US 20150371018A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2015/0371018 A1

Ahmed et al. 43) Pub. Date: Dec. 24, 2015
(54) OPTIMIZED ENFORCEMENT OF FINE (52) US.CL

GRAINED ACCESS CONTROL ON DATA CPC e GO6F 21/30 (2013.01)

(71) Applicant: Oracle International Corporation, 7 . . ABSTRACT .
Redwood Shores, CA (US) Techmques for efficient cursor sharing to enf01.‘ce fine-
grained access control are provided. In one technique, the
(72) Tnventors: Tanvir Ahmed, Hayward, CA (US); Yi guthorizgtipn context ofa databasg statement is stored in. (or
Ru, Belmont, CA (US); Chao Liang in association Wlth) a con@spondlng cursor. The authoriza-
SaI; Ramon ,C A (US): {7ikram R. ’ tion context indicates multiple authorization re?sults, gach of
Pesati San’Jose CA EUS) which indicates whether a user (or role) associated with the
’ ’ database statement is allowed to access a different data set of
multiple data sets that the database statement targets. An
(21) Appl. No.: 14/313,872 authorization context of an incoming database statement may
be compared to the authorization context of a cursor in a
o single comparison to determine whether the authorization
(22)  Filed: Jun. 24,2014 contexts match. If so, then the cursor may be shared. In
another technique, one or more normalizations are applied to
Publication Classification a cursor predicate that is generated based on the authorization
context of a database statement. The one or more normaliza-
(51) Int.ClL tions may result in removing one or more predicates from the

GOG6F 21730 (2006.01) cursor predicate.

100
\‘




US 2015/0371018 A1

Dec. 24,2015 Sheet 1 of 3

N\
112,\ <
a2

Patent Application Publication

N

@

SR SR )
OlalZ10(|allZ|[O||a
ooV Ial|lallal|Z |2
ONNO[ONNONONDOOD [
™ ™ P
© © ©

C1

GNN

DGD
DGN

DDG

114
A

DDN

DNG

DNN

NGG

134

C2

NGD )
NGN

a3

NDD |

a3

136

C3

NNG

138

NND |
NNN

a3

|

FIG. 1

116
A\
| a2

100

102
A

False



Patent Application Publication

200 /‘\‘

Dec. 24,2015 Sheet 2 of 3

US 2015/0371018 A1

210
RECEIVE A DATABASE STATEMENT

v

220

IDENTIFY A PARENT CURSOR BASED ON THE DATABASE STATEMENT

v

230

GENERATE AN AUTHORIZATION CONTEXT FOR THE DATABASE STATEMENT

v

240

CURSOR

IDENTIFY A CHILD CURSOR IN A CHILD CURSOR LIST OF THE PARENT

250
DOES THE AUTHORIZATION CONTEXT
THE DATABASE STATEMENT MATCH T
AUTHORIZATION CONTEXT OF THE
CHILD CURSOR?

260
SHARE THE CHILD
CURSOR FOR THE
DATABASE STATEMENT

270
ANY MORE
CURSORS IN THE

\\,
.,

OF
HE

YES

"\ CHILD CURSOR usm/

N

0
e

FIG. 2

280
GENERATE A NEW
CURSOR FOR THE

DATABASE STATEMENT




US 2015/0371018 A1

31t m
MAOMLIN FOVRIFINI {7 9t
. | NOILYOINNWINOD ¥40SS3004d - [ 0¥INOD
% | " ¥OSHNO
- |
b f
= ,
@z |
“ f ;
= f 08 ¢ S 78
< £ | Snd " 301A30 LNdNI
|
a f
_ LININI |
S | _
Z o 30¢ 0% m
= 8e — | 3om0 RIONIN | — N,wwi -
~ - | 3OWdOIS e NIV |
S
om i ““““““““““““
lp 1 ]
= £ Old
g
=
=¥



US 2015/0371018 Al

OPTIMIZED ENFORCEMENT OF FINE
GRAINED ACCESS CONTROL ON DATA

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is related to U.S. application Ser.
No. 13/488,739, filed Jun. 5, 2012, the entire contents of
which is hereby incorporated by reference as if fully set forth
herein.

FIELD OF THE DISCLOSURE

[0002] The present disclosure relates to fine-grained access
control and, more specifically, to efficiently creating and shar-
ing cursors in light of a data security policy on a database
object.

BACKGROUND

Access Control

[0003] Access control is the process of deciding who can
use specific systems, resources, and applications. An access
control model is a defined set of criteria a system administra-
tor utilizes to define system users’ rights. One popular access
control model is Role Based Access Control (RBAC). RBAC
involves creating permissions by assigning access rights to
specific roles or jobs within the company and then assigning
users to those roles, thereby granting privileges.

[0004] Authorization state of an access control model may
be represented by the triple {S, O, A}, where S is the set of
identity context of entities requesting access, O is the set of
target resources, and A is the access matrix, where A[s,0] is
the privilege for which subject s is authorized on object 0. In
the context of a database system, S represents database users
and their respective DB roles, O is the set of database tables
and views, and values of A are database object privileges,
such as select, insert, update, and delete.

[0005] One approach for implementing access control in a
database system involves extending the database access con-
trol model in all three dimensions. With respect to identity
context S, this approach allows a subject to be any user or
identity context, including a large number of application end-
users and application roles. With respect to the set of target
resources O, this approach allows fine-grained objects where
a subset of the cells of a table or view can be defined as a
protected resource. With respect to access matrix A, this
approach allows new privileges to be defined to represent
application-level actions on objects. This virtually
unbounded and large number of subjects, objects, and privi-
leges result in an extremely large number of authorization
states. For ease of access control policy specification, this
approach uses “negative grant” or “deny” that allows deny of
a subset of access rights from a larger set of access rights. The
use of deny (or negative privilege grants) further increases the
number of authorization states. Correspondingly, this
approach introduces new challenges on how authorization
state can be managed during runtime for efficient authoriza-
tion decisions.

Cursor Sharing

[0006] Access control enforcement on data stored in a data-
base is tied to query execution that accesses the data. Inter-
pretive languages, such as SQL, require compilation before
each execution. The compilation phases of a SQL statement

Dec. 24, 2015

include syntax check, type check, object access check,
semantics analysis, execution plan generation and optimiza-
tion, and finally creation of one or more runtime data struc-
tures. This compilation process is referred to as a “hard parse”
and one of the generated data structures is referred to as a
“cursor”, which contains the execution plan. Because hard
parses are so computationally expensive, there is a desire to
share the resulting cursors with subsequent identical or
equivalent SQL statements.

[0007] One or more “cursor sharing criteria” are used to
determine whether a cursor may be shared by the same data-
base statement submitted by different users. The process of
checking cursor sharing criteria is referred to as a “soft parse.”
One cursor sharing criterion may be whether the user or entity
that submitted the database statement is authorized to access
the objects indicated in the database statement. Without the
approach that extends the database access control model (“ex-
tended model approach™) described previously, such an
authorization check is limited to object privileges on the table
(or view). With the extended model approach and its associ-
ated fine-grained access control, this authorization check may
need to be performed on each row and column of an object
based on the privileges being checked as part of the database
statement.

[0008] The approaches described in this section are
approaches that could be pursued, but not necessarily
approaches that have been previously conceived or pursued.
Therefore, unless otherwise indicated, it should not be
assumed that any of the approaches described in this section
qualify as prior art merely by virtue of their inclusion in this
section.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] In the drawings:

[0010] FIG. 1 is a block diagram that depicts an example
tree structure 100 for checking cursor sharing criteria;
[0011] FIG. 2 is a flow diagram that depicts a process for
sharing child cursors, in an embodiment;

[0012] FIG. 3 is a block diagram that illustrates a computer
system upon which an embodiment of the invention may be
implemented.

DETAILED DESCRIPTION

[0013] In the following description, for the purposes of
explanation, numerous specific details are set forth in order to
provide a thorough understanding of the present invention. It
will be apparent, however, that the present invention may be
practiced without these specific details. In other instances,
well-known structures and devices are shown in block dia-
gram form in order to avoid unnecessarily obscuring the
present invention.

General Overview

[0014] Techniques for efficient cursor sharing to enforce
fine-grained access control are provided. In one technique,
the authorization context of a database statement is stored in
a corresponding cursor. The authorization context indicates
multiple authorization results, each of which indicates
whether a user associated with the database statement is
allowed to access a different data set of multiple data sets that
the database statement targets. An authorization context of an
incoming database statement may be compared to the autho-



US 2015/0371018 Al

rization context of a cursor in a single comparison to deter-
mine whether the authorization contexts match. If so, then the
cursor may be shared.

[0015] In another technique, one or more normalizations
are applied to a cursor predicate that is generated based on the
authorization context of a database statement. The one or
more normalizations may result in removing one or more
predicates from the cursor predicate.

[0016] In another technique, one or more privilege predi-
cates are identified as unnecessary and are therefore elimi-
nated, which reduces the size of the final rewrite of a database
statement.

Overview of Data Access Control Policies

[0017] A data access control policy providing row-level
access control to data stored in a database may be specified
using one or more access control lists. Each access control list
specifies what privileges (e.g., read or update) can be per-
formed by which principals, where each principal is a user or
role in the database system. A role is a defined grouping of one
or more principals in the database system. In addition to
specifying what privileges are granted to particular prin-
ciples, privileges may also be explicitly denied to one or more
principals in an access control list.

[0018] In order to specify what privileges are granted or
denied to particular principals, each access control list
includes one or more access control entries that define a
mapping from a principal to a granted or denied privilege. For
example, an access control entry may specify that a first user
is granted access to read, while another entry may specify that
users in a defined “marketing” role are denied the privilege to
update data. Thus, each access control entry may specify at
least a particular privilege, a value indicating whether the
privilege is granted or denied, and a principal.

[0019] Access control lists are associated with particular
rows, columns, or other subset of a database table by a con-
dition or predicate that specifies the data set to which each
access control list is applicable, referred to herein as “access
predicates.”” An access predicate may be specified, for
example, as a Structured Query Language (SQL) expression
or any other suitable expression for identifying a subset of a
database table. The data referred to by an access predicate is
referred to herein as a “data realm.” The association between
a data realm and an access control list is referred to herein as
an “ACL-data realm pair”” Each row of a table may have
associated with it one or more data realms. A data access
control policy is a collection of one or more ACL-data realms
pairs that define the access privileges to particular principals
to particular subsets of one or more database tables.

[0020] When a principal submits a query to a database
server, the database server enforcing a data access control
policy determines whether a table identified by the query is
associated with one or more ACL-data realm pairs. If the
database server determines that the query identifies such a
table, during query execution the database server will evalu-
ate the ACL-data realm pairs associated with the table for
each row requested in the query. If an ACL-data realm pair
includes an access control list that either grants or denies the
requested privilege to the requesting principal and the asso-
ciated access predicate is true for the current row under evalu-
ation, then access to the row is granted or denied to the
principal. If all of the ACL-data realm pairs are evaluated
without an explicit grant or deny result, then access to the row
may be denied to the principal by default.

Dec. 24, 2015

[0021] If a row under evaluation is associated with more
than one ACL-data realm pair, then the result of the access
control evaluation may depend on the order in which the
ACL-data realm pairs are evaluated. For example, a first
ACL-data realm pair may specify, relative to a table T con-
taining a column coll, an access predicate of coll<2. A sec-
ond ACL-data realm pair may specify, relative to the same
table, an access predicate of coll<3. Thus, the access predi-
cate of the first data realm and the access predicate of the
second data realm would both be satisfied by a row of table T
containing the value 1 in the coll column. However, the first
ACL and the second ACL may have different or even con-
flicting privilege grants for a particular principal. For
example, the first ACL. may specify that a particular user is
granted the privilege to read. The second ACL may specify
exactly the opposite, i.e., that the user is denied the privilege
to read. Thus, the privilege that is granted to the user for a row
that satisfies the access predicates for both data realms will
depend on the order in which the associated ACLs are evalu-
ated.

[0022] If a table has more than one ACL.-data realm pair
associated with it, then the ACL-data realm pairs are evalu-
ated for each row in an order defined as part of the data
security policy. For example, an ordered set of ACL-data
realm pairs requiring evaluation may be specified as:

[0023] al,C1,a2,C2,...,aN,CN,

where each of al-aN represents a particular ACL, and each of
C1-CN represents a data realm that is associated with a
respective ACL.

[0024] When a database server receives a query that
requests access to rows of a table associated with a data
security policy, the data security policy may be specified as
part of the query in an access check query operator. For
example, the policy evaluation logic for the data security
policy described above, relative to a particular principal sub-
mitting a query, may be specified by the following example
access check operator:

[0025] CHECK_PRIVILEGE(p, al, C1, a2, C2, .. ., aN,
CN),

where CHECK_PRIVILEGE is the access check operator
and takes as parameters the privilege p and the ordered set of
ACL-data realm pairs al, C1, a2, C2, ..., aN, CN.

[0026] Thus, in order for a privilege p to have access to the
requested data in a table associated with the data security
policy specified above, the policy evaluation logic specified
by the access check operator should return true for all rows
requested for the privilege. The ACLs associated with the data
security policy are evaluated in the specified order for each
requested row. If an evaluated ACL either grants or denies the
checked privilege and the associated condition holds for the
row, then access to the row is granted or denied, respectively,
to the principal who is executing the query. If the evaluation
logic for a particular row reaches the end of the list of ACL-
data realm pairs without a result, then access to the row is
denied.

[0027] In an embodiment, the access check operator is
included as part of the query submitted by the principal during
the query compilation process. For example, in response to
receiving the query SELECT*FROM T, a database server
may append an access check operator to the query during
query compilation, resulting in the query expression:

[0028] SELECT*FROM T WHERE CHECK_PRIVI-
LEGE(p, al,C1, a2, C2, ..., aN, CN).

Thus, the CHECK_PRIVILEGE access check operator will
be used by the database server to control access to the



US 2015/0371018 Al

requested rows of database table T for the user who is execut-
ing the query.

[0029] During the compilation process, the result of an
access check operator may be one or more predicates that are
added to the database statement. Each predicate corresponds
to an authorization result of one of the corresponding ACLs.
A privilege check against an ACL may result in three different
results: grant (G), deny (D), or neither grant nor deny (N).
[0030] For example, if there are two ACL.-data realm pairs,
the first data realm is defined by “coll1>10”, the second data
realm is defined by “col2<20”, and the authorization result of
each ACL is a grant, then the above query expression may be
rewritten as:

[0031] SELECT*FROM T WHERE col1>10 OR col2<20
Thus, if a row from table T satisfies either condition, then that
row will be part of the query result. As another example, if
there are two ACL-data realm pairs, the first data realm is
defined by “col1>10”, the second data realm is defined by
“col2<20”, the authorization result of the first ACL is a deny,
and the authorization result of the second ACL is a grant, then
the above query expression may be rewritten as:

[0032] SELECT*FROM T WHERE !(col1>10) AND
col2<20

Thus, arow from table T must satisfy both conditions in order
for that row to be part of the query result.

[0033] In an embodiment, the CHECK_PRIVILEGE
operator may also include multiple privileges, including
object privileges, such as:

[0034] CHECK_PRIVILEGE ({p1,...,pM},al,C1, ...
, aN, CN)

where “pl, ..., pM” are privileges.

[0035] For each privilege and N ACL-data realm pairs,

there are 3% possible authorization contexts, each of which
indicates an authorization result for each ACL-data realm pair
relative to the requested privilege. For M privileges, there are
M*3%¥ possible authorization contexts.

[0036] A data security policy is enforced based on the
access (or data realm) predicates of an authorization context.
A grant (G) on an ACL results in ORing the corresponding
data realm predicate with the remaining data realm predicate
(s). A deny (D) on an ACL results in inverting the correspond-
ing data realm predicate and ANDing the inverted predicate
with the remaining data realm predicate(s). A neither grant
nor deny (N) results in not using the data realm predicate. In
other words, nothing about that data realm predicate is added
to the rewrite. That data-realm predicate is effectively skipped
and the authorization result of the next ACL-data realm pairis
considered. After the authorization results of all ACL-data
realm pairs are considered, a FALSE predicate (e.g., 1=0) is
added as the termination condition of any previous relations
(ANDorOR). This last FALSE also signifies that, if at theend
nothing is granted, then the final result is deny or no rows.
[0037] The process of rewriting a query to include multiple
data realm predicates is performed left to right, assuming that
the ACL-data realm pairs are ordered from left to right based
on priority. After an authorization result of evaluating the last
ACL is generated and the corresponding data realm predicate
is added to the rewritten query, if the data realm ACL pairs do
not grant access to any rows, then the final result is a FALSE
predicate (1=0).

[0038] As there can be a large number of authorization
contexts after compiling numerous database statements, there
can be a large number of corresponding child cursors or SQL
rewrites.

Dec. 24, 2015

[0039] Consider the following table showing four possible
SQL rewrites where there are two ACL-data realm pairs, a
single privilege, and the SQL rewrites with ACL, grants
involved for the rewrites are shown:

TABLE A
Result of Result of

al a2 SQL Rewrite
D D !C1 AND (1C2 AND

FALSE)
D N !C1 AND FALSE
N D t C2 AND FALSE
N N FALSE

[0040] The following table shows a single SQL rewrite in a

similar scenario except that there are two privilege checks and
only deny authorization results are shown:

TABLE B

Result
a2, p2 SQL Rewrite

Result Result Result
al,pl a2,pl al,p2

D D D D  (ICl AND (IC2 AND FALSE))
AND (IC1 AND (1C2 AND
FALSE))
[0041] A challenge is to reduce these rewrites and maintain

the multiple authorization contexts for a final child cursor.

Query Rewrite and Optimization

[0042] When a database server receives a database state-
ment (or query), the database system performs a series of
steps of translation, semantic analysis, rewriting, and optimi-
zation before executing the query. Each step of the query
transformation may result in a re-formed representation of the
query. Alternatively, the database system may represent the
transformed query as in-memory data structures at one or
more steps of the query transformation. The next sections
describe query rewrites that are relevant to the techniques
described herein.

[0043] After receiving a query, a database server performs
one or more steps of query parsing and semantic analysis on
the query during the query compilation process. In perform-
ing semantic analysis upon the query, the database server
generates an internal representation of the query. After the
internal representation of the query has been generated, part
of the semantic analysis will include the database server
determining whether one or more of the tables specified in the
query expression are associated with a data security policy. In
response to determining that the one or more of the tables
specified in the query are associated with a data security
policy, the database server rewrites the query to include an
access check operator, as described above.

Cursor Sharing in Access Control Context

[0044] As noted previously, the number of possible autho-
rization contexts that may be generated for different instances
of'the same database statement (due to different users or roles
associated with different instances and the number of ACL-
data realm pairs for a database object) may be very large. In
the case of a single privilege and N ACL-data realm pairs,



US 2015/0371018 Al

there are 3" possible authorization contexts. Thus, for five
ACL-data realm pairs, there are 243 possible authorization
contexts.

[0045] One way in which to identify a cursor to share is to
store a tree-like structure that is used during a sharing check
process. One step in cursor sharing is to compare an incoming
database statement with a database statement associated with
each of one or more parent cursors to identify a database
statement that is identical or equivalent to the incoming data-
base statement. Each parent cursor is associated with a dif-
ferent database statement and is associated with one or more
child cursors. Thus, each child cursor of a parent cursor is
associated with the same database statement as each other
child cursor of the same parent cursor.

[0046] FIG. 1 is a block diagram that depicts an example
tree structure 100 for checking sharing criteria for three ACL-
data realm pairs. Tree structure 100 includes 27 leaf nodes,
each corresponding to a different authorization context.
[0047] Each level in tree structure 100 corresponds to a
different ACL-data realm pair. The first level corresponds to
the first ACL-data realm pair, the second level corresponds to
the second ACL-data realm pair, and so forth. Each level is
treated as a different cursor sharing criterion in order to locate
the appropriate child cursor.

[0048] Atthe first level, node 102 corresponds to a check to
determine the authorization result (generated based on a cur-
rent database statement) of the first ACL.-data realm pair. (The
label ‘al’ in node 102 refers to the ACL of the first ACL-data
realm pair.) If that result is a grant (G), then node 112 (in the
second level of tree structure 100) is accessed. Alternatively,
if the authorization result is a deny (D), then node 114 (also in
the second level of tree structure 100) is accessed. Alterna-
tively, if the authorization result is neither a grant nor deny
(N), then node 116 is accessed.

[0049] After a second-level node in tree structure 100 is
accessed, the authorization result of the second ACL-data
realm pair is determined. (The label ‘a2’ in nodes 112-116
refers to the ACL of the second ACL-data realm pair.) That
authorization result is used to access the appropriate node in
the third level of tree structure 100.

[0050] After a third-level node in tree structure 100 is
accessed, the authorization result of the third ACL-data realm
pair is determined. (The label ‘a3’ in the third-level nodes
refers to the ACL of the third ACL-data realm pair.) That
authorization result is used to access the appropriate leaf node
in tree structure 200. Leaf nodes of tree structure 100 include
leaf nodes 132-138.

[0051] Thus, such a tree structure requires the storage and
management of (3**'-1)/2 internal tree nodes and N com-
parisons to find the appropriate child cursor (where N is the
number of ACL-data realm pairs).

[0052] However, with the observations that: (1) negative
grants (i.e., deny results) are used in exceptional access con-
trol rules and, thus, are rarely used; (2) all combination of
grants from different ACL-data realm pairs is unlikely in a
real application; and (3) access to each data realm is usually
controlled by a privilege (e.g., selecMyPurchaseOrders,
viewMyRecords) that is a unique to specific data realms for
the object, there are two common cases for the authorization
context.

[0053] Inthe first case, each data realm is associated with a
unique privilege that is granted in the associated ACL. For
example, privilege pl is used to access rows in C1, privilege
p2 forrows in C2, and privilege p3 for rows in C3. In this case,

Dec. 24, 2015

each database (e.g., SQL) statement is executed primarily to
enforce one of these three privileges. For example, to enforce
privilege pl, a SQL statement might be:

[0054] select*from Table T where ORA_CHECK_ACL
(ORA_GET_ACLIDS(T), pl);

This SQL statement may result in only 2 cursors. Either
privilege pl is granted for al or not, resulting in two data
realm predicates: C1 or False (e.g., 1=0).

[0055] In the second case, each ACL is associated with the
same privilege but granted to different roles or users. This
situation arises when an object privilege (e.g., select, insert,
update, or delete) is checked. In this case, there are only four
most common outcomes. For example, for the select privi-
lege, the executing user is granted that privilege in one of the
three ACLs (al, a2, or a3) resulting in the following four data
realm predicates: C1, C2, C3, or False. In tree structure 100,
these four common outcomes are reflected in leaf nodes 132-
138.

[0056] From these two common cases, there are about N
common authorization contexts as opposed to 3* authoriza-
tion contexts (where N is the number of ACL-data realm pairs
for a targeted database object).

Efficient Cursor Sharing Technique

[0057] In light of the foregoing, an embodiment involves
storing the entire authorization context of a database state-
ment in (or in association with) a child cursor and comparing
that authorization context to the authorization context of an
incoming database statement to determine whether the child
cursor may be shared. Such a comparison may be performed
in a single comparison operation. Thus, storing and managing
a tree-like structure for applying cursor sharing criteria is
avoided. Also, multiple comparisons (i.e., one for each ACL-
data realm pair), one for each level of tree structure, may be
avoided.

[0058] Instead of comparing authorization contexts to
determine whether a child cursor may be reused, rewrite
predicates may be compared. For example, a rewrite predi-
cate may be generated by a query compiler based on the
access check operator and one or more parameters of the
operator. The rewrite predicate may then be stored with a
cursor. Later, a rewrite predicate may be generated for an
incoming database statement and compared with the rewrite
predicate of a child cursor to determine whether the rewrite
predicates match. However, there are multiple disadvantages
to that approach. First, rewrite predicates may be very long
and, thus, storing rewrite predicates in cursor cursors may
significantly increase cursor storage or limit the number of
cursors that may be stored for reuse. Authorization contexts
may be significantly smaller than a long character string of a
rewrite predicate. Second, significant computational
resources are required to generate a rewrite predicate. Com-
paring authorization contexts allows a query compiler to
avoid generating rewrite predicates for incoming database
statements that may reuse cursors.

[0059] In an embodiment, the authorization context of a
cursor may be stored as a bit vector, where a set of bits within
the bit vector corresponds to an authorization result. For
example, two bits may indicate whether an authorization
result is a grant (G), a deny (D), or neither (N). For example,
two ‘1’ bits indicates a G, two ‘0’ bits indicates a D, and a ‘1’
following by a ‘0’ indicates a N. Thus, if there are four
ACL-data-realm pairs for a database object, then an authori-



US 2015/0371018 Al

zation context for a database statement that targets the data-
base object may be 8 bits or (1 byte).

[0060] If an authorization context of an incoming (i.e., not
yet executed) database statement does not match the autho-
rization context of a child cursor, then the next child cursor in
a child cursor list (if there are any left to check) is examined
to identify its authorization context. If a match is found, then
the corresponding child cursor may be used to execute the
database statement. (The matching of authorization contexts
may be a necessary, but not sufficient condition for sharing
cursors. There may be other sharing criteria that must be
checked before it is determined that a child cursor may be
shared.) Else, a hard parse will be performed and the resulting
child cursor may be added to the child cursor list.

[0061] FIG. 2 is a flow diagram that depicts a process 200
for sharing compiled cursors, in an embodiment.

[0062] At block 210, a database statement is received. The
database statement is associated with a principal (i.e., a user
and/or set of one or more roles) that is assigned (directly
and/or indirectly) one or more privileges.

[0063] At block 220, a parent cursor is identified for a
database statement. There may be many parent cursors, each
associated with a different database statement and each asso-
ciated with a different child cursor list of one or more cursors.

[0064] The identified parent cursor is associated with (or
includes) a database statement that matches the received data-
base statement. Two database statements match if they are
identical or equivalent. An example of equivalent database
statements is where only the bind values of the respective
database statements are different.

[0065] The database statements that are matched may be
original database statements. Alternatively, one or both of the
database statements may have been rewritten (e.g., normal-
ized) in some fashion (but still equivalent to the original
database statement from which it was rewritten).

[0066] While it is assumed in process 200 that a parent
cursor is identified, in some cases, a parent cursor may not be
identified. In such cases, process 200 would proceed to block
280, where a “hard parse” is performed.

[0067] At block 230, an authorization context is generated
for the received database statement (which may be in a rewrit-
ten or normalized form). The authorization context indicates
multiple authorization results, one for each of multiple ACL-
data realm pairs associated with a database object that the
database statement targets. Each authorization result is deter-
mined based on the privilege requested in the database state-
ment and the user (and/or one or more roles assigned to the
user) that initiated (or submitted) the database statement.
[0068] At block 240, a child cursor in a child cursor list of
the parent cursor is identified.

[0069] At block 250, it is determined whether the authori-
zation context of the received database statement matches the
authorization context of the child cursor. If so, then, process
200 proceeds to block 260. Otherwise, process 200 process
proceeds to block 270.

[0070] Atblock 260, the child cursor is “shared” or used to
execute the received database statement. This is referred to as
a “soft” parse. Thus, a “hard” parse is avoided.

[0071] Atblock 270, it is determined whether there are any
child cursors in the child cursor list that have not yet been
checked. If so, then process 200 proceeds to 240. Otherwise,
process 200 proceeds to block 280.

Dec. 24, 2015

[0072] At block 280, the database statement is compiled
and a new cursor is generated. In other words, a hard parse is
performed relative to the database statement.

[0073] While process 200 is depicted and described as pro-
ceeding in a particular order, embodiments may vary in this
regard. For example, block 240 may occur prior to block 230
and block 230 may occur prior to block 220.

Predicate Normalization

[0074] The following table shows all possible cursor
rewrites and permutations of authorization results where
there are three ACL-data realm pairs:

TABLE C
Row Result Result Resultof
num  ofal of a2 a3 Cursor Predicate
1 G G G C1 OR (C2 OR (C3 OR False))
2 G G D C1 OR (C2 OR (!C3 AND
False)
3 G G N C1 OR (C2 OR (False))
4 G D G C1 OR (1C2 AND (C3 OR False)
5 G D D C1 OR (1C2 AND (!C3 AND
False)
6 G D N C1 OR (1C2 AND (False))
7 G N G C1 OR (C3 OR False)
8 G N D C1 OR (1C3 AND False)
9 G N N C1 OR False
10 D G G IC1 AND (C2 OR (C3 OR False))
11 D G D IC1 AND (C2 OR ({C3 AND
False)
12 D G N IC1 AND (C2 OR (False))
13 D D G IC1 AND (1C2 AND (C3 OR
False))
14 D D D 1CO AND (1C2 AND (1C3
AND False)))
15 D D N IC1 AND (!C2 AND False)
16 D N G IC1 AND (C3 OR False)
17 D N D IC1 AND (!1C3 AND False)
18 D N N IC1 AND False
19 N G G C2 OR (C3 OR Flase)
20 N G D C2 OR (1C3 AND False)
21 N G N C2 OR False
22 N D G 1C2 AND (C3 OR False)
23 N D D 1C2 AND (!1C3 AND False)
24 N D N 1C2 AND False
25 N N G C3 OR False
26 N N D IC3 AND False
27 N N N False

Thus, there are 27 distinct cursor rewrites (which correspond
to different child cursors) and authorization contexts (not
shown).

[0075] As noted previously, a grant (G) in an ACL of'a data
realm predicate is rewritten as ORing of the data realm predi-
cate with any remaining predicates, a deny (D) in an ACL of
a data realm predicate is rewritten as an inverted data realm
predicate and ANDing it with any remaining predicates, and
a neither grant nor deny (N) in an ACL of a data realm
predicate results in not using the data realm predicate. Also,
the termination condition of a rewrite is a False.

[0076] In an embodiment, one or more normalizations are
applied to some of the cursor rewrites (or predicates) that are
generated based on the authorization results associated with a
database statement. If such normalizations are applied to the
predicates in Table C, then a result of the normalizations is
shown in the following table:



US 2015/0371018 Al

TABLE D
Final
Row Result Result Result Authorization
num ofal of a2 ofa3 Cursor Predicate  Context
1 G G G CIORC20RC3 GGG
2 G G D,N Cl1ORC2 GG__
3 G D G Cl1 OR!C2AND GDG
C3
4 G D,N DN Cl G
5 G N G CI1ORC3 GNG
6 D G G !C1 AND (C2 DGG
ORC3)
7 D G D,N {C1ANDC2 DG__
8 D D G {C1 AND 1C2 DDG
AND C3
9 D,N D,N D,N False
10 D N G !{C1 AND C3 DNG
11 N G G C20RC3 NGG
12 N G D,N C2 NG_
13 N D G {C2 AND C3 NDG
14 N N G C3 NNG
[0077] Table D shows 14 distinct normalized cursor predi-

< s

cates and corresponding authorization contexts, where _
represents an authorization result that may be either a D or an
N. Thus, where there is a single requested privilege and three
ACL-data realm pairs, the number of possible distinct autho-
rization contexts (and, therefore, child cursors) is reduced
almost in half from 27 to 14.

[0078] One normalization that may be performed on a cur-
sor predicate is (1) identifying a portion of the cursor predi-
cate that includes an inverted data realm predicate that is
AND’d with a False and (2) replacing that portion with a
false. Thus, “!CN AND False” becomes “False.”

[0079] Another normalization that may be performed on a
cursor predicate is (1) identifying a portion of the cursor
predicate that includes a data realm predicate that is OR’d
with a False and (2) replacing that portion with the data realm
predicate. Thus, “CN OR False” becomes “CN.”

[0080] To be ableto perform these normalizations, the data
realm predicates are written in post-order in a recursive call or
from right to left (reverse) in the ordered list. This reduces the
cursor predicates when the following two conditions are
found in the trailing part of the cursor predicate lists:

[0081] AND FALSE
[0082] OR FALSE
[0083] By applying these two normalizations to a subset of

the cursor predicates in Table C, the number of possible
rewrites (and corresponding authorization contexts) is
reduced from 27 to 14. Accordingly, if cursor predicates are
used to determine whether a child cursor may be shared for an
incoming database statement, then less child cursors may
need to be searched. Even if the cursor predicates are not used
to determine whether a child cursor may be shared, a shorter
cursor predicate is better for a query optimizer to generate a
more efficient execution plan.

Privilege Predicate Removal

[0084] When multiple privileges are checked within a data-
base statement, the result is a rewrite (or set of predicates) for
each privilege check. Applying a privilege to multiple ACL-
data realm pairs results in a privilege authorization context
that indicates an authorization result for each ACL of the
ACL-data realm pairs. The privilege authorization context is
used to generate a predicate (referred to as a privilege predi-
cate) that comprises zero or more data realm predicates, some

Dec. 24, 2015

ofwhich may be inverted (or “NOT’d”). Thus, if there are two
privileges associated with a database statement, then two
privilege predicates will result.

[0085] However, there are cases when multiple privilege
predicates for a database statement (or cursor) represent a
single logical predicate based on algebraic normalization. For
example, a data security policy on a table contains three
ACL-data realm pairs:

[0086] {al,C1, a2, C2,a3, C3}

[0087] In both of the following cases, there are two privi-
leges requested. In the first case, a user is granted privilege p1
onall ACLs (i.e.,al-a3) and is granted privilege p2 on only al
and a2. Thus:

CHECK_PRIVILEGHE{pl, p2}, al, C1, a2, C2, a3, C3) =

(C1 or C2 or C3) AND (C1 or C2) = (C1 or C2)

[0088] Here, the first privilege predicate (i.e., “C1 or C2 or
C3”) is removed entirely.

[0089] In the second case, a user is granted pl on only al
and a2 and p2 on all ACLs. Thus:

CHECK_PRIVILEGHE{pl, p2}, al, C1, a2, C2, a3, C3) =

(C1 or C2) AND (C1 or C2 or C3) = (C1 or C2)

[0090] Here, the second privilege predicate (i.e., “(C1 or C2
or C3)”) is removed entirely. In both cases, one of the privi-
lege predicates is removed from the final rewrite. Thus, if
cursor predicates are used to determine whether a child cursor
may be shared for an incoming database statement, then the
number of cursors may be reduced when two privileges are
checked within a database statement since two different sets
of privilege predicates may be mapped to a single common
privilege predicate.

[0091] As long as there are no negative grants (or Ds) for
either privilege check, then multiple privilege predicates may
be reduced to a single privilege predicate that only includes
(positive or non-inverted) data realm predicates that are found
in each privilege predicate. For example, if a first privilege
predicate is (C1 or C2), a second privilege predicate is (C1 or
C2 or C3), and a third privilege predicate is (C2 or C3), then
a combined privilege predicate that represents the conjunc-
tion of all three privilege predicates is C2, since C2 is a
positive grant (G) found in each privilege predicate and none
of'the three privilege predicates includes a negative grant (D).

Efficiently Evaluating an Authorization Context

[0092] Asnoted previously, under predicate normalization,
the right-most authorization results of deny (D) and neither
(N) do not contribute any predicates to the final rewrite due to
the following two normalizations:

[0093] !'CN AND False=False
[0094] CN OR False=CN
[0095] To achieve this, in an embodiment, ACL-data realm

pairs are evaluated from right (corresponding to least priority
pair) to left (corresponding to increasingly higher priority
pairs) one by one. If the authorization result of a ACL.-data
realm pair is D or N, then the authorization results is inter-
preted as °_’. When the right-to-left evaluation identifies a G,



US 2015/0371018 Al

the authorization result is written into a bit vector for the
authorization context. Any remaining Ds and/or Ns in the
right-to-left evaluations are recorded as D or N. Such remain-
ing Ds and Ns are no longer replaced with °_” (or other value
that represents either D or N). This is due to the fact that
ACL.-data realm pairs are ordered from left to right based on
decreasing priority. However, after the last G, the data realm
predicates that corresponding to the remaining Ds or Ns do
not contribute to the final rewrite.

[0096] For example, if a data security policy for a table
includes twenty ACL-data realm pairs and the last grant cor-
responds to the ninth ACL-data realm pair in the data security
policy, then the authorization context may be “GG D G NN
peG____
authorization context includes two bits for each authorization
resultand (2)a Gis ‘11°,aDis ‘00’,an N is ‘10’and a *_" is
‘01”, then the bit vector may be forty bits long and include the
following bit sequence:
1111001110100011110101010101010101010101.

[0097] Alternatively, instead of ‘01 for N, the bits after the
last grant may be anything, such as all Os or all 1s. However,
the cursor predicate (which is used to execute the database
statement) of the child cursor would still not reflect data realm
predicates for any trailing Ds or Ns. Also, the cursor may store
last grant data that indicates which authorization result cor-
responds to the last grant. This last grant data may be used to
determine which bits in the bit vector must be the same (i.e.,
all authorization results before and including the last grant)
and which bits may be ignored (i.e., all authorization results
after the last grant).

[0098] The same computation logic is used in generating
bit vectors for incoming database statements as well as data-
base statements for which a hard parse was performed, so that
incoming database statements might share a child cursor that
stores (or is otherwise associated with) a similarly-con-
structed bit vector.

[0099] Therefore, in one embodiment, a G G N authoriza-
tion context of an incoming database statement would not
match a G G D authorization context of a child cursor and,
therefore, the child cursor would not be used to execute the
incoming database statement. In another embodiment, a G G
N authorization context of an incoming database statement is
rewritten as G G _, which is matched against a G G __ autho-
rization context of a child cursor, resulting in a match, even
though the original authorization context of the child cursor
was a G G D, which does not match the original G G N
authorization context of the incoming database statement.

Removing One or More Privilege Authorization
Contexts

[0100] A database statement may be associated with mul-
tiple privileges, such as a viewMyRecords privilege and a
select privilege. Each privilege is applied to the data security
policy of a database object. Thus, if there are three ACL-data
realm pairs, then an authorization result is determined twice
for each ACL.-data realm pair, one for each privilege. In other
words, an authorization context is determined for each privi-
lege. Thus, if there are three privileges associated with a
database statement, then three authorization contexts are gen-
erated. Each authorization context for a different privilege is
referred to as a “privilege authorization context.” If authori-
zation context is used to determine whether to share cursors,
then the more privilege authorization contexts that are stored
for a single cursor, the less likely a cursor will be shared.

Dec. 24, 2015

Therefore, reducing the number of privilege authorization
contexts for a database statement may result in decreasing the
number of child cursors for a particular data statement, which
may translate into increasing the sharing of existing child
Cursors.

[0101] Inanembodiment, one or more privilege authoriza-
tion contexts are removed and the remaining authorization
context(s) are stored in (or in association with) a cursor. Two
privilege authorization contexts are compared to determine
whether one of them may be eliminated. One criterion that
may be used to determine whether a privilege authorization
context may be eliminated is that none of the privilege autho-
rization contexts can have any deny authorization results.
[0102] For example, a first privilege authorization context
for a database statement is G G N for ACLs al, a2, and a3,
respectively. A second privilege authorization context for the
database statement is G G G for ACLs al, s2, and a3, respec-
tively. The grant authorization results in the first privilege
authorization context and the grant authorization results in
the second privilege authorization context have a common
subset. Only users with this common subset result can access
the corresponding cursor. Thus, the common authorization
context is stored with a cursor for the database statement.
Additionally, the common authorization context now repre-
sents grants for both privileges instead of just one. In other
words, both privileges are granted to the first two data realms.
[0103] Later, a second database statement is received,
which is associated with the same two privileges. However,
the first privilege authorization context is G G G and the
second privilege authorization context is G G N. The grant
authorization results in the second privilege authorization
context and the grant authorization results in the first privilege
authorization context have a common subset. Thus, the com-
mon privilege authorization context is stored in association
with the database statement. Also, the common authorization
context now represents grants for both privileges instead of
justone. In other words, both privileges are granted to the first
two data realms. Lastly, even though the original privilege
authorization contexts of each database statement are differ-
ent, the cursor for the first database statement may be shared
for the second database statement since the common autho-
rization context of the second database statement matches the
common authorization context of the first database statement.
[0104] As another example, for a particular database state-
ment, a first privilege authorization context is G N G, a second
privilege authorization context is N G G, and a third privilege
authorization context is N N G. Because there are no negative
grants and the common grant in all three privilege authoriza-
tion contexts corresponds to the last ACL, a single combined
privilege authorization context for the three privilege autho-
rization contexts is __ G. The ¢_’ means that the authoriza-
tion result for the corresponding ACL may be skipped or
ignored. If the combined privilege authorization context is
stored as N N G, then the authorization context of the next
database statement must be N N G in order to share.

Hardware Overview

[0105] According to one embodiment, the techniques
described herein are implemented by one or more special-
purpose computing devices. The special-purpose computing
devices may be hard-wired to perform the techniques, or may
include digital electronic devices such as one or more appli-
cation-specific integrated circuits (ASICs) or field program-
mable gate arrays (FPGAs) that are persistently programmed



US 2015/0371018 Al

to perform the techniques, or may include one or more gen-
eral purpose hardware processors programmed to perform the
techniques pursuant to program instructions in firmware,
memory, other storage, or a combination. Such special-pur-
pose computing devices may also combine custom hard-
wired logic, ASICs, or FPGAs with custom programming to
accomplish the techniques. The special-purpose computing
devices may be desktop computer systems, portable com-
puter systems, handheld devices, networking devices or any
other device that incorporates hard-wired and/or program
logic to implement the techniques.

[0106] For example, FIG. 3 is a block diagram that illus-
trates a computer system 300 upon which an embodiment of
the invention may be implemented. Computer system 300
includes a bus 302 or other communication mechanism for
communicating information, and a hardware processor 304
coupled with bus 302 for processing information. Hardware
processor 304 may be, for example, a general purpose micro-
processor.

[0107] Computer system 300 also includes a main memory
306, such as a random access memory (RAM) or other
dynamic storage device, coupled to bus 302 for storing infor-
mation and instructions to be executed by processor 304.
Main memory 306 also may be used for storing temporary
variables or other intermediate information during execution
of instructions to be executed by processor 304. Such instruc-
tions, when stored in non-transitory storage media accessible
to processor 304, render computer system 300 into a special-
purpose machine that is customized to perform the operations
specified in the instructions.

[0108] Computer system 300 further includes a read only
memory (ROM) 308 or other static storage device coupled to
bus 302 for storing static information and instructions for
processor 304. A storage device 310, such as a magnetic disk
or optical disk, is provided and coupled to bus 302 for storing
information and instructions.

[0109] Computer system 300 may be coupled viabus 302to
a display 312, such as a cathode ray tube (CRT), for display-
ing information to a computer user. An input device 314,
including alphanumeric and other keys, is coupled to bus 302
for communicating information and command selections to
processor 304. Another type of user input device is cursor
control 316, such as a mouse, a trackball, or cursor direction
keys for communicating direction information and command
selections to processor 304 and for controlling cursor move-
ment on display 312. This input device typically has two
degrees of freedom in two axes, a first axis (e.g., X) and a
second axis (e.g., y), that allows the device to specify posi-
tions in a plane.

[0110] Computer system 300 may implement the tech-
niques described herein using customized hard-wired logic,
one or more ASICs or FPGAs, firmware and/or program logic
which in combination with the computer system causes or
programs computer system 300 to be a special-purpose
machine. According to one embodiment, the techniques
herein are performed by computer system 300 in response to
processor 304 executing one or more sequences of one or
more instructions contained in main memory 306. Such
instructions may be read into main memory 306 from another
storage medium, such as storage device 310. Execution of the
sequences of instructions contained in main memory 306
causes processor 304 to perform the process steps described

Dec. 24, 2015

herein. In alternative embodiments, hard-wired circuitry may
be used in place of or in combination with software instruc-
tions.

[0111] The term “storage media” as used herein refers to
any non-transitory media that store data and/or instructions
that cause a machine to operation in a specific fashion. Such
storage media may comprise non-volatile media and/or vola-
tile media. Non-volatile media includes, for example, optical
or magnetic disks, such as storage device 310. Volatile media
includes dynamic memory, such as main memory 306. Com-
mon forms of storage media include, for example, a floppy
disk, a flexible disk, hard disk, solid state drive, magnetic
tape, or any other magnetic data storage medium, a CD-ROM,
any other optical data storage medium, any physical medium
with patterns of holes, a RAM, a PROM, and EPROM, a
FLASH-EPROM, NVRAM, any other memory chip or car-
tridge.

[0112] Storage media is distinct from but may be used in
conjunction with transmission media. Transmission media
participates in transferring information between storage
media. For example, transmission media includes coaxial
cables, copper wire and fiber optics, including the wires that
comprise bus 302. Transmission media can also take the form
of acoustic or light waves, such as those generated during
radio-wave and infra-red data communications.

[0113] Various forms of media may be involved in carrying
one or more sequences of one or more instructions to proces-
sor 304 for execution. For example, the instructions may
initially be carried on a magnetic disk or solid state drive of a
remote computer. The remote computer can load the instruc-
tions into its dynamic memory and send the instructions over
a telephone line using a modem. A modem local to computer
system 300 can receive the data on the telephone line and use
an infra-red transmitter to convert the data to an infra-red
signal. Aninfra-red detector can receive the data carried in the
infra-red signal and appropriate circuitry can place the data
on bus 302. Bus 302 carries the data to main memory 306,
from which processor 304 retrieves and executes the instruc-
tions. The instructions received by main memory 306 may
optionally be stored on storage device 310 either before or
after execution by processor 304.

[0114] Computer system 300 also includes a communica-
tion interface 318 coupled to bus 302. Communication inter-
face 318 provides a two-way data communication coupling to
a network link 320 that is connected to a local network 322.
For example, communication interface 318 may be an inte-
grated services digital network (ISDN) card, cable modem,
satellite modem, or a modem to provide a data communica-
tion connection to a corresponding type of telephone line. As
another example, communication interface 318 may be a
local area network (LAN) card to provide a data communi-
cation connection to a compatible LAN. Wireless links may
also be implemented. In any such implementation, commu-
nication interface 318 sends and receives electrical, electro-
magnetic or optical signals that carry digital data streams
representing various types of information.

[0115] Network link 320 typically provides data commu-
nication through one or more networks to other data devices.
For example, network link 320 may provide a connection
through local network 322 to a host computer 324 or to data
equipment operated by an Internet Service Provider (ISP)
326. ISP 326 in turn provides data communication services
through the world wide packet data communication network
now commonly referred to as the “Internet” 328. Local net-



US 2015/0371018 Al

work 322 and Internet 328 both use electrical, electromag-
netic or optical signals that carry digital data streams. The
signals through the various networks and the signals on net-
work link 320 and through communication interface 318,
which carry the digital data to and from computer system 300,
are example forms of transmission media.

[0116] Computer system 300 can send messages and
receive data, including program code, through the network
(s), network link 320 and communication interface 318. In the
Internet example, a server 330 might transmit a requested
code for an application program through Internet 328, ISP
326, local network 322 and communication interface 318.
[0117] The received code may be executed by processor
304 as it is received, and/or stored in storage device 310, or
other non-volatile storage for later execution.

[0118] In the foregoing specification, embodiments of the
invention have been described with reference to numerous
specific details that may vary from implementation to imple-
mentation. The specification and drawings are, accordingly,
to be regarded in an illustrative rather than a restrictive sense.
The sole and exclusive indicator of the scope of the invention,
and what is intended by the applicants to be the scope of the
invention, is the literal and equivalent scope of the set of
claims that issue from this application, in the specific form in
which such claims issue, including any subsequent correc-
tion.

What is claimed is:

1. One or more non-transitory storage media storing
instructions which, when executed by one or more proces-
sors, cause:

storing, in association with a cursor for a first database

statement, a first authorization context that indicates a
first plurality of authorization results, each of which
corresponds to a different data realm of a plurality of
data realms;

after storing the authorization context in association with

the cursor, receiving a second database statement;

in response to receiving the second database statement,

generating a second authorization context that indicates
a second plurality of authorization results, each of which
corresponds to a different data realm of the plurality of
data realms;

determining whether to use the cursor to execute the sec-

ond database statement by comparing the second autho-
rization context to the first authorization context.
2. The one or more storage media of claim 1, wherein the
cursor is a first cursor, wherein the instructions, when
executed by the one or more processors, further cause:
storing, in a second cursor for a third database statement, a
third authorization context that indicates a third plurality
of authorization results, each of which corresponds to a
different data realm of the plurality of data realms;

determining to notuse the first cursor to execute the second
database statement;

in response to determining to not use the first cursor to

execute the second database statement, determining
whether to use the second cursor to execute the second
database statement by comparing the second authoriza-
tion context to the third authorization context.

3. The one or more storage media of claim 1, wherein:

the first authorization context is stored in a first bit vector

and the second authorization context is stored in a sec-
ond bit vector;

Dec. 24, 2015

comparing comprises comparing the second bit vector to

the first bit vector.

4. The one or more storage media of claim 1, wherein one
or more of the first plurality of authorization results is neither
a grant or deny.

5. The one or more storage media of claim 1, wherein a user
that initiated the first database statement is different than a
user that initiated the second database statement.

6. The one or more storage media of claim 1, wherein the
instructions, when executed by the one or more processors,
further cause, prior to determining whether to use the cursor
to execute the second database statement:

comparing the second database statement to the first data-

base statement;

wherein comparing the second authorization context to the

first authorization context is only performed after deter-
mining that second database statement is equivalent to
the first database statement.
7. One or more non-transitory storage media storing
instructions which, when executed by one or more proces-
sors, cause:
in response to receiving a database statement, determining
whether a user that initiated the database statement is
authorized to access data from a plurality of data realms;

for each data realm of the plurality of data realms, deter-
mining an authorization result and generating a data
realm predicate that reflects the authorization result;

wherein the data realm predicate is one of a plurality of data
realm predicates generated for the database statement;

wherein a particular predicate comprises the plurality of
data realm predicates;

performing one or more normalizations on the particular

predicate to remove one or more data realm predicates
from the plurality of data realm predicates to generate a
normalized predicate;

generating an execution plan based on the normalized

predicate.

8. The one or more storage media of claim 7, wherein
performing one of the one or more normalizations comprises:

identifying a portion of the particular predicate that com-

prises an inverted data realm predicate that is AND’d
with a false predicate;

replacing the portion of the particular predicate with the

false predicate.

9. The one or more storage media of claim 7, wherein
performing one of the one or more normalizations comprises:

identifying a portion of the predicate that comprises a data

realm predicate that is OR’d with a false predicate;
replacing the portion of the predicate with the data realm
predicate.

10. One or more non-transitory storage media storing
instructions which, when executed by one or more proces-
sors, cause:

in response to receiving a database statement:

determining that the database statement is associated
with a first privilege and a second privilege;

for the first privilege, generating a first privilege predi-
cate that indicates, for each predicate in the first privi-
lege predicate, an authorization result that pertains to
a different data realm of a first set of two or more data
realms;

for the second privilege, generating a second privilege
predicate that indicates, for each predicate in the sec-
ond privilege predicate, an authorization result that



US 2015/0371018 Al

pertains to a different data realm ofa second set of one
or more data realms that is included in the first set of
two or more data realms;

wherein the first privilege predicate is different than the
second privilege predicate;

based on a comparison between the first privilege predi-
cate and the second privilege predicate, adding at least
aportion of the second privilege predicate to the data-
base statement without adding the first privilege
predicate to the database statement.

11. The one or more storage media of claim 10, wherein the
instructions, when executed by the one or more processors,
further cause:

determining that the database statement is also associated

with a third privilege that is different than the first privi-
lege and the second privilege;
forthe third privilege, generating a third privilege predicate
that indicates, for each predicate in the third privilege
predicate, an authorization result that pertains to a dif-
ferent data realm of a third set of one or more data realms
that is included in the first set of two or more data realms;

wherein the third privilege predicate is different than the
second privilege predicate and the first privilege predi-
cate;

based on a comparison between the third privilege predi-

cate and the second privilege predicate, determining to
not add the third privilege predicate to the database
statement.

12. The one or more storage media of claim 10, wherein the
instructions, when executed by the one or more processors,
further cause:

generating an execution plan based on the database state-

ment that includes the portion of the second privilege
predicate.

13. One or more non-transitory storage media storing
instructions which, when executed by one or more proces-
sors, cause:

storing a data security policy that comprises a plurality of

pairs, each of which is an association between an access
control list and a data realm, wherein the plurality of
pairs have a first order;

in response to receiving a database statement, generating a

plurality of authorization results, each of which is a
result of applying a privilege associated with the data-
base statement to a different access control list in the
plurality of pairs;

wherein the plurality of authorization results are ordered

based on the first order;

based on the first order, identifying the last grant in the

plurality of authorization results;

generating an authorization context for the database state-

ment based on the last grant;

storing the authorization context in a cursor for the data-

base statement.

14. The one or more storage media of claim 13, wherein
generating the authorization context comprises:

determining that a set of authorization results, of the plu-

rality of authorization results, that succeed the last grant
do not contribute to a final rewrite of the database state-
ment.

15. The one or more storage media of claim 14, wherein
generating the authorization context comprises:

for each authorization result in the set of authorization

results, storing, in the authorization context, a value that

Dec. 24, 2015

indicates that said each authorization result is either (a)
a deny or (b) neither a grant nor deny.

16. The one or more storage media of claim 15, wherein,
for said each authorization result the value does not affirma-
tively indicate that said each authorization result is a deny or
neither a grant or deny.

17. The one or more storage media of claim 13, wherein the
instructions, when executed by the one or more processors,
further cause, after storing the authorization context in the
cursor for the database statement:

in response to receiving a second database statement, gen-

erating a second plurality of authorization results, each
of which is a result of applying a privilege associated
with the second database statement to a different access
control list in the plurality of pairs;

wherein the second plurality of authorization results are

ordered based on the first order;

based on the first order, identifying the last grant in the

second plurality of authorization results;

generating a second authorization context for the database

statement based on the last grant in the second plurality
of authorization results;

determining whether to use the cursor to execute the sec-

ond database statement by comparing the second autho-
rization context to the authorization context.

18. The one or more storage media of claim 17, wherein:

the plurality of authorization results comprises a first set of

authorization results that are after the last grant in the
plurality of authorization results;
the second plurality of authorization results comprises a
second set of authorization results that are after the last
grant in the second plurality of authorization results;

the first set of authorization results do not match the second
set of authorization results;

the instructions, when executed by the one or more proces-

sors, further cause determining that the second authori-
zation context matches the authorization context.

19. One or more non-transitory storage media storing
instructions which, when executed by one or more proces-
sors, cause:

storing a data security policy that comprises a plurality of

pairs, each of which is an association between an access
control list and a data realm, wherein the plurality of
pairs have an order;

in response to receiving a database statement, determining

that the database statement is associated with a plurality
of requested privileges;

for each privilege of the plurality of requested privileges,

generating an authorization context that indicates a plu-
rality of authorization results, each of which is a result of
applying said each privilege to a different access control
list in the plurality of pairs;

wherein the plurality of requested privileges includes a first

privilege and a second privilege;

wherein the first privilege corresponds to a first authoriza-

tion context and the second privilege corresponds to a
second authorization context;

comparing the first authorization context to the second

authorization context to determine whether either the
first authorization context or the second authorization
context can be removed;

determining to remove the first authorization context;



US 2015/0371018 Al Dec. 24, 2015
11

storing at least a portion of the second authorization con-
text in association with a cursor for the database state-
ment without storing the first authorization context in
association with the cursor.

#* #* #* #* #*



