
US 20190149444A1
(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2019 / 0149444 A1

O ' Neil et al . (43) Pub . Date : May 16 , 2019

(54) AUTOMATED LOAD BALANCER
DISCOVERY

(71) Applicant : Edgewise Networks , Inc . , Burlington ,
MA (US)

Publication Classification
(51) Int . Cl .

H04L 12 / 26 (2006 . 01)
H04L 12 / 24 (2006 . 01)
H04L 29 / 08 (2006 . 01)

(52) U . S . CI .
CPC H04L 43 / 106 (2013 . 01) ; H04L 43 / 0876

(2013 . 01) ; H04L 67 / 1004 (2013 . 01) ; H04L
41 / 046 (2013 . 01) ; H04L 41 / 0893 (2013 . 01)

(72) Inventors : John O ' Neil , Watertown , MA (US) ;
Thomas Evan Keiser , JR . , Boston ,
MA (US) ; Peter Smith , Acton , MA
(US)

(57) (21) Appl . No . : 16 / 185 , 295
(22) Filed : Nov . 9 , 2018

ABSTRACT
Computer - implemented systems and methods automatically
identify computers that act as load balancers on a digital
communications network , using data collected from one or
more computers on that network . Once a load balancer has
been identified , the communications between two hosts may
be connected across the identified load balancer , thereby
making it possible to better analyze the behavior of hosts and
applications on that network .

Related U . S . Application Data
(60) Provisional application No . 62 / 584 , 456 , filed on Nov .

10 , 2017 .

COMPUTER 2120 COMPUTER 2020

1444 210a . MANAGEMENT
SOFTWARE

00

28C 2080

COMPUTER 2026 COMPUTER 2020

wwwwwwwwwwwwwwwwwwwww
22 : 222222222222

MANAGEMENT LOAD BALANCER
DETECTOR

meira manter and

106 mammed SECURITY
AGENT

SOURCE SYSTEM where mutaha soneto start met

het watent notano wachh samahan kotora mesta whe

1

w

w

w

w

REMOTE SYSTEM 112 w

w

FIG . 1

mm 120 YWY w

w

w

w

w

w

w

w 1243m 4 POLICIES

SYSTEM 1020 DESTINATION
. . * MMMS . MAM WY

US 2019 / 0149444 A1 May 16 , 2019 Sheet 1 of 4 Patent Application Publication * wan

reme on maksuton per a un audio son Patent Application Publication May 16 , 2019 Sheet 2 of 4 US 2019 / 0149444 A1

mom 200

O

MANAGEMENT SOFTWARE AssessFEEEEFSEEREEEEEEEEEEEEEEEEEEEEEEEE COMPUTER 2020

LOAD BALANCER

2082 MANAGEMENT 2080 mm .

acus

COMPUTER 2022 MANAGEMENT SOFTWARE ?? COMPUTER 2020
dhe

2102

Patent Application Publication May 16 , 2019 Sheet 3 of 4 US 2019 / 0149444 A1

? ???????????????

LOAD BALANCER DETECTOR RECEIVES INFORMATION
ABOUT COMMUNICATIONS TO AND FROM AN armowe 302

4

NO INCOMING INVARIANT Y ES

www
DETERMINE THAT UNMANAGED
COMPUTER IS ALOAD BALANCER COMPUTER IS NOT A LOAD BALANCER

BRADORS

WWYWYYYYYYYYYYYYYYYYYYY

FIG . 3

Patent Application Publication May 16 , 2019 Sheet 4 of 4 US 2019 / 0149444 A1

START

DIVIDE INBOUND AND OUTBOUND NETWORK
COMMUNICATIONS FOR EACH UNMANAGED

WW WWWWWWWWWWWWWWWWWWWWWWW W WWWWWWWWWWWWWWWWWWWUWU

COMMUNICATIONS WITHIN EACH TIME
WINDOW BY THER SIZE INVARIANTS

Wwwwwwww wwwwwwwwww

wy

YES INCOMING INVARIANT =
SIZE OF OUTGOING

DETERMINE THAT UNMANAGED
COMPUTER IS NOT ALOAD BALANCER

DETERMINE THAT UNMANAGED
COMPUTER IS A LOAD BALANCER

200020002000 - 200 WA

KERASTASE

US 2019 / 0149444 A1 May 16 , 2019

AUTOMATED LOAD BALANCER
DISCOVERY

CROSS - REFERENCE TO RELATED
APPLICATIONS

[0001] This application is related to U . S . patent applica
tion Ser . No . 15 / 883 , 534 , entitled , “ Network Application
Security Policy Enforcement , ” filed on Jan . 30 , 2018 , which
is hereby incorporated by reference herein .

BACKGROUND
[0002] Applications connected by network infrastructure
communicate with each other in order to share data and
perform business operations . Computers known as “ load
balancers ” often are used to balance the load of network
communications between computers . In general , a load
balancer is a computer that sits between machines which use
a service and the servers that supply that service , and which
balances the workload among such servers in order to avoid
overloading any one server and thereby to improve network
performance .
[0003] Networked systems such as those described in the
above - referenced Pat . App . Ser . No . 62 / 457 , 508 may include
many computers that act as load balancers . Although it
would be useful for a variety of purposes to know which
computers in the system are load balancers , the identity of
such load balancers is not typically known a priori to other
computers on the network .

SUMMARY
[0004] Computer - implemented systems and methods
automatically identify computers that act as load balancers
on a digital communications network , using data collected
from one or more computers on that network . Once a load
balancer has been identified , the communications between
two hosts may be connected across the identified load
balancer , thereby making it possible to better analyze the
behavior of hosts and applications on that network .
10005] Other features and advantages of various aspects
and embodiments of the present invention will become
apparent from the following description and from the
claims .

the communications between two hosts may be connected
across the identified load balancer , thereby making it pos
sible to better analyze the behavior of hosts and applications
on that network .
[0011] Referring to FIG . 1 , a dataflow diagram is shown of
a system 100 for collecting communication information
from a network according to one embodiment of the present
invention .
[0012] The system 100 includes a source system 102a and
a destination system 102b . A “ system , ” as that term is used
herein (e . g . , the source system 102a and / or destination
system 102b) , may be any device and / or software operating
environment that is addressable over an Internet Protocol
(IP) network . For example , each of the source system 102a
and the destination system 102b may be any type of physical
or virtual computing device , such as a server computer ,
virtual machine , desktop computer , laptop computer , tablet
computer , smartphone , or wearable computer . The source
system 102a and the destination system 102a may have the
same or different characteristics . For example , the source
system 102a may be a smartphone and the destination
system 102b may be a server computer . A system (such as
the source system 102a and / or destination system 102b) may
include one or more other systems , and / or be included
within another system . As merely one example , a system
may include a plurality of virtual machines , one of which
may include the source system 102a and / or destination
system 102b .
[0013] . The source system 102a and destination system
102b are labeled as such in FIG . 1 merely to illustrate a use
case in which the source system 102a initiates communica
tion with the destination system 102b . In practice , the source
system 102a may initiate one communication with the
destination 102b and thereby act as the source for that
communication , and the destination system 102b may ini
tiate another communication with the source system 102a
and thereby act as the source for that communication . As
these examples illustrate , each of the source system 102a
and the destination system 102b may engage in multiple
communications with each other and with other systems ,
and may act as either the source or destination in those
communications . Furthermore , the system 100 may include
additional systems , all of which may perform any of the
functions disclosed herein in connection with the source
system 102a and the destination system 102b .
[0014] The source system 102a includes a source appli
cation 104a (which may , for example , be installed and
executing on the source system 102a) and the destination
system 102b includes a destination application 104b (which
may , for example , be installed and executing on the desti
nation system 102b) . Each of these applications 104a and
104b may be any kind of application , as that term is used
herein . The source application 104a and the destination
application 104b may have the same or different character
istics . For example , the source application 104a and desti
nation application 104b may both be the same type of
application or even be instances of the same application . As
another example , the source application 104a may be a
client application and the destination application 104b may
be a server application , or vice versa .
[0015] The source system 102a includes a local security
agent 106a and the destination system 102b includes a local
security agent 106b . More generally , a local security agent
may be contained within (e . g . , installed and executing on)

BRIEF DESCRIPTION OF THE DRAWINGS
[0006] FIG . 1 is a dataflow diagram of a system for
collecting communication information from a network
according to one embodiment of the present invention .
[0007] FIG . 2 is a dataflow diagram of a system for
automatically identifying load balancers in a network
according to one embodiment of the present invention ;
10008] . FIG . 3 is a method performed by the system of FIG .
2 according to one embodiment of the present invention ;
10009) FIG . 4 is a flowchart of another method performed
by the system of FIG . 2 according to one embodiment of the
present invention .

DETAILED DESCRIPTION
[0010] Embodiments of the present invention include
computer - implemented systems and methods for automati
cally identifying load balancers on a digital communications
network , using data collected from one or more computers
on that network . Once a load balancer has been identified ,

US 2019 / 0149444 A1 May 16 , 2019

any system that executes one or more applications to which
the security techniques disclosed herein are to be applied . A
local security agent may , for example , execute within the
same operating system on the same system as the application
(s) that the local security agent monitors . Each such local
security agent (e . g . , the local security agents 106a and 106b)
may include any combination of hardware and / or software
for performing the functions disclosed herein .
[0016] The system 100 also includes a policy management
engine 110 . The policy management engine may include any
combination of hardware and / or software for performing the
functions disclosed herein . In the particular embodiment
illustrated in FIG . 1 , the policy management engine 110 is
contained within (e . g . , installed and executing on) a remote
system 112 . The remote system 112 may be any device
and / or software application that is addressable over an IP
network . For example , the remote system 112 may be any
type of computing device , such as a server computer , virtual
machine , desktop computer , laptop computer , tablet com
puter , smartphone , or wearable computer . The remote sys
tem 1112 and the source and destination systems 102a - b
may have the same or different characteristics . For example ,
the source and destination systems 102a - b may be smart
phones and the remote system 112 may be a server com
puter .

[0017] Some or all of the local security agents 106a - b may
report the state of the local applications as well as the state
of the network on their system to the policy management
engine 112 . For example , in FIG . 1 , the local security agent
106a is on the same system as and monitors the source
application 104a . The local security agent 106a may , there
fore , obtain state information about the source application
104a and report some or all of that state information , and / or
information derived therefrom , to the policy management
engine 110 . Although in the example of FIG . 1 only one
source application 104a is shown on the source system 102a ,
any number of source applications may execute on the
source system 102a , and the local security agent 106a may
obtain and report state information for some or all of such
source applications to the policy management engine 110 .
The local security agent 106a may also report information
about the network configuration on source system 102a that
will help the policy management engine 110 identify system
102a to other systems independent of the applications that
may be executing . The local security agent 106a may also
report information about the system network topology of the
source system 102a , such as its IP addresses and / or Address
Resolution Protocol (ARP) cache . All such reporting is
represented by communication 114 in FIG . 1 . Such com
munication 114 may be implemented in any of a variety of
ways , such as by the local security agent 106a transmitting
(e . g . , via IP and / or another network communication proto
col) one or more messages containing the obtained applica
tion state and network configuration information to the
policy management engine 110 .
10018] Similarly , the local security agent 106b on the
destination system 102b may obtain and transmit state
information for the destination application 104b (and for any
other applications executing on the destination system 102b)
and for the network configuration information of destination
system 102b and transmit such information via communi
cation 116 to the policy management engine 110 in any of
the ways disclosed above in connection with the local

security agent 106? , the source system 102a , the source
application 104a , and the communication 114 .
[0019] The policy management engine 110 may receive
the transmitted state information 114 and 116 and store some
or all of it in any suitable form . As described above , such
state information may include both application state infor
mation and network topology information (e . g . , addresses ,
listening ports , broadcast zones) . The policy management
engine 110 may , for example , store such state information
114 and 116 in a log (e . g . , database) of state information
received from one or more local security agents (e . g . , local
security agents 106a - b) over time . Such a log may include ,
for each unit of state information received , an identifier of
the system (e . g . , source system 102a or destination system
102b) from which the state information was received . In this
way , the policy management engine 110 may build and
maintain a record of application state and network configu
ration information from various systems over time .
[0020] Referring to FIG . 2 , a dataflow diagram is shown of
a system 200 for automatically identifying load balancers on
a network according to one embodiment of the present
invention . Referring to FIG . 3 , a flowchart is shown of a
method 300 performed by the system 200 of FIG . 2 accord
ing to one embodiment of the present invention .
[0021] The system 200 includes a plurality of computers
202a - d . Although four computers 202a - d are shown in FIG .
2 , the system 200 may include any number of computers .
The system 200 also includes a management server 204
which , as described in more detail below , performs various
management functions in connection with some of the
computers 202a - d . In FIG . 1 herein , and in the above
referenced Pat . App . Ser . No . 62 / 457 , 508 , the remote system
112 is an example of the management server 204 in FIG . 2
herein . As this implies , the management server 204 in FIG .
2 herein may include the policy management engine 110 of
FIG . 1 .
10022] . The system 200 also includes a network 206 , which
may be any digital communications network (or combina
tion of such networks) , such as a private intranet or the
public Internet . The computers 202a - d communicate with
each other , and with the management server 204 , in any of
a variety of ways over the network 206 . Communications
208a - e in FIG . 2 represent such communications .
[0023] Some of the computers 202a - d may contain man
agement software . In the particular example of FIG . 2 ,
computer 202a contains management software 210a and
computer 202b contains management software 210b . The
particular computers that are shown as containing manage
ment software in FIG . 2 are merely an example . Any one or
more of the computers 202a - d in the network 206 may
contain management software . Any computer in the network
206 which contains management software is referred to
herein as a “ managed computer . ” Any computer in the
network which does not contain management software (such
as computers 202c and 202d in the example of FIG . 2) is
referred to herein as an “ unmanaged computer . "
[0024] As described in more detail below , managed com
puters in the network (e . g . , computers 202a and 202b) use
their management software (e . g . , management software
210a and 210b , respectively) to inform the management
server 204 about which applications on those computers are
in communication with other computers on the network 206 .
Examples of how managed computers may perform this
function in cooperation with the management server 204 are

US 2019 / 0149444 A1 May 16 , 2019

the following format : { in / out , managedHost , unmanaged
Host , size , timestamp) . In this tuple :

[0030] " in / out ” indicates whether the system indicated
by “ managed Host ” is the source or the destination of
the message .

[0031] " unmanagedHost " is the system that is on the
other side of the connection , i . e . , on the destination side
if the system indicated by “ managedHost ” is on the
source side , and on the source side of the system
indicated by “ managedHost " is on the destination side ,
where the system indicated by “ managedHost " is a
managed computer as that term is used herein .

[0032] " timestamp " indicates the time of the message ;
and

described in more detail in Pat . App . Ser . No . 62 / 457 , 508 .
For example , managed computers in the system 200 of FIG .
2 may include local security agents of the kind shown in the
system 100 of FIG . 1 . As a particular example , computer
202a in FIG . 2 may be implemented in the same manner as
the source system 102a of FIG . 1 , and therefore may contain
local security agent 106a . Similarly , computer 202b in FIG .
2 may be implemented in the same manner as the destination
system 102b of FIG . 2 , and therefore may contain local
security agent 106b . As a result , any description herein of
systems 102a - b in FIG . 1 applies equally to the systems
202a - b in FIG . 2 .
[0025] The system 200 may distinguish between commu
nications 208a - e among computers in the network 206 (e . g . ,
computers 202a - d and management server 204) and com
munications (not shown) which leave the network 206 ,
using techniques that are well - known to those having ordi
nary skill in the art . The latter communications are not
described herein .
[0026] As will now be described , the system 200 and
method 300 may automatically discover load balancers in
the system 200 , i . e . , determine which of the computers
202a - d in the system 200 is a load balancer . Typically ,
although not necessarily , a load balancer has load balancer
software installed on it and few or no other applications
installed on it , so that the load balancer can devote its
resources primarily to performing the function of load
balancing . In some cases a load balancer may be prohibited
from having software other than load balancer software
installed on it .
100271 . The system 200 includes a load balancer detector
212 , which may be a “ system , ” as that term is used herein .
A “ system , ” as that term is used herein , may be any device
and / or software operating environment that is addressable
over an Internet Protocol (IP) network . For example , a
system may be any type of physical or virtual computing
device , such as a server computer , virtual machine , desktop
computer , laptop computer , tablet computer , smartphone , or
wearable computer . Any two systems may have the same or
different characteristics as each other . For example , one
system may be a smartphone and another system may be a
server computer . A system may include one or more other
systems , and / or be included within another system . As
merely one example , a system may include one or more
virtual machines . In FIG . 2 , each of the computers 202a - d ,
management server 204 , and load balancer detector 212 may
be a system .
[0028] Although the management server 204 and the load
balancer detector 212 are shown as separate elements in
FIG . 2 for ease of illustration , the management server 204
and the load balancer detector 212 may be combined
together in any of a variety of ways . For example , a single
system (as that term is defined herein) may implement both
the management server 204 and the load balancer detector
212 , in which case the management server 204 may com
municate with the load balancer detector 212 using intra
system communications , rather than communications over
the network 206 .
[0029] Without loss of generality , assume that the load
balancer detector 212 receives messages , over the network
206 , which may , for example , be messages sent from man
aged computers 202a - b or messages containing information
about messages sent from managed computers 202a - b , in

[0033] " size ” indicates a scalar invariant related to the
message , such as the size (e . g . , in bytes) of the message
payload , the number of separate communication
exchanges between the hosts , or some other quantity .
The “ size ” element is an unchangeable property of the
message , and therefore must be conserved on either
side of the load balancer (that is , the total of sizes going
in one side of the load balancer must equal the total of
sizes going out the other side) . This is true in both
directions , i . e . , if the load balancer has sides A and B ,
then the total of sizes going into side A must be equal
to the total of sizes coming out of side B , and the total
of sizes going into side B must be equal to the total of
sizes coming out of side A . Another example of size is
any information that is injected into the message (e . g . ,
by the source host ' s agent) that can be detected by the
destination host ' s agent . Yet another example of size is
the total number of bytes in a flow that passes through
the load balancer , the total number of packets in a flow
that passes through the load balancer , or to the total
number of flows that pass through the load balancer . As
described in more detail below , the load balancer
detector 212 makes use of the invariability of the “ size ”
element .

[0034 Note that the network communications that are
evaluated by the load balancer detector 212 to automatically
identify load balancers will always be between managed and
unmanaged hosts . The reason is that if both hosts that are
party to a connection are managed , then the connection does
not involve a load balancer and the connection need not be
taken into account by the load balancer detector 212 , even
if they are received by the load balancer detector . On the
other hand , if both hosts that are party to a connection are
unmanaged , then the messages transmitted between those
hosts within the connection are not seen by the load balancer
detector 212 .
[0035] As will now be described in more detail , the
method 300 of FIG . 3 uses the fact that the size (as that term
is described above) of each inbound flow to the load
balancer must be balanced by an outbound flow of the same
size , at approximately the same time , to automatically
identify load balancers in the system 200 .
[0036] In general , communications 214 are communica
tions between the load balancer detector 212 and other
computers on the network 206 . For example , the commu
nications 214 may include : (1) communications sent from
and / or to managed computers (e . g . , computers 202a and
202b) , such communications intercepted from and / or to such
computers ; and (2) communications sent from the manage
ment server 204 to the load balancer detector 212 , repre

US 2019 / 0149444 A1 May 16 , 2019

senting communications received from and / or sent to man -
aged computers (e . g . , computers 202a and 202b) in the
network 206 . The management server 204 may , for example ,
use any of the techniques disclosed in Pat . App . Ser . No .
62 / 457 , 508 and in connection with FIG . 1 herein to collect
information about communications received from and / or
sent to managed computers in the network 206 , and then
provide information about such communications (such as
any one or more of the { in / out , managedHost , unmanaged
Host , size , timestamp elements described above) to the
load balancer detector 212 . Any description herein of infor
mation about network communications that is used by the
load balancer detector 212 may include such information
received by the load balancer detector 212 from the man
agement server 204 .
[0037] If all of the systems that connect to a particular
(unmanaged) load balancer in the network 206 are managed
computers , then the management server 204 will receive
information about all communications received and sent by
the load balancer , and the load balancer detector 212 will
receive information about all such communications . In this
case , the load balancer detector 212 may identify such a load
balancer as follows . As the load balancer detector 212
receives information about communications to and from a
particular unmanaged computer on the network 206 (FIG . 3 ,
operation 302) , the load balancer detector 212 may deter
mines whether the sum of the incoming size to the unman
aged computer on the network 206 is equal to the sum of the
outgoing size from that unmanaged computer (FIG . 3 ,
operation 304) . If the sum of the incoming size is determined
to be equal to the sum of the outgoing size , then the load
balancer detector 212 may conclude that the unmanaged
computer is a load balancer (FIG . 3 , operation 306) . Oth
erwise , the load balancer detector 212 may conclude that the
unmanaged computer is not a load balancer (FIG . 3 , opera
tion 308) .
[0038] The process just described is most accurate when
applied to a sufficiently large quantity of communications to
and from the unmanaged computer over a sufficiently large
amount of time . The same process may , however , be applied
to a smaller quantity of communications over a shorter
amount of time , although the determination made by such a
process (in operation 304 of FIG . 3) will be less accurate for
shorter periods of time than for longer periods of time ,
because the timestamp associated with each data report tuple
is from a particular system , and systems may differ in their
reporting of the same time , resulting in skewing of the size
balance .
[0039] A more serious complication is that not every
system which sends and / or receives flows from a load
balancer is a managed computer (i . e . , not every such system
has an agent , such as agents 210a and 210b , installed on it) .
Therefore , when a communication between a managed com
puter and an unmanaged computer passes through a load
balancer , the management server 204 (and therefore the load
balancer detector 212) only receives information about the
managed half of that communication . As a result , the
inbound size of the communication that is detected by the
load balancer detector 212 will differ from the outbound size
of the same communication as detected by the load balancer
detector 212 .
[0040] Embodiments of the present invention may solve
the problem created by this complication using the method
400 of FIG . 4 . The load balancer detector 212 divides the

inbound and outbound network communications for each
unmanaged system (i . e . , each system that is a candidate load
balancer) into timestamp windows , where each window is
defined by a start time and an end time (FIG . 4 , operation
402) . The load balancer detector 212 may then , within each
of the timestamp windows , match inbound and outbound
communications by their size (FIG . 4 , operation 404) . For
example , the load balancer detector 212 may determine that
a particular inbound and outbound communication within a
particular timestamp window are matches for each other if
they have the same size .
0041) Once the inbound and outbound communications
have been matched in this way , the load balancer detector
212 may calculate , for each timestamp window , an approxi
mate fraction of the sizes of the inbound and outbound
communications to the unmanaged system within that time
stamp window , by counting the matched inbound commu
nications and the matched outbound communications within
that timestamp window (FIG . 4 , operation 406) compared to
the total number of inbound and outbound communications .
These counts may also be summed across all time windows
to create a single matching fraction .
[0042] The load balancer detector 212 may then determine
whether the matched fraction satisfies a predetermined cri
terion (FIG . 4 , operation 408) . The load balancer detector
212 may make this determination in any of a variety of ways .
In general , the load balancer detector 212 may use any of a
variety of techniques to determine whether the matching
fraction is sufficiently large (in an absolute or relative sense)
to indicate that the unmanaged system is likely to be a load
balancer . It may use them in isolation or in combination ,
possibly with differential weights . For example , the load
balancer detector 212 may determine whether the fraction
(or the average of the approximate sums) is greater than
some minimum threshold value . As another example , the
load balancer detector 212 may determine whether the
matching fraction is significantly greater than the matching
fraction for any other unmanaged system in the system 200 .
As yet another example , the load balancer detector 212 may
determine whether the approximate sum is significantly
larger than a baseline estimate of the plausible range of
matching fractions that may occur by chance within a
particular network , given the properties of the network . If
the matching fraction is determined to satisfy the predeter
mined criterion or criteria , then the load balancer detector
212 determines that the unmanaged system is a load bal
ancer (FIG . 4 , operation 20410) . Otherwise , the load bal
ancer detector 212 determines that the unmanaged system is
not a load balancer (FIG . 4 , operation 412) . This method is
based on the assumption that the number of matched com
munications going to and from a load balancer is likely to be
much higher than for a non - load balancer .
[0043] The method 400 of FIG . 4 is useful when each load
balancer has only a single IP address . Some load balancers ,
however , may have multiple IP addresses , such as an incom
ing IP address and an outgoing IP address . Often one IP
address faces application servers and the other side faces
external hosts which are serviced by those application
servers . The problem posed by such multi - address load
balancers is that there is no single unmanaged IP address that
“ balances ” its inbound and outbound flow sizes . One
embodiment of the present invention may identify such
multi - address load balancers by using the method 400 of
FIG . 4 , but modified to identify pairs of unmanaged hosts

US 2019 / 0149444 A1 May 16 , 2019

that together satisfy the (approximate) size requirement
described above in connection with the method 400 of FIG .
4 . In this embodiment , the size requirement is applied to a
pair of unmanaged hosts instead of to a single unmanaged
host . The method 400 of FIG . 4 is applied , but instead the
method 400 determines whether the size requirement holds
for each possible unique pair of unmanaged hosts . Although
this modified method may be used to successfully identify
multi - address load balancers , the computational time
required is O (n2) instead of O (n) as in the case of the method
400 of FIG . 4 .
[0044] The modified method just described may be modi
fied to execute more efficiently in a variety of ways by
embodiments of the present invention . In general , such
increased efficiency may be obtained by finding an approxi
mation to the size requirement , by finding an intersection
between sets of timestamp , size } tuples , one of which is
extracted from the inbound data of an unmanaged system ,
and the other of which is extracted from the outbound data
for the same unmanaged system . For example , the MinHash
data structure may be used to succinctly , quickly , and
accurately approximate the size of the intersection between
two sets , and may be applied to the data extracted for the
unmanaged system to obtain an approximation of the size of
the intersection between the two sets described above . The
MinHash data structure estimates the size of the Jaccard
similarity , which is defined as : J (A , B) = IANBI / [AUBI .
0045] Therefore , to approximate the balance between two
unmanaged systems A and B , embodiments of the present
invention may calculate the size of the intersection of the
inbound MinHash of system A with the outbound MinHash
of system B , and add the size of the intersection of the
inbound MinHash of system B to the outbound MinHash of
system A . Stated differently , in pseudocode :
[0046] aIn = minhash (hostA , “ inbound ”)
[0047] Out = minhash (hostA , " outbound ”)
0048] bin = minhash (hostB , “ inbound ”)
[0049] bOut = minhash (hostB , " outbound)
[0050] minHashValue = jaccard (aIn , bOut) + jaccard (aOut ,
bIn)
[0051] Embodiments of the present invention may then
examine all possible unique pairs of unmanaged hosts A and
B , for which minHash Value (A , B) > 0 . This reduces the
processing time by several orders of magnitude compared to
the previously described method , because fewer than one
pair in a thousand has a non - zero minHash Value .
[0052] Embodiments of the present invention may auto
matically identify load balancers which are set up in various
other ways . Some additional examples , without limitation ,
are as follows .
[0053] In some situations , multiple incoming requests may
be combined by a load balancer into a single combined
request , and the combined request may be sent to a single
host server for processing . Although this affects the number
of connections on the inbound side of the load balancer
relative to the number of connections on the outbound side ,
the size should remain the same in the face of such com
bining . However , in this situation , it is no longer possible to
find the size requirement in the data by matching timestamps
and sizes directly , because one side ' s timestamp / size com
bination is represented on the other side by a set of time
stamp / size pairs , with the condition that the sum of all of the
sizes is the same on both sides . Embodiments of the present
invention may find where the size requirement is satisfied in

this situation using a more elaborate method than the method
described above in connection with multi - address load bal
ancers . Embodiments of the present invention may , how
ever , still find the size requirement in the data by determin
ing whether the sum of all of the sizes on the inbound side
of the candidate load balancer is approximately the same as
the sum of the sizes on the outbound side of the load
balancer .
[0054] A load balancer which combines multiple incom
ing requests into a single outgoing request makes use of the
MinHash method described above , however , much more
difficult . Embodiments of the present invention may apply a
modified version of the MinHash method described above to
find the size requirement in the data for a load balancer that
combines multiple inbound requests into one outbound
request , by combining the timestamp , size) tuples from all
of the set members . This allows clean comparisons of the
sizes .
[0055] As described above , some load balancers have one
IP address on the inbound side and a different IP address on
the outbound side . Furthermore , some load balancers have
multiple IP addresses on the inbound side , multiple IP
addresses on the outbound side , or multiple IP addresses on
the inbound side and the outbound side . Embodiments of the
present invention may find the size requirement in the data
for such load balancers by considering sets of unmanaged
hosts , rather than merely pairs of unmanaged hosts . If the
maximum size of set under consideration is limited to K ,
then the computation complexity required to evaluate such
sets increases from O (n2) to O (nk) . In general , the tech
niques disclosed herein may be modified to evaluate such
sets , and thereby to find the size requirement in the data even
for load balancers which have multiple IP addresses on one
or both sides . K may be selected to have any value .
[0056] One of the advantages of embodiments of the
present invention is that it may be used to automatically
identify systems (e . g . , computers) on a network which are
load balancers , without any a priori knowledge of which
systems are load balancers , and based solely on observing
network traffic among systems on the network . Embodi
ments of the present invention do not require load balancers
to be managed in order to detect such load balancers .
Furthermore , embodiments of the present invention do not
even require all systems that are parties to communications
to be managed systems in order to detect load balancers .
Once load balancers have been identified automatically
using embodiments of the present invention , embodiments
of the present invention may connect communications
between two systems across one or more such identified load
balancers , thereby improving the efficiency of network com
munications .
[0057] It is to be understood that although the invention
has been described above in terms of particular embodi
ments , the foregoing embodiments are provided as illustra
tive only , and do not limit or define the scope of the
invention . Various other embodiments , including but not
limited to the following , are also within the scope of the
claims . For example , elements and components described
herein may be further divided into additional components or
joined together to form fewer components for performing
the same functions .
[0058] The solution described in this patent discovers at
least two types of load balancers . First , " proxy load balanc
ers , " where the connection from source system is terminated

US 2019 / 0149444 A1 May 16 , 2019

at the load balancer , then a new connection is initiated to the
destination system . Second , " pass - through load balancers , "
which maintain end - to - end connectivity between source and
destination using methods similar to network address trans
lation (NAT) . Amazon ' s network load balancer (NLB) is an
example of a pass - through load balancer , as is Google ' s
NLB . Amazon ' s elastic load balancer (ELB) and application
load balancer (ALB) are both examples of proxy load
balancers .
10059] Any of the functions disclosed herein may be
implemented using means for performing those functions .
Such means include , but are not limited to , any of the
components disclosed herein , such as the computer - related
components described below .
[0060] The techniques described above may be imple
mented , for example , in hardware , one or more computer
programs tangibly stored on one or more computer - readable
media , firmware , or any combination thereof . The tech
niques described above may be implemented in one or more
computer programs executing on (or executable by) a pro
grammable computer including any combination of any
number of the following : a processor , a storage medium
readable and / or writable by the processor (including , for
example , volatile and non - volatile memory and / or storage
elements) , an input device , and an output device . Program
code may be applied to input entered using the input device
to perform the functions described and to generate output
using the output device .
[0061] Embodiments of the present invention include fea
tures which are only possible and / or feasible to implement
with the use of one or more computers , computer processors ,
and / or other elements of a computer system . Such features
are either impossible or impractical to implement mentally
and / or manually . For example , embodiments of the present
invention automatically , receive , transmit , and analyze com
munications on a digital communications network , and
automatically identify computer systems that perform the
function of load balancing on the network . Such features are
applicable only within the context of networked communi
cations , cannot be performed mentally and / or manually , and
solve a problem that is necessarily rooted in network tech
nology using a computer - automated solution .
[0062] Any claims herein which affirmatively require a
computer , a processor , a memory , or similar computer
related elements , are intended to require such elements , and
should not be interpreted as if such elements are not present
in or required by such claims . Such claims are not intended ,
and should not be interpreted , to cover methods and / or
systems which lack the recited computer - related elements .
For example , any method claim herein which recites that the
claimed method is performed by a computer , a processor , a
memory , and / or similar computer - related element , is
intended to , and should only be interpreted to , encompass
methods which are performed by the recited computer
related element (s) . Such a method claim should not be
interpreted , for example , to encompass a method that is
performed mentally or by hand (e . g . , using pencil and
paper) . Similarly , any product claim herein which recites
that the claimed product includes a computer , a processor , a
memory , and / or similar computer - related element , is
intended to , and should only be interpreted to , encompass
products which include the recited computer - related element
(s) . Such a product claim should not be interpreted , for

example , to encompass a product that does not include the
recited computer - related element (s) .
[0063] Each computer program within the scope of the
claims below may be implemented in any programming
language , such as assembly language , machine language , a
high - level procedural programming language , or an object
oriented programming language . The programming lan
guage may , for example , be a compiled or interpreted
programming language .
[0064] Each such computer program may be implemented
in a computer program product tangibly embodied in a
machine - readable storage device for execution by a com
puter processor . Method steps of the invention may be
performed by one or more computer processors executing a
program tangibly embodied on a computer - readable medium
to perform functions of the invention by operating on input
and generating output . Suitable processors include , by way
of example , both general and special purpose microproces
sors . Generally , the processor receives (reads) instructions
and data from a memory (such as a read - only memory and / or
a random access memory) and writes (stores) instructions
and data to the memory . Storage devices suitable for tangi
bly embodying computer program instructions and data
include , for example , all forms of non - volatile memory , such
as semiconductor memory devices , including EPROM ,
EEPROM , and flash memory devices ; magnetic disks such
as internal hard disks and removable disks ; magneto - optical
disks ; and CD - ROMs . Any of the foregoing may be supple
mented by , or incorporated in , specially - designed ASICS
(application - specific integrated circuits) or FPGAs (Field
Programmable Gate Arrays) . A computer can generally also
receive (read) programs and data from , and write (store)
programs and data to , a non - transitory computer - readable
storage medium such as an internal disk (not shown) or a
removable disk . These elements will also be found in a
conventional desktop or workstation computer as well as
other computers suitable for executing computer programs
implementing the methods described herein , which may be
used in conjunction with any digital print engine or marking
engine , display monitor , or other raster output device
capable of producing color or gray scale pixels on paper ,
film , display screen , or other output medium .
[0065] Any data disclosed herein may be implemented , for
example , in one or more data structures tangibly stored on
a non - transitory computer - readable medium . Embodiments
of the invention may store such data in such data structure (s)
and read such data from such data structure (s) .
What is claimed is :
1 . A method performed by at least one computer processor

executing computer program instructions stored on at least
one non - transitory computer - readable medium , the method
comprising :

(A) receiving information about a plurality of incoming
communications , over a network , to a computer ;

(B) receiving information about a plurality of outgoing
communications , over a network , from the computer ;

(C) identifying , for each of the plurality of incoming
communications , a corresponding invariant scalar
quantity ;

(D) identifying , for each of the plurality of outgoing
communications , a corresponding invariant scalar
quantity ;

(E) determining whether a sum of the corresponding
invariant scalar quantities for each of the plurality of

US 2019 / 0149444 A1 May 16 , 2019

incoming communications is equal to a sum of the
corresponding invariant scalar quantities for each of the
plurality of outgoing communications ;

(F) if the sum of the corresponding invariant scalar
quantities for each of the plurality of incoming com
munications is determined to be equal to the sum of the
corresponding invariant scalar quantities for each of the
plurality of outgoing communications , then determin
ing that the computer is a load balancer ; and

(G) otherwise , determining that the computer is not a load
balancer .

2 . The method of claim 1 , wherein the plurality of
incoming communications comprises a plurality of mes
sages transmitted by a plurality of computers , and wherein
(A) comprises receiving the plurality of messages at a
computer that is not within the plurality of computers .

3 . The method of claim 1 , wherein the plurality of
incoming communications comprises a plurality of mes
sages transmitted by a plurality of computers , and wherein
(A) comprises receiving , at a computer that is not within the
plurality of computers , communications from a management
server containing information about the plurality of mes
sages .

4 . The method of claim 1 , wherein the scalar invariant
quantity corresponding to each of the plurality of incoming
communications comprises a size of a payload of the incom
ing communication .

5 . A system comprising at least one non - transitory com
puter - readable medium having computer program instruc
tions stored thereon , the computer program instructions
being executable by at least one computer processor to
perform a method , the method comprising :

(A) receiving information about a plurality of incoming
communications , over a network , to a computer ;

(B) receiving information about a plurality of outgoing
communications , over a network , from the computer ;

(C) identifying , for each of the plurality of incoming
communications , a corresponding invariant scalar
quantity ;

(D) identifying , for each of the plurality of outgoing
communications , a corresponding invariant scalar
quantity ;

(E) determining whether a sum of the corresponding
invariant scalar quantities for each of the plurality of
incoming communications is equal to a sum of the
corresponding invariant scalar quantities for each of the
plurality of outgoing communications ;

(F) if the sum of the corresponding invariant scalar
quantities for each of the plurality of incoming com
munications is determined to be equal to the sum of the
corresponding invariant scalar quantities for each of the
plurality of outgoing communications , then determin
ing that the computer is a load balancer ; and

(G) otherwise , determining that the computer is not a load
balancer .

6 . The system of claim 5 , wherein the plurality of incom
ing communications comprises a plurality of messages
transmitted by a plurality of computers , and wherein (A)
comprises receiving the plurality of messages at a computer
that is not within the plurality of computers .

7 . The system of claim 5 , wherein the plurality of incom
ing communications comprises a plurality of messages
transmitted by a plurality of computers , and wherein (A)
comprises receiving , at a computer that is not within the
plurality of computers , communications from a management
server containing information about the plurality of mes
sages .

8 . The system of claim 5 , wherein the scalar invariant
quantity corresponding to each of the plurality of incoming
communications comprises a size of a payload of the incom
ing communication .

