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eral /O device can be leveraged for machine learning (ML)
applications. While an I/O device can be used as an ML
accelerator, these accelerators previously only used an /O
domain. In the embodiments herein, compute resources can

(2006.01) be split between the /O domain and the coherent domain
(2006.01) where a ML engine is in the /O domain and a ML model is
(2006.01) in the coherent domain. An advantage of doing so is that the
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MACHINE LEARNING MODEL UPDATES
TO ML ACCELERATORS

TECHNICAL FIELD

[0001] Examples of the present disclosure generally relate
to executing a machine learning model in a peripheral I/O
device that supports both I/O and coherent domains.

BACKGROUND

[0002] In the traditional I/O model, a host computing
system interfaces with its peripheral I/O devices when
executing accelerator tasks or functions using custom [/O
device drivers unique to the peripheral /O device. Having
multiple 1/O devices or even multiple instances of the same
1/0 device means that the host interfaces with multiple 1/O
device drivers or multiple running copies of the same 1/O
device driver. This can result in security and reliability
issues since the I/O device drivers are typically developed
by the vendor supplying the peripheral I/O devices but must
be integrated with all the software and hardware in the host
computing system.

[0003] Meanwhile, the hardware cache-coherent shared-
memory multiprocessor paradigm leverages a generic,
instruction set architecture (ISA)-independent, model of
interfacing in the execution tasks or functions on multipro-
cessor CPUs. The generic, ISA-independent (e.g., C-code)
model of interfacing scales with both the number of pro-
cessing units and the amount of shared memory available to
those processing units. Traditionally, peripheral /O devices
have been unable to benefit from the coherent paradigm used
by CPUs executing on the host computing system.

SUMMARY

[0004] Techniques for executing a machine learning
model using I/O and coherent domains in a peripheral device
are described. One example is a peripheral [/O device that
includes a hybrid gateway configured to communicatively
couple the peripheral I/O device to a host, I/O logic com-
prising a machine learning (ML) engine assigned to an I/O
domain, and coherent logic comprising a ML model
assigned to a coherent domain where the ML model shares
the coherent domain with compute resources in the host
[0005] One example described herein is a computing
system that includes a host and a peripheral I/O device. The
host includes a memory storing a reference ML, model and
a plurality of CPUs forming, along with the memory, a
coherent domain. The I/O device includes 1/O logic com-
prising a ML engine assigned to an I[/O domain and coherent
logic comprising a ML model assigned to the coherent
domain along with the memory and the plurality of CPUs in
the host.

[0006] One example described herein is a method that
includes updating a subportion of a reference ML, model in
memory associated with a host, updating a subset of a
cached MLL model in coherent logic associated with a
peripheral I/O device coupled to the host where the memory
of the host and the coherent logic of the peripheral 1/O
device are in a same coherent domain, retrieving the updated
subset of the cached ML model from the coherent domain,
and processing a ML data set according to parameters in the
retrieved subset of the cached ML model using an ML
engine where the ML engine is in I/O logic in the peripheral
1/0 device assigned to an 1/O domain.
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BRIEF DESCRIPTION OF DRAWINGS

[0007] So that the manner in which the above recited
features can be understood in detail, a more particular
description, briefly summarized above, may be had by
reference to example implementations, some of which are
illustrated in the appended drawings. It is to be noted,
however, that the appended drawings illustrate only typical
example implementations and are therefore not to be con-
sidered limiting of its scope.

[0008] FIG. 1 is a block diagram of a host coupled to a
peripheral /O device with I/O and coherent domains,
according to an example.

[0009] FIG. 2 is a block diagram of a peripheral I/O device
with programmable logic, memory, and a network on a chip
logically divided into 1/O and coherent domains, according
to an example.

[0010] FIG. 3 is a block diagram of a peripheral I/O device
with a machine learning model and a machine learning
engine, according to an example.

[0011] FIG. 4 is a flowchart for updating a machine
learning model in a coherent domain of an [/O device,
according to an example.

[0012] FIG. 5 is a block diagram of an /O expansion box
containing multiple I/O devices, according to an example.
[0013] FIG. 6 is a flowchart for updating a machine
learning model cached in multiple I/O devices, according to
an example.

[0014] FIG. 7 is a flowchart for using a recursive learning
algorithm to update a machine learning model, according to
an example.

[0015] FIG. 8 illustrates a field programmable gate array
implementation of a programmable IC according to an
example.

DETAILED DESCRIPTION

[0016] Various features are described hereinafter with
reference to the figures. It should be noted that the figures
may or may not be drawn to scale and that the elements of
similar structures or functions are represented by like ref-
erence numerals throughout the figures. It should be noted
that the figures are only intended to facilitate the description
of the features. They are not intended as an exhaustive
description of the description or as a limitation on the scope
of the claims. In addition, an illustrated example need not
have all the aspects or advantages shown. An aspect or an
advantage described in conjunction with a particular
example is not necessarily limited to that example and can
be practiced in any other examples even if not so illustrated,
or if not so explicitly described.

[0017] Examples herein describe a peripheral I/O device
with a hybrid gateway that permits the device to have both
1/0O and coherent domains. That is, the I/O device can enjoy
the benefits of the traditional I/O model where the I/O device
driver manages some of the compute resources in the /O
device as well as the benefits of adding other compute
resources in the I/O device to the same coherent domain
used by the processors (e.g., central processing units
(CPUs)) in the host computing system. As a result, the
compute resources in the coherent domain of the peripheral
/O device can communicate with the host in a similar
manner as CPU-to-CPU communication in the host. This
means the compute resources can take advantage of coher-
ency type functions such as direct communication, more



US 2020/0341941 Al

efficient memory usage, non-uniform memory access
(NUMA) awareness, and the like. At the same time, the
compute resources in the /O domain can benefit from the
advantages of the traditional I/O device model which pro-
vides efliciencies when doing large memory transfers
between the host and the /O device (e.g., direct memory
access (DMA)).

[0018] The dual domains in the peripheral I/O device can
be leveraged for machine learning (ML) applications. While
an I/O device can be used as an ML accelerator, these
accelerators previously only used an /O domain. In the
embodiments herein, compute resources can be split
between the 1/O domain and the coherent domain where a
ML engine is assigned to the 1/O domain and a ML, model
is stored in the coherent domain. An advantage of doing so
is that the ML. model can be coherently updated using a
reference ML model stored in the host. That is, several types
of ML applications benefit from being able to quickly (e.g.,
in real-time or with low latency) update the ML, model or
models in the /O device. Storing the ML model in the
coherent domain (instead of the /O domain), means the
cache-coherent shared-memory multiprocessor paradigm
can be used to update the ML model which is much faster
than relying on the traditional I/O domain model (e.g., a
direct memory access (DMA)). The ML engine, however,
can execute in the I/O domain of the peripheral I/O device.
This is beneficial since the ML engine often processes large
amounts of ML data which is more efficiently transferred
between the /O device and the host using DMA rather than
a cache-coherent paradigm.

[0019] FIG. 1 is a block diagram of a host 105 coupled to
a peripheral 1/O device 135 with [/O and coherent domains,
according to an example. The computing system 100 in FIG.
1 includes the host 105 which is communicatively coupled
to the peripheral I/O device 135 using a PCle connection
130. The host 105 can represent a single computer (e.g., a
server) or multiple physical computing systems that are
interconnected. In any case, the host 105 includes an oper-
ating system 110, multiple CPUs 115 and memory 120. The
OS 110 can be any OS capable of performing the functions
described herein. In one embodiment, the OS 110 (or a
hypervisor or kernel) establishes a cache-coherent shared-
memory multiprocessor paradigm for the CPUs 115 and
memory 120. In one embodiment, the CPUs 115 and the
memory 120 are OS managed (or kernel/hypervisor man-
aged) to form a coherent domain that follows the cache-
coherent shared-memory multiprocessor paradigm. How-
ever, as mentioned above, the traditional I/0 model means
the peripheral /O device 135 (and all its compute resources
150) is excluded from the coherent domain established in the
host 105. Instead, the host 105 relies on an I/O device driver
125 stored in its memory 120 which manages the compute
resources 150 in the /O device 135. That is, the peripheral
1/0 device 135 is controlled by, and is accessible through,
the I/O device driver 125.

[0020] In the embodiments herein, the shared-memory
multiprocessor paradigm is available to the peripheral 1/O
device 135 along with all the performance advantages,
software flexibility, and reduced overhead of that paradigm.
Further, adding compute resources in the I/O device 135 to
the same coherent domain as the CPUs 115 and memory 120
allows for a generic, ISA-independent development envi-
ronment. As shown in FIG. 1, some of the compute
resources 150 in the peripheral I/O device 135 are assigned
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to a coherent domain 160 which is the same coherent domain
160 used by the compute resources in the host 105—e.g., the
CPUs 115 and the memory 120.

[0021] While the compute resources 150C and 150D are
logically assigned to the coherent domain 160, the compute
resources 150A and 150B are assigned to an I[/O domain
145. As such, the /O device 135 benefits from having
compute resources 150 assigned to both domains 145, 160.
While the 1/O domain 145 provides efficiencies when doing
large memory transfers between the host 105 and the /O
device 135, the coherent domain 160 provides the perfor-
mance advantages, software flexibility, and reduced over-
head mentioned above. By logically dividing the hardware
compute resources 150 (e.g., programmable logic, a network
on the chip (NoC), data processing engines, and/or memory)
into the I/O domain 145 and the coherent domain 160, the
1/0O device 135 can benefit from both types of paradigms.
[0022] To enable the host 105 to send and receive both I/O
and coherent data traffic, the peripheral I/O device 135
includes a hybrid gateway 140 which separates the data
received on the PCle connection 130 into /O data traffic and
coherent data traffic. The I/O data traffic is forwarded to the
compute resources 150A and 150B in the I/O domain 145
while the coherent data traffic is forwarded to the compute
resources 150C and 150D in the coherent domain 160. In
one embodiment, the hybrid gateway 140 can process the
1/O and coherent data traffic in parallel so that the compute
resources 150 in the I/O domain 145 can execute in parallel
with the compute resources 150 in the coherent domain 160.
That is, the host 105 can assign tasks to both the compute
resources 150 in the /O domain 145 and in the coherent
domain 160 which can execute those tasks in parallel.
[0023] The peripheral /O device 135 can be many differ-
ent types of [/O devices such as a pluggable card (which
plugs into an expansion slot in the host 105 or a separate
expansion box), a system on a chip (SoC), a graphics
processing unit (GPU), a field programmable gate array
(FPGA) and the like. Thus, while many of the embodiments
discuss an I/O device 135 that includes programmable logic
(e.g., a programmable logic array), the embodiments can be
applied to an I/O device 135 that does not have program-
mable logic but contains solely hardened circuit (which may
be software programmable). Further, while the embodiments
herein discuss dividing the compute resources 150 into two
domains, in other embodiments the hybrid gateway 140 can
be modified to support additional domains or multiple
sub-domains within the I/O and coherent domains 145, 160.
[0024] In one embodiment, the hybrid gateway 140 and
the host 105 use a coherent interconnect protocol to extend
the coherent domain 160 into the peripheral I/O device 135.
For example, the hybrid gateway 140 may use cache coher-
ent interconnect for accelerators (CCIX) for extending the
coherent domain 160 within the device 135. CCIX is a
high-performance, chip-to-chip interconnect architecture
that provides a cache coherent framework for heterogeneous
system architectures. CCIX brings kernel managed seman-
tics to the peripheral device 135. Cache coherency is auto-
matically maintained at all times between the CPU(s) on the
host 105 and the various other accelerators in the system
which may be disposed on any number of peripheral I/O
devices.

[0025] However, other coherent interconnect protocols
may be used besides CCIX such as QuickPath Interconnect
(QPI), Omni-Path, Infinity Fabric, NVLink, or OpenCAPI to
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extend the coherent domain in the host 105 to include
compute resources in the peripheral I/O device 135. That is,
the hybrid gateway can be customized to support any type of
coherent interconnect protocol which facilitates forming a
coherent domain that includes the compute resources in the
1/O device 135.

[0026] FIG. 2 is a block diagram of a peripheral I/O device
135 with a programmable logic (PL) array 205, memory
blocks 220, and a NoC 230 logically divided into 1/O and
coherent domains 145, 160, according to an example. In this
example, the PL array 205 is formed from a plurality of PL.
blocks 210. These blocks can be individually assigned to the
1/0O domain 145 or the coherent domain 160. That is, the PL
blocks 210A and 210B are assigned to the /O domain 145
while the PL blocks 210C and 210D are assigned to the
coherent domain 160. In one embodiment, the set of PL
blocks 210 assigned to the [/O domain is mutually exclusive
to the set of PL blocks 210 assigned to the coherent domain
such that there is no overlap between the blocks (e.g., no PL.
block 210 is assigned to both the I/O and coherent domains).
[0027] In one embodiment, the assighment of the hard-
ware resources to either the I/O domain 145 or the coherent
domain 160 does not affect (or indicate) the physical loca-
tion of the hardware resources in the 1/O device 135. For
example, the PL blocks 210A and 210C may be assigned to
different domains even if these blocks neighbor each other
in the PL array 205. Thus, while the physical location of the
hardware resources in the I/O device 135 may be considered
when logically assigning them to the [/O domain 145 and the
coherent domain 160, it is not necessary.

[0028] The I/O device 135 also includes memory control-
lers 215 which are assigned to the I/O domain 145 and the
coherent domain 160. In one embodiment, because of the
physical interconnection between the memory controllers
215 and the corresponding memory blocks 220, assigning
one of the memory controllers 215 to either the /O or
coherent domain 145, 160 means all the memory blocks 220
connected to the memory controller 215 are also assigned to
the same domain. For example, the memory controllers 215
may be coupled to a fix set of memory blocks 220 (which are
not coupled to any other memory controller 215). Thus, the
memory blocks 220 may be assigned to the same domain as
the memory controller 215 to which they are coupled.
However, in other embodiments, it may be possible to assign
memory blocks 220 coupled to the same memory controller
215 to different domains.

[0029] In one embodiment, the NoC includes interface
elements which permit hardware elements in the /O device
135 (e.g., configurable data processing engines, the memory
blocks 220, the PL blocks 210, and the like) to transmit and
receive data using the NoC 230. In one embodiment, rather
than using programmable logic to form the NoC 230, some
or all of the components forming the NoC are hardened. In
any case, the NoC 230 can be logically divided between the
/O domain 145 and the coherent domain 160. In one
embodiment, instead of assigning different portions of the
NoC 230 to the two domains, the parameters of the NoC are
configured to provide different service levels for the data
traffic corresponding to the I/O domain 145 and the coherent
domains 160. That is, the data traffic for both domains
flowing in the NoC 230 may use the same hardware ele-
ments (e.g., switches and communication links) but may be
treated differently by the hardware elements. For example,
the NoC 230 can provide different quality of service (QoS),
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latency, bandwidth, for the two different domains. Further,
the NoC 230 can also isolate the traffic of the /O domain
145 from the traffic of the coherent domain 160 for security
reasons.

[0030] In another embodiment, the NoC 230 can prevent
the compute resources in the I/O domain 145 from commu-
nicating with the compute resources in the coherent domain
160. However, in one embodiment it may be advantageous
to permit the compute resources assigned to the /O domain
145 to communicate with compute resources assigned to the
coherent domain 160. Previously, this communication
would occur between the I/O device driver 125 and the OS
in the host 105. Instead, inter-domain communication can
occur within the I/O device 135 using the NoC 230 (if the
compute resources are far apart in the device 135) or a
fabric-to-fabric connection in the PL array 205 (if two PL
blocks 210 assigned to the two different domains are close
together and need to communicate).

[0031] FIG. 3 is a block diagram of a peripheral I/O device
135 with a ML model 345 and a ML engine 335, according
to an example. In FIG. 3, the host 105 is coupled to a host
attached memory 305 which stores ML data and results 310
and a reference ML model 315. The ML data and results 310
include the data that the host 105 sends to the peripheral 1/O
device 135 (e.g., a ML accelerator) for processing as well as
the results the host 105 receives back from the 1/O device
135. The reference ML model 315, on the other hand,
defines the layers and parameters of the ML algorithm that
the peripheral /O device 135 uses for processing the ML
data. The reference ML model 315 can also include a
plurality of ML models, each defining the layers and param-
eters of a plurality of ML algorithms to be used for pro-
cessing the ML data such that the host receives results across
the ML algorithms. The embodiments herein are not limited
to a particular ML model 315 and can include binary
classification, multiclass classification, regression, neural
networks (e.g., convolutional neural networks (CNN) or
recurrent neural network (RNN)), and the like. The ML
model 315 may define the number of layers, how the layers
are interconnected, weights for each layer, and the like.
Further, while the host attached memory 305 is shown as
being separate from the host 105, in other embodiments, the
ML data and results 310 and the ML model 315 are stored
in memory within the host 105.

[0032] The host 105 can update the reference ML model
315. For example, as more data becomes available, the host
105 may change some of the weights in a particular layer of
the reference ML model 315, change how the layers are
interconnected, or add/delete layers in the ML, model 315.
As discussed below, these updates in the reference ML
model 315 can be mirrored in the ML, model 345 stored (or
cached) in the peripheral [/O device 135.

[0033] The hybrid gateway 140 permits the coherent
domain of the host 105 to extend to include hardware
elements in the peripheral I/O device 135. In addition, the
hybrid gateway 140 establishes an [/O domain which can
use the traditional /O model where the hardware resources
assigned to this domain are managed by the I/O device
driver. To do so, the hybrid gateway includes an I/O and
DMA engine 320 which transfers [/O domain traffic between
the host 105 and the /O domain assigned hardware in the
peripheral /O device 135, and an update agent 325 which
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transfers coherent domain traffic between the host 105 and
the coherent domain assigned hardware in the peripheral I/O
device 135.

[0034] In this example, the hybrid gateway 140 (and the
1/0 and DMA engine 320 and the update agent 325) is
connected to the NoC 230 which facilitates communication
between the gateway 140 and the I/O logic 330 and coherent
logic 340. The I/O logic 330 represents hardware elements
in the peripheral I/O device 135 assigned to the I/O domain
while the coherent logic 340 represents hardware elements
assigned to the coherent domain. In one embodiment, the
1/0 logic 300 and the coherent logic 340 includes the PL
blocks 210 and memory blocks 220 illustrated in FIG. 2.
That is, a portion of the PL blocks 210 and memory blocks
220 form the I/O logic 330 while another portion forms the
coherent logic 340. However, in another embodiment, the
1/0 logic 300 and coherent logic 340 may not include any PL.
but include hardened circuitry (which may be software
programmable). For example, the peripheral [/O device 135
may be an ASIC or specialized processor which does not
include PL.

[0035] As shown, the ML engine 335 is executed using the
1/0 logic 330 while the ML model 345 is stored in the
coherent logic 340. As such, the ML model 345 is in the
same coherent domain as the host attached memory 305 and
the CPUs in the host 105 (not shown). In contrast, the ML
engine 335 is not part of the coherent domain, and thus, is
not coherently updated when the data stored in the memory
305 is updated or otherwise changed.

[0036] In addition, the peripheral I/O device 135 is
coupled to an attached memory 350 which stores the ML
model 345 (which may be a cached version of the ML model
345 stored in the coherent logic 340). For example, the
peripheral 1/O device 135 may not store the entire ML, model
345 in the coherent logic 340. Rather, the entire ML, model
345 may be stored in the attached memory 350 while certain
portions of the ML, model 345 that are currently being used
by the ML engine 335 are stored in the coherent logic 340.
In any case, the memory elements in the attached memory
350 storing the ML, model 345 are part of the same coherent
domain as the coherent logic 340 and the host 105.

[0037] The ML data set 355, in contrast, is stored in
memory elements assigned to the /O domain. For example,
the ML engine 335 may retrieve data stored in the ML data
set 355, process the data according to the ML model 345,
and then store the processed data back into the attached
memory 350. Thus, in this manner, the ML engine 335 and
the ML data set 355 are assigned to hardware elements in the
1/0 domain while the ML. model 345 is assigned to hardware
elements in the coherent domain.

[0038] While FIG. 3 illustrates one ML engine and one
ML model, the peripheral I/O device 135 can execute any
number of ML engines and models. For example, a first ML,
model may be good at recognizing Object A in captured
images in most instances, except when the image includes
both Object A and Object B. However, a second ML model
does not recognize Object A in many cases but is good at
distinguishing between Object A and Object B. Thus, a
system administrator may instruct the ML engine 335 to
execute two different ML, models (e.g., there are two ML
models stored in the coherent logic 340). Further, executing
the ML engine 335 and the ML model 345 may only require
a fraction of the available compute resources in the periph-
eral /O device 135. In that case, the administrator may
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execute another ML engine with its corresponding ML
model in the device 135. Put differently, the /O logic 330
may execute two ML engines while the coherent logic 340
stores two ML models. These pairs of ML engines/models
may execute independently of each other.

[0039] Further, the assignment of the compute resources
into the 1/O and coherent domains may be dynamic. For
example, a system administrator may determine there are not
enough resources for the ML engine 335 in the [/O domain
and reconfigure the peripheral /O device 135 such that
compute resources previously assigned to the coherent
domain are now assigned to the I/O domain. For example,
PL and memory blocks previously assigned to the coherent
logic 340 may be reassigned to the I/O logic 330—e.g., the
administrator may want to execute two ML engines or
require the ML engine 335 to perform two ML models. The
1/O device 135 can be reconfigured with the new assign-
ments and the hybrid gateway 140 can simultaneously
support operation of the I/O and coherent domains.

[0040] FIG. 4 is a flowchart of a method 400 for updating
a ML model in a coherent domain of an /O device,
according to an example. At block 405, the host updates a
portion of the reference ML, model in its memory. For
example, the OS in the host (or a software application in the
host) may perform a training algorithm to change or tweak
the reference model. In one embodiment, the ML model is
used to evaluate images to detect a particular Object. When
the Object is detected by the ML engine, the host may re-run
the training algorithm which results in an update to the ML
model. That is, because detecting the Object in an image can
improve the training data, the host can decide to re-run the
training algorithm (or a portion of the training algorithm)
which may tweak the reference ML, model. For example, the
host may change the weights corresponding to one or more
layers in the reference ML model, or change the manner in
which the layers are interconnected. In another example, the
host may add or delete layers in the reference ML model.
[0041] Inone embodiment, the host updates only a portion
of the reference ML model. For example, while the host
changes the weights corresponding to one or more of the
layers, the remaining layers in the reference ML models are
unchanged. As such, much of the data defining the ML
model may remain unchanged after re-running the training
algorithm. For example, the reference ML, model may have
20 Mbytes of data total, but the update may affect only 10%
of that data. Under the traditional I/O device paradigm, an
update to the reference ML model, regardless of how small,
requires the host to transmit the entire ML model (the
updated data and the data that was not updated) to the
peripheral /O device. However, by storing the ML, model in
the coherent domain of the peripheral /O device, transmit-
ting the entire reference ML model to the I/O device each
time there is an update can be avoided.

[0042] At block 410, the host updates only a subset of the
cached ML model for the peripheral I/O device. More
particularly, the host transmits to the peripheral device the
data that was updated in the reference ML model at block
410. This transfer occurs within the coherent domain, and
thus, can behave like a transfer between memory elements
within the CPU-memory complex of the host. This is
especially useful in ML or artificial intelligence (Al) systems
that rely on frequent (or low latency) updates to the ML
models in the ML accelerators (e.g., the peripheral I/O
device).
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[0043] In another example, placing the ML model in the
coherent domain of the /O device may be useful when the
same ML model is distributed across many different periph-
eral /O devices. That is, the host may be attached to multiple
peripheral /O devices that all have the same ML models.
Thus, rather than having to update the entire reference ML
model, the coherent domain can be leveraged to update only
the data that was changed in the reference ML model at each
of the peripheral 1/O devices.

[0044] At block 415, the ML engine retrieves the updated
portion of the ML, model in the peripheral /O device from
the coherent domain. For example, although the NoC may
be able to keep the /O domain and coherent domain traffic
separate, the NoC can facilitate communication between
hardware elements assigned to the I/O domain and the
coherent domain when desired. But the NoC is just one of
the transport mechanisms that can facilitate communication
between coherency and /0O domain. Other examples include
direct PL-to-PL messages or wire signaling, and communi-
cation via metadata written to a shared memory buffer
between the two domains. Thus, the peripheral /O device
can transfer data from the ML model to the ML engine.
Doing so enables the ML engine to process the ML data set
according to the ML, model.

[0045] In one embodiment, the ML engine may retrieve
only a portion of the ML. model during any particular time.
For example, the ML engine may retrieve the parameters
(e.g., weights) for one layer and configure the /O logic to
execute that layer in the ML, model. Once complete, the ML
engine can retrieve the parameters for the next layer of the
ML model, and so forth.

[0046] At block 420, the /O logic in the peripheral 1/O
device processes the ML data set using the ML engine in the
1/0 domain according to the parameters in the ML, model.
The ML engine can use an /O domain technique such as
DMA to receive the ML data set from the host. The ML data
set can be stored in the peripheral /O device or in an
attached memory.

[0047] At block 425, the ML engine returns results of
processing the ML data set using the parameters in the ML
model to the host. For example, once finished, the DMA
engine in the hybrid gateway can initiate a DMA write to
transfer the processed data from the peripheral /O device
(or the attached memory) to the host using the /O device
driver.

[0048] FIG. 5 is a block diagram of an [/O expansion box
500 containing multiple /O devices 135, according to an
example. In FIG. 5, the host 105 communicates with a
plurality of peripheral /O devices 135 which may be
separate ML accelerators (e.g., separate accelerator cards).
In one embodiment, the host 105 can assign different task to
the different peripheral 1/O devices 135. For example, the
host 105 may send different ML data sets to each of the
peripheral /O devices 135 for processing.

[0049] In this embodiment, the same ML model 525 is
executed on all the peripheral I/O devices 135. That is, the
reference ML, model 315 in the host 105 is provided to each
ofthe /O devices 135 so that these devices 135 use the same
ML model 525. As an example, the host 105 may receive
feeds from a plurality of cameras (e.g., multiple cameras for
a self-driving vehicle or multiple cameras in an area of a
city). To process the data generated by the cameras timely,
the host 105 may chunk up the data and send different feeds
to different peripheral /O devices 135 so that these devices
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135 can evaluate the data sets in parallel using the same ML
model 525. Thus, using an I/O expansion box 500 with
multiple peripheral I/O devices 135 may be preferred in ML,
or Al environments were quick response time is important or
desired.

[0050] In addition to storing the ML models 525 in the
peripheral /O device 135, the expansion box 500 includes
a coherent switch 505 that is separate from the /O devices
135. Nonetheless, the coherent switch 505 is also in the same
coherent domain as the hardware resources in the host 105
and caches 520 in the peripheral /O devices 135. In one
embodiment, the cache 510 in the coherent switch 505 is
another layer of cache that is between the caches 520 in the
peripheral 1/O devices 135 and the memory elements storing
the reference ML Model 315 according to a NUMA arrange-
ment.

[0051] While the host 105 could transmit N copies of the
reference ML, model 315 (where N is the total number of
peripheral I/O devices 135 in the containers) to each device
135 when a portion of the reference ML model 315 is
updated, because the caches 520 and 510 are in the same
coherent domain, only the updated portion of the reference
ML model 315 is transferred to the cache 510 and the cache
520. As such, the arrangement in FIG. 5 is able to scale
better than embodiments where the ML models 525 are
stored in hardware resources assigned to the /O domain of
the peripheral I/O devices 135.

[0052] FIG. 6 is a flowchart of a method 600 for updating
a machine learning model cached in multiple I/O devices,
according to an example. In one embodiment, the method
600 is used to update multiple copies of ML models that are
stored in multiple peripheral /O devices coupled to a host,
like the example illustrated in FIG. 5. At block 605, the host
updates a portion of the reference ML model stored in host
memory. The reference ML model can be stored in local
memory or in attached memory. In either case, the reference
ML model is part of a coherent domain shared by, for
example, the CPUs in the host.

[0053] At block 610, the method 600 branches depending
on whether a push model or a pull model is used to update
the ML models. If a pull model is used, the method 600
proceeds to block 615 where the host invalidates a subset of
the cached ML models in the switch and peripheral 1/O
devices. That is, in FIG. 5, the host 105 invalidates the ML
model 515 stored in the cache 510 in the switch 505 and the
ML models 525 stored in the caches 520 in the peripheral
1/O devices 135. Because the ML models 525 are in the same
coherent domain as the host 105, the host 105 does not need
to invalidate all the data of the MLL models 525, but only the
subset that has been changed in response to updating the
reference ML model 315.

[0054] At block 620, the update agent in the peripheral I/O
devices retrieves the updated portion of the reference ML
model from the host memory. In one embodiment, block 620
is performed in response to the ML engine (or any other
software or hardware actor in the coherent switch or the
peripheral I/O devices) attempting to access the invalidated
subset of the ML models. That is, if the ML engine attempts
to retrieve data from the ML model in the cache that was not
invalidated, the requested data is provided to the ML engine.
However, if the ML engine attempts to retrieve data from the
invalidated portion of the cache (which is also referred to as
a cache miss), doing so triggers block 620.
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[0055] In one embodiment, after determining the
requested data has been invalidated on the local cache in the
peripheral I/O device (e.g., the cache 520), the update agent
first attempts to determine whether the requested data is
available in the cache in the coherent switch (e.g., the cache
510). However, as part of performing block 615, the host
invalidates the same subset of the cache in both the coherent
switch and the peripheral I/O devices 135. Doing so forces
the update agent to retrieve the updated data from the
reference ML model stored in the host.

[0056] In the pull model, the updated data in the reference
ML model is retrieved after there is a cache miss (e.g., when
the ML engine requests the invalidated cache entry from the
ML model). As such, the peripheral /O devices may per-
form block 620 at different times (e.g., on demand) depend-
ing on when the ML engine (or any other actor in the
devices) requests the invalidated portions of the ML, model.

[0057] In contrast, if the ML models are updated using a
push model, at block 610 the method 600 proceeds to block
625 where the host pushes the updated portion to the caches
in the switch and the peripheral /O devices. In this model,
the host controls when the ML models cached in the
peripheral 1/0O devices are updated, rather than those ML
models being updated when there is a cache miss. The host
can push out the updated data in parallel or sequentially to
the peripheral /O devices. In any case, the host does not
have to push out all of the data in the reference ML model,
but only the portion of the reference ML model that was
updated or changed.

[0058] FIG. 7 is a flowchart of a method 700 for using a
recursive learning algorithm to update a machine learning
model, according to an example. In one embodiment, the
method 700 can be used to update the reference ML model
using information gained from executing the ML model in
the peripheral 1/O devices. At block 705, the peripheral I/O
device (or the host) identifies false positives in the result data
generated by the ML engine when executing the ML, model.
For example, the ML model may be designed to recognize
a particular Object or Person in images but occasionally
provides a false positive (e.g., identifies the Object or
Person, but the Object or Person was not actually in the
image).

[0059] At block 710, the host updates the reference ML
model in the host using a recursive learning algorithm. In
one embodiment, the recursive learning algorithm updates
the training data used to train the reference ML model. In
response to the false positives, the host can update the
training data and then re-run at least a portion of the training
algorithm using the updated training data. As such, the
recursive learning algorithm can update the reference ML
model in real time using the result data provided by the ML,
engine.

[0060] At block 715, the host updates the cached ML
model(s) using the coherent domain. For example, the host
can update the ML model or models in the peripheral 1/O
devices using the pull model described in blocks 615 and
620 of the method 600 or the push model described in block
625. Thus, by identifying false positives in resulting data
generated by one or more of the peripheral /O devices (e.g.,
one of the ML accelerators), the host can update the refer-
ence ML model. The host can then use the push or pull
model to update the cached ML models on all of the
peripheral 1/O devices coupled to the host.
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[0061] FIG. 8 illustrates an FPGA 800 implementation of
the I/O peripheral device 135, and more specifically with the
PL array 205 in FIG. 2, that includes a large number of
different programmable tiles including transceivers 37,
CLBs 33, BRAMs 34, input/output blocks (“IOBs™) 36,
configuration and clocking logic (“CONFIG/CLOCKS”) 42,
DSP blocks 35, specialized input/output blocks (“10) 41
(e.g., configuration ports and clock ports), and other pro-
grammable logic 39 such as digital clock managers, analog-
to-digital converters, system monitoring logic, and so forth.
The FPGA can also include PCle interfaces 40, analog-to-
digital converters (ADC) 38, and the like.

[0062] In some FPGAs, each programmable tile can
include at least one programmable interconnect element
(“INT”) 43 having connections to input and output terminals
48 of a programmable logic element within the same tile, as
shown by examples included at the top of FIG. 8. Each
programmable interconnect element 43 can also include
connections to interconnect segments 49 of adjacent pro-
grammable interconnect element(s) in the same tile or other
tile(s). Each programmable interconnect element 43 can also
include connections to interconnect segments 50 of general
routing resources between logic blocks (not shown). The
general routing resources can include routing channels
between logic blocks (not shown) comprising tracks of
interconnect segments (e.g., interconnect segments 50) and
switch blocks (not shown) for connecting interconnect seg-
ments. The interconnect segments of the general routing
resources (e.g., interconnect segments 50) can span one or
more logic blocks. The programmable interconnect elements
43 taken together with the general routing resources imple-
ment a programmable interconnect structure (“program-
mable interconnect™) for the illustrated FPGA.

[0063] In an example implementation, a CLB 33 can
include a configurable logic element (“CLE”) 44 that can be
programmed to implement user logic plus a single program-
mable interconnect element (“INT”) 43. A BRAM 34 can
include a BRAM logic element (“BRL”) 45 in addition to
one or more programmable interconnect elements. Typi-
cally, the number of interconnect elements included in a tile
depends on the height of the tile. In the pictured example, a
BRAM tile has the same height as five CLBs, but other
numbers (e.g., four) can also be used. A DSP block 35 can
include a DSP logic element (“DSPL”) 46 in addition to an
appropriate number of programmable interconnect ele-
ments. An 10B 36 can include, for example, two instances
of an input/output logic element (“IOL”) 47 in addition to
one instance of the programmable interconnect element 43.
As will be clear to those of skill in the art, the actual 1O pads
connected, for example, to the 10 logic element 47 typically
are not confined to the area of the input/output logic element
47.

[0064] In the pictured example, a horizontal area near the
center of the die (shown in FIG. 8) is used for configuration,
clock, and other control logic. Vertical columns 51 extend-
ing from this horizontal area or column are used to distribute
the clocks and configuration signals across the breadth of the
FPGA.

[0065] Some FPGAs utilizing the architecture illustrated
in FIG. 8 include additional logic blocks that disrupt the
regular columnar structure making up a large part of the
FPGA. The additional logic blocks can be programmable
blocks and/or dedicated logic.
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[0066] Note that FIG. 8 is intended to illustrate only an
exemplary FPGA architecture. For example, the numbers of
logic blocks in a row, the relative width of the rows, the
number and order of rows, the types of logic blocks included
in the rows, the relative sizes of the logic blocks, and the
interconnect/logic implementations included at the top of
FIG. 8 are purely exemplary. For example, in an actual
FPGA more than one adjacent row of CLBs is typically
included wherever the CLBs appear, to facilitate the efficient
implementation of user logic, but the number of adjacent
CLB rows varies with the overall size of the FPGA.
[0067] In the preceding, reference is made to embodi-
ments presented in this disclosure. However, the scope of the
present disclosure is not limited to specific described
embodiments. Instead, any combination of the described
features and elements, whether related to different embodi-
ments or not, is contemplated to implement and practice
contemplated embodiments. Furthermore, although embodi-
ments disclosed herein may achieve advantages over other
possible solutions or over the prior art, whether or not a
particular advantage is achieved by a given embodiment is
not limiting of the scope of the present disclosure. Thus, the
preceding aspects, features, embodiments and advantages
are merely illustrative and are not considered elements or
limitations of the appended claims except where explicitly
recited in a claim(s).

[0068] As will be appreciated by one skilled in the art, the
embodiments disclosed herein may be embodied as a sys-
tem, method or computer program product. Accordingly,
aspects may take the form of an entirely hardware embodi-
ment, an entirely software embodiment (including firmware,
resident software, micro-code, etc.) or an embodiment com-
bining software and hardware aspects that may all generally
be referred to herein as a “circuit,” “module” or “system.”
Furthermore, aspects may take the form of a computer
program product embodied in one or more computer read-
able medium(s) having computer readable program code
embodied thereon.

[0069] Any combination of one or more computer read-
able medium(s) may be utilized. The computer readable
medium may be a computer readable signal medium or a
computer readable storage medium. A computer readable
storage medium may be, for example, but not limited to, an
electronic, magnetic, optical, electromagnetic, infrared, or
semiconductor system, apparatus, or device, or any suitable
combination of the foregoing. More specific examples (a
non-exhaustive list) of the computer readable storage
medium would include the following: an electrical connec-
tion having one or more wires, a portable computer diskette,
a hard disk, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), an optical fiber, a
portable compact disc read-only memory (CD-ROM), an
optical storage device, a magnetic storage device, or any
suitable combination of the foregoing. In the context of this
document, a computer readable storage medium is any
tangible medium that can contain, or store a program for use
by or in connection with an instruction execution system,
apparatus or device.

[0070] A computer readable signal medium may include a
propagated data signal with computer readable program
code embodied therein, for example, in baseband or as part
of a carrier wave. Such a propagated signal may take any of
a variety of forms, including, but not limited to, electro-

Oct. 29, 2020

magnetic, optical, or any suitable combination thereof. A
computer readable signal medium may be any computer
readable medium that is not a computer readable storage
medium and that can communicate, propagate, or transport
a program for use by or in connection with an instruction
execution system, apparatus, or device.

[0071] Program code embodied on a computer readable
medium may be transmitted using any appropriate medium,
including but not limited to wireless, wireline, optical fiber
cable, RF, etc., or any suitable combination of the foregoing.
[0072] Computer program code for carrying out opera-
tions for aspects of the present disclosure may be written in
any combination of one or more programming languages,
including an object oriented programming language such as
Java, Smalltalk, C++ or the like and conventional procedural
programming languages, such as the “C” programming
language or similar programming languages. The program
code may execute entirely on the user’s computer, partly on
the user’s computer, as a stand-alone software package,
partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user’s computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service
Provider).

[0073] Aspects of the present disclosure are described
below with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems) and computer
program products according to embodiments presented in
this disclosure. It will be understood that each block of the
flowchart illustrations and/or block diagrams, and combina-
tions of blocks in the flowchart illustrations and/or block
diagrams, can be implemented by computer program
instructions. These computer program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks.
[0074] These computer program instructions may also be
stored in a computer readable medium that can direct a
computer, other programmable data processing apparatus, or
other devices to function in a particular manner, such that the
instructions stored in the computer readable medium pro-
duce an article of manufacture including instructions which
implement the function/act specified in the flowchart and/or
block diagram block or blocks.

[0075] The computer program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other devices to cause a series of opera-
tional steps to be performed on the computer, other pro-
grammable apparatus or other devices to produce a
computer implemented process such that the instructions
which execute on the computer or other programmable
apparatus provide processes for implementing the functions/
acts specified in the flowchart and/or block diagram block or
blocks.

[0076] The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods, and com-
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puter program products according to various examples of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of instructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.
[0077] While the foregoing is directed to specific
examples, other and further examples may be devised with-
out departing from the basic scope thereof, and the scope
thereof is determined by the claims that follow.

1. A peripheral /O device, comprising:

a hybrid gateway configured to communicatively couple
the peripheral I/O device to a host;

1/O logic comprising a machine learning (ML) engine
assigned to an 1/O domain; and

coherent logic comprising a ML model assigned to a
coherent domain, wherein the ML model shares the
coherent domain with compute resources in the host.

2. The peripheral /O device of claim 1, wherein the
hybrid gateway is configured to use a coherent interconnect
protocol to extend the coherent domain of the host into the
peripheral /O device.

3. The peripheral /O device of claim 2, wherein the
hybrid gateway comprises an update agent configured to use
a cache-coherent shared-memory multiprocessor paradigm
to update the ML model in response to changes made in a
reference ML model stored in memory associated with the
host.

4. The peripheral /O device of claim 3, wherein using the
cache-coherent shared-memory multiprocessor paradigm to
update the ML model results in only a portion of the ML
model being updated when the reference ML model is
updated.

5. The peripheral /O device of claim 1, further compris-
ing:

a NoC coupled to the I/O logic and the coherent logic,
wherein at least one of the NoC, programmable logic
(PL)-to-PL messages, and wire signaling is configured
to permit parameters associated with a layer in the ML,
model to be transferred from the coherent logic to the
1/0 logic.

6. The peripheral 1/O device of claim 5, wherein the ML
engine is configured to process a ML data set received from
the host using the parameters in the ML model.

7. The peripheral /O device of claim 1, further compris-
ing:

a programmable logic (PL) array, wherein a first plurality
of PL blocks in the PL array are part of the I/O logic and
are assigned to the I/O domain and a second plurality
of PL blocks in the PL array are part of the coherent
logic and are assigned to the coherent domain.

8. The peripheral /O device of claim 7, further compris-

ing:
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a plurality of memory blocks, wherein a first subset of the
plurality of memory blocks are part of the I/O logic and
are assigned to the I/0 domain and a second subset of
the plurality of memory blocks are part of the coherent
logic and are assigned to the coherent domain, wherein
the first subset of the plurality of memory blocks can
communicate with the first plurality of PL blocks but
not directly communicate with the second plurality of
PL blocks and the second subset of the plurality of
memory blocks can communicate with the second
plurality of PL blocks but not directly communicate
with the first plurality of PL blocks.

9. A computing system, comprising:

a host comprising:

a memory storing a reference ML, model, and
a plurality of CPUs forming, along with the memory, a
coherent domain; and

a peripheral /O device, comprising:

1/O logic comprising a ML engine assigned to an 1/O
domain, and

coherent logic comprising a ML, model assigned to the
coherent domain along with the memory and the
plurality of CPUs in the host.

10. The computing system of claim 9, wherein the periph-
eral I/O device is configured to use a coherent interconnect
protocol to extend the coherent domain into the peripheral
1/O device.

11. The computing system of claim 10, wherein the
peripheral I/O device comprises an update agent configured
to use a cache-coherent shared-memory multiprocessor
paradigm to update the ML, model in response to changes
made in the reference ML model stored in the memory.

12. The computing system of claim 11, wherein using the
cache-coherent shared-memory multiprocessor paradigm to
update the ML model results in only a portion of the ML
model being updated when the reference ML model is
updated.

13. The computing system of claim 12, wherein the host
comprises multiple reference ML models stored in the
memory, and wherein the peripheral I/O device comprises:

multiple ML, models in the coherent domain that corre-
spond to the multiple reference ML models, and

multiple ML engines assigned to the I/O domain, wherein
the multiple ML engines are configured to execute
independently of each other.

14. The computing system of claim 9, wherein the periph-
eral I/O device comprises:

a programmable logic (PL) array, wherein a first plurality
of PL blocks in the PL array are part of the I/O logic and
are assigned to the [/O domain and a second plurality
of PL blocks in the PL array are part of the coherent
logic and are assigned to the coherent domain.

15. The computing system of claim 14, wherein the

peripheral /O device comprises:

a plurality of memory blocks, wherein a first subset of the
plurality of memory blocks are part of the I/O logic and
are assigned to the I/0 domain and a second subset of
the plurality of memory blocks are part of the coherent
logic and are assigned to the coherent domain, wherein
the first subset of the plurality of memory blocks can
communicate with the first plurality of PL blocks but
not directly communicate with the second plurality of
PL blocks and the second subset of the plurality of
memory blocks can communicate with the second



US 2020/0341941 Al

plurality of PL blocks but not directly communicate
with the first plurality of PL blocks.

16. A method, comprising:

updating a subportion of a reference ML model in
memory associated with a host;

updating a subset of a cached ML model in coherent logic
associated with a peripheral I/O device coupled to the
host, wherein the memory of the host and the coherent
logic of the peripheral I/O device are in a same coherent
domain;

retrieving the updated subset of the cached ML model
from the coherent domain; and

processing a ML data set according to parameters in the
retrieved subset of the cached ML model using an ML,
engine, wherein the ML engine is in /O logic in the
peripheral /O device assigned to an /O domain.

17. The method of claim 16, wherein updating the subset

of the cached ML model is performed using a coherent
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interconnect protocol that extends the coherent domain of
the host into the peripheral 1/O device.

18. The method of claim 16, wherein updating the subset
of the cached ML model is performed using a cache-
coherent shared-memory multiprocessor paradigm in
response to changes made in the reference ML model.

19. The method of claim 18, wherein using the cache-
coherent shared-memory multiprocessor paradigm to update
the cached ML model results in only a portion of the cached
ML model being updated when the reference ML model is
updated.

20. The method of claim 16, retrieving the updated subset
of the cached ML model from the coherent domain is
performed using at least one of a NoC, PL-to-PL. messages,
and wire signaling that communicatively couples the coher-
ent logic assigned to the coherent domain to the I/O logic
assigned to the /O domain.
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