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(57) ABSTRACT

An integrated circuit includes a pool of processors and a
Tripwire Data Merging and Collision Detection Circuit (TD-
MCDC). Each processor has a special tripwire bus port.
Execution of a novel tripwire instruction causes the processor
to output a tripwire value onto its tripwire bus port. Each
respective tripwire bus port is coupled to a corresponding
respective one of a plurality of tripwire bus inputs of the
TDMCDC. The TDMCDC receives tripwire values from the
processors and communicates them onto a consolidated trip-
wire bus. From the consolidated bus the values are commu-
nicated out of the integrated circuit and to a debug station. If
more than one processor outputs a valid tripwire value at a
given time, then the TDMCDC asserts a collision bit signal
that is communicated along with the tripwire value. Receiv-
ing tripwire values onto the debug station facilitates use of the
debug station in monitoring and debugging processor code.
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MULTI-PROCESSOR SYSTEM HAVING
TRIPWIRE DATA MERGING AND
COLLISION DETECTION

TECHNICAL FIELD

[0001] The described embodiments relate generally to a
processor that executes a tripwire instruction, and to a trip-
wire data merging and collision detection circuit that com-
municates tripwire values from a pool of such processors onto
a single consolidated tripwire bus for subsequent communi-
cation out of an integrated circuit to a debug station, and to
related structures and methods.

REFERENCE TO ASCII TEXT FILE APPENDIX

[0002] This application includes an ASCII text file appen-
dix containing source code to software that embodies the
inventions described herein. The software code is a hardware
description language header file for one embodiment of the
picoengine. The header file describes the contents of control
buses and control signals within the picoengine. The hard-
ware description language is CDL. The source code is in
ASCII format. A portion of the disclosure of this patent docu-
ment contains material that is subject to copyright protection.
All the material on the ASCII text file appendix is hereby
expressly incorporated by reference into the present applica-
tion. The copyright owner of that material has no objection to
the facsimile reproduction by anyone of the patent document
or the patent disclosure, as it appears in the Patent and Trade-
mark Office patent files or records, but otherwise reserves all
copyright rights. The ASCII text file appendix includes one
text file readable in the MS-Windows operating system. The
file is named “Picoengine_Header_File_Code.txt”, is 12.1
kilobytes large, and was created on May 31, 2012.

SUMMARY

[0003] Due to its novel architecture, a pipelined run-to-
completion processor is implemented in one embodiment in
about ten thousand equivalent gates. The processor is there-
fore very small and is also referred to as a “picoengine”. The
picoengine has no instruction counter and only fetches
instructions either: as a result of being prompted from the
outside by an incoming input data value and/or an incoming
initial fetch information value, or as a result of execution of a
fetch instruction. Due to the lack of an instruction counter and
the associated control circuitry which can be substantial, the
picoengine can be realized in a small amount of integrated
circuit area. The picoengine includes a pipeline, and the pipe-
line includes a fetch stage, a fetch shift selector stage, a
decode stage, a register file read stage, and an execute stage.
The picoengine has an input data port through which the
picoengine receives data to be processed. This input data may,
for example, involve network packet data. The picoengine
also has an output data port, onto which the picoengine out-
puts processed data. The processed data may, for example,
involve processed network packet data. The picoengine does
not fetch instructions through either of these two ports. The
picoengine also has a memory interface port. The picoengine
uses is memory interface port to fetch instructions from a
local memory. The picoengine also does not have the capa-
bility and circuitry to write anything into the local memory
from which the picoengine fetches instructions, and the
memory interface port is not usable to write data into any
memory. This allows the picoengine to be made even smaller.
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In addition to the input data port, the output data port, and the
memory interface port, the picoengine also has a novel trip-
wire bus port.

[0004] In a first novel aspect, the picoengine fetches and
executes a novel tripwire instruction. Execution of the trip-
wire instruction causes the picoengine to output both a first
multi-bit value and a second multi-bit value onto the tripwire
bus port. The first and second multi-bit values are output onto
the tripwire bus port for one and only one clock cycle when
the instruction operation of the tripwire instruction is being
performed by the execute stage. The first multi-bit value is
data that is output from registers, and/or flags, and/or point-
ers, and/or data values stored in the pipeline. In one example
of' the tripwire instruction, the tripwire instruction contains a
field, the content of which specifies what particular stored
values of the pipeline will be output onto the tripwire bus port
as the first multi-bit value. The second multi-bit value is a
picoengine number. The picoengine number is a number that
identifies the particular picoengine that executed the tripwire
instruction. In one example, there are forty-eight identical
picoengines in a pool, and the picoengine number is a number
from one to forty-eight that is hardwired into the picoengine.
The picoengine number uniquely identifies one of the
picoengines of the pool, as distinguished from the other
picoengines of the pool.

[0005] Ifthepicoengine is not driving a valid tripwire value
onto the tripwire bus port, then the conductors of the tripwire
bus port that would otherwise be carrying the first and second
multi-bit values are all driven with the same digital logic
value (for example, a digital logic value of “0”). The tripwire
bus port is not a registered I/O port. No address is decoded in
the picoengine into order to clock the tripwire value into a
particular I/O register of the picoengine. To the contrary, the
tripwire value is only present on the tripwire bus port during
one clock cycle during a time when the tripwire instruction is
being executed.

[0006] In one example, there are two types of tripwire
instructions. The opcodes of the two types of instructions
differ from each other by one bit. In addition to the first and
second multi-bit values, a tripwire value includes a single “hit
bit” where the value of this single bit indicates whether the
tripwire value was generated as a result of executing the first
type of tripwire instruction or whether the tripwire value was
generated as a result of executing the second type of tripwire
instruction.

[0007] Inasecond novel aspect, each picoengine of a pool
of'identical picoengines has a tripwire bus port. Each respec-
tive one of the tripwire bus ports of the picoengines of the pool
is coupled to a corresponding respective one of a plurality of
tripwire bus inputs of a novel Tripwire Data Merging and
Collision Detection Circuit (TDMCDC). The TDMCDC
receives tripwire values from the picoengines and communi-
cates the tripwire values from the various picoengines
through the TDMCDC to and onto a common consolidated
tripwire bus. The picoengine pool and TDMCDC is a part of
an Island-Based Network Flow Processor (IB-NFP) inte-
grated circuit. The IB-NFP integrated circuit has Debug Inter-
face Circuitry and Input/Output Terminals (DICIOT) func-
tionality. The tripwire values are communicated from the
consolidated tripwire bus at the output of the TDMCDC and
across the integrated circuit to the DICIOT, and then through
the DICIOT and out of the integrated circuit, through a JTTAG-
to-USB interface cable, and to an external debug station. The
debug station is usable by a user to receive tripwire values
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from picoengines within the integrated circuit and to monitor
and debug software executing on the picoengines, where this
software is made to include one or more of the novel tripwire
instructions. The tripwire instructions are placed in the
picoengine software at strategic locations. The picoengines of
the pool output their tripwire values synchronously with
respect to a common clock signal that clocks the pipelines of
all the picoengines. If more than one picoengine outputs a
valid tripwire value during a given clock cycle of this com-
mon clock signal, then the TDMCDC detects this collision
condition and asserts a collision bit signal. The TDMCDC
outputs the collision bit signal along with the first and second
multi-bit values of the tripwire value supplied onto the con-
solidated tripwire bus. The digital logic value of the collision
bit signal indicates whether there was a collision of two or
more tripwire values within the TDMCDC.

[0008] All the tripwire instructions embedded in the soft-
ware of a particular picoengine can be disabled in unison at
one time by changing the digital logic value stored in a single
“TE enable/disable” bit in the picoengine. The only function
of the TE enable/disable bit is to provide an ability, through
software, to enable and disable tripwire instructions. If the
tripwire instructions are disabled in this way, then each trip-
wire instruction is decoded in the decode stage of the
picoengine in normal course, but the instruction operation of
the tripwire instruction is disabled so that no valid tripwire
value is output onto the picoengine tripwire bus port as a
result of execution of the tripwire instruction. In addition, the
picoengine has a novel “load register file read stage control
register” instruction (also referred to as the “load RF CSR”
instruction) that is usable to set or clear this TE enable/disable
bit, where execution of the “load register file read stage con-
trol register” instruction causes the setting or clearing of the
TE enable/disable bit to occur one clock cycle prior to the
clock cycle during which the execute stage would ordinarily
carry out the instruction operation of the instruction.

[0009] Further details and embodiments and techniques are
described in the detailed description below. This summary
does not purport to define the invention. The invention is
defined by the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] The accompanying drawings, where like numerals
indicate like components, illustrate embodiments of the
invention.

[0011] FIG. 1 is a diagram of system involving a network
device and a debug station, where the debug station is usable
to receive tripwire values output by picoengines within the
network device in accordance with one novel aspect.

[0012] FIG. 2 is a top-down diagram of the island structure
of the Island-Based Network Flow Processor (IB-NFP) inte-
grated circuit within the network device of FIG. 1.

[0013] FIG. 3 is adiagram the configurable mesh event bus
within the IB-NFP of FIG. 2.

[0014] FIG. 4 is a simplified perspective diagram of show-
ing a portion of the configurable mesh event bus that extends
over the ingress NBI island of the IB-NFP of FIG. 2.

[0015] FIG.5isadiagram of an event ring circuit within the
NBI island of FIG. 4.

[0016] FIG. 6isdiagram thatillustrates the bits and fields in
an event packet.

[0017] FIG. 7 is table that describes the various fields in the
event packet of FIG. 6.
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[0018] FIG. 8 is a simplified perspective diagram of the
ingress NBI island of FIG. 4.

[0019] FIG.9 is a diagram of a picoengine multi-processor
within the ingress NBI island of FIG. 8.

[0020] FIG. 10 is a simplified diagram of the pool of
picoengines in the picoengine multi-processor of FIG. 9.
[0021] FIG. 11 is a diagram of the Tripwire Data Merging
and Collision Detection Circuit (TDMCDC) in the
picoengine multi-processor of FIG. 9.

[0022] FIG. 12 is a diagram of a multiple valid bit set
detector circuit in the TDMCDC of FIG. 11.

[0023] FIG.13isasymbol ofthe 12x4:1 OR structure in the
TDMCDC of FIG. 11.

[0024] FIG. 14 is a circuit diagram of the 12x4:1 OR struc-
ture of FIG. 13.
[0025] FIG. 15 is a table that sets forth the various fields of

a tripwire value, in one specific example of a tripwire value.
[0026] FIG. 16 is a simplified block diagram of one of the
picoengines in the picoengine pool of FIG. 9.

[0027] FIG. 17 is a state diagram for the state machine 149
in the picoengine of FIG. 16.

[0028] FIG. 18is a diagram that shows many small sections
of specialized picoengine code as that codes is stored in the
local memory of FIG. 16.

[0029] FIG. 19 is a diagram of one section of picoengine
code.
[0030] FIG. 20 is a diagram that illustrates the octets in one

128-bit block of code.

[0031] FIG. 21 is a diagram of a fetch instruction, where the
offset is a value in the initial fetch information value that is
received onto the picoengine along with the input data.
[0032] FIG. 22is a diagram of a fetch instruction, where the
offset is a value in the input data value.

[0033] FIG. 23 is a diagram of a fetch instruction, where the
offset is in a specific register of the register file.

[0034] FIG. 24 is a diagram of the fetch more instruction.
[0035] FIG. 25 is a diagram of a two-octet skip instruction.
[0036] FIG. 261s atable of the predicate codes that are used

to determined predicate conditions of conditional instruc-
tions.

[0037] FIG. 27 is a diagram of a novel two-octet tripwire
instruction.
[0038] FIG. 28 is a diagram of a novel “load register file

read stage control register” instruction that is usable to set or
clear the TE enable/disable bit.

[0039] FIG. 29 is a diagram of the finished instruction.
[0040] FIG. 30 is a simplified diagram of the table number
to base address lookup table circuit within the picoengine of
FIG. 16.

[0041] FIG. 31A is a diagram of a part of a larger diagram
of FIG. 31, where FIG. 31 is a diagram of a specific example
of the pipeline of the picoengine of FIG. 16.

[0042] FIG. 31B is a diagram of a part of a larger diagram
of FIG. 31.

[0043] FIG. 31C is a diagram of a part of a larger diagram
of FIG. 31.

[0044] FIG. 31D is a diagram of a part of a larger diagram
of FIG. 31.

[0045] FIG. 31E is a diagram of a part of a larger diagram of
FIG. 31.

[0046] FIG.31F is adiagram of a part of a larger diagram of
FIG. 31.

[0047] FIG. 31G is a diagram of a part of a larger diagram
of FIG. 31.
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[0048] FIG. 31H is a diagram of a part of a larger diagram
of FIG. 31.

[0049] FIG.311is a diagram of a part of a larger diagram of
FIG. 31.

[0050] FIG.31Jis adiagram ofa part of a larger diagram of
FIG. 31.

[0051] FIG.32isamore detailed diagram of the shifter 305
of FIG. 31.

DETAILED DESCRIPTION

[0052] Reference will now be made in detail to background

examples and some embodiments of the invention, examples
of which are illustrated in the accompanying drawings.
[0053] FIG. 1 is a diagram of a system 1 involving a net-
work device 2 and a debug station 3. The network device 2 in
this particular case includes a host computer 4 and an asso-
ciated Network Interface Device (NID) 5. The network
device may, for example, be a web server. The NID 5 is
typically an expansion card that fits into a housing of the host
computer and couples via PCle bus connections to the moth-
erboard of the host computer 4. The NID 5 includes, among
other parts not shown, an Island-Based Network Flow Pro-
cessor (IB-NFP) integrated circuit 6, a PHY transceiver inte-
grated circuit 7, and a physical layer interface port 8 (for
example, an RJ-45 connector). These components are dis-
posed on a printed circuit board 9. Packets are received from
a network onto the network device 2 via network cable 10.
These packets pass through the physical network interface
port 8, through the PHY 7, and into the IB-NFP 6 where they
are processed. Packets also pass in the other direction from
the IB-NFP 6, through the PHY 7, through the physical net-
work interface port 8, and to the network via the network
cable 10. In one example, the host computer 4 controls the
operation of the NID 2 and receives information carried by
packets onto the NID 2, and outputs information to the NID 2
that is to be communicated to the network in the form of
packets.

[0054] The debug station 3 is usable to debug programs of
instructions being executed by small processors within the
IB-NFP 6. These small processors are called picoengines (or
“PEs”). As described in further detail below, the program
executed by such a picoengine is made to include one or more
novel tripwire instructions. If one of these tripwire instruc-
tions is then executed by a PE, then the PE outputs a tripwire
value, and this tripwire value is communicated by novel Trip-
wire Data Merging and Collision Detection Circuitry (TDM-
CDC) from the PE, out of the IB-NFP 6, and to the debug
station 3. The user uses the debug station 3 to monitor these
incoming tripwire values, to debug the programs of instruc-
tions, and to monitor operation of the IB-NFP 6. Each tripwire
value received onto the debug station includes a picoengine
number that indicates which particular PE it was that
executed the tripwire instruction that resulted in the tripwire
value being output from the IB-NFP 6. The tripwire value also
includes a tripwire data value. The tripwire data may, for
example, be the contents of a specified register within the PE,
or the contents of certain flags within the PE, and/or other
information as specified by the tripwire instruction.

[0055] To facilitate communication with the debug station
3, the IB-NFP 6 includes Debug Interface Circuitry and Input/
Output Terminals (DICIOT) 11. The DICIOT 11 includes an
event bus manager circuit 144, an ARM processor 145, as
well as general purpose input/output circuitry and terminals
13. The event manager circuit 144 and the ARM processor
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145 are parts of an ARM island 12 of the IB-NFP 6. The
general purpose input/output circuitry and terminals 13 are
part of a GPIO interface block 44 of the IB-NFP 6. The
DICIOT 11 receives tripwire values via its event bus manager
circuit 144 and communicates with circuitry outside the IB-
NFP 6 using standardized JTAG (Joint Test Action Group)
signals TMS, TCK, TDI and TDO. The debug station 3,
however, does not have a JTAG port but rather uses a (Uni-
versal Serial Bus) USB port 14 for communication. A USB-
t0-JTAG dongle 15 and cable is therefore provided to provide
signal interfacing between the JTAG debug port of the IBNP
6 and the USB port 14 of the debug station 3.

[0056] FIG. 2 is a simplified top-down diagram of the IB-
NFP 6 of FIG. 1. IB-NFP integrated circuit 6 includes many
1/O (input/output) terminals (not shown) that are typically
disposed around the periphery of the integrated circuit. Each
of these terminals couples to an associated terminal of an
integrated circuit package (not shown) that houses the IB-
NFP integrated circuit. The integrated circuit terminals may
be flip-chip microbumps and are not illustrated. Alternatively,
the integrated circuit terminals may be wire bond pads. The
blocks 16-31 illustrated in FIG. 2 are SerDes circuits that are
usable to communicate with external circuitry. Each of these
SerDes circuits is duplex in that it has a SerDes connection for
receiving information from the external circuit and it also has
aSerDes connection for transmitting information to the exter-
nal circuit. Each of these SerDes circuits can communicate
packet data in both directions simultaneously at a sustained
rate of 25 Gbps. In addition to SerDes input/output circuitry,
the IB-NFP integrated circuit 6 also has 32-bit DDR physical
interfaces 38-43 that are usable for accessing external
memory integrated circuits 32-37. IB-NFP 6 also has several
general purpose input/output (GPIO) interface blocks. A part
of one of these GPIO interface blocks 44 is used to access an
external PROM 45. Another part of the GPIO interface block
44 is used to communicate with the USB-to-JTAG dongle 15.

[0057] In addition to the area of the input/output circuits
outlined above, the IB-NFP integrated circuit 6 also includes
two additional areas. The first additional area is a tiling area
46 of islands. These islands are identified with reference
numerals 12 and 47-70. Each of the islands is either of a full
rectangular shape, or is half the size of the full rectangular
shape. For example, the island 51 labeled “PCIE (1) is a full
island. The island 56 below it labeled “ME CLUSTER (5)” is
a half island. The functional circuits in the various islands of
this tiling area 46 are interconnected by: 1) a configurable
mesh CPP data bus, 2) a configurable mesh control bus, and 3)
a configurable mesh event bus. Each such mesh bus extends
over the two-dimensional space of islands with a regular grid
or “mesh” pattern. For additional information on the config-
urable mesh CPP data bus, the configurable mesh control bus,
and the configurable mesh event bus, see: U.S. patent appli-
cation Ser. No. 13/399,324, entitled “Configurable Mesh
Data Bus In An Island-Based Network Flow Processor”, filed
Feb. 17,2012, by Gavin J. Stark (the entire subject matter of
which is incorporated herein by reference). Operation and
structure of the event bus mesh is also described in further
detail below.

[0058] In addition to tiling area 46, the IB-NFP integrated
circuit 6 also has a second additional area of larger sized
blocks 71-75. The functional circuitry of each of these blocks
is not laid out to consist of islands and half-islands in the way
that the circuitry of tiling area 46 is laid out. The mesh bus
structures do not extend into or over any of these larger
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blocks. The mesh bus structures do not extend outside of
tiling area 46. As an exception to interconnecting the function
circuitry of island using configurable mesh bus structures, the
functional circuitry of a larger sized block disposed outside
the tiling area 46 may be connected by direct dedicated hard-
wired connections to an interface island within tiling area 46
and through the interface island achieve connectivity to the
mesh buses and other islands.

[0059] FIG. 3 is a top-down diagram of the block structure
of the IB-NFP 6, showing the configurable mesh event bus
structure disposed over the tiling area 46. In the event mesh
bus overlay, each full island has four half links. Each halflink
extends between a Real Time Configurable Switch (RTCS)
functional circuit that is centrally located within the island
and one of four port locations at the periphery of the island.
For example, these four ports of the ingress NBI island 68 of
FIG. 3 are denoted P1, P2, P3 and P4. Each of these half link
is bidirectional. In addition, each full island also has a bidi-
rectional half link that extends from the centrally located
RTCS to functional circuitry within the island. In FIG. 3, the
port associated with this half link is denoted P5.

[0060] By configuring the RTCS functional circuits of the
various islands, the links of the configurable mesh event bus
structure can be configured so that the links are coupled from
end-to-end, one to the next, so that a resulting event bus
extends from island, to island, to island, in what is called a
ring or a chain. As an event bus ring or chain passes through
an island, the event bus can be structured so that it extends
from the mesh overlay, through the RTCS, then through one
or more event ring circuits in an amount of the functional
circuitry of the island, then back to the RTCS, then through
the mesh overlay and to the next island. For additional infor-
mation on the configurable mesh event bus and how it can be
configured to form one or more event rings and chains, see: 1)
U.S. patent application Ser. No. 13/399,678, entitled “L.ocal
Event Ring In An Island-Based Network Flow Processor”,
filed Feb. 17, 2012, by Gavin J. Stark; and 2) U.S. patent
application Ser. No. 13/399,983, entitled “Global Event
Chain In An Island-Based Network Flow Processor”, filed
Feb. 17,2012, by Gavin J. Stark (the entire contents of both of
these applications is incorporated herein by reference).

[0061] FIG.4 is aperspective view of Ingress NBlisland 68
and the part of the configurable mesh event bus structure of
that NBI island 68. The RTCS control logic circuits of the
configurable mesh event bus structure of the entire IB-NFP 6
are configured (via the configurable mesh control bus CB) so
that the configurable mesh event bus structure forms an event
ring that extends from another island, then into the NBI island
68 viahalflink portion P2_IN, and then through the RTCS 76,
and then through half link portion P5_OUT to event ring
circuit 77 in the functional circuitry 78 of the Ingress NBI
island. The event ring then extends from event ring circuit 77,
through event ring segment 79, to event ring circuit 80,
through event ring circuit 80, and back to the RTCS 76 viahalf
link portion P5_OUT 81 (event ring segment 81), through
RTCS 76, and to another island via half link portion P1_OUT
82. Note that event ring circuit 80, if appropriately config-
ured, can receive event packets from two incoming event ring
segments, and can output event packets onto two outgoing
event ring segments. This type of event ring circuit is usable
to detect event packets of a given type that are traveling in one
ring or chain, and to copy those selected event packets onto
another event ring or chain. The event ring segments for such
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a second event ring or chain are identified by reference
numerals 146 and 147 in FIG. 4.

[0062] There is a global clock signal that clocks all the
event ring circuits. Although not shown in FIG. 3 and FIG. 4,
there are multiple registers (referred to as “slots™) disposed
along each half link portion, and these registers are also all
clocked by the same global clock signal. Information passes
through the event chain serially in what are called “event
packets”. Due to the registering of the half link portions and
due to the clocking of the overall event bus structure by the
same global clock signal, an event packet 83 transitions along
the event chain from register to register synchronously with
the clocking of the global clock signal. Multiple event packets
can be traveling through the event ring at a given time, pro-
vided that the event packets are traveling one behind the other
and do not collide with one another.

[0063] FIG. 5is an expanded diagram of event ring circuit
77 shown in FIG. 4. Event ring circuit 77 includes a register
circuit 84, a multiplexer circuit 85, vacancy logic 86, an event
packet generating circuit 87, a First In First Out circuit (FIFO)
88, a source number checker 89, and a multiplexer circuit 90.
On a given clock cycle of the global clock signal 91, an event
packet can be clocked into the event ring circuit 77 from
previous event ring segment P5_OUT. If on a given clock
cycle of the global clock signal 91 an event packet is not
received into the register 84 of the event ring circuit from
event ring segment P5_OUT, then the vacancy logic 86
detects this condition and causes the event generating circuit
87 and the FIFO 88 to inject an event packet onto the next
event ring segment 79 via multiplexer 85. If, however, an
event packet was received into the register circuit 84 from
event ring segment P5_OUT, then the vacancy logic 86 deter-
mines that such an event packet has been received and it
controls multiplexer circuit 85 to pass along the event packet
to the next event ring segment 79 and will not inject a new
event packet onto the event ring.

[0064] FIG. 6 is a diagram of an event packet 92. The event
packet includes a vacancy indicator bit 93, a source of event
field 94, a type of event field 95, and an event data field 96. Bit
93 and fields 94 and 95 together form a sort of header of the
event packet. Event data field 96 is the payload of the event
packet. FIG. 7 is table diagram of FIG. 6.

[0065] The source number checker 89 of the event ring
circuit 77 of FIG. 5 checks the value of the “source of event”
field of event packets coming into the event ring circuit from
the previous event ring segment P5_OUT. If an incoming
event packet is detected to have a “source of event™ field value
indicating that the event packet was originally sourced by the
event ring circuit 77, then the event ring circuit 77 deletes/
removes the event packet from the event ring. In FIG. 5, the
source number checker 89 controls multiplexer circuit 90 to
output the multiplexer’s 25-bit VDD data input value onto the
multiplexer’s 25-bit output, thereby effectively deleting the
event packet from the event ring.

[0066] The general flow of network information from the
network of FIG. 1 into the IB-NFP 6 of FIG. 1 is as follows.
Packet information is received from the network cable 10,
through the connector 8, through the PHY 7, and then passes
through SerDes /O blocks of the IB-NFP 6, and into the
ingress MAC island 67 across dedicated conductors. The
symbols are converted into packets by a 100 Gbps Ethernet
block within the MAC island 67. The 100 Gbps Ethernet
block analyzes the symbols and places the results of this
analysis at the beginning of the packet in the form of'a “MAC
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prepend” value. The MAC prepend value includes: 1) an
indication of the length of the packet, 2) an indication whether
the packet in an IP packet, 3) an indication of whether the
checksums are correct, and 4) a time stamp indicating when
the packet was received. The resulting packets and associated
MAC prepend values are then buffered in an SRAM in the
MAC island 67. Packets that are buffered in the SRAM in the
MAC island 67 are then output from the MAC island 67 to the
ingress NBI island 68 in the form of one or more 256 byte
“minipackets” communicated across dedicated connections
104.

[0067] FIG. 8 is a diagram of NBI island 68. The ingress
NBIlisland 68 receives the MAC prepend and the minipackets
via the dedicated connections 104 from the ingress MAC
island 67. The first 256 bytes of the packet and the MAC
prepend pass through multiplexing circuitry 97 and to a char-
acterizer 98. Characterizer 98 outputs characterization infor-
mation, the first sixty-four bytes of the packet, and the MAC
prepend. This is passed to a picoengine multi-processor 99 of
forty-eight picoengines (“PEs”). Each picoengine executes a
program stored in a memory in the picoengine multi-proces-
sor block 99. The program for each picoengine can be updated
and changed under software control via control block 100.
Control block 100 is also usable to receive the statistics infor-
mation 101 from the MAC island 67 via XPB bus connections
102. To perform deeper and deeper analysis into the header
structure of an incoming packet, the output of the picoengine
multi-processor 99 can be passed back through a tunnel recir-
culation path and tunnel recirculation FIFO 103 to the char-
acterizer 98 in an iterative fashion. Picoengine multi-proces-
sor 99 outputs “preclassification results” 105. The
preclassification results for a packet include: 1) a determina-
tion of which one of multiple buffer pools to use to store the
packet, 2) a sequence number for the packet in a particular
flow of packets through the IB-NFP, and 3) user metadata. A
“buffer pool” is a set of targets in ME islands where header
portions can be placed. A “buffer list” is a list of memory
addresses where payload portions can be placed. The user
metadata is typically a code generated by the picoengines,
where the code communicates certain information about the
packet. In the present operational example, the user metadata
includes a bit. If the bit is set then the packet was determined
to be of a first type (an exception packet), whereas if the bit is
not set then the packet was determined to be of a second type
(a fast-path packet).

[0068] At this point, the entire packet is buffered in SRAM
106. DMA engine 107 can read the packet out of SRAM 106
via conductors 108, and then use the buffer pools to determine
a destination to which the packet header is to be DMA trans-
ferred, and use the buffer lists to determine a destination to
which the packet payload is to be DMA transferred. The
DMA transfers occur across the configurable mesh CPP data
bus. In the case of the exception packet of this example, the
preclassification user metadata and buffer pool number indi-
cate to the DMA engine 107 that the packet is an exception
packet and this causes a first buffer pool and a first different
buffer list to be used, whereas in the case of the fast-path
packet the preclassification user metadata and buffer pool
number indicate to the DMA engine 107 that the packet is a
fast-path packet and this causes a second buffer pool and a
second buffer list to be used. Block 109 is CPP data bus
interface circuitry through which the CPP configurable mesh
data bus is accessed. Arrow 110 represents a packet that is
DMA transferred out of the NBI island 68 by DMA engine
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107. Each such packet is output with a corresponding ingress
packet descriptor. An ingress packet descriptor includes: 1) an
address indicating where and in which ME island the header
portion is stored, 2) an address indicating where and in which
MU island the payload portion is stored, 3) how long the
packet is, 4) a sequence number for the flow to which the
packet belongs, 5) user metadata. The programs stored in the
picoengine multi-processor block 99 that are executable by
the picoengines can be changed multiple times a second as the
network device 2 operates. Configuration block 111 receives
configuration information from the control bus (CB) tree via
connections 112 and supplies the configuration information
to various ones of the sub-circuits of NBI island 68 that are
configurable.

[0069] Further processing on the packet is then performed
by a particular microengine (“ME”) processor, where the
particular ME was determined by the indication of the buffer
pools in the preclassification results. The receiving ME in the
appropriation ME island further processes the packet. In a
very simplified description, information flow proceeds from
the ME island, to egress NBI island 59, to egress MAC island
60, through certain ones of the SerDes I/O blocks, out of the
IB-NFP, through PHY 7, through physical network interface
port 8, and through network cable 10, to the network.

[0070] FIG. 9 is a more detailed diagram of picoengine
multi-processor 99 of FIG. 8. Picoengine multi-processor 99
includes, among other parts, a picoengine and task assignor
113, a picoengine pool 114, an output data reader 115, event
ring circuit 77, and the novel Tripwire Data Merging and
Collision Detection Circuit (TDMCDC) 116. The picoengine
pool 114 is a pool of forty-eight picoengines, as well as a
plurality of associated memories that contain programs that
the picoengines can execute. The picoengines and memories
are laid out across a surface of an integrated circuit with a
particular hierarchical organization. In one example, each
group of picoengines has access to separate local memory for
the group. Groups of picoengines are in turn organized into
clusters. Each cluster of picoengines has access to a corre-
sponding one of two larger shared memories.

[0071] A stream of data input values is received on an input
port of the picoengine multi-processor 99 as well as onto the
data characterizer 98. An input data value 117 in this case is
the first 256 bytes of packet and the MAC prepend received
via dedicated connections 104 as described above in connec-
tion with FIG. 8. The input data value 117 is then character-
ized by the data characterizer, thereby generating a charac-
terization value 118 associated with the input data value. The
characterization value 118 includes a set of flags that indicate
whether the input data value has certain characteristics. Typi-
cally, the data characterizer is an amount of high-speed com-
binatorial logic. From the various bits of the characterization
value 118, acircuit 119 (for example, a TCAM) determines or
looks up a task that should be done and generates a task
assignment 120. The task indicated by the task assignment is
therefore dependent on the characteristics of the input data
value 117. An input picoengine selector 121 of the picoengine
and task assignor 113 selects a next one of the plurality of
picoengines in the picoengine pool. There are forty-eight
conductor extending to the picoengines, and a PE select sig-
nal is supplied via one of these conductors to the desired
picoengine. This selected picoengine, when it is ready and
available to do processing, is made to receive the input data
value 117 and the associated task assignment 120. The
picoengine then begins performing the assigned task on the
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input data value as indicated by the task assignment. Perform-
ing the assigned task on the associated input data value may
also, for example, involve using parts of the characterization
value 118 in lieu of referring back to the original input data
value 117, performing lookup operations locally or using a
transactional memory resource, performing purely logical
operations, performing counting operations, performing data
logging or sorting operations, and performing arithmetic
operations. In this sense the assigned task may be performed
on the associated input data value by indirectly using other
information related to the input data value.

[0072] Once the picoengine has been assigned the task, the
next picoengine in the sequence is then supplied with the next
input data value and a task assignment for that next input data
value. In this way, the picoengine selector 121 selects
picoengines one-by-one in a sequence, and each successively
selected picoengine receives the next input data value of the
stream along with an associated task assignment, where the
task assignment for each input data value is generated based
on the data of the input data value itself.

[0073] The output data reader 115 also includes a
picoengine selector 122. The output picoengine selector 122
selects picoengines one-by-one in the very same sequence
that the input picoengine selector 121 uses to select
picoengines for task assignment purposes. If the next
picoengine, as selected by the output picoengine selector,
indicates that it has completed its assigned task and has gen-
erated an output data value 123, then the output value 123
from the selected picoengine is output from the picoengine
multi-processor 99 as output data value 124. The output
picoengine selector then selects the next picoengine in the
sequence and waits for this next picoengine to indicate that it
has data to output. Accordingly, the output picoengine selec-
tor 122 selects the picoengines in the same order that tasks
were assigned to picoengines, so that when the next
picoengine in the sequence has an output data value the output
data value will be output from the picoengine multi-processor
99. From the high-level overall perspective of the picoengine
multi-processor 99, the picoengine multi-processor receives a
stream of input data values and outputs a stream of output data
values. An output data value, as described in connection with
FIG. 8, is the preclassification results 105 illustrated in FIG. 8.
For additional information on a picoengine multi-processor,
see: U.S. patent application Ser. No. 14/251,592, entitled
“Picoengine Multi-Processor With Task Management”, filed
Apr. 12, 2014, by Gavin J. Stark (the subject matter of which
is incorporated herein by reference).

[0074] FIG. 10 is a diagram of the picoengine pool 114 of
FIG. 9. The forty-eight picoengines are denoted PE1 through
PE48 in the diagram. There are four picoengines in a group of
picoengines. A group has an associated local memory that is
accessible by the picoengines of the group. There are three
groups in one cluster. There are four clusters in the picoengine
pool. There are two shared memories. A picoengine of the left
two clusters can access the left shared memory, and a
picoengine of the right two clusters can accessed the right
shared memory.

[0075] FIG.11is amore detailed is a more detailed diagram
of'the Tripwire Data Merging and Collision Detection Circuit
(TDMCDC) 116 of FIG. 9. The TDMCDC 116 includes
multiple logic blocks 125-129, four of which are identical.
The logic circled in logic block 125 is represented in logic
blocks 126-128 by empty circles. The logic blocks 125-129
include multiple “Multiple Valid Bit Set Detector” circuits,
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one of which is labeled in FIG. 11 by reference numeral 130.
All these circuits are identical. FIG. 12 is a circuit diagram of
one of these “Multiple Valid Bit Set Detector” circuits 130.
Each of the AND gate symbols in FIG. 12 represents an
ordinary two-input AND gate, and the six-input OR gate
symbol in FIG. 12 represents an ordinary six-input OR gate.
The “multiple valid bit set” signal output by the circuit of FIG.
12 is asserted if a collision is detected. There are OR gate
circuit structure symbols in FIG. 11, each of which has four
twelve-bit input buses and one twelve-bit output bus. This OR
gate circuit structure is denoted as a 12x4:1 OR structure.
FIG. 13 is a diagram of this symbol 131. This symbol 131
represents the circuitry shown in FIG. 14. The four-input OR
gate symbols in FIG. 14 represent ordinary four-input OR
gates. There are twelve such OR gates.

[0076] AsshowninFIG.9,the TDMCDC 116 is coupled to
receive tripwire values from each of the forty-eight
picoengines by a separate dedicated set of twelve conductors.
A setof conductors is also referred to here as a “tripwire bus”.
Thelabels PE1[0:11] to PE48[0:11] designate the forty-eight
sets of conductors that originate at the forty-eight
picoengines. For example, as illustrated in FIG. 11, the first
picoengine PE1 can send a tripwire value 132 to the TDM-
CDC 116 via the first set of dedicated conductors PE1[0:11].
Similarly, the third picoengine PE3 can send a tripwire value
133 to the TDMCDC 116 via the third set of dedicated con-
ductors PE3[0:11]. If a picoengine is not supplying a tripwire
value to the TDMCDC during a given clock cycle of the clock
signal CLK, then the picoengine drives its set of conductor
(its tripwire bus) so that all the signal lines carry “0” values. If
none of the picoengines outputs a valid tripwire value during
a given clock cycle of the clock signal CLK, then all of the
tripwire buses PE1[0:11] to PE48[0:11] carry zero values.
Eleven of the twelve zero values (the valid bit is routed to the
valid bit set detector 130) pass through the stages of OR gates
and registers of the TDMCDC and appear on the output set of
conductors 134 (also referred to as the “consolidated tripwire
bus” 134) as an eleven-bit tripwire value, all the bits of which
are “0”. The accompanying collision bit 135 is a digital “0”,
because there were not two valid tripwire values supplied by
two picoengines at the same time (i.e., there was no collision).
The consolidated tripwire bus 134 therefore has twelve con-
ductors (twelve conductors for the 11-bit tripwire value, and
one conductor for the collision bit). If, however, one and only
one of the picoengines outputs a valid tripwire value during a
given clock cycle of the clock signal CLK, then the tripwire
value passes through the stages of OR gates and registers and
appears on the “consolidated tripwire bus™ 134. Because two
picoengines did not supply two valid tripwire values at the
same time, when the tripwire value appears on the consoli-
dated tripwire bus 134 the associated collision bit 135 is a
digital “0”. If, however, more than one of the picoengines
outputs a valid tripwire value during a given clock cycle of the
clock signal CLK, then the TDMCDC 116 detects a collision
condition and causes the collision bit 135 to be set to a digital
“17.

[0077] AsshowninFIG. 11, the stages of the TDMCDC are
pipelined by registers 136-140, and these registers are all
clocked by the same clock signal CLK that clocks the
picoengines. The picoengines output their tripwire values
synchronously with respect to the clock signal CLK, so the
presence or absence of the collision condition is determined
once per clock cycle. The resulting twelve bits (one collision
bit 135 and eleven of the original twelve tripwire value bits
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142) are supplied via the consolidated tripwire bus 134 to a
FIFO 141 of the event packet generating circuit 87 of the
event ring circuit 77. The event packet generating circuit 87 of
FIG. 5 takes the oldest tripwire value from FIFO 141 and if
there is a vacancy in event packet flow on the event bus, then
the event packet generated circuit 87 generates a new event
packet whose data payload is the tripwire value, and injects
the new event packet onto the event bus. The 12-bit event data
field of the event packet is the eleven original bits of the
tripwire value and the added single collision bit 135.

[0078] As described above, the event bus of the IB-NFP is
configured to form an event ring and/or an event chain, such
that the new event packet eventually is received by the event
bus manager 144 in the DICIOT 11 of FIG. 1. The event bus
manager 114 of the ARM island receives the event packet and
extracts the tripwire value and the single collision bit. The
ARM processor 145 receives this tripwire value and outputs it
via the GPIO/JTAG circuitry 13. The tripwire value is carried
via the JTAG to USB cable to the debug station 3.

[0079] FIG. 15 is a table that sets forth the bits of a tripwire
value. Note that the valid bit is removed from the tripwire
value in the TDMCDC, and that the collision bit is added to
the tripwire value in the TDMCDC. A tripwire value as output
by a picoengine is twelve bits and includes: 1) a valid bit, 2)
a 6-bit picoengine number that identifies the picoengine that
generated the tripwire data, 3) a hit bit that indicates whether
it was a tripwire( instruction or a tripwirel instruction that
caused the tripwire value to be generated, and 4) a 4-bit
tripwire data value. The tripwire value as output by the TDM-
CDC does not include the valid bit, but has an accompanying
collision bit that indicates that more than one picoengine has
output a tripwire value at the same time.

[0080] FIG. 16 is a high-level block diagram of picoengine
PE1 148. The picoengine 148 includes a clock control state
machine 149 and a pipeline 150. The pipeline 150 includes a
fetch request stage 151, a fetch shift selector stage 152, a
decode stage 153, aregister file read stage 154, and an execute
stage 155. The picoengine receives input data values via input
data port 156, and receives initial fetch information values via
initial fetch information port 157, outputs output data values
via output data port 158, interfaces to a local memory 159 via
a memory interface port 160, outputs a tripwire value 161 via
a tripwire bus port 162.

[0081] Initially, the state machine 149 is in the idle state 162
(see that state diagram of FIG. 17). The pipeline 150 is
clocked by the clock signal CLK 163. In the idle state, the
state machine disables the clock signal CLK from clocking
the pipeline. The pipeline is therefore not being clocked, and
power consumption of the picoengine is reduced. In the idle
state, the state machine also outputs the idle signal 164. If the
processor is idle, then the picoengine and task assignor 113
supplies an input data value 165 onto the input data port 156
of'the picoengine and asserts the start signal 166 (also referred
to as the “PE select signal”). The input data port 156 in this
case is a set of conductors that extends from outside the
picoengine and to the register file read stage 154. The assert-
ing of the start signal 166 informs the picoengine that the
input data value on the input data port is available to be read.
In response to the assertion of the start signal, the state
machine 149 transitions to the enable clock signal state 167
(see the state diagram of FIG. 17).

[0082] The transition of the state machine 149 to the enable
clock signal state 167 enables the pipeline 150 by supplying
the clock signal CLK 163 to the pipeline 150. At the same
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time that the input data value 165 is being supplied to the
picoengine and to the input data port 156, an initial fetch
information value 168 is also being supplied to the picoengine
via conductors 169 and initial fetch information port 157. The
initial fetch information value 168 is an output of the TCAM
119 (see FIG. 9).

[0083] The fetch request stage 151 generates memory
requests that are supplied to the local memory 159 via
memory interface port 160. The fetch request stage 151 can
only output a memory request in response to either: 1) an
incoming input data value and/or an incoming initial fetch
information value, or 2) a fetch information value supplied to
the fetch request stage as a result of execution by the pipeline
of a fetch instruction. The incoming input data value 165
and/or initial fetch information value 168 prompts the pipe-
line 1150 to issue a memory request 170. The memory request
170 is communicated to the local memory 159. As explained
in further detail below, the memory request 170 is a request to
read one 128-bit word 171 from the local memory, where the
address of the 128-bit word 171 is given by a base address
value 172 and an offset value 173. The 128-bit word 171 is
located at the beginning of a section 174 of code. A 128-bit
word is also referred to here as a “block of information”. The
memory local memory is organized as a set of uniquely
addressable 128-bit words. The base address value identifies
the beginning of a table, TABLE#1 in this case, of code. The
offset value identifies an offset from the base address 172 at
the beginning of the table to the beginning of the section 174
of code. The local memory stores many such tables of code.
The tables in FIG. 16 are denoted TABLE#0, TABLE#1, to
TABLE#N.

[0084] In one specific example, the particular section 174
of code that the processor is prompted to fetch within table
TABLE#1 depends on the initial fetch information value 168.
The particular table as well is determined by the initial fetch
information value 168. The initial fetch information value
168 includes a table number value. The fetch request stage
151 includes a table number to base address lookup circuit
175. The table number value is supplied to the lookup table
circuit 175, and the lookup table circuit 175 outputs the base
address value for the table. The base address value is then
incorporated into the actual memory request 170.

[0085] The local memory 159 responds by returning to the
picoengine 148 a memory response 176. The memory
response 176 includes one 128-bit block of information at the
beginning of the identified section 174 of code. The 128-bit
block of information 171 contains sixteen octets. The 128-bit
block of information 171 includes a plurality of instructions,
where an instruction can involve one, two or three octets,
depending on the type of instruction. The number of instruc-
tions in a 128-bit block is therefore variable. The 128-bit
block ofinformation 171 is received by the fetch shift selector
stage 152. The fetch shift selector stage 152 stores the 128-bit
block of information 171, and then outputs three octets to the
decode stage 153, where the particular octets output include
the next instruction to be consumed next by the pipeline.
Immediately after the fetch of the 128-bit block 171, it is the
first, second and third octets of the 128-bit block that are
output from the fetch shift selector stage 152.

[0086] The decode stage 153 receives the selected octets
177, and decodes the instruction. Based on the instruction, the
decode stage 153 loads an A register pointer AP 178, a B
register pointer BP 179, a carry flag bit C 182, a zero flag bit
7 183, a stack pointer SP 180, a packet pointer PP 181,
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predicate bits P 184, and a tripwire enable/disable bit TE 185.
The A register pointer AP 178 identifies one register (8-bit
portion) of a register file 186 in the register file read stage 154.
This identified 8-bit portion contains the value of the A reg-
ister for the instruction to be executed. The B register pointer
BP 179 identifies another register (8-bit portion) of the reg-
ister file 186 that contains the value of a B register for the
instruction to be executed. The stack pointer SP 180 identifies
one register (8-bit portion) of the register file 186 that is the
top of the stack. The 8-bit portions of the register file are
usable as a stack, and there are instructions in the instruction
set of the processor that use the stack. The packet pointer PP
181 identifies one bit in the input data register 187 in the
register file read stage 154, where the bit is the first bit of a
multi-bit value that may be used in the instruction to be
executed. The predicate bits P 184 are three-bits that may be
used by an instruction to specify a predicate condition func-
tion. In addition to determining these pointer values, the
decode stage 153 sends a “number of octets consumed signal”
188 back to the fetch shift selector stage 152. The number of
octets consumed depends on the instruction just consumed. If
the instruction just consumed involves only one octet, then
the decode stage 153 informs the fetch shift selector stage 152
to shift the bits the fetch shift selector stage outputs by one
octet. If the instruction just consumed involves two octets,
then the decode stage 153 informs the fetch shift selector
stage 152 to shift the bits the fetch shift selector stage outputs
by two octets. If the instruction just consumed involves three
octets, then the decode stage 153 informs the fetch shift
selector stage 152 to shift the bits the fetch shift selector stage
outputs by three octets. Which octets of the block of informa-
tion 171 that are output by the fetch shift selector stage 152
are therefore determined by the decode stage 153 using the
number of octets consumed signal 188.

[0087] The register file read stage 154 stores the input date
value 165 into the input data register 187, and sends a signal
189 back to the state machine 149, thereby causing the state
machine 149 to transition from the enable clock signal state
167 to the operating state 190 (see the state diagram of FIG.
17). The state machine 149 signals the picoengine and task
assignor 113 (see FIG. 9) that the picoengine has received the
input data value 165 by outputting an operating signal 191.
The picoengine and task assignor 113 can then stop driving
input data value 165 onto the input data port 156.

[0088] The register file read stage 154 uses the pointer
values 178 and 179 from the decode stage to identify the
portions of the register file 186 that store the A register value
RA 192, and store the B register value RB 1921. The register
file read stage 154 uses the packet pointer value 181 from the
decode stage to identify the portion of the input data register
187 that stores the PCK data value 194 to be used by the
instruction. The contents of the register file 186 are output
from the register file read stage 154 to the output buffers 195,
but the output buffers 195 are disabled. The contents of the
register file 186 is therefore not driven onto the output data
port 158.

[0089] The execute stage 155 receives the RA value 192
(the contents of the A register), the RB value 193 (the contents
of'the B register) and the PCK data value 194 from the register
file read stage 154. These values are inputs to an ALU 196
(Arithmetic Logic Unit) in the execute stage 155. The instruc-
tion operation to be performed, using these values, is deter-
mined by control signals (not shown) received from the
decode stage 153, where the instruction operation is deter-
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mined by the opcode of the instruction. The instruction set of
the processor includes several different types of instructions
including: AL U instructions, memory access instructions for
data, instruction fetch instructions, and processor control
instructions. Some of the instructions use the packet pointer
181 and the input data register 187 so that the instruction can
obtain and use a part or parts of the input data value 165.
Although not illustrated, there is also another pointer and
another register, where the other register stores the initial
fetch information value 168. Other instructions use this
pointer and this other register to obtain and use a part or parts
of'the initial fetch information value 168. In addition, flags are
included into the input data value 165 as stored in the input
data register 187, so these flags are also available for refer-
ence by instructions executed by the picoengine. After an
instruction has been consumed by the decode stage of the
pipeline, the next instruction in the fetched block of informa-
tion is supplied to the decode stage. The instructions of the
fetched block of instructions are supplied to the decoder and
are decoded one by one.

[0090] Ifthe execute stage is executing a fetch instruction,
then the execute stage supplies fetch information 197 back to
the fetch request stage 151 via conductors 198. The execute
stage also supplies associated data 199 via conductors 200. In
the same way that an externally prompted fetch is prompted
by fetch information received on initial fetch information port
157 and input data value received on input data port 156, so
too is an internally prompted fetch from the execute stage 155
prompted by fetch information 197 on conductors 198 and
data 199 on conductors 200.

[0091] As stated above, once the pipeline is operating it
does not and cannot fetch instructions unless either: 1) it is
prompted to by the receipt of another input data value (and
associated initial fetch information value) or, 2) it is prompted
to by execution of a fetch instruction. If the picoengine
executes the last instruction of the fetched block of informa-
tion and there is not a next instruction that has already been
fetched, then the picoengine would hang. Accordingly, in the
present example, the last instruction of the fetched block of
information 171 is another fetch instruction. This last fetch
instruction causes the picoengine to fetch the next 128-bit
block of information from the same section 174 of code. The
processor then continues on executing instructions from this
second 128-bit block of information. The section 174 of code
has a particular function. At the end of the code for perform-
ing this function is another fetch instruction, but this fetch
instruction is an instruction to fetch the next 128-bit block of
code from another table. In this way, the code executed by the
processor is modular, with the code of one table causing a
fetch into the code of another table, and so forth, from table to
table. When fetching into the next table, the offset into the
table is typically determined by a characteristic of the input
data value 165, as recorded by flags generated by the charac-
terizer 98. In some embodiments, the flags as determined by
the characterizer are incorporated into the input data value as
stored in the input data register. When execution jumps from
one table to the next, the particular section of code that is
specifically tailored to data having a characteristic is vectored
to (as opposed to vectoring to another section of the table
whose code is not for data having the characteristic) due to the
fetch instruction having access to the flags.

[0092] After the functions of the code have been carried out
and execution of the code has traversed from table to table, a
final “finished instruction” is executed. Execution of the fin-
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ished instruction causes the execute stage 155 to assert a
finished signal 201 on conductor 202. Asserting of the fin-
ished signal 201 causes the state machine 149 to transition
from the operating state 190 to the finished state 203 (see the
state diagram of FIG. 17). In the finished state 203, the state
machine 149 asserts a finished signal 204 that is output from
the picoengine 148. The finished signal 204 as output from
the picoengine is also referred to as the “PE has data to be
read” signal. Assertion of the finished signal 204 indicates to
the output data reader circuit 115 (see FIG. 9) that the
picoengine has data to supply to the output data reader circuit.
In response to the assertion of the “PE has data to be read”
signal 204, the output data reader circuit 1157 enables the
outputting of the data output value 205 onto output data port
158 by asserting a “PE select signal” 206. Assertion of the PE
select signal 206 causes the output buffers 195 to be enabled.
The buffers 195 then drive the contents of the register file 186
onto the output data port 158 and to the output data reader
circuit 115. Execution of the finished instruction also causes
the state machine 149 to stop the clock signal CLK from being
supplied to the pipeline. The pipeline therefore stops clock-
ing, and power consumption is reduced.

[0093] While the PE select signal 206 is asserted and the
output data value 205 is being driven onto the output data port
158, the output data value is read from the output data port.
The output data reader circuit 115 then deasserts the PE select
signal 206 thereby disabling driver 195, and asserts an “out-
put data was read” signal 207. Assertion of the “output data
was read signal” 207 causes the state machine 149 to transi-
tion to the idle state 162. In the idle state 162, the state
machine asserts the idle signal 164. At this point, the pipeline
is not being clocked, but it is ready to receive another input
data value and another associated initial fetch information
value.

[0094] FIG. 18 is a diagram of the program code stored in
the local memory 3. The memory is organized as many
uniquely addressable 128-bit blocks of information. There
are many such 128-bit blocks of information in one section of
code, and there are many sections of code in one table, and
there are N tables stored in the memory. In the illustrated
example, the initial fetch (the one initially prompted from
outside the picoengine by incoming data) is identified by the
circled numeral “1”. The incoming initial fetch information
causes the pipeline to start clocking. The resulting first fetch
from the external memory has a base address 172 that iden-
tifies the first word 171 (first 128-bit block) of TABLE#1. The
table number given by the initial fetch information value 168
is translated by the lookup table circuit 175 into the base
address value 172 that is then used in the memory request 170.
The offset 173 from the beginning location of TABLE#1
identifies the beginning 128-bit block 171 of section 174 of
code. This offset is specified by the initial fetch information.
Once all the blocks of this section of code have been executed,
afetch instruction causes code execution to jump to the fourth
section of TABLE#0. This is identified in FIG. 17 by the
circled numeral “2”. After execution of this section of code, a
fetch instruction causes code execution to jump to the first
section of the code of TABLE#4. This is identified in FIG. 17
by the circled numeral “3”. The instruction fetches that causes
the fourth and fifth jumps are identified in FIG. 17 by the
circled numerals “4” and “5”. At the end of the fourth section
of code of TABLE#8 is a “finished” instruction. This finished
instruction causes the pipeline to stop clocking, and causes an
external circuit to be signaled that the picoengine has an
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output data value to be read on its output data port. The
external circuit reads the output data value via output data
reader circuit 115.

[0095] Each section of code is typically an amount of code
that is specialized to do a particular discrete task on input data
having a particular characteristic or characteristics. In one
simplified illustrative example, a first section of code does
VLAN and MAC address processing, a second section of
code does IP header analysis processing, a third section of
code does tunnel decapsulation processing, and a fourth sec-
tion of code does inner header processing. Execution of a
fetch instruction at the end of the first section references an IP
header version flag (a flag in the initial fetch information
value 168 that indicates whether packet data is [Pv4 or IPv6),
and as a result of this flag fetches code at the beginning of the
second section. Execution of a fetch instruction at the end of
the second section references a header value in the input data
value 165 (the header value indicates whether the packet is a
tunnel packet, and if so what kind of tunnel), and as a result of
this header value fetches code at the beginning of the third
section. Execution of a fetch instruction at the end of the third
section references a set of data values stored in local memory
159 (the set of data values indicates whether the packet data is
an Ethernet frame or an IP packet), and as a result of this set
of data values fetches code at the beginning of the fourth
section. Another processor (a microengine (ME) processor
not shown) preloads the set of data values into the local
memory 159 so that the set of data values is later usable by
picoengine 148 executing a fetch instruction to determine
which section of code to execute next. Local memory 159, in
addition to storing blocks of information of code, stores many
such sets of data values.

[0096] Inone example, the picoengine of FIG. 16 is one of
many such identical picoengines in the picoengine pool 114.
The picoengines are supplied with data and are assigned
tasks, one by one, in a particular order. If a processor circuit of
the pool is assigned a task, then it performs the task until it has
a resulting output data value. An individual picoengine that
has an output data value to be read then holds its output data
value until the output data value is read from the picoengine.
The resulting output data values from the picoengines are
read out of the pool one by one, in the very same order in
which tasks were assigned, and the resulting data values are
stored in an external FIFO. To perform this reading of the data
values from the pool, the output data reader circuit supplies a
PE select signal to each of the picoengines, but it only asserts
one PE select signal going to one picoengine at a time. The
currently selected picoengine is made to output its output data
value onto a common output bus, and the output data value is
communicated via this bus to the FIFO. After the output data
value is stored in the FIFO, the output data reader circuit
deasserts the PE select signal and asserts another PE select
signal, so that another of the picoengines will then output its
output data value onto the common output bus. In this way the
output data values from picoengines are read, one by one.
Each output data value includes a buffer pool number value
that indicates a particular microengine (ME) processor that
will perform further processing on the data. A first particular
type of input data values will typically be further processed by
afirst ME processor, whereas a second particular type of input
data values will typically be further processed by a second
ME processor, and so forth. The buffer pool numbers in the
output data values are used to control which of the subsequent
processing ME processors will further process which output
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data values being output from the pool. For additional infor-
mation on a picoengine pool and an output data reader, see:
U.S. patent application Ser. No. 14/251,592, entitled
“Picoengine Multi-Processor With Task Management”, filed
Apr. 12,2014, by Gavin J. Stark (the entire subject matter of
which is incorporated herein by reference).

[0097] FIG. 19 is a diagram of section 174 of code. Each
such 128-bit block of information (one row in the diagram)
includes 16 octets. In this example, there are thirty-two 128-
bit blocks of information in the section 174.

[0098] FIG. 20 is a diagram of the 128-bit block of infor-
mation 171, and one three-octet instruction 208 within the
block 171. The first octet of each instruction starts with a “0”
bit. The second octet of a multi-octet instruction starts with a
“1” bit. The third octet of a three-octet instruction starts with
a “1” bit. The decode stage 10 uses these leading bits of the
octets to parse the octets of a block of information and to
identify the boundaries between instructions.

[0099] FIG. 21 is a diagram that illustrates a fetch instruc-
tion 209 where the offset value is a value in the initial fetch
information value. The instruction is a three-octet instruction.
The opcode 210 is ten bits. The four “mmmm” bits 211 and
the two “MM” bits 212 together form a six-bit value, where
this six-bit value identifies one eight-bit portion of the initial
fetch information value that contains the offset value. Each
eight-bit portion of the initial fetch information value is num-
bered, and the value “MMmmmm” is the number of one of
these eight-bit portions. The five “ttttt” bits 213 indicate the
table number. As mentioned above, in one example the table
number is translated by the lookup table circuit 175 into the
base address value where the table starts in memory.

[0100] FIG. 22 is a diagram that illustrates a fetch instruc-
tion 217 where the offset value is a value in the input data
value. The instruction is a two-octet instruction. The opcode
214 is seven bits. The two “MM” bits 215 indicate the
memory that contains the table. In the present example, local
memory 159 is identified by an “MM” value of “00”. The five
“ttttt” bits 216 indicate the table number. The packet pointer
identifies one of the eight-bit portions of the input data value,
and this eight-bit portion is used as the offset value.

[0101] FIG. 23 is a diagram that illustrates a fetch instruc-
tion 218 where the offset value is in a specified register in the
register file 186. The instruction is a three-octet instruction.
The opcode 219 is ten bits long. The four “nnnn” bits 220
indicate the number of the register in the register file 186 that
contains the offset value into the table. The two “MM” bits
221 indicate the memory that contains the table to be fetched
from. The five “ttttt” bits 222 specify the table number.
[0102] FIG. 24 is a diagram that illustrates a fetch more
instruction 223. This instruction is one octet in length, and
only contains a seven-bit opcode 224. The instruction causes
a fetch of the next 128-bit block of information that is located
in the memory immediately after the last 128-bit block of
information that was fetched. The memory from which the
fetch is conducted is the same memory from which the last
fetch was conducted.

[0103] FIG. 25 is a diagram of a two-octet conditional skip
instruction 225 that explicitly specifies a skip count and a
predicate function. The opcode 226 of skip instruction 225 is
“1110000”. If a predicate condition as determined by the
value of the predicate code field 227 is true (if the predicate
condition is “satisfied”), then execution of a number of sub-
sequent instructions (instructions that follow the skip instruc-
tion in the sequence of instructions fetched) specified by the
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3-bit skip count field 228 are “skipped”. Inclusion of such a
skip instruction into a sequence of instructions generally does
not affect or change the number or order or flow of instruc-
tions decoded by the decode stage 153 of the pipeline. The
number and order and flow of instructions that are decoded by
the decode stage 153 may be the same, regardless of whether
the predicate condition is satisfied and a subsequent instruc-
tion or instructions are skipped, and regardless of whether the
predicate instruction is not satisfied and a subsequent instruc-
tion or instructions are not skipped. Similarly, the fetching of
instructions can be the same, regardless of whether the skip
occurs, or not. If the predicate condition of the skip instruc-
tion is true and a subsequent instruction or instructions are
skipped, however, then the execute stage 155 of the pipeline
does not carry out the instruction operation of any skipped
instruction. In addition, the skip instruction 225 includes a
“flag don’t touch” bit 229. If the “flag don’t touch” bit 229 is
set, then neither the skip instruction 225 nor any subsequent
skipped instructions (skipped due to the skip instruction) is
enabled to change the values of the carry bit C 182 and the
zero bit Z 183. If the “flag don’t touch” bit 229 is not set, on
the other hand, then either the skip instruction 226 or any
subsequent skipped instructions (skipped due to the skip
instruction) can change the values of the carry bit C 182 and
the zero bit Z 183.

[0104] FIG. 26 is a diagram that sets forth the predicate
codes indicated by the three predicate bits.

[0105] FIG. 27 is a diagram that illustrates a tripwire
instruction 230. The opcode 231 is a 7-bit value “111101”.
The value of the “T” bit 232 indicates whether to use the
bottom four bits 233 of the tripwire instruction directly (“im-
mediate”) as the four bits that will be the tripwire data field of
the tripwire value that will be output due to execution of the
tripwire instruction, or whether to use the bottom four bits
233 of the tripwire instruction to identify a register of the
register file whose bottom four bits will be the four bits of the
tripwire data field of the tripwire value that the will be output
due to execution of the tripwire instruction. The least signifi-
cant bit 234 of the opcode 231 indicates if the tripwire value
output was due to execution of a tripwire( instruction or a
tripwirel instruction.

[0106] FIG. 28 is a diagram that illustrates a “load register
file read stage control register” instruction 235. This instruc-
tion 235 is also referred to as a “set RF CSR” instruction. The
instruction 235 includes a 7-bit opcode 236, a 2-bit first code
field 237, a 1-bit second code field 238, a TE bit field 239, and
a 3-bit data value field 240. The value of the 2-bit first code
field 237 specifies a circuit or amount of circuitry that will be
loaded or configured due to execution of the instruction 235.
For example, if these two bits are “01”, then execution of the
instruction 235 will cause the TE bit 185 and three predicate
bits 184 in the register file read stage 154 to be loaded. If the
value of the second code field 238 is “1” then the least four
significant bits of the instruction 235 will be loaded into the
TE bit 185 and the three predicate bits P 184 in the register file
read stage, whereas if the value of the second code field 238
is “0” then the four least significant bits of the value RA of
register A will be loaded into the TE bit 185 and the three
predicate bits P 184 in the register file read stage. The load RF
CSR instruction 235 is different from most other instructions
executed by the processor in that the loading operation it
specifies occurs one clock cycle earlier than it would occur
were it to be have been carried out by the execute stage in
ordinary course. In a first clock cycle, the decode stage 153
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decodes the load RF CSR instruction, and the specified load-
ing operation then occurs in the very next clock cycle. Due to
the load operation occurring one clock cycle earlier than it
ordinarily would, the load RF CSR instruction can be used in
an advantageous manner with a preceding instruction where
the preceding instruction uses the ALU 196 to determine a
value that is then loaded into the A register. In one novel
aspect, the preceding instruction uses the ALU 196 to deter-
mine a value that then, as a result of execution of the instruc-
tion, loads the ALU output value into the register A (as
pointed to by the A register pointer AP 178). The very next
instruction to be executed by the processor is a load RF CSR
instruction, such as the “load register file read stage control
register instruction” 235 of FIG. 28. The instruction 235
specifies that the TE bit 185 and the three predicate bits 184
are to be loaded with the least significant four bits of the
contents RA of the register A. The instruction 235 is decoded
in a clock cycle, and in the very next clock cycle the loading
of'the TE and predicate bits P occurs. The TE and predicate
bits P are loaded with the contents RA of the register A before
the contents RA can be changed as a consequence of execu-
tion of the instruction 235 itself. Now that the predicate bits P
184 are loaded with the desired values, a next skip instruction
can be of the one-octet efficient and short type set forth in
FIG. 24, where the predicate code values of the predicate bits
184 are used to specify the predicate function. Alternatively,
the next instruction is another type of conditional predicated
instruction, where the predicate code values of the predicate
bits 184 are used to specify the predicate function. In one
novel aspect, there are multiple such efficient and short con-
ditional predicated instructions, where each of the instruc-
tions is a short one-octet instruction that does not explicitly
set forth the 3-bit predicate code but rather where the 3-bit
predicate code is set forth by the same 3-bit value of the
predicate bits 184 as stored in the register read file stage 154.

[0107] FIG. 29 is a diagram that illustrates the finished
instruction 241. This instruction is one octet in length and
includes a seven-bit opcode 242. As mentioned above, execu-
tion of the finished instruction causes the pipeline to stop
clocking, and causes the state machine 149 to transition to the
finished state. In the finished state, the state machine 149
causes the picoengine 148 to assert the “PE has data to read”
signal 204.

[0108] FIG. 30 is a simplified diagram of the lookup table
circuit 175 in the fetch request stage 151 of FIG. 16. The data
contents of the memory portion 247 can be written via control
bus CB 242. An address 243 of a memory location in the
memory portion 247 is supplied via lines 252, and the read/
write signal 244 is set to indicate a write operation, and the
data 246 to be written is supplied via the control bus 242 to the
memory portion 247. In this way, the contents of the
addressed memory location of the memory portion 247 are
pre-loaded and setup before picoengine operation, or during
downtimes during which the picoengine is not being used. To
perform a table number value to base address value lookup,
the table number 250 is supplied to the lookup table circuit
175 via input conductors 245 when the read/write control
signal 244 is set to indicate a read operation. The read/write
signal 244 controls the address multiplexer 246. The multi-bit
content of the memory location addressed by the table num-
ber value is then output from the lookup table circuit 175 onto
output conductors 248 as the base address value 2490.

[0109] Although in the specific embodiment of FIG. 16, the
lookup table circuit 175 is disposed in the fetch request stage
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175, in other embodiments the lookup table circuit that con-
verts a table number value into a base address value is dis-
posed in the local memory 159. In still other embodiments,
there is no table number to base address lookup table circuit.
It a lookup table circuit is disposed in the local memory 159,
then the memory request 170 as received onto the local
memory 159 may include the table number value. The lookup
table circuit of the local memory 159 then uses the table
number value to determine the base address value, and the
base address value along with the offset value is then used to
read the block of information from the memory of the
memory system. In the same way that a table number value
can be converted into a base address value by a lookup table
circuit located in the fetch request stage 151, so too can
another value (for example, a flag value or flag values) in the
initial fetch information value 168 be converted by a lookup
table circuit in the fetch request stage 151 into the offset
value. Similarly, a lookup table circuit that converts a flag
value or values into the offset value can be located in the local
memory 159. The contents of these lookup table circuits can
be loaded by the picoengine itself, or in other embodiments
can be loaded via the separate control bus (CB) 242.

[0110] In one example, to realize an integrated circuit
embodiment of the picoengine of FIG. 16, the function of the
each circuit block of the picoengine is described ina hardware
description language (for example, Verilog or VHDL). A
commercially available hardware synthesis program (for
example, Synopsis Design Compiler) is then employed to
generate digital logic circuitry from the hardware description
language description, where the synthesized digital logic cir-
cuitry performs the function described by the hardware
description language. The picoengine is realized in this way
to be a small circuit of about ten thousand equivalent gates.
An embodiment of picoengine 148 of FIG. 16 or of
picoengine multi-processor 99 of FIG. 9 may be made avail-
able by one company as a predesigned block of circuitry that
is then incorporated into another company’s integrated circuit
design as a general purpose block. Such a predesigned block
of IP is sometimes referred to in the art as a block of “IP”. A
hardware designer who incorporates the predesigned block of
IP into a larger integrated circuit design need not understand
or be aware of the internal structure and operation of the
pre-designed block, but rather interfaces to the pre-designed
block in accordance with an interface description supplied by
the original designer of the predesigned block. Rather than
being supplied as a block of IP to be incorporated into another
integrated circuit, the novel picoengine 148 or novel
picoengine multi-processor 99 can be supplied to end cus-
tomers as a separate discrete integrated circuit of general
utility in data processing applications.

[0111] FIG. 31 is a more detailed diagram of one specific
implementation of the pipeline 150 of the picoengine 148 of
FIG. 16. One 128-bit block of octets is received onto the
picoengine from the local memory 159 via memory interface
port 160. The 128 bits pass through multiplexer 300 and are
latched into pre-fetch data register 301. The 128 bits pass
through multiplexer 302 and are clocked into fetch data reg-
ister 303. The least significant (leftmost) twenty-four of the
bits pass from the fetch data register 303 down to a “delineate
instruction” block 304 in the decode stage 153. The 128 bits
also pass to the left to a shifter 305. The shifter shifts the
128-bit value on its input to the right, either by 0 bits, 8 bits,
16 bits, or 24 bits. The number of bits shifted is determined by
the 2-bit value on input leads 306. When performing a shift,
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the leftmost bits of the resulting shifted value are replaced
with one, two, or three NOP instruction opcodes. The result-
ing shifted 12-bit value is supplied from the shifter 305 to
input 307 of multiplexer 302. In the decode stage, the “delin-
eate instruction” block 304 examines the least significant
twenty-four bits of the incoming 128-bit block, and looks at
the leading bits of the octets. From these leading bits, the
“delineate instruction” block determines whether the octet in
the least significant bit position is the first octet of a single-
octet instruction, or is the first octet of a two-octet instruction,
or is the first octet of a three-octet instruction. The number of
octets of this first instruction is output as the “number of
octets consumed” signal 188. This “number of octets con-
sumed” signal 188 is the control signal supplied to shifter
305. Accordingly, after the first leftmost instruction has been
decoded, the 128-bit incoming value to the shifter is shifted to
the right by a number of octets such that the leftmost octet of
the least significant 24-bits supplied to the “delineate instruc-
tion” block 304 is the leftmost octet of the next instruction. In
this way, as instructions are decoded, the shifter 305 shifts the
128-bit value to the right a number of octets so that the
“delineate instruction” block receives the next instruction to
be deciphered.

[0112] In addition to determining the number of octets in
the instruction, the delineate instruction block 304 also exam-
ines the instruction and determines the instruction type, as
indicated by the opcode of the instruction. The instruction can
be a local operation, a decode packet operation, a decode
memory operation, a decode hash operation, a decode fetch
operation, or a decode miscellaneous operation. Each of the
decode blocks 308-313 examines and decodes the twenty-
four bits output by the “delineate instruction” block 304 and
outputs a set of fifty-two “individual decoded instruction”
bits. For example, three bits of the “individual decoded
instruction” bits are denoted “RFA_SRC” and this value is
used to generate the pointer AP that is then stored in AP
register 178. The pointer AP is used to select a part of the
register file 186 that is then clocked into the A register 314.
For example, three bits of the “individual decoded instruc-
tion” bits are denoted “RFB_SRC” and this value is used to
generate the pointer BP that is then stored in register 179. The
pointer BP is used to select a part of register file 186 that is
then clocked into the B register 315.

[0113] Multiplexer 316 receives all the bit values stored in
the register file 186, and selects one sixteen-bit portion based
on the pointer AP (as supplied onto the select input of the
multiplexer 316). Similarly, multiplexer 317 receives all the
bit values stored in the register file 186, and seclects one
sixteen-bit portion based on the pointer BP (as supplied onto
the select input of the multiplexer 317). The register file read
stage supplies values, such as the contents of the A register
314 and the B register 315, to inputs of the ALU 196. The
contents of the instruction register 318 determines the opera-
tion performed by the ALU 196. The sixteen-bit output value
of the ALLU 196 passes through multiplexer 319 and multi-
plexer 320 and is clocked back into the register file 186. Some
of'thebits of the register file 186 are the output data value 205.
Ifthe output data value 205 is to be read by an external circuit,
then the external circuit asserts the PE select signal 206 so that
the output buffers 195 are enabled. The output bufters 195
drive the output data value 205 to the external circuit.
Depending on the instruction to be executed, the register A
314 can be loaded with a 16-bit part of the contents of the data
register 187. Which 16-bit part is determined by the instruc-
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tion decode. The selected part is supplied by multiplexer 321
and multiplexer 322 to register A 314.

[0114] Ifthe instruction being decoded is a skip instruction,
then the skip count is supplied via conductors 323 to multi-
plexer 324. If the number of instructions to be skipped is zero,
then either the “00” multiplexer input or the “01” multiplexer
input is selected. In either case, a value of zero passes through
multiplexer 324 and is latched into register 325. If the value as
output by register 325 is zero, then the EN signal output of
comparator 326 is asserted. All the registers 186, 327, 314,
315, 183, 182, 328 and 329 have synchronous enable signal
inputs, and these inputs are coupled to receive the enable
signal EN. Consequently, if the number ofinstructions to skip
is zero, then these registers are enabled, and the execution of
no instruction is skipped. If, however, the number of instruc-
tions to skip as supplied to multiplexer 324 is not zero, then
multiplexer 324 initially couples the value on its “10” input to
its output. The number of instructions to skip is therefore
clocked into register 325. Because the value supplied to com-
parator 326 is non-zero, the enable signal EN is not asserted
and the registers listed above are disabled (not enabled). This
disabling prevents execution of an instruction. On the next
clocking of the pipeline, the decremented number of instruc-
tions to skip (as output by decrementer 330) is passed back
through multiplexer 324 and is latched into register 325. This
process of decrementing the number of instructions to be
skipped, clock cycle by clock cycle, is continued until the
decremented number equals zero. When the decremented
number equals zero, then the comparator 326 causes the
enable signal EN to be asserted, which in turn stops the
skipping of execution of instructions. Due to the enable signal
EN having been deassserted for a number of clock cycles,
execution of the appropriate number of instructions is pre-
vented.

[0115] Ifatripwire instruction is executed, then four bits of
data 333, the valid bit 334, and the hit bit 335 are supplied
onto six conductors 331. Fields in the tripwire instruction
determine what data is supplied onto these conductors as the
tripwire data. The picoengine has a predetermined and hard-
wired 6-bit picoengine number, identifying it as one of the
forty-eight picoengines of the pool. This 6-bit picoengine
number 332 is merged with the six bits on conductors 331 to
make the 12-bit tripwire value 161. If the tripwire instruction
is to be skipped, then the enable signal EN at the time the
tripwire instruction is being processed in the execute stage, is
a digital “0”. Accordingly, if the enable signal EN is a digital
“0”, then AND gate 336 supplies a digital “0” into the select
input of multiplexer circuit 337, thereby causing multiplexer
circuit 337 to supply the twelve “0” bits on its “0” input leads
to its twelve output leads. Therefore the twelve bits driven on
the picoengine bus are all digital “0”s. If, however, the trip-
wire instruction is not to be skipped, then the enable bit EN is
a digital “1”. Under such a condition, if there is a valid
tripwire value to be output, then the picoengine is to output
the tripwire value 161 onto the tripwire bus of the picoengine.
Accordingly, if the enable signal is a digital “1” and the valid
bit signal 334 is a digital “1”, then the AND gate 336 supplies
a digital “1” onto the select input lead of the multiplexer
circuit 337, thereby causing multiplexer circuit 337 to supply
the 12-bit tripwire value 161 on its “1” input leads to its
twelve output leads.

[0116] FIG. 32 is a more detailed diagram of shifter 305.

[0117] Although certain specific embodiments are
described above for instructional purposes, the teachings of
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this patent document have general applicability and are not
limited to the specific embodiments described above. Accord-
ingly, various modifications, adaptations, and combinations
of various features of the described embodiments can be
practiced without departing from the scope of the invention as
set forth in the claims.

What is claimed is:

1. An integrated circuit comprising:

a first pool of processors, wherein each of the processors
has a tripwire bus port, wherein each of the processors
can decode and execute a tripwire instruction, wherein
execution of the tripwire instruction causes a valid
multi-bit value to be output from the processor onto the
tripwire bus port of the processor; and

atripwire data merging and collision detection circuit (TD-
MCDC), wherein the TDMCDC is coupled to the trip-
wire bus port of each of the processors of the pool,
wherein: 1) if more than one of the processors is output-
ting a valid multi-bit value onto its tripwire bus port at a
given time then the TDMCDC asserts a collision bit
signal and supplies the asserted collision bit signal onto
a set of conductors; 2) if one and only one of the proces-
sors is outputting a valid multi-bit value onto its tripwire
bus port at a given time then the TDMCDC supplies the
valid multi-bit value onto the set of conductors along
with a deasserted collision bit signal; 3) if none of the
processors is outputting a valid multi-bit value onto its
tripwire bus port at a given time then the TDMCDC does
not output a valid multi-bit value onto the set of conduc-
tors.

2. The integrated circuit of claim 1, further comprising:

an event bus comprising a plurality of event ring circuits,
wherein the set of conductors extends from the TDM-
CDC and into an event ring circuit of the event bus; and

a plurality of terminals and debug interface circuitry,
wherein the a multi-bit value output by one of the pro-
cessors as a result of the processor executing a tripwire
instruction is communicated through the TDMCDC
from the processor to an event ring circuit and then
through the event bus to the debut interface circuitry and
then out of the integrated circuit via the plurality of
terminals.

3. The integrated circuit of claim 2, further comprising:

a second pool of processors, wherein each processor of the
second pool has a tripwire bus port, wherein each pro-
cessor of the second pool can decode and execute a
tripwire instruction, wherein execution of the tripwire
instruction causes a valid multi-bit value to be output
from the processor onto the tripwire bus port of the
processor, and wherein the TDMCDC is coupled to the
tripwire bus port of each processor of the second pool.

4. The integrated circuit of claim 3, wherein the integrated
circuit comprises a plurality of islands, wherein the first pool
of processors is disposed on a first of the islands, wherein the
second pool of processors is disposed on a second of the
islands, and wherein the event bus extends through both the
first and second islands.

5. The integrated circuit of claim 1, wherein each of the
processors has an associated number, and wherein a multi-bit
value output by a processor onto its tripwire bus port as a
result of the processor executing a tripwire instruction
includes a first multi-bit value and a second multi-bit value,
wherein the second multi-bit value is the number of the pro-
Cessor.
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6. The integrated circuit of claim 1, wherein the multi-bit
value output by a processor as aresult of the processor execut-
ing a tripwire instruction includes a first multi-bit value and a
second multi-bit value, wherein the first multi-bit value is a
value that was stored in a register file of the processor.

7. The integrated circuit of claim 6, wherein there are
multiple different types of tripwire instructions, and wherein
the multi-bit value further includes an indication of the type of
tripwire instruction that caused the multi-bit value to be out-
put onto the TDMCDC.

8. The integrated circuit of claim 1, wherein all the proces-
sor are clocked by a common clock signal, wherein the TDM-
CDC includes a plurality of registers, and wherein all the
registers of the TCMCDC are clocked by the common clock
signal.

9. The integrated circuit of claim 1, wherein the tripwire
bus port of a processor only carries a valid multi-bit value if
the processor is actively processing a tripwire instruction.

10. The integrated circuit of claim 9, wherein the processor
is clocked by a clock signal, and wherein the processor out-
puts a valid multi-bit value onto its tripwire bus port for one
and only one clock cycle during a time when the processor is
actively processing a tripwire instruction.

11. The integrated circuit of claim 10, wherein none of the
processors of the first pool can perform a write to any
memory.

12. The integrated circuit of claim 1, wherein each of the
processors fetches instructions from a memory, and wherein
none of the processors can write to any memory from which
it fetches instructions.

13. The integrated circuit of claim 2, wherein the event bus
serially communicates event packets from one event ring
circuit to event ring circuit of the event bus, and wherein valid
multi-bit values output by processors as a result of executing
tripwire instructions are communicated as parts of event
packets via the event bus to the debug interface circuitry.

14. A method comprising:

(a) executing a tripwire instruction in a first processor and
as a result of the executing of (a) outputting a valid
multi-bit tripwire value from the first processor onto a
tripwire bus port of the first processor;

(b) executing a tripwire instruction in a second processor
and as a result of the executing of (b) outputting a valid
multi-bit tripwire value from the second processor onto
a tripwire bus port of the second processor; and

(c) receiving the valid multi-bit tripwire value from the first
processor and receiving the valid multi-bit tripwire
value from the second processors and supplying multi-
bit tripwire values one by one to a debug interface cir-
cuit, wherein each multi-bit tripwire value is supplied to
the debut interface circuit along with a collision bit,
wherein the collision bit indicates whether multiple
multi-bit tripwire values were received from processors
at the same time.

15. The method of claim 14, wherein each multi-bit trip-
wire value received in (c) includes a first multi-bit value, a
second multi-bit value, wherein the second multi-bit value
that identifies the processor that generated the multi-bit trip-
wire value.

16. An integrated circuit comprising:

debug interface circuitry;

a pool of processors, wherein each processor of the pool
has a tripwire bus port, wherein each of the processors
can decode and execute a tripwire instruction, wherein
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execution of the tripwire instruction causes a valid
multi-bit tripwire value to be output from the processor
onto the tripwire bus port of the processor; and

means for merging multi-bit tripwire values received from
the processors and for supplying multi-bit tripwire val-
ues to the debug interface circuitry, wherein the means is
also for: 1) supplying an asserted collision bit signal to
the debug interface circuitry if more than one of the
processors is outputting a valid multi-bit tripwire value
onto its tripwire bus port at a given time; 2) supplying a
deasserted collision bit signal to the debug interface
circuitry if one and only one of the processors is output-
ting a valid multi-bit value onto its tripwire bus port at a
given time, and supplying the valid multi-bit value to the
debug interface circuitry along with the deasserted col-
lision bit signal; 3) not supplying a valid multi-bit value
to the debug circuitry if none of the processors is out-
putting a valid multi-bit value onto its tripwire bus port
at a given time.

17. The integrated circuit of claim 16, wherein the means
supplies the multi-bit tripwire data values to the debug inter-
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face circuitry via an event bus, and wherein the event bus
communicates the multi-bit tripwire data values in the form of
event packets.

18. The integrated circuit of claim 16, wherein the means
outputs multi-bit tripwire values onto a set of conductors
along with the collision bit signal, and wherein the means
drives the conductors of the set of conductors other than the
conductor that carries the collision bit signal with identical
digital logic values if the means is not supplying a valid
multi-bit value to the debug circuitry due to none of the
processors outputting a valid multi-bit value.

19. The integrated circuit of claim 16, wherein a valid
multi-bit tripwire value comprises a first multi-bit value and a
second multi-bit value, and wherein the first multi-bit value is
avalue output by a register file of the processor that output the
valid multi-bit tripwire value.

20. The integrated circuit of claim 16, wherein a valid
multi-bit tripwire value comprises a first multi-bit value and a
second multi-bit value, and wherein the second multi-bit
value is a processor number that identifies the processor that
output the valid multi-bit tripwire value.
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