available to begin execution. Once the EFC instruction
successfully creates a fiber, the thread continues at the

Nov. 7,2019

[0187] Fiber Join Instructions:

[0188] The Fiber Join (EFJ) instruction checks to see if a
created fiber has returned. The instruction has two variants,
join wait and non-wait. The wait variant will pause thread
execution until a fiber has returned. The join non-wait does
not pause thread execution but rather provides a success/
failure status. For both variants, if the instruction is executed
with no outstanding fiber returns then an exception is
generated.

[0189] The arguments from the returning fiber (up to four)
are written to registers a0-a3.

[0190] EFJ

[0191] EFINW

The format for these fiber join instructions is shown Table 7.

instruction immediately following the EFC instruction. TABLE 7
[0183] It also should be noted that threads created by the
host processor 110 are allowed to execute the EFC instruc- 3125 2420 1915 1412 117 60
tion and create fibers. Fibers create?d by an EFC instruction 0101000 00000 00000 000 00000 1110010 EFT
are not allowed to execute the EFC instruction and will force 0110000 00000 00000 000 00000 1110010 EFINW
an exception, optionally. The format for these fiber create
instructions is shown Table 5.
TABLE 5
31 25 24 20 1915 1412 17 60
0000000 00000 00000 ac 00000 1110010 EFC.HTP
0001000 00000 00000 ac 00000 1110010 EFC.HTPDA
0010000 00000 00000 ac 00000 1110010 EFC.HTF
0011000 00000 00000 ac 00000 1110010 EFC.HTEDA
ac Encoding Suffix Argument Count
0 No suffix 0
1 Al 1
2 A2 2
3 A4 4
[0184] Thread Return Instructions: [0192] Fiber Join All Instructions:

[0185] The Thread Return (ETR) instruction passes argu-
ments back to the parent thread that initiated the current
thread (through a host processor 110 thread create or HTP
300 fiber create). Once the thread has completed the return
instruction, the thread is terminated.

[0186] ETR.A2

This instruction performs a return to an HTP 300 or host
processor 110. The ac suffix specifies the number of addi-
tional arguments to be passed to the HTP or host. Argument
count can be the values 0, 1, 2 or 4. The arguments are from
register state (a0-a3). The format for these thread return
instructions is shown Table 6.

TABLE 6
3125 2420 1915 1412 117 60
0100000 00000 00000 ac 00000 1110010 EFR
ac Encoding Suffix Argument Count
0 No suffix 0
1 Al 1
2 A2 2
3 A4 4

[0193] The Fiber Join All instruction (EFJ.ALL) pends
until all outstanding fibers have returned. The instruction can
be called with zero or more pending fiber returns. No
instruction status or exceptions are generated. Any returning
arguments from the fiber returns are ignored.

[0194] EFI.ALL

The format for these fiber join all instructions is shown Table
8.

TABLE 8
3125 2420 1915 1412 117 60
0111000 00000 00000 000 00000 1110010 EFLALL
[0195] Atomic Return Instructions:

[0196] The EMD atomic return instruction (EAR) is used
to complete the executing thread of a custom atomic opera-
tion and possibly provide a response back to the source that
issued the custom atomic request.

[0197] The EAR instruction can send zero, one, or two
8-byte arguments value back to the issuing compute ele-
ment. The number of arguments to send back is determine by
the ac2 suffix (Al or A2). No suffix means zero arguments,
Al implies a single 8-byte argument, and A2 implies two
8-byte arguments. The arguments, if needed, are obtained
from X registers al and a2.

US 2019/0340019 Al

[0198] The EAR instruction is also able to clear the
memory line lock associated with the atomic instruction.
The EAR uses the value in the a0 register as the address to
send the clear lock operation. The clear lock operation is
issued if the instruction contains the suffix CL.

[0199] The following DCAS example sends a success or
failure back to the requesting processor using the EAR
instruction.

Nov. 7,2019

[0205] The first (or high) priority instruction transitions
the current thread having a second (or low) priority to a first
(or high or normal) priority. The instruction is generally used
when a thread is polling and an event has occurred (i.e.
barrier).

[0206] ENP

The format for the ENP instruction is shown Table 11.

// a0 - atomic address

// al - 64-bit memory value of a0
// a2 - DCAS compare value 1

// a3 - DCAS compare value 2

// a4 - DCAS swap value 1

// a5 - DCAS swap value 2

atomic__dcas:

bne al, a2, fail // first 8-byte compare

ld.nb a6, 8(a0) // load second 8-byte memory value - should hit memory
cache

bne a6, a3, fail // second 8-byte compare

sd a4, 0(a0) // store first 8-byte swap value to thread store buffer

sd.cl a5, 8(a0) // store second 8-byte value and clear memory lock

li al, 0

ear.al // AMO success response
fail:

li al, 1

ear.clal // AMO failure response (and clear memory lock)
[0200] The instruction has two variants that allow the EFT TABLE 11
instruction to also clear the memory lock associated with the

3125 24 20 19 15 14 12 117 60

atomic operation. The format for the supported instructions
is shown in Table 9.

TABLE 9

3125 24 20 19 15 1412 17 60

1110010 EAR
1110010 EAR.CL

1010000 00000 00000 ac2 00000
1011000 00000 00000 ac2 00000

ac2 Encoding Suffix Argument Count
0 No suffix 0
1 Al 1
2 A2 2
[0201] First and Second Priority Instructions:

[0202] The second (or low) priority instruction transitions
the current thread having a first priority to a second, low
priority. The instruction is generally used when a thread is
polling on an event to occur (i.e. barrier).

[0203] ELP
[0204] The format for the ELP instruction is shown Table
10.
TABLE 10
3125 2420 1915 1412 117 60

1000000 00000 00000 000 00000 1110010 ELP

1001000 00000 00000 000 00000 1110010 ENP

[0207]
[0208]
formed by the HTP 300 associated with a memory controller
120. The floating point operations performed are MIN,
MAX and ADD, for both 32 and 64-bit data types.

[0209] The aq and rl bits in the instruction specify whether
all write data is to be visible to other threads prior to issuing
the atomic operation (aq), and whether all previously written
data should be visible to this thread after the atomic com-
pletes (r1). Put another way, the aq bit forces all write buffers
to be written back to memory, and the 1l bit forces all read
buffers to be invalidated. It should be noted that rs1 is an X
register value, whereas rd and rs2 are F register values.

Floating Point Atomic Memory Operations:
Floating point atomic memory operations are per-

AMOFADD.S rd, rs2, (1s1)
AMOFMIN.S rd, rs2, (rs1)
AMOFMAX.S rd, rs2, (rsl)
AMOFADD.D rd, 152, (1s1)
AMOFMIN.D rd, 182, (1s1)
AMOFMAX.D rd, rs2, (rs1)

The format for these floating point atomic memory operation
instructions is shown Table 12.

US 2019/0340019 Al Nov. 7, 2019
TABLE 12

3127 26 25 2420 1915 1412 117 60

00000 ag 1l 152 15l 010 rd 0101110 AMOFADD.S

00001 ag 1 152 15l 010 rd 0101110 AMOFMIN.S

00010 ag 1 152 15l 010 rd 0101110 AMOFMAX.S

00000 ag 1l 152 15l 011 rd 0101110 AMOFADD.D

00001 ag 1 152 15l 011 rd 0101110 AMOFMIN.D

00010 ag 1 152 15l 011 rd 0101110 AMOFMAX.D

[0210] Custom Atomic Memory Operations: [0215] Event Management:

[0211] Custom atomic operations are performed by the [0216] The system 100 is an event driven architecture.

HTP 300 associated with a memory controller 120. The
operation is performed by executing RISC-V instructions.
Up to 32 custom atomic operations can be available within
the memory controllers 120 of a system 100. The custom
atomics are a system wide resource, available to any process
attached to the system 100.

[0212] The aq and rl bits in the instruction specify whether
all write data is to be visible to other threads prior to issuing
the atomic operation (rl), and whether all previously written
data should be visible to this thread after the atomic com-
pletes (aq). Put another way, the rl bit forces all write buffers
to be written back to memory, and the aq bit forces all read
buffers to be invalidated.

[0213] The custom atomics use the a0 register to specify
the memory address. The number of source arguments is
provided by the suffix (A0, A1, A2 or A4), and are obtained
from registers al-a4. The number of result values returned
from memory can be 0-2, and is defined by the custom
memory operation. The result values are written to register
a0-al.

[0214] AMOCUSTO0.A4

The following custom atomic instructions are defined as
shown in Table 13.

Each thread has a set of events that is able to monitor,
utilizing the event received mask registers 342 and the event
state registers 344. Event 0 is reserved for a return from a
created fiber (HTP 300 or HTF 200). The remainder of the
events are available for event signaling, either thread-to-
thread, broadcast, or collection. Thread-to-thread allows a
thread to send an event to one specific destination thread on
the same or a different node. Broadcast allows a thread to
send a named event to a subset of threads on its node. The
receiving thread should specify which named broadcast
event it is expecting. Collection refers to the ability to
specify the number of events that are to be received prior to
the event becoming active.

[0217] An event triggered bit can be cleared (using the
EEC instruction), and all events can be listened for (using
the EEL instruction). The listen operation can either pause
the thread until an event has triggered, or in non-waiting
mode (NW) allowing a thread to periodically poll while
other execution proceeds.

[0218] A thread is able to send an event to a specific thread
using the event send instruction (EES), or broadcast an event
to all threads within a node using the event broadcast
instruction (EEB). Broadcasted events are named events
where the sending thread specifies the event name (a 16-bit

TABLE 13

3127 26 25 24 20 19 15 14 12 117 60

10000 aq 1l 00000 00000 ac 00000 0101110 AMOCUSTO
10001 aq 1l 00000 00000 ac 00000 0101110 AMOCUST1
10010 aq 1l 00000 00000 ac 00000 0101110 AMOCUST2
10011 aq 1l 00000 00000 ac 00000 0101110 AMOCUST3
10100 aq 1l 00000 00000 ac 00000 0101110 AMOCUST4
10101 aq 1l 00000 00000 ac 00000 0101110 AMOCUSTS
10110 aq 1l 00000 00000 ac 00000 0101110 AMOCUST6
10111 aq 1l 00000 00000 ac 00000 0101110 AMOCUST7

The ac field is used to specify the number of arguments (0,

1, 2, or 4). The following Table 14 shows the encodings.

TABLE 14
Argument
ac Encoding Suffix Count
0 No suffix 0
1 Al 1
2 A2 2
3 A4 4

identifier), and the receiving threads filter received broadcast
events for a pre-specified event identifier. Once received, the
event should be explicitly cleared (EEC) to avoid receiving
the same event again. It should be noted that all event
triggered bits are clear when a thread starts execution.

[0219]

[0220] The event mode (EEM) instruction sets the opera-
tion mode for an event. Event O is reserved for thread return
events, the remainder of the events can be in one of three
receive modes: simple, broadcast, or collection.

[0221] In simple mode, a received event immediately
causes the triggered bit to be set and increments the received

Event Mode Instructions:

There are eight custom atomic instructions defined, with 4
argument count variants each, resulting a total of 32 possible
custom atomic operators.

message count by one. Each newly received event causes the
received event count to be incremented. The receive event
instruction (EER) causes the received event count to be

US 2019/0340019 Al

decremented by one. The event triggered bit is cleared when
the count transitions back to zero.

[0222] In broadcast mode, a received event’s channel is
compared to the event number’s broadcast channel. If the
channels match, then the event triggered bit is set. The EER
instruction causes the triggered bit to be cleared.

[0223] In collection mode, received event causes the event
trigger count to be decremented by one. When the count
reaches zero, then the event triggered bit is set. The EER
instruction causes the triggered bit to be cleared.

[0224] The EEM instruction prepares the event number for
the chosen mode of operation. In simple mode, the 16-bit
event counter is set to zero. For broadcast mode, the 16-bit
event channel number is set to the value specified by the
EEM instruction. For collection mode, the 16-bit event
counter is set to the value specified by the EEM instruction.
Each of the three modes use the same 16-bit value differ-
ently.

EEM.BM rsl, rs2
EEM.CM rsl, rs2
EEM.SM sl

; rsl=event #, rs2=broadcast channel
; rsl=event #, rs2=collection count
; rsl=event #

The format for the event mode instruction is shown Table 15.

Nov. 7,2019

[0230] Event Send Instructions:

[0231] The event send (EES) instruction sends an event to
a specific thread. Register rs1 provides the destination thread
and event number. Register rs2 provides the optional 8-byte
event data.

[0232] EES rsl

[0233] EES.Alrsl, rs2

The rs2 register provides the target HTP 300 for the event
send operation. Register rs1 provides the event number to be
sent. Legal values for rs1 are 2-7. The format for the event
send instruction is shown Table 17.

TABLE 17
3125 2420 1915 1412 117 60
0100100 00000 151 000 00000 1110010 EES
0101100 152 151 000 00000 1110010 EES.Al
[0234] Event Broadcast Instructions:
[0235] The event broadcast (EEB) instruction broadcasts

an event to all threads within the node. Register rs1 provides
the broadcast channel to be sent (0-65535). Register rs2
provides optional 8-byte event data.

[0236] EEB rsl

[0237] EEB.AI1 rsl, rs2

The format for the event broadcast instruction is shown
Table 18.

TABLE 15
3125 2420 1915 1412 117 60 TABLE 18

0000100 182 sl 000 00000 1110010 EEM.BM 3125 24 20 19 15 14 12 17 60

0001100 152 15l 000 00000 1110010 EEM.CM

0010100 00000 1l 000 00000 1110010 EEM.SM 0110100 00000 1l 000 00000 1110010 EEB

0111100 182 15l 000 00000 1110010 EEB.Al
[0225] Event Destination Instruction: 02381 E Li I .
[0226] The event destination (EED) instruction provides [] Dvent isten Instructions: .
[0239] The event listen (EEL) instruction allows a thread

an identifier for an event within the executing thread. The
identifier is unique across all executing threads within a
node. The identifier can be used with the event send instruc-
tion to send an event to the thread using the EES instruction.
The identifier is an opaque value that contains the informa-
tion needed to send the event from a source thread to a
specific destination thread.

[0227] The identifier can also be used to obtain a unique
value for sending a broadcast event. The identifier includes
space for an event number. The input register rsl specifies
the event number to encode within the destination thread
identifier. The output rd register contains the identifier after
the instruction executes.

[0228] EED rd, rsl

The format for the event destination instruction is shown
Table 16.

TABLE 16
3125 2420 1915 1412 117 60
0011100 00000 151 000 rd 1110010 EED

[0229] The event destination instruction can also be uti-
lized by a process to obtain its own address, which can then
be used in other broadcast messages, for example, to enable
that process to receive other event messages as a destination,
e.g., for receiving return messages when the process is a
master thread.

to monitor the status of received events. The instruction can
operate in one of two modes: waiting and non-waiting. The
waiting mode will pause the thread until an event is
received, the non-waiting mode provides the received events
at the time the instruction is executed.

[0240] EEL rd, rsl

[0241] EEL.NW rd, rsl

Register rs1 provides a mask of available events as the
output of the listen operation. The non-waiting mode will
return a value of zero in rsl if no events are available. The
format for the event listen instructions is shown Table 19.

TABLE 19
3125 2420 1915 1412 117 60
1000100 00000 sl 000 d 1110010 EEL
1001100 00000 sl 000 d 1110010 EEL.NW
[0242] Event Receive Instructions:
[0243] The event receive (EER) instruction is used to

receive an event. Receiving an event includes acknowledg-
ing that an event was observed, and receiving the optional
8-byte event data. Register rs1 provides the event number.
Register rd contains optional 8-byte event data.

[0244] EER rsl

[0245] EER.AI rd, rsl

The format for the event receive instructions is shown Table
20.

US 2019/0340019 Al

TABLE 20
3125 2420 1915 1412 117 60
1010100 00000 sl 000 00000 1110010 EER
1011100 00000 sl 000 d 1110010 EER.Al
[0246] FIG. 10 is a detailed block diagram of a represen-

tative embodiment of a thread selection control circuitry 405
of the control logic and thread selection circuitry 330 of the
HTP 300. As mentioned above, a second or low priority
queue 360 is provided, and thread IDs are selected from the
first (or high) priority queue 355 or the second or low
priority queue 360 using a thread selection multiplexer 385,
under the control of the thread selection control circuitry
405. Threads in the second priority queue 360 are pulled
from the queue and executed at a lower rate than threads in
the first priority queue 360.

[0247] As mentioned above, a pair of instructions, ENP
and ELP, are used to transition a thread from a first priority
to second priority (ELP) and the second priority to the first
priority (ENP).

[0248] Threads in a parallel application often must wait
for other threads to complete priority to resuming execution
(i.e., a barrier operation). The wait operation is completed
through communication between the threads. This commu-
nication can be supported by an event that wakes a paused
thread, or by the waiting thread polling on a memory
location. When a thread is polling, it is wasting processing
resources that could be used by the thread that must finish its
work to allow all threads to resume productive execution.
The second or low priority queue 360 allows the waiting
threads to enter a low priority mode that will reduce the
overhead of the polling threads. This serves to reduce the
thread execution overhead of polling threads such that
threads that must complete productive work consume the
majority of the available processing resources.

[0249] A configuration register is used to determine the
number of high priority threads that are to be run for each
low priority thread, illustrated in FIG. 10 as the low priority
“skip” count, provided to the thread selection control cir-
cuitry 405, which selects a thread from the second priority
queue 360 at predetermined intervals. Stated another way,
the thread selection multiplexer 385 will select, in succes-
sion, a predetermined number (i.e., the skip count) of threads
from the first priority queue 355, “skipping” selection of any
threads from the second or low priority queue 360. Once that
predetermined number of threads from the first priority
queue 355 have been selected, the thread selection multi-
plexer 385 will then select a thread for execution from the
second priority queue 360, i.e., a predetermined number of
high priority threads are run for each low priority thread. As
illustrated, thread selection control circuitry 405 decrements
the skip count (register 442, multiplexer 444, and adder 446)
until it is equal to zero (logic block 448), at which point the
selection input of the thread selection multiplexer 385
toggles to select a thread from the second or low priority
queue 360.

[0250] Accordingly, threads in the second priority queue
360 are pulled from the queue and executed at a lower rate
than threads in the first priority queue 355. A configuration
register (e.g., in thread memory 320) is used to determine the
number of high priority threads that are to be run for each
low priority thread. A pair of instructions, ENP and ELP, are
used to transition a thread from first (or normal) priority to

Nov. 7,2019

the second, low priority (ELP) and from the second, low
priority to the first, normal priority (ENP).

[0251] FIG. 11 is a diagram of a representative embodi-
ment of a portion of the first interconnection network 150
and representative data packets. In representative embodi-
ment, the first interconnection network 150 includes a net-
work bus structure 152 (a plurality of wires or lines), in
which a first plurality of the network lines 154 are dedicated
for addressing (or routing) data packets (158), and are
utilized for setting the data path through the various crossbar
switches, and the remaining second plurality of the network
lines 156 are dedicated for transmission of data packets (the
data load, illustrated as a train or sequence of “N” data
packets 162, through 1620 containing operand data, argu-
ments, results, etc.) over the path established through the
addressing lines (first plurality of the network lines 154).
Two such network bus structures 152 are typically provided,
into and out of each compute resource, as channels, a first
channel for receiving data, and a second channel for trans-
mitting data. A single, first addressing (or routing) data
packet (illustrated as addressing (or routing) data packet
158,) may be utilized to establish the routing to a first
designated destination, and may be followed (generally
several clock cycles later, to allow for the setting of the
switches) by one or more data packets 162 which are to be
transmitted to the first designated destination, up to a pre-
determined number of data packets 162 (e.g., up to N data
packets). While that predetermined number of data packets
162 are being routed, another, second addressing (or routing)
data packet (illustrated as addressing (or routing) data packet
1582) may be transmitted and utilized to establish a routing
to a second designated destination, for other, subsequent one
or more data packets 162 which will be going to this second
designated destination (illustrated as data packet 162,).

[0252] FIG. 12 is a detailed block diagram of a represen-
tative embodiment of data path control circuitry 395 of an
HTP 300. As mentioned above, one or more of the HTPs 300
may also include data path control circuitry 395, which is
utilized to control access sizes (e.g., memory 125 load
requests) over the first interconnection network 150 to
manage potential congestion, providing adaptive bandwidth.

[0253] Application performance is often limited by the
bandwidth available to a processor from memory. The
performance limitation can be mitigated by ensuring that
only data that is needed by an application is brought into the
HTP 300. The data path control circuitry 395 automatically
(i.e., without user intervention) reduces the size of requests
to main memory 125 to reduce the utilization of the pro-
cessor interface and memory 125 subsystem.

[0254] As mentioned above, the compute resources of the
system 100 may have many applications using sparse data
sets, with frequent accesses to small pieces of data distrib-
uted throughout the data set. As a result, if a considerable
amount of data is accessed, much of it may be unused,
wasting bandwidth. For example, a cache line may be 64
bytes, but not all of it will be utilized. At other times, it will
be beneficial to use all available bandwidth, such as for
efficient power usage. The data path control circuitry 395
provides for dynamically adaptive bandwidth over the first
interconnection network 150, adjusting the size of the data
path load to optimize performance of any given application,
such as adjusting the data path load down to 8-32 bytes (as

US 2019/0340019 Al

examples) based upon the utilization of the receiving (e.g.,
response) channel of the first interconnection network 150
back to the HTP 300.

[0255] The data path control circuitry 395 monitors the
utilization level on the first interconnection network 150 and
reduces the size of memory 125 load (i.e., read) requests
from the network interface circuitry 335 as the utilization
increases. In a representative embodiment, the data path
control circuitry 395 performs a time-averaged weighting
(time averaged utilization block 364) of the utilization level
of the response channel of the first interconnection network
150. If after a fixed period of time (adjustment interval timer
362) the utilization is above a threshold (and the load request
size is greater than the minimum), using threshold logic
circuit 366 (having a plurality of comparators 482 and
selection multiplexers 484, 486), then the size of load
requests is reduced by the load request access size logic
circuit 368 (generally by a power of 2 (e.g., 8 bytes) from the
threshold logic circuit 366, using minus increment 492),
such that: either (a) fewer data packets 162 will be included
in the train of data packets 162, allowing that bandwidth to
be utilized for routing of data packets to another location or
for another process; or (b) memory 125 utilization is more
efficient (e.g., 64 bytes are not requested when only 16 bytes
will be utilized). If after the fixed period of time the
utilization is below a threshold (and the load request size is
less than the maximum), using threshold logic circuit 366,
then the size of the load request is increased by the load
request access size logic circuit 368, generally also by a
power of 2 (e.g., 8 bytes), using plus increment 488. The
minimum and maximum values for the size of a load request
can be user configured, however, the minimum size gener-
ally is the size of the issuing load instruction (e.g., the
maximum operand size of the HTP 300, such as 8 bytes) and
the maximum size is the cache line size (e.g., 32 or 64 bytes).
In an alternative embodiment, the data path control circuitry
395 can be located at the memory controller 120, adapting
to the bandwidth pressure from multiple HTPs 300.

[0256] FIG. 13 is a detailed block diagram of a represen-
tative embodiment of system call circuitry 415 of an HTP
300 and host interface circuitry 115. Representative system
100 embodiments allows a user mode only compute ele-
ment, such as an HTP 300, to perform system calls, break-
points and other privileged operations without running an
operating system, such as to open a file, print, etc. To do so,
any of these system operations are originated by an HTP 300
executing a user mode instruction. The processor’s instruc-
tion execution identifies that the processor must forward the
request to a host processor 110 for execution. The system
request from the HTP 300 has the form of system call work
descriptor packet sent to a host processor 110, and in
response, the HTP 300 can receive system call return work
descriptor packets.

[0257] The system call work descriptor packet, assembled
and transmitted by the packet encoder 380, includes a
system call identifier (e.g., a thread ID, the core 305 number,
a virtual address indicated by the program counter, the
system call arguments or parameters (which are typically
stored in the general purpose registers 328), and return
information. The packet is sent to a host interface 115
(SRAM FIFOs 464) that writes to and queues the system call
work descriptor packets in a main memory queue, such as
the illustrated DRAM FIFO 466 in host processor 110 main
memory, increments a write pointer, and the host interface

Nov. 7,2019

115 further then sends an interrupt to the host processor 110
for the host processor 110 to poll for a system call work
descriptor packet in memory. The host processor’s operating
system accesses the queue (DRAM FIFO 466) entries,
performs the requested operation and places return work
descriptor data in a main memory queue (DRAM FIFO 468),
and also may signal the host interface 115. The host interface
115 monitors the state of the return queue (DRAM FIFO
468) and when an entry exists, moves the data into an output
queue (SRAM output queue 472) and formats a return work
descriptor packet with the work descriptor data provided and
sends the return work descriptor packet to the HTP 300
which originated the system call packet.

[0258] The packet decoder 375 of the HTP 300 receives
the return work descriptor packet and places the returned
arguments in the general purpose registers 328 as if the local
processor (HTP 300) performed the operation itself. This
transparent execution as viewed by the application running
on the user mode HTP 300 results in the ability to use the
same programming environment and runtime libraries that
are used when a processor has a local operating system, and
is highly useful for a wide variety of situations, such as
program debugging, using an inserted break point.

[0259] The host interface 115, however, typically has
limited FIFO space, which could be problematic when
multiple HTPs 300 are utilized, each having a large number
of cores (e.g., 96), each of which may be running a large
number of threads (e.g., 32/core). To avoid adding signifi-
cant memory to the host interface 115, the overall number of
system calls which can be submitted is limited, using a
system call credit mechanism for each HTP 300 and each
processor core 305 within an HTP 300.

[0260] Each processor core 305 includes a first register
452, as part of the system call circuitry 415, which maintains
a first credit count. The system call circuitry 415, provided
per HTP 300, includes a second register 458, which includes
a second credit count, as a pool of available credits. When
a system call work descriptor packet is generated, if there are
sufficient credits available in the first register 452, the
system call work descriptor packet may be selected (multi-
plexer 454) and transmitted, and if not, the system call work
descriptor packet is queued in the system call work descrip-
tor (system call) packet table 462, potentially with other
system call work descriptor packet from other processor
cores 305 of the given HTP 300. If there are sufficient credits
available in the second register 458, providing an extra pool
of credits for bursting of system calls and shared among all
of the processor cores 305 of the HTP 300, the next system
call work descriptor packet may be transmitted, and other-
wise is held in the table.

[0261] As those system call work descriptor packets are
processed by the host interface 115 and read out of the FIFO
464, the host interface 115 generates an acknowledgement
back to the system call circuitry 415, which increments the
credit counts per core in registers 456, which can in turn
increment the first credit count in the first register 452, for
each processor core 305.

[0262] Alternatively, registers 456 may be utilized equiva-
lently to a first register 452, without requiring the separate
first register 452 per core, and instead maintaining the first
count in the registers 456, again per core 305. As another
alternative, all of the system call work descriptor packets
may be queued in the system call work descriptor packet
table 462, on a per core 305 basis, and transmitted when that

US 2019/0340019 Al

core has sufficient first credit counts in its corresponding
register 456 or sufficient credits available in the second
register 458.

[0263] A mechanism is also provided for thread state
monitoring, to collect the state of the set of threads running
on an HTP 300 in hardware, which allows a programmer to
have the visibility into the workings of an application. With

Nov. 7,2019

states and counts over time, and write it to a file or otherwise
save it in a memory. Also for example, a program or thread
may be a barrier, in which all threads have to complete
before anything else can start, and it is helpful to monitor
which threads are in what state as they proceed through
various barriers or as they change state. The illustrated code
(below) is an example of simulator code which would
execute as hardware or be translatable to hardware:

InStateCount[N] - 6 b
InStateTimeStamp[N] - 64 b
InStateTotalTime[N] - 64 b

enum ESimR5State { eR5Idle=0, eR5Low=1, eR5Normal=2, eR5PausedMem=3, eR5PausedEar=4,
eR5PausedEel=5, eR5PausedEer=6, eR5PausedEtr=7, eR5PausedEfj=8,
eR5PausedEfjAll=9, eR5PausedSys=10, eR5PausedEes=11

// set state and collect statistics
void setR53CtxState(SimRSHwCtx * pR5Ctx, SInRSHwCtx::ESimR5State state) {
m__coreStats.m__corelnStateTotal Time[pR5Ctx->m__r5State] +=
(getSimTime() — m_ coreStats.m__corelnStateTime[pR5Ctx->m_ r5State]) *
m__coreStats.m__coreInStateCount[pR5Ctx->m_ r5State];
m__coreStats.m__corelnStateTime[pR5Ctx->m__r5State] = getSimTime ();
m__coreStats.m__corelnStateTotal Time[state] +=
(getSimTime () — m__coreStats.m__corelnstateTime[state]) *
m__coreStats.m__coreInStateCount|[state];
m__coreStats.m__corelnStateTime[state] = getSimTime ();
m__coreStats.m__coreInStateCount[pR5Ctx->m_ r5State] —= 1;
m__coreStats.m__coreInStateCount[state] += 1;
PR5Ctx->m__r58tate = state;

void incrementalStateStats(double incStateStats[HTP__R5__STATE_ CNT]) {
for (int state = 0; state < HTP__R5__STATE_ CNT; state += 1) {
m__coreStats.m__corelnStateTotal Time[state] +=
(getSimTime () - m__coreStats.m__coreInStateTime[state]) *
m__coreStats.m__coreInStateCount([state];
m__coreStats.m__corelnStateTime[state] = getSimTime ();
incStateStats[state] += m__coreStats.m__corelnStateTotal Time[state] —
m__coreStats.m__corelnStatePrevTime[state];
m__coreStats.m__corelnStatePrevTime[state] =
m__coreStats.m__coreInStateTotal Time[state];

}

this feature, a host processor 110 can periodically access and
store the information for later use in generating user profil-
ing reports, for example. With the provided visibility, a
programmer can make changes to the application to improve
its performance.

[0264] All thread state changes can be monitored and
statistics kept on the amount of time in each state. The
processor (110 or 300) that is collecting the statistics pro-
vides a means for a separate, second processor (110 or 300)
to access and store the data. The data is collected as the
application is running such that a report can be provided to
an application analyst that shows the amount of time in each
state reported on a periodic basis, which provides detailed
visibility on a running application for later use by an
application analyst.

[0265] In accordance with the representative embodi-
ments, which may be implemented in hardware or software,
all of the information pertaining to a thread is stored in the
various registers of the thread memory 320, and can be
copied and saved in another location on a regular basis. A
counter can be utilized to capture the amount of time any
given thread spends in a selected state, e.g., a paused state.
For example, the host processor 110 can log or capture the
current state of all threads and thread counters (amount of
time spent in a state), or the differences (delta) between

[0266] Numerous advantages of the representative
embodiments are readily apparent. The representative appa-
ratus, system and methods provide for a computing archi-
tecture capable of providing high performance and energy
efficient solutions for compute-intensive kernels, such as for
computation of Fast Fourier Transforms (FFTs) and finite
impulse response (FIR) filters used in sensing, communica-
tion, and analytic applications, such as synthetic aperture
radar, 5G base stations, and graph analytic applications such
as graph clustering using spectral techniques, machine learn-
ing, 5G networking algorithms, and large stencil codes, for
example and without limitation.

[0267] As used herein, a “processor core” may be any type
of processor core, and may be embodied as one or more
processor cores configured, designed, programmed or oth-
erwise adapted to perform the functionality discussed
herein. As used herein, a “processor” 110 may be any type
of processor, and may be embodied as one or more proces-
sors configured, designed, programmed or otherwise
adapted to perform the functionality discussed herein. As the
term processor is used herein, a processor 110 or 300 may
include use of a single integrated circuit (“IC”), or may
include use of a plurality of integrated circuits or other
components connected, arranged or grouped together, such
as controllers, microprocessors, digital signal processors

US 2019/0340019 Al

(“DSPs™), array processors, graphics or image processors,
parallel processors, multiple core processors, custom ICs,
application specific integrated circuits (“ASICs™), field pro-
grammable gate arrays (“FPGAs”), adaptive computing ICs,
associated memory (such as RAM, DRAM and ROM), and
other ICs and components, whether analog or digital. As a
consequence, as used herein, the term processor or controller
should be understood to equivalently mean and include a
single IC, or arrangement of custom ICs, ASICs, processors,
microprocessors, controllers, FPGAs, adaptive computing
ICs, or some other grouping of integrated circuits which
perform the functions discussed herein, with associated
memory, such as microprocessor memory or additional
RAM, DRAM, SDRAM, SRAM, MRAM, ROM, FLASH,
EPROM or E*PROM. A processor 110 or 300, with asso-
ciated memory, may be adapted or configured (via program-
ming, FPGA interconnection, or hard-wiring) to perform the
methodology of the invention, as discussed herein. For
example, the methodology may be programmed and stored,
in a processor 300 with its associated memory (and/or
memory 125) and other equivalent components, as a set of
program instructions or other code (or equivalent configu-
ration or other program) for subsequent execution when the
processor 110 or 300 is operative (i.e., powered on and
functioning). Equivalently, when the processor 300 may
implemented in whole or part as FPGAs, custom ICs and/or
ASICs, the FPGAs, custom ICs or ASICs also may be
designed, configured and/or hard-wired to implement the
methodology of the invention. For example, the processor
110 or 300 may be implemented as an arrangement of analog
and/or digital circuits, controllers, microprocessors, DSPs
and/or ASICs, collectively referred to as a “processor” or
“controller”, which are respectively hard-wired, pro-
grammed, designed, adapted or configured to implement the
methodology of the invention, including possibly in con-
junction with a memory 125.

[0268] The memory 125, which may include a data reposi-
tory (or database), may be embodied in any number of
forms, including within any computer or other machine-
readable data storage medium, memory device or other
storage or communication device for storage or communi-
cation of information, currently known or which becomes
available in the future, including, but not limited to, a
memory integrated circuit (“IC”), or memory portion of an
integrated circuit (such as the resident memory within a
processor or processor IC), whether volatile or non-volatile,
whether removable or non-removable, including without
limitation RAM, FLASH, DRAM, SDRAM, SRAM,
MRAM, FeRAM, ROM, EPROM or E*PROM, or any other
form of memory device, such as a magnetic hard drive, an
optical drive, a magnetic disk or tape drive, a hard disk drive,
other machine-readable storage or memory media such as a
floppy disk, a CDROM, a CD-RW, digital versatile disk
(DVD) or other optical memory, or any other type of
memory, storage medium, or data storage apparatus or
circuit, which is known or which becomes known, depend-
ing upon the selected embodiment. The memory 125 may be
adapted to store various look up tables, parameters, coeffi-
cients, other information and data, programs or instructions
(of the software of the present invention), and other types of
tables such as database tables.

[0269] As indicated above, the processor 110 or 300 is
hard-wired or programmed, using software and data struc-
tures of the invention, for example, to perform the method-

Nov. 7,2019

ology of the present invention. As a consequence, the system
and related methods of the present invention, including the
various instructions, may be embodied as software which
provides such programming or other instructions, such as a
set of instructions and/or metadata embodied within a non-
transitory computer readable medium, discussed above. In
addition, metadata may also be utilized to define the various
data structures of a look up table or a database. Such
software may be in the form of source or object code, by way
of example and without limitation. Source code further may
be compiled into some form of instructions or object code
(including assembly language instructions or configuration
information). The software, source code or metadata of the
present invention may be embodied as any type of code,
such as C, C++, Matlab, SystemC, LISA, XML, Java, Brew,
SQL and its variations (e.g., SQL 99 or proprietary versions
of SQL), DB2, Oracle, or any other type of programming
language which performs the functionality discussed herein,
including various hardware definition or hardware modeling
languages (e.g., Verilog, VHDL, RTL) and resulting data-
base files (e.g., GDSII). As a consequence, a “construct”,
“program construct”, “software construct” or “software”, as
used equivalently herein, means and refers to any program-
ming language, of any kind, with any syntax or signatures,
which provides or can be interpreted to provide the associ-
ated functionality or methodology specified (when instanti-
ated or loaded into a processor or computer and executed,
including the processor 300, for example).

[0270] The software, metadata, or other source code of the
present invention and any resulting bit file (object code,
database, or look up table) may be embodied within any
tangible, non-transitory storage medium, such as any of the
computer or other machine-readable data storage media, as
computer-readable instructions, data structures, program
modules or other data, such as discussed above with respect
to the memory 125, e.g., a floppy disk, a CDROM, a
CD-RW, a DVD, a magnetic hard drive, an optical drive, or
any other type of data storage apparatus or medium, as
mentioned above.

[0271] The present disclosure is to be considered as an
exemplification of the principles of the invention and is not
intended to limit the invention to the specific embodiments
illustrated. In this respect, it is to be understood that the
invention is not limited in its application to the details of
construction and to the arrangements of components set
forth above and below, illustrated in the drawings, or as
described in the examples. Systems, methods and appara-
tuses consistent with the present invention are capable of
other embodiments and of being practiced and carried out in
various ways.

[0272] Although the invention has been described with
respect to specific embodiments thereof, these embodiments
are merely illustrative and not restrictive of the invention. In
the description herein, numerous specific details are pro-
vided, such as examples of electronic components, elec-
tronic and structural connections, materials, and structural
variations, to provide a thorough understanding of embodi-
ments of the present invention. One skilled in the relevant art
will recognize, however, that an embodiment of the inven-
tion can be practiced without one or more of the specific
details, or with other apparatus, systems, assemblies, com-
ponents, materials, parts, etc. In other instances, well-known
structures, materials, or operations are not specifically
shown or described in detail to avoid obscuring aspects of

US 2019/0340019 Al

embodiments of the present invention. In addition, the
various Figures are not drawn to scale and should not be
regarded as limiting.

[0273] Reference throughout this specification to “one
embodiment”, “an embodiment”, or a specific “embodi-
ment” means that a particular feature, structure, or charac-
teristic described in connection with the embodiment is
included in at least one embodiment of the present invention
and not necessarily in all embodiments, and further, are not
necessarily referring to the same embodiment. Furthermore,
the particular features, structures, or characteristics of any
specific embodiment of the present invention may be com-
bined in any suitable manner and in any suitable combina-
tion with one or more other embodiments, including the use
of selected features without corresponding use of other
features. In addition, many modifications may be made to
adapt a particular application, situation or material to the
essential scope and spirit of the present invention. It is to be
understood that other variations and modifications of the
embodiments of the present invention described and illus-
trated herein are possible in light of the teachings herein and
are to be considered part of the spirit and scope of the present
invention.

[0274] For the recitation of numeric ranges herein, each
intervening number there between with the same degree of
precision is explicitly contemplated. For example, for the
range of 6-9, the numbers 7 and 8 are contemplated in
addition to 6 and 9, and for the range 6.0-7.0, the number
6.0, 6.1, 62, 63, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, and 7.0 are
explicitly contemplated. In addition, every intervening sub-
range within range is contemplated, in any combination, and
is within the scope of the disclosure. For example, for the
range of 5-10, the sub-ranges 5-6, 5-7, 5-8, 5-9, 6-7, 6-8, 6-9,
6-10, 7-8, 7-9, 7-10, 8-9, 8-10, and 9-10 are contemplated
and within the scope of the disclosed range.

[0275] It will also be appreciated that one or more of the
elements depicted in the Figures can also be implemented in
a more separate or integrated manner, or even removed or
rendered inoperable in certain cases, as may be useful in
accordance with a particular application. Integrally formed
combinations of components are also within the scope of the
invention, particularly for embodiments in which a separa-
tion or combination of discrete components is unclear or
indiscernible. In addition, use of the term “coupled” herein,
including in its various forms such as “coupling” or “cou-
plable”, means and includes any direct or indirect electrical,
structural or magnetic coupling, connection or attachment,
or adaptation or capability for such a direct or indirect
electrical, structural or magnetic coupling, connection or
attachment, including integrally formed components and
components which are coupled via or through another
component.

[0276] With respect to signals, we refer herein to param-
eters that “represent” a given metric or are “representative”
of a given metric, where a metric is a measure of a state of
at least part of the regulator or its inputs or outputs. A
parameter is considered to represent a metric if it is related
to the metric directly enough that regulating the parameter
will satisfactorily regulate the metric. A parameter may be
considered to be an acceptable representation of a metric if
it represents a multiple or fraction of the metric.

[0277] Furthermore, any signal arrows in the drawings/
Figures should be considered only exemplary, and not
limiting, unless otherwise specifically noted. Combinations

Nov. 7,2019

of components of steps will also be considered within the
scope of the present invention, particularly where the ability
to separate or combine is unclear or foreseeable. The dis-
junctive term “or”, as used herein and throughout the claims
that follow, is generally intended to mean “and/or”, having
both conjunctive and disjunctive meanings (and is not
confined to an “exclusive or” meaning), unless otherwise
indicated. As used in the description herein and throughout
the claims that follow, “a”, “an”, and “the” include plural
references unless the context clearly dictates otherwise. Also
as used in the description herein and throughout the claims
that follow, the meaning of “in” includes “in” and “on”
unless the context clearly dictates otherwise.

[0278] The foregoing description of illustrated embodi-
ments of the present invention, including what is described
in the summary or in the abstract, is not intended to be
exhaustive or to limit the invention to the precise forms
disclosed herein. From the foregoing, it will be observed that
numerous variations, modifications and substitutions are
intended and may be effected without departing from the
spirit and scope of the novel concept of the invention. It is
to be understood that no limitation with respect to the
specific methods and apparatus illustrated herein is intended
or should be inferred. It is, of course, intended to cover by
the appended claims all such modifications as fall within the
scope of the claims.

It is claimed:

1. A processor, comprising:

a processor core adapted to execute a plurality of instruc-
tions; and

a core control circuit coupled to the processor core, the
core control circuit comprising:

an interconnection network interface coupleable to an
interconnection network to receive a work descriptor
data packet, the interconnection network interface
adapted to decode the received work descriptor data
packet into an execution thread having an initial pro-
gram count and any received argument, the intercon-
nection network interface further adapted to generate a
return work descriptor packet in response to the execu-
tion of a return instruction by the processor core;

a thread control memory comprising a plurality of regis-
ters, the plurality of registers comprising a thread
identifier pool register storing a plurality of thread
identifiers, a program count register storing a received
program count, a data cache, and a general purpose
register storing a received argument;

an execution queue coupled to the thread control memory;
and

a control logic and thread selection circuit coupled to the
execution queue, the control logic and thread selection
circuit adapted to assign an available thread identifier to
an execution thread, to automatically place the thread
identifier in the execution queue, and to periodically
select the thread identifier for execution by the proces-
sor core of an instruction of the execution thread, of the
plurality of instructions, the processor core using data
stored in the data cache or general purpose register, and
to end execution of a selected thread in response to the
execution of the return instruction by the processor
core.

2. The processor of claim 1, wherein the control logic and

thread selection circuit is further adapted to automatically
schedule an instruction, of the plurality of instructions,

US 2019/0340019 Al

corresponding to the initial program count for execution by
the processor core in response to the received work descrip-
tor data packet.

3. The processor of claim 1, wherein the control logic and
thread selection circuit is further adapted to automatically
schedule an instruction, of the plurality of instructions, for
execution by the processor core in response to a received
event data packet.

4. The processor of claim 3, wherein the interconnection
network interface is further adapted to receive an event data
packet, and to decode the received event data packet into an
event identifier and any received argument.

5. The processor of claim 1, wherein the interconnection
network interface is further adapted to store the execution
thread having the initial program count and any received
argument in the thread control memory using the thread
identifier as an index to the thread control memory.

6. The processor of claim 1, wherein the interconnection
network interface is further adapted to generate and to
receive a point-to-point event data message and a broadcast
event data message.

7. The processor of claim 1, wherein the processor core is
adapted to execute a fiber create instruction and wherein the
core control circuit is further adapted to generate one or
more work descriptor data packets to another processor or
hybrid threading fabric circuit for execution of a correspond-
ing plurality of execution threads.

8. The processor of claim 7, wherein the control logic and
thread selection circuit is further adapted to reserve a pre-
determined amount of memory space in a thread control
memory to store return arguments.

9. The processor of claim 1, wherein the control logic and
thread selection circuit is further adapted to determine an
event number corresponding to a received event data packet
and to use an event mask stored in an event mask register to
respond to a received event data packet.

10. The processor of claim 1, wherein the core control
circuit further comprises:

a network response memory;

an instruction cache coupled to the control logic and

thread selection circuit; and

a command queue storing a command to generate the

return work descriptor packet.

11. The processor of claim 1, wherein the control logic
and thread selection circuit is further adapted to assign a
valid state to the thread identifier of the execution thread,
and for as long as the valid state remains, to periodically
select the thread identifier for execution of an instruction of
the execution thread by the processor core until completion
of'the execution thread, and to pause thread execution by not
returning the thread identifier to the execution queue when
it has a pause state.

12. The processor of claim 1, wherein the thread control
memory further comprises a register selected from the group
consisting of: a thread state register; a pending fiber return
count register; a return argument buffer or register; a return
argument link list register; a custom atomic transaction
identifier register; an event received mask register; an event
state register; and combinations thereof.

13. The processor of claim 1, wherein the control logic
and thread selection circuit is further adapted to assign a
pause state to the execution thread in response to the
processor core executing a memory load instruction or a
memory store instruction.

Nov. 7,2019

14. The processor of claim 1, wherein the control logic
and thread selection circuit is further adapted to change the
status of a thread identifier from pause to valid in response
to a received event data packet to resume execution of a
corresponding execution thread or in response to an event
number of a received event data packet to resume execution
of a corresponding execution thread.

15. The processor of claim 1, wherein the control logic
and thread selection circuit is further adapted to end execu-
tion of a selected thread and to return a corresponding thread
identifier of the selected thread to the thread identifier pool
register in response to the execution of the return instruction
by the processor core.

16. The processor of claim 16, wherein the control logic
and thread selection circuit is further adapted to clear the
registers of the thread control memory indexed by the
corresponding thread identifier of the selected thread in
response to the execution of the return instruction by the
processor core.

17. The processor of claim 1, wherein the execution queue
further comprises:

a first priority queue; and

a second priority queue.

18. The processor of claim 17, wherein the control logic
and thread selection circuit further comprises:

thread selection control circuitry coupled to the execution

queue, the thread selection control circuitry adapted to
select a thread identifier from the first priority queue at
a first frequency and to select a thread identifier from
the second priority queue at a second frequency, the
second frequency lower than the first frequency.

19. A processor, comprising:

a processor core adapted to execute a plurality of instruc-

tions; and

a core control circuit coupled to the processor core, the

core control circuit comprising:

an interconnection network interface coupleable to an

interconnection network to receive a work descriptor
data packet, to decode the received work descriptor
data packet into an execution thread having an initial
program count and any received argument, the inter-
connection network interface further adapted to gener-
ate a return work descriptor packet in response to the
execution of a return instruction by the processor core;

a thread control memory coupled to the interconnection

network interface and comprising a plurality of regis-
ters, the plurality of registers comprising a thread
identifier pool register storing a plurality of thread
identifiers, a thread state register, a program count
register storing the received program count, a data
cache, and a general purpose register storing the
received argument;

an execution queue coupled to the thread control memory;

a control logic and thread selection circuit coupled to the

execution queue and to the thread control memory, the
control logic and thread selection circuit adapted to
assign an available thread identifier to the execution
thread, to place the thread identifier in the execution
queue, to select the thread identifier for execution, to
access the thread control memory using the thread
identifier as an index to select the initial program count
for the execution thread, and to end execution of a
selected thread in response to the execution of the
return instruction by the processor core; and

US 2019/0340019 Al Nov. 7,2019

27
an instruction cache coupled to the processor core and to a network response memory coupled to the intercon-
the control logic and thread selection circuit to receive nection network interface;
the initial program count and provide to the processor a control logic and thread selection circuit coupled to
core a corresponding instruction for execution, of the the execution queue, to the thread control memory,
plurality of instructions. and to the instruction cache, the control logic and
20. A processor, comprising: thread selection circuit adapted to assign an available
a core control circuit comprising: thread identifier and an initial valid state to the
an interconnection network interface coupleable to an execution thread, to place the thread identifier in the
interconnection network to receive a call work execution queue, to select the thread identifier for
descriptor data packet, to decode the received work execution, to access the thread control memory using
descriptor data packet into an execution thread hav- the thread identifier as an index to select the initial
ing an initial program count and any received argu- program count for the execution thread, and to end
ment, and to encode a work descriptor packet for execution of a selected thread in response to the
transmission to other processing elements, the inter- execution of the return instruction by the processor
connection network interface further adapted to gen- core;

erate a return work descriptor packet in response to
the execution of a return instruction by the processor
core;

a thread control memory coupled to the interconnection
network interface and comprising a plurality of reg-
isters, the plurality of registers comprising a thread
identifier pool register storing a plurality of thread
identifiers, a thread state register, a program count
register storing the received program count, and a
general purpose register storing the received argu-
ment;

an execution queue coupled to the thread control
memorys; % ok % %

an instruction cache coupled to the control logic and
thread selection circuit to receive the initial program
count and provide a corresponding instruction for
execution; and

a command queue storing one or more commands for
generation of one or more work descriptor packets;
and

a processor core coupled to the instruction cache and to

the command queue of the core control circuit, the

processor core adapted to execute the corresponding

instruction.

